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Abstract

Generative language models (LMs) such as GPT-2/3 can be prompted to generate text with
remarkable quality. While they are designed for text-prompted generation, it remains an
open question how the generation process could be guided by modalities beyond text such as
images. In this work, we propose a training-free framework, called MAGIC (iMAge-Guided
text generatIon with CLIP), for plugging in visual controls in the generation process and
enabling LMs to perform multimodal tasks (e.g., image captioning) in a zero-shot man-
ner. MAGIC is a simple yet efficient plug-and-play framework, which directly combines an
off-the-shelf LM (i.e., GPT-2) and an image-text matching model (i.e., CLIP) for image-
grounded text generation. During decoding, MAGIC influences the generation of the LM
by introducing a CLIP-induced score, namely magic score, which regularizes the generated
result to be semantically related to a given image while being coherent to the previously
generated context. Notably, the proposed decoding scheme does not involve any gradient
update operation, therefore being computationally efficient. On the challenging task of
zero-shot image captioning, MAGIC outperforms the state-of-the-art method by notable
margins with a nearly 27 times decoding speedup. MAGIC is a flexible framework and is
theoretically compatible with any text generation tasks that incorporate image grounding.
In the experiments, we showcase that it is also capable of performing visually grounded
story generation given both an image and a text prompt.

1 Introduction

Since the introduction of GPT-2 (Radford et al., 2019), generative language models (LMs), which are pre-
trained on an enormous amount of unstructured text, have produced unmatched performances on a wide
range of NLP tasks (Brown et al., 2020; Chowdhery et al., 2022). Given a textual prompt, LMs can contin-
uously generate texts with the next-token prediction decoding scheme. Although controlling the outputs of
LMs has become possible by inserting textual prompts, it is still unknown how the decoding process could
be guided by information beyond texts, such as images.

Recently, multimodal representation learning of text and images have been rejuvenated by pre-trained image-
text joint embedding models, such as CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021). They
leverage large-scale noisy image-text pairs with weak correspondence for contrastive embedding learning
and the learned joint model achieves impressive zero-shot performance competitive to supervised models
on tasks such as image classification and image-text retrieval. However, they are still under-explored for
image-grounded text generation.1

How can we combine the best of both the pre-trained LMs and image-text embedding models for visually
grounded text generation? Existing supervised methods combine multimodal encoders by further training
them on human-annotated paired image-text data (Mokady et al., 2021; Chen et al., 2021a). Differently,
weakly supervised approaches (Anderson et al., 2018a; Feng et al., 2019; Laina et al., 2019) rely on pre-
trained object detectors to identify visual concepts and create pseudo image-text pairs. Instead of training

1Note that while such noisy weak image-text pair supervision is sufficient for learning embeddings, they could not be directly
used to train image captioning model due to the data’s extreme level of noise (Tewel et al., 2021).
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on annotated image-text pairs, they directly train on the pseudo data. However, such methods are usually
limited by the object detectors that are trained with a fixed set of labels. The closest to our proposal is
ZeroCap (Tewel et al., 2021) which is an unsupervised image captioning method by combining frozen CLIP
and GPT-2. One of the advantages of ZeroCap is it performs ex post facto in the activation space without
re-training or fine-tuning the CLIP and GPT-2 models. However, ZeroCap relies on gradient update and
optimization over the context cache, which significantly slows down the inference and hinders its use in
real-world scenarios.

In this paper, we propose to solve this challenging task in a completely new perspective by designing a
novel text decoding scheme, called MAGIC (iMAge-Guided text generatIon with CLIP). During inference,
MAGIC does not rely on any additional training or parameters and utilizes explicit “control knobs” to select
desired outputs following the guidance of both the GPT-2 and CLIP models. Different from the standard
decoding process of GPT-2, we insert a CLIP-induced term, namely magic score, in the next token search to
encourage the predicted result to demonstrate information that is close to the given image. Our experiments
show that such a framework enables zero-shot image captioning and also visually grounded story generation
under a simple plug-and-play principle.

To verify the qualitative and quantitative performance of the proposed approach, we conduct compre-
hensive experiments on two commonly used benchmarks (Section §4): MS-COCO (Lin et al., 2014) and
Flickr30k (Plummer et al., 2015). To our surprise, MAGIC achieves state-of-the-art (SOTA) performance
across different evaluation metrics, especially outperforming all unsupervised and weakly supervised baselines
by notable margins. Moreover, since MAGIC involves no gradient update, the inference speed accelerates
upon the previous SOTA on zero-shot image captioning by around 27 times. Beyond image captioning, we
also test our approach on visually grounded story generation (Section §5). In this task, given an image and
a text prompt, MAGIC can generate high-quality stories that outperform strong baseline methods on both
human and automatic evaluations.

In summary, we make the following contributions:

• To the best of our knowledge, we are the first to propose a zero-shot method, i.e. MAGIC, to
utilize explicit “control knobs” to efficiently select desired outputs following the guidance of both
the pre-trained GPT-2 and CLIP models.

• We empirically show that MAGIC is extremely effective on zero-shot image captioning, achieving
SOTA across different benchmarks.

• We demonstrate that MAGIC could be used in creative ways: it can perform complex multimodal
generation tasks such as visually grounded story generation and reaches near-human performances
on a wide range of evaluation metrics.

2 Background

In this section, we briefly introduce previous work related to our research.

2.1 Image Captioning

Our work is closely related to the literature of image captioning, where the goal is to describe images with
meaningful and syntactically correct sentences. Although this topic has been extensively explored in the past
few years, it is still far from being considered as a solved task. Given the training strategies (e.g., the type
of training data), we can roughly classify the previous methods into two categories: (1) Supervised and (2)
Weakly-/Un-Supervised approaches. The former heavily depends on manually labelled image-text datasets.
In contrast, the latter tries to create pseudo image-text pairs (i.e., weakly supervised) or even avoid using
any paired image-text data (i.e., unsupervised).

Supervised Approaches. With the development of deep learning, most of the existing models use one CNN
to encode the input image and one RNN to generate the corresponding sentence describing the image (Mao
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et al., 2014; Vinyals et al., 2015). These models are trained to maximize the probability of generating the
ground-truth captions conditioned on the input image. After that, the main focus of following methods
is to model the interaction between visual and textual cues via attention mechanism to get more faithful
and richer captions (Xu et al., 2015; Lu et al., 2017; Anderson et al., 2018b; Zhang et al., 2021b; Huang
et al., 2021). Meanwhile, some controllable image captioning methods (Mathews et al., 2016; Gan et al.,
2017; Chen et al., 2018; Shuster et al., 2019; Chen et al., 2021b) propose to generate diverse descriptions
by feeding different control signals (e.g., label and text), which require additional annotations for training.
Beyond describing the whole image scene, dense captioning methods (Johnson et al., 2016; Chatterjee &
Schwing, 2018; Kim et al., 2019; Yin et al., 2019; Zeng et al., 2020) aim to describe the visual objects
in a sub-region of the input image. Recently, vision-language pre-training methods (Zhou et al., 2020; Li
et al., 2020; Mokady et al., 2021; Hu et al., 2021), benefiting from the rich visual-textual representation of
pre-trained models on large-scale datasets, are tendencies for vision-language generation by re-training or
fine-tuning the model parameters on downstream tasks. Although these methods have achieved impressive
results, a certain amount of paired image-text data is indispensable during training.

Weakly-/Un-Supervised Approaches. Till now, there has been several attempts to reduce the reliance
on paired image-text data for the training of image captioning model. In weakly-supervised approaches,
employing pseudo-captions, i.e., sentences that contain the object labels detected from the given images, has
been a common choice (Anderson et al., 2018a; Feng et al., 2019; Laina et al., 2019). However, a weakly
supervised cross-modal alignment between image and text is needed. Besides, pseudo-captions tend to
contain irrelevant words for the given images (Honda et al., 2021). Therefore, it requires carefully designed
constraints or learning schema to alleviate the noise. What is more, such methods require a pre-trained
object detector bounded by a fixed set of labels to provide visual concepts. They are thus ineffective for any
out-of-domain concepts and scenes.

How can we get rid of creating pseudo-captions and perform image captioning in a truly unsupervised
manner? Recently, CLIP (Radford et al., 2021) has emerged as a successful vision-language alignment
model by training on 400M noisy web-collected image-sentence pairs. It has shown impressive zero-shot
capabilities on various vision-language tasks and can open new avenues for answering the former question.
ZeroCap (Tewel et al., 2021) is the most related to our work. It is built on a pre-trained CLIP model together
with the GPT-2 language model (Radford et al., 2019). Different from previous work, ZeroCap is truly zero-
shot, where the optimization is performed “ex post facto” in the activation space without re-training or
fine-tuning the model parameters. In ZeroCap, the whole context cache (i.e., all the K and V in the self-
attention modules (Vaswani et al., 2017; Dosovitskiy et al., 2021)) is updated with the guidance of CLIP and
GPT-2 for every prediction step. As a result, the computational overhead of such optimization steps will
increase drastically as the size of the language model goes up. One key difference of our proposal with respect
to ZeroCap is that MAGIC utilizes explicit “control knobs” to select desired outputs corresponding to the
given image. Since our procedure does not involve any gradient updating or optimization, it significantly
speeds up the decoding process by around 27 times (Section §4.1).

2.2 Plug and Play Generative Models

Lagre-scale pre-trained generative models have revolutionized the field of natural language processing (Rad-
ford et al., 2019; Brown et al., 2020) and computer vision (Radford et al., 2021; Ramesh et al., 2021; 2022;
Karras et al., 2019; 2020; 2021) in the past few years. Various previous work (Nguyen et al., 2016; 2017;
Dathathri et al., 2020; Shen et al., 2020) have revealed that there are rich meaningful semantics in the
features learned by such models. This shows a promising pathway to synthesize the desired outputs by
interpreting the existing generative models in a “plug and play” manner. We can then directly enjoy the
powerful capabilities of these off-the-shelf big models (without any re-training or fine-tuning) and focus on
the lightweight task-specific optimization.

For instance, in the image generation field, DGN-AM (Nguyen et al., 2016) can generate images conditioned
on a class by finding a hidden code that clearly activates a neuron in another classifier. Then, PPGN (Nguyen
et al., 2017) improves the diversity and quality of the synthesized images by incorporating approximate
Metropolis-adjusted Langevin (MALA) algorithm (Roberts & Tweedie, 1996; Roberts & Rosenthal, 1998).
Shen et al. (2020) propose to directly travel in the latent space of pre-trained unconditional GANs to
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manipulate the attributes of the input image. Patashnik et al. (2021) use CLIP to connect the text prompt
and images to search the latent codes of StyleGAN by gradient descent optimization, which finally results
in the manipulation of the visual attributes in the input image. Similarly, in the text generation field,
PPLM (Dathathri et al., 2020) extends the previous PPGN to text generation tasks (i.e., editing topic and
sentiment), where the image generative models is replaced with a GPT-2 language model. Most recently,
ZeroCap (Tewel et al., 2021) shows image captioning task can be tackled by directly combining the existing
CLIP and GPT-2 models. In general, most of these mentioned “plug and play” methods require iteratively
shifting the hidden code (or latent code, or context cache) with gradient descent optimization.

Different from previous work, our proposed approach extends the “plug and play” paradigm by optimizing the
decoding strategy of generative LMs. Since MAGIC does not involve any gradient update in the inference, it
is computationally efficient (e.g., ∼27 times faster than ZeroCap). Notably, although GPT-2 could generate
synthetic text samples of unprecedented quality, it may not be natural on some task-specific text (Mokady
et al., 2021; Shen et al., 2021; Zhang et al., 2021a). Following this observation, we continue fine-tuning the
GPT-2 model on the task-specific text corpus in an unsupervised manner to adapt it to the textual domain
of the end task (Laina et al., 2019; Honda et al., 2021). The computational consumption of such adaptation
is negligible (e.g., less than 2 hours with 1 NVIDIA 1080Ti on MS-COCO). During decoding, the fine-tuned
GPT-2 and CLIP models are fixed.

3 Methodology

3.1 Unsupervised Language Modelling

Following previous studies (Laina et al., 2019; Honda et al., 2021), we first learn an unsupervised language
model on the text corpus of the end task to adapt to its textual domain. Typically, given a text sequence x,
the maximum likelihood estimation (MLE) objective is used to train the language model θ as

LMLE = − 1
|x|

|x|∑
i=1

log pθ(xi|x<i). (1)

Recently, Su et al. (2022) propose to incorporate contrastive objective into the training of the language model
to calibrate the model’s representation space and obtain better language model perplexity. Given the text
sequence x, the contratsive objective LCL is defined as

LCL = 1
|x| × (|x| − 1)

|x|∑
i=1

|x|∑
j=1,j ̸=i

max{0, ρ − s(hxi
, hxi

) + s(hxi
, hxj

)}, (2)

where ρ is a pre-defined margin that regularizes the distribution of the model’s representation space. The
hxi is the representation of token xi and the similarity function s computes the cosine similarity between
token representations as s(hxi , hxj ) = h⊤

xi
hxj /(∥hxi∥ · ∥hxj ∥).

The overall unsupervised learning objective L of the language model is then defined as

L = LMLE + LCL. (3)

3.2 MAGIC Search

We propose a new decoding scheme, MAGIC Search, which aims to steer the decoding process of the language
model towards a desired visual direction. Formally, given a text prefix x<t and an image I, the selection of
the output token xt at the time step t follows

xt = arg max
v∈V (k)

{
(1 − α)× pθ(v|x<t)︸ ︷︷ ︸

model confidence

−

α × (max{s(hv, hxj
) : 1 ≤ j ≤ t − 1})︸ ︷︷ ︸

degeneration penalty

+ β × f(v|I, x<t, V (k))︸ ︷︷ ︸
magic score

}
,

(4)
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where V (k) is the set of top-k predictions from the model’s probability distribution pθ(·|x<t) and s is
described in Section §3.1. hv is the representation of the candidate token v which is computed by the model
given the concatenation of x<t and v. Inspired by Su et al. (2022), we incorporate the model confidence
and degeneration penalty into Eq. (4) to let the model decode the likely output while avoiding the model
degeneration problem.

Meanwhile, we introduce a novel scoring criterion, i.e. magic score, to plug in visual controls into the
decoding process. Given the candidate v, the prefix x<t, and the image I, the magic score is defined as
the distribution of image-text similarity over the candidate set V (k). We build our image-text similarity
measurement with a pre-trained CLIP model and the magic score is then defined as

f(v|I, x<t, V (k)) = eCLIP(I,[x<t:v])∑
z∈V (k) eCLIP(I,[x<t:z]) = eh⊤

I h[x<t:v]∑
z∈V (k) eh⊤

I h[x<t:z]
, (5)

where hI is the image embedding of I produced by the CLIP image encoder. The h[x<t:v] is the text
embedding of the sequence [x<t : v] produced by the CLIP text encoder and [:] denotes the concatenation
operation. Intuitively, the magic score encourages the language model to generate text that is semantically
related to the image content and the strength of the visual control is regulated by the hyper-parameter β in
Eq. (4).

We note that our motivation for using CLIP to align the similarity between partial texts and images is
shared with the previous study, i.e. ZeroCap (Tewel et al., 2021).2 However, in contrast to ZeroCap,
MAGIC directly plugs visual controls into the decoding process of the language model, without the need
of extra supervised training (Dathathri et al., 2020) or gradient update on additional features (Dathathri
et al., 2020; Tewel et al., 2021). This property makes our method much more computationally efficient than
previous approaches as demonstrated in our experiments (Section §4.1).

4 Zero-Shot Image Captioning

We first evaluate our approach on the task of zero-shot image captioning.

Evaluation Benchmarks. We conduct experiments on two widely used benchmarks: MS-COCO (Lin
et al., 2014) and Flickr30k (Plummer et al., 2015). For both datasets, we set up the training, validation,
and test splits according to the protocols provided by Karpathy & Fei-Fei (2015).

Implementation Details. As described in Section §3.1, for each benchmark, we adapt the GPT-2 model
on the training text corpus for 3 epochs and the contrastive loss margin ρ in Eq. (3) is set as 0.5. We
optimize the model with the Adam optimizer (Kingma & Ba, 2015) and a learning rate of 2e-5. Notably,
this fine-tuning procedure is computationally negligible, i.e., less than 2 hours with 1 NVIDIA 1080Ti GPU.
During decoding, the generation of the language model starts with a special start-of-sequence (i.e., [sos])
token. For MS-COCO, we set the k, α, and β in MAGIC Search (i.e., Eq. (4)) as 45, 0.1, and 2.0 based
on the model’s performance on the validation set. As for Flickr30k, these values are set as 25, 0.1, and 2.0,
respectively.3

Baselines. We include several zero-shot methods as our baselines. (1) We compare the generated results
of the language model by starting from the start-of-sequence (i.e., [sos]) token with different decoding
methods, including top-k sampling (Fan et al., 2018) with k = 40 and nucleus sampling (Holtzman et al.,
2020) with p = 0.95. Moreover, we include contrastive search (Su et al., 2022) using the same k and α as
in MAGIC Search to see the direct effect of the proposed magic score (Eq. (4)).4 Note that, these methods
do not take into account the image input, therefore can be used to assess the performance lower-bound of
the language model. (2) We also compare with a CLIP-based method, called CLIPRe. Given an image,
it retrieves the most related caption from the training text corpus based on the image-text similarity as

2We acknowledge that CLIP was originally trained to match full texts and images. In Appendix A, we quantitatively show
that CLIP also learns to effectively measure the similarity between partial texts and images.

3In Appendix B, we provide detailed ablation studies on the effect of different hyper-parameter setups.
4Note that, when β in Eq. (4) equals to 0, the visual control is disabled and MAGIC Search degenerates to the vanilla

contrastive search.
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Model MS-COCO Flickr30k Speed
B@1 B@4 M R-L CIDEr SPICE B@1 B@4 M R-L CIDEr SPICE

Supervised Approach
BUTD 77.2 36.2 27.0 56.4 113.5 20.3 - 27.3 21.7 - 56.6 16.0 -
GVD - - - - - - 66.9 27.3 22.5 - 62.3 16.5 -

UniVLP - 36.5 28.4 - 116.9 21.2 - 30.1 23.0 - 67.4 17.0 -
ClipCap - 33.5 27.5 - 113.1 21.1 - - - - - - -

Oscar - 36.5 30.3 - 123.7 23.1 - - - - - - -
LEMON - 40.3 30.2 - 133.3 23.3 - - - - - - -

Weakly Supervised Approach
UIC 41.0 5.6 12.4 28.7 28.6 8.1 - - - - - - -

IC-SME - 6.5 12.9 35.1 22.7 - - 7.9 13.0 32.8 9.9 - -
S2S-SS 49.5 6.3 14.0 34.5 31.9 8.6 - - - - - - -

S2S-GCC 50.4 7.6 13.5 37.3 31.8 8.4 - - - - - - -
Unsupervised Approach

Top-k 33.6 2.4 8.3 25.6 3.8 1.7 34.0 2.9 9.0 24.4 3.3 2.7 69.9×
Nucleus 32.6 2.3 7.8 24.8 3.1 1.4 32.6 2.4 8.1 23.4 2.5 2.4 72.5×

Contrastive 39.5 3.0 10.8 30.8 7.7 2.9 37.6 4.3 9.8 25.7 8.9 4.6 50.4×
CLIPRe 39.5 4.9 11.4 29.0 13.6 5.3 38.5 5.2 11.6 27.6 10.0 5.7 -
ZeroCap 49.8 7.0 15.4 31.8 34.5 9.2 44.7 5.4 11.8 27.3 16.8 6.2 1.0×
MAGIC 56.8 12.9 17.4 39.9 49.3 11.3 44.5 6.4 13.1 31.6 20.4 7.1 26.6×

Table 1: Image Captioning Results on MS-COCO and Flickr30k.

measured by CLIP. (3) Lastly, we compare with the current state-of-the-art approach, ZeroCap (Tewel et al.,
2021), which performs CLIP-guided gradient update on the language model features during the decoding
process. For a fair comparison, we use the same language model for ZeroCap as in our approach.

Evaluation Metrics. Following the common practice in the literature, we perform evaluation using BLEU-
1/4 (B@1/4) (Papineni et al., 2002), METER (M) (Denkowski & Lavie, 2014), ROUGE-L (R-L) (Lin &
Och, 2004), CIDEr (Vedantam et al., 2015), and SPICE (Anderson et al., 2016). In addition, we compare
the relative decoding speed of our approach against other generation-based baselines. Here, the decoding
speed is measured from the average inference time per image instance.5

4.1 Results

Table 1 shows the results on zero-shot image captioning. For a comprehensive comparison, we also include
the results of several representative (1) supervised methods: BUTD (Anderson et al., 2018b), GVD (Zhou
et al., 2019), UniVLP (Zhou et al., 2020), ClipCap (Mokady et al., 2021), Oscar (Li et al., 2020), and
LEMON (Hu et al., 2021); and (2) weakly supervised methods: UIC (Feng et al., 2019), IC-SME (Laina
et al., 2019), S2S-SS and S2S-GCC (Honda et al., 2021).

From the results of Top-k, Nucleus, and Contrastive, we see that solely using the unsupervised language
model without conditioning on image inputs can hardly generate meaningful captions.6 On the other hand,
the results of CLIPRe show that the ability of measuring image-text similarity enables CLIP to retrieve
captions that better correlate with the test image from the training text corpus. However, the performance of
CLIPRe still lags behind the current SOTA method, ZeroCap, by a large margin due to the data discrepancy
between the training and test sets. Lastly, we observe that, on both benchmarks, MAGIC achieves the best
performance on 11 out of 13 metrics, demonstrating the clear advantages of our proposed approach. Notably,
while outperforming ZeroCap on 12 out of 13 metrics, MAGIC achieves a nearly 27× decoding speedup. This
is because, during the decoding process, MAGIC does not involve any computationally inefficient operations

5The decoding speed of different methods are measured on the same hardware platform with a batch size of 1.
6For stochastic sampling methods (i.e., Top-k and Nucleus), we report the results averaged over 3 runs with different random

seeds. We refer to Appendix C for more details on the numerical results.
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Model MS-COCO =⇒ Flickr30k Flickr30k =⇒ MS-COCO

B@1 B@4 M R-L CIDEr SPICE B@1 B@4 M R-L CIDEr SPICE
Top-k 34.9 2.4 7.5 24.2 2.3 1.7 30.0 1.8 8.5 23.6 2.5 1.7

Nucleus 33.4 1.7 7.0 23.3 1.8 1.3 29.1 1.6 8.0 22.9 2.1 1.6
Contrastive 40.3 5.3 10.7 30.5 5.1 3.4 33.8 3.2 10.2 25.5 4.2 3.7

CLIPRe 38.7 4.4 9.6 27.2 5.9 4.2 31.1 3.0 9.9 22.8 8.5 3.9
MAGIC 46.4 6.2 12.2 31.3 17.5 5.9 41.4 5.2 12.5 30.7 18.3 5.7

Table 2: Cross-Domain Evaluation. X =⇒ Y means source domain =⇒ target domain.

like gradient updates (Dathathri et al., 2020; Tewel et al., 2021), which further validates the practical usage
of our approach.

4.2 Cross-Domain Experiment

To test the generalization ability of our approach, we conduct a cross-domain experiment. Specifically, we
apply the unsupervised language model adapted to the training text corpus of the source domain (e.g., MS-
COCO) to perform inference on the test set of the target domain (e.g., Flickr30k). We compare MAGIC
with several zero-shot methods, including Top-k, Nucleus, Contrastive, and CLIPRe.7 For CLIPRe, given a
test image from the target domain, it retrieves the most related caption from the training text corpus of the
source domain.

Table 2 shows the results on cross-domain evaluation, where we observe performance drops in all methods
as compared with the in-domain evaluation results shown in Table 1.8 Nonetheless, MAGIC still performs
the best among all compared methods, demonstrating its clear advantages in terms of robustness and gen-
eralization ability.

Figure 1: Examples of zero-shot image captioning. (Best viewed by zooming in.)

4.3 Qualitative Evaluation

Figure 1 shows visual comparisons between our approach and other two strong zero-shot baselines along with
the reference caption.9 The results demonstrate that MAGIC can generate fluent captions while being more

7Due to its extremely high computational overhead, we do not include ZeroCap in this experiment.
8For stochastic sampling methods (i.e., Top-k and Nucleus), we report the results averaged over 3 runs with different random

seeds. We refer to Appendix C for more detailed numerical results.
9More examples of zero-shot image captioning are provided in Appendix D.
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effective at grounding on the given image. For example, in Figure 1(a), the result of CLIPRe only contains
the object “building” that is partially related to the image. As for ZeroCap, it erroneously elaborates the
object “school bus” which is not displayed in the image. On the other hand, MAGIC correctly describes
the “street sign” object in the image as well as the building in the background. Next, we take Figure 1(d)
as an example, in which the result of CLIPRe is clearly irrelevant to the image. As for ZeroCap, while it
produces objects like “boatboard” and “small boat” that are related to the image, the generated result is
not fluent and ungrammatical. In contrast, MAGIC is able to describe the correct objects such as “yellow
boat” and “beach” as well as their positional relationship (i.e., lined up on) while maintaining the fluency
and grammaticality of the generated text.

5 Story Generation

To verify the versatility and extensibility of MAGIC, we test it on a popular text generation task, i.e., story
generation. In this task, given a story title (i.e., text prompt), the language model is asked to generate an
interesting and coherent story that is related to the story title.

Evaluation Benchmark. We evaluate our approach on the widely used ROCStories (Mostafazadeh et al.,
2016) dataset. In this dataset, each story title is accompanied with a five-sentence commonsense story
written by human. We create the training, validation, and test sets following the official split.

Model and Baselines. We use a publicly available GPT-based language model (Su et al., 2022) which is
fine-tuned on the ROCStories benchmark.10 As MAGIC Search is a language model decoding scheme, we
compare it with a range of strong text decoding methods, including (1) Greedy search; (2) Beam search with
beam width of 10; (3) Top-k sampling (Fan et al., 2018) with k = 40; (4) Nucleus sampling (Holtzman et al.,
2020) with p = 0.95; (5) Typical sampling (Meister et al., 2022) with τ = 0.2; and (6) Contrastive search
(Su et al., 2022) with k = 5 and α = 0.6. The hyperparameters of different methods are selected based on
their optimal MAUVE (Pillutla et al., 2021) (detailed in Section §5.1) performance on the validation set.

Implementations of MAGIC. To perform MAGIC Search, given the story title, we first retrieve the image
(from an image index) that is most related to the story title as measured by CLIP. We construct the image
index with the public ConceptualCaptions (Sharma et al., 2018) dataset that contains over 3.3M images
from the web. In practice, we pre-compute the image representations with CLIP and build the image index
with FAISS (Johnson et al., 2019), therefore supporting a fast “story title-image” retrieval with sub-linear
time complexity. Then, by visually grounding on the retrieved image, we generate the story from the story
title using MAGIC Search (k = 5, α = 0.6, and β = 0.15).11

5.1 Automatic Evaluation

Following previous studies (Meister et al., 2022; Su et al., 2022), we first evaluate the quality of the generated
results from different methods using automatic evaluation metrics, including (1) n-gram repetition (rep-n);
(2) generation diversity (div.); (3) semantic coherence (coh.) between the generated story and the story
title; and (4) MAUVE (Pillutla et al., 2021) score that measures the token distribution closeness between
the generated text and the human-written text. In addition, to verify that MAGIC is able to generate stories
that are semantically related to the given images, we employ CLIPScore (Hessel et al., 2021) to measure the
semantic similarity between the generated story and the image retrieved by the story title.

Table 3 shows the automatic results, from which we observe that MAGIC performs the best on most of the
evaluation metrics.12 The results of rep-n, diversity, and MAUVE score demonstrate that MAGIC generates
the most diverse stories while being closest to human-written stories in terms of token distribution (Pillutla
et al., 2021). Moreover, on the coherence (coh.) metric, MAGIC notably outperforms other baselines. We
conjecture that the image retrieved by the story title contains rich visual concepts and features, therefore
providing more grounding information. As a result, by leveraging these visual knowledge, MAGIC can

10https://huggingface.co/cambridgeltl/simctg_rocstories
11The hyper-parameters are selected based on the model’s optimal MAUVE performance on the validation set.
12For stochastic methods (i.e., Top-k, Nucleus, and Typical sampling), we report the numbers averaged over 3 runs with

different random seeds. We refer to Appendix E for more details.
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Method Automatic Evaluation Human Evaluation

rep-2↓ rep-3↓ rep-4↓ div.↑ coh.↑ MAUVE↑ CLIPScore↑ coh.↑ flu.↑ inform.↑ si-rel.↑
Agreement - - - - - - - 0.68 0.57 0.66 0.73

Greedy 22.27 15.42 12.36 0.58 0.473 0.53 0.23 2.67 3.20 3.10 2.03
Beam 26.76 21.79 18.85 0.47 0.478 0.46 0.25 2.71 3.23 3.15 2.05
Top-k 3.38 0.76 0.23 0.95 0.458 0.86 0.21 2.52 3.69 3.62 1.96

Nucleus 2.92 0.60 0.18 0.96 0.452 0.88 0.21 2.48 3.68 3.71 1.92
Typical 2.52 0.46 0.12 0.97 0.450 0.84 0.19 2.32 3.70 3.76 1.75

Contrastive 2.49 0.38 0.09 0.97 0.488 0.89 0.28 2.86 3.72 3.76 2.07
MAGIC 2.51 0.38 0.09 0.97 0.514 0.91 0.36 3.20 3.76 3.85 2.40
Human 2.21 0.37 0.09 0.97 0.542 1.00 0.40 3.77 4.11 4.22 2.59

Table 3: Evaluation results on story generation. ↑ means higher is better and ↓ means lower is better. The
best result is bold and the second best is underlined. In human evaluation, results significantly outperform
the results of other compared methods (Sign Test with p-value < 0.05).

generate stories are more semantically coherent to the story titles. Lastly, on the CLIPScore metric, MAGIC
surpasses other methods by large margins, suggesting it generates stories that are more related to the images.
In conclusion, the generated text of MAGIC is effectively guided by both the text prompt (i.e., story title)
as well as the image, while other methods can only leverage the information from the text prompt.

5.2 Human Evaluation

We also conduct a human evaluation with the help of graders proficient in English from a third-party grading
platform. We sample 200 instances from the test set. All generated results, plus the reference, are randomly
shuffled and evaluated by five graders, resulting in 8,000 annotated samples in total. The evaluation follows
a 5-point Likert scale (1, 2, 3, 4, or 5) for each of the following features:13

• Coherence (coh.): Whether the generated story is semantically consistent with the title.
• Fluency (flu.): Whether the generated story is fluent and easy to understand.
• Informativeness (inform.): Whether the generated story is diverse and interesting.
• Story-Image Relevance (si-rel.): Whether the generated story is related to the image that is

retrieved by the story title.

Table 3 presents the human evaluation results, with the first row showing strong inter-annotator agreements
as measured by Fleiss′ kappa coefficient (Fleiss et al., 1971). Firstly, on the fluency (flu.) and informativeness
(inform.) metrics, MAGIC performs better than other methods. This indicates that the introduction of visual
guidance helps the model to generate more interesting content while maintaining the fluency of the generated
story. Moreover, on the coherence metric, the performance gain of MAGIC over other baselines is significant
(Sign Test with p-value < 0.05), showing it better maintains the consistency between the generated story
and the story title. This conclusion is also validated by the results of coherence score in the automatic
evaluation (Section §5.1). Lastly, on the story-image relevance (si-rel.) metric, MAGIC outperforms other
methods significantly, demonstrating its ability in generating text by visually grounding on the given image.

5.3 Qualitative Evaluation

In Figure 2, we compare our approach with the strongest baseline (i.e., contrastive search), where the
image retrieved by the story title is shown on the left-hand side.14 We see that MAGIC can generate text
(highlighted in blue) conditioned on the visual concepts of the image. In the first example, MAGIC elaborates
details of three types of ice cream. Such details are more interesting as well as more related to the story
title (i.e., ice cream tasting) as compared with the story generated by contrastive search. In the second
example, the result of contrastive search is clearly off-the-topic. In contrast, by conditioning on the image,

13We refer to Appendix F for the detailed human evaluation guidelines.
14We refer to Appendix G for more examples of story generation.
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Figure 2: Examples of story generation. MAGIC can generate text (highlighted in blue) that is related to
the visual concepts displayed in the image. (Best viewed in color and by zooming in.)

the story generated by MAGIC stays on the topic and describes intriguing details about a sand volleyball
game: (i) the game was hosted on the beach; (ii) it lasted for two hours; and (iii) the friend won the game. In
summary, by leveraging visual guidance from the image, MAGIC can generate semantically coherent story
with interesting content.

6 Conclusion and Future Work

In this work, we present MAGIC, a novel decoding scheme that plugs visual controls into the generation of a
language model. MAGIC is a training-free framework that enables the LM to address challenging multimodal
tasks in a zero-shot manner without sacrificing the decoding speed. To verify the versatility and extensibility
of MAGIC, we comprehensively evaluate our approach on two image-grounded text generation tasks: (i)
image captioning; and (ii) visually grounded story generation. Experimental results of both automatic and
human evaluations demonstrate that our proposed approach outperforms previous state-of-the-art methods
by large margins.

Future work. While our focus in this study is zero-shot image grounded text generation using a language
model, we would like to note that MAGIC Search is a model architecture agnostic decoding scheme. In other
words, it can naturally fit into any existing multimodal generative model which takes both the image and
text as input. However, it is out of the scope of this paper and we will leave it to future work.

Moreover, in theory, MAGIC is a generic framework that can be extended to modalities beyond text and
image. Controls in any form, of any modalities, can be plugged into the language model as long as a certain
similarity metric can be found to measure the relevance between the control and the generated text. In
future work, we would like to explore the possibility of adapting MAGIC to other modalities beyond images
(e.g., audios and videos) therefore enabling the language model to generate text grounded on multimodal
intelligence.

References
Peter Anderson, Basura Fernando, Mark Johnson, and Stephen Gould. Spice: Semantic propositional image

caption evaluation. In European Conference on Computer Vision (ECCV), 2016.

Peter Anderson, Stephen Gould, and Mark Johnson. Partially-supervised image captioning. Advances in
Neural Information Processing Systems (NeurIPS), 2018a.

10



Under review as submission to TMLR

Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen Gould, and Lei Zhang.
Bottom-up and top-down attention for image captioning and visual question answering. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018b.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in Neural Information Processing Systems (NeurIPS), 2020.

Moitreya Chatterjee and Alexander G Schwing. Diverse and coherent paragraph generation from images. In
European Conference on Computer Vision (ECCV), 2018.

Jun Chen, Han Guo, Kai Yi, Boyang Li, and Mohamed Elhoseiny. Visualgpt: Data-efficient adaptation of
pretrained language models for image captioning. arXiv preprint arXiv:2102.10407, 2021a.

Long Chen, Zhihong Jiang, Jun Xiao, and Wei Liu. Human-like controllable image captioning with verb-
specific semantic roles. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2021b.

Tianlang Chen, Zhongping Zhang, Quanzeng You, Chen Fang, Zhaowen Wang, Hailin Jin, and Jiebo Luo.
“factual”or“emotional”: Stylized image captioning with adaptive learning and attention. In European
Conference on Computer Vision (ECCV), 2018.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language
modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason Yosinski,
and Rosanne Liu. Plug and play language models: A simple approach to controlled text generation. In
International Conference on Learning Representations (ICLR), 2020.

Michael Denkowski and Alon Lavie. Meteor universal: Language specific translation evaluation for any
target language. In Proceedings of the Workshop on Statistical Machine Translation, 2014.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. In International Conference on Learning Rep-
resentations (ICLR), 2021.

Angela Fan, Mike Lewis, and Yann N. Dauphin. Hierarchical neural story generation. In Iryna Gurevych and
Yusuke Miyao (eds.), Proceedings of the Annual Meeting of the Association for Computational Linguistics
(ACL), 2018.

Yang Feng, Lin Ma, Wei Liu, and Jiebo Luo. Unsupervised image captioning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

J.L. Fleiss et al. Measuring nominal scale agreement among many raters. Psychological Bulletin, 76(5):
378–382, 1971.

Chuang Gan, Zhe Gan, Xiaodong He, Jianfeng Gao, and Li Deng. Stylenet: Generating attractive visual
captions with styles. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-free
evaluation metric for image captioning. arXiv preprint arXiv:2104.08718, 2021.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text degener-
ation. In International Conference on Learning Representations (ICLR), 2020.

11



Under review as submission to TMLR

Ukyo Honda, Y. Ushiku, Atsushi Hashimoto, Taro Watanabe, and Yuji Matsumoto. Removing word-level
spurious alignment between images and pseudo-captions in unsupervised image captioning. In Proceedings
of the Conference of the European Chapter of the Association for Computational Linguistics (EACL),
2021.

Xiaowei Hu, Zhe Gan, Jianfeng Wang, Zhengyuan Yang, Zicheng Liu, Yumao Lu, and Lijuan Wang. Scaling
up vision-language pre-training for image captioning. arXiv preprint arXiv:2111.12233, 2021.

Yupan Huang, Hongwei Xue, Bei Liu, and Yutong Lu. Unifying multimodal transformer for bi-directional
image and text generation. In Proceedings of the 29th ACM International Conference on Multimedia, pp.
1138–1147, 2021.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung,
Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with noisy text
supervision. In International Conference on Machine Learning (ICML), 2021.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. IEEE Transactions
on Big Data, 7(3):535–547, 2019.

Justin Johnson, Andrej Karpathy, and Li Fei-Fei. Densecap: Fully convolutional localization networks
for dense captioning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating image descriptions. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial
networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing and
improving the image quality of stylegan. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2020.

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, and Timo Aila.
Alias-free generative adversarial networks. Advances in Neural Information Processing Systems (NeurIPS),
2021.

Dong-Jin Kim, Jinsoo Choi, Tae-Hyun Oh, and In So Kweon. Dense relational captioning: Triple-stream
networks for relationship-based captioning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and
Yann LeCun (eds.), International Conference on Learning Representations (ICLR), 2015.

Iro Laina, C. Rupprecht, and Nassir Navab. Towards unsupervised image captioning with shared multimodal
embeddings. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019.

Xiujun Li, Xi Yin, Chunyuan Li, Xiaowei Hu, Pengchuan Zhang, Lei Zhang, Lijuan Wang, Houdong Hu,
Li Dong, Furu Wei, Yejin Choi, and Jianfeng Gao. Oscar: Object-semantics aligned pre-training for
vision-language tasks. In European Conference on Computer Vision (ECCV), 2020.

Chin-Yew Lin and Franz Josef Och. Automatic evaluation of machine translation quality using longest
common subsequence and skip-bigram statistics. In Proceedings of the Annual Meeting of the Association
for Computational Linguistics (ACL), 2004.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco: Common objects in context. In European Conference on Computer
Vision (ECCV), 2014.

12



Under review as submission to TMLR

Jiasen Lu, Caiming Xiong, Devi Parikh, and Richard Socher. Knowing when to look: Adaptive attention via
a visual sentinel for image captioning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2017.

Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, and Alan L Yuille. Explain images with multimodal recurrent
neural networks. arXiv preprint arXiv:1410.1090, 2014.

Alexander Mathews, Lexing Xie, and Xuming He. Senticap: Generating image descriptions with sentiments.
In Proceedings of the AAAI conference on artificial intelligence (AAAI), 2016.

Clara Meister, Tiago Pimentel, Gian Wiher, and Ryan Cotterell. Typical decoding for natural language
generation. arXiv preprint arXiv:2202.00666, 2022.

Ron Mokady, Amir Hertz, and Amit H. Bermano. Clipcap: Clip prefix for image captioning. ArXiv,
abs/2111.09734, 2021.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. A corpus and cloze evaluation for deeper understanding of common-
sense stories. In Proceedings of the Conference of the North American Chapter of the Association for
Computational Linguistics (NAACL), 2016.

Anh Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas Brox, and Jeff Clune. Synthesizing the preferred
inputs for neurons in neural networks via deep generator networks. Advances in Neural Information
Processing Systems (NeurIPS), 2016.

Anh Nguyen, Jeff Clune, Yoshua Bengio, Alexey Dosovitskiy, and Jason Yosinski. Plug & play generative
networks: Conditional iterative generation of images in latent space. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR, 2017.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation of
machine translation. In Proceedings of the Annual Meeting of the Association for Computational Linguistics
(ACL), 2002.

Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or, and Dani Lischinski. Styleclip: Text-driven
manipulation of stylegan imagery. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), 2021.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin Choi, and Zaid
Harchaoui. Mauve: Measuring the gap between neural text and human text using divergence frontiers.
Advances in Neural Information Processing Systems (NeurIPS), 2021.

Bryan A Plummer, Liwei Wang, Chris M Cervantes, Juan C Caicedo, Julia Hockenmaier, and Svetlana
Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer image-to-sentence
models. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2015.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models
are unsupervised multitask learners. 2019. URL https://cdn.openai.com/better-language-models/
language_models_are_unsupervised_multitask_learners.pdf.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International Conference on Machine Learning (ICML), 2021.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya
Sutskever. Zero-shot text-to-image generation. In International Conference on Machine Learning (ICLR),
2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional
image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

13

https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf


Under review as submission to TMLR

Gareth O Roberts and Jeffrey S Rosenthal. Optimal scaling of discrete approximations to langevin diffusions.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 60(1):255–268, 1998.

Gareth O Roberts and Richard L Tweedie. Exponential convergence of langevin distributions and their
discrete approximations. Bernoulli, pp. 341–363, 1996.

Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis, Aarush
Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open dataset of clip-filtered
400 million image-text pairs. arXiv preprint arXiv:2111.02114, 2021.

Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned, hyper-
nymed, image alt-text dataset for automatic image captioning. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics (ACL), 2018.

Sheng Shen, Liunian Harold Li, Hao Tan, Mohit Bansal, Anna Rohrbach, Kai-Wei Chang, Zhewei Yao, and
Kurt Keutzer. How much can clip benefit vision-and-language tasks? arXiv preprint arXiv:2107.06383,
2021.

Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Interpreting the latent space of gans for semantic
face editing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

Kurt Shuster, Samuel Humeau, Hexiang Hu, Antoine Bordes, and Jason Weston. Engaging image captioning
via personality. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

Yixuan Su, Tian Lan, Yan Wang, Dani Yogatama, Lingpeng Kong, and Nigel Collier. A contrastive frame-
work for neural text generation. CoRR, abs/2202.06417, 2022.

Yoad Tewel, Yoav Shalev, Idan Schwartz, and Lior Wolf. Zero-shot image-to-text generation for visual-
semantic arithmetic. arXiv preprint arXiv:2111.14447, 2021.

Yoad Tewel, Yoav Shalev, Roy Nadler, Idan Schwartz, and Lior Wolf. Zero-shot video captioning with
evolving pseudo-tokens. arXiv preprint arXiv:2207.11100, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems
(NeurIPS), 2017.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. Cider: Consensus-based image description
evaluation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2015.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neural image caption
generator. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2015.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich Zemel,
and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual attention. In
International Conference on Machine Learning (ICML), 2015.

Guojun Yin, Lu Sheng, Bin Liu, Nenghai Yu, Xiaogang Wang, and Jing Shao. Context and attribute
grounded dense captioning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

Runhao Zeng, Haoming Xu, Wenbing Huang, Peihao Chen, Mingkui Tan, and Chuang Gan. Dense regression
network for video grounding. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2020.

14



Under review as submission to TMLR

Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei Yang, Lei Zhang, Lijuan Wang, Yejin Choi, and Jianfeng
Gao. Vinvl: Revisiting visual representations in vision-language models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2021a.

Xuying Zhang, Xiaoshuai Sun, Yunpeng Luo, Jiayi Ji, Yiyi Zhou, Yongjian Wu, Feiyue Huang, and Rongrong
Ji. Rstnet: Captioning with adaptive attention on visual and non-visual words. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021b.

Luowei Zhou, Yannis Kalantidis, Xinlei Chen, Jason J Corso, and Marcus Rohrbach. Grounded video
description. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

Luowei Zhou, Hamid Palangi, Lei Zhang, Houdong Hu, Jason Corso, and Jianfeng Gao. Unified vision-
language pre-training for image captioning and vqa. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), 2020.

15



Under review as submission to TMLR

Appendix

Table of Contents
A Analysis on the CLIP’s Ability in Measuring the Similarity between Partial Texts

and Images 17

B Ablation Study on Hyperparameters of MAGIC Search 17

C Detailed Results of Zero-Shot Image Captioning 19

D More Visual Examples of Zero-Shot Image Captioning 20

E Detailed Results of Story Generation 20

F Human Evaluation Guidelines 20
F.1 Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
F.2 Fluency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
F.3 Informativeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
F.4 Story-Image Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

G More Examples of Story Generation 22

16



Under review as submission to TMLR

A Analysis on the CLIP’s Ability in Measuring the Similarity between Partial Texts
and Images

In this section, we analyze the ability of CLIP in measuring the similarity between partial texts and images.
We first note that the training set of CLIP consists of over 400 million image-text pairs collected from the
web. However, this dataset is extremely noisy (Tewel et al., 2021) and it contains a sufficiently large amount
of partial and incomplete sentences (Schuhmann et al., 2021). By training on this dataset, CLIP naturally
learns to evaluate the similarity between partial texts and images.

For a quantitative evaluation, we conduct an experiment with the following setup. Given an “image-text”
pair (I, x), we refer x and x<t to the full captioning text and the partial text (the sequence between
index 0 and t), respectively, where t ∈ {1, 2, 3, ..., |x|}. Then, we define a metric AD(t) which calculates the
absolute difference (AD) between the image-text matching scores computed from the full and partial texts.
Specifically, AD(t) is defined as

AD(t) = 1
|D|

∑
(I,x)∈D

|CLIP(I, x) − CLIP(I, x<t)|, (6)

where D is the set of “image-text” pairs, and CLIP(I, x) is the CLIP score that indicates the image-text
similarity.

For the fairness and robustness of the evaluated results, we randomly sample three sets of “image-text”
pairs from the MS-COCO dataset (Lin et al., 2014). In each set, there are 1000 “image-text” pairs, and the
average length of the overall sampled texts is 11.85.

t 1 2 3 4 5 6
AD(t) 0.20 (±0.08) 0.17 (±0.07) 0.13 (±0.06) 0.11 (±0.04) 0.10 (±0.04) 0.08 (±0.03)

t 7 8 9 10 11 12
AD(t) 0.06 (±0.02) 0.05 (±0.02) 0.05 (±0.02) 0.04 (±0.01) 0.01 (±0.01) 0.00 (±0.00)

Table 4: Results of AD(t) on MS-COCO.

Table 4 presents the mean and standard deviation of the experimental results. We can see that, as t increases,
AD(t) is inclined to 0. Once the length of the partial text is close to the length of the full text, the CLIP
scores are almost the same. Notably, although the length of the partial text has an effect on the CLIP score,
its effectiveness is not as large as we expected. For instance, at the beginning (i.e. t = 1), the AD(t) is
around 0.2. It indicates that the CLIP score is not very sensitive to the partial text. On the other hand,
as t increases, the AD(t) becomes notably smaller. This suggests that CLIP can effectively align the image
and the partial text as long as the partial text contains enough content.

Based on the above evaluations, we can conclude that CLIP can effectively measure the “matching score”
between partial texts and images which is also the main reason why previous related studies (Tewel et al.,
2021; 2022) work well.

B Ablation Study on Hyperparameters of MAGIC Search

In this section, we provide further analysis of the effect of hyperparameters in MAGIC Search. To this end,
we conduct ablation study experiments on MS-COCO (Lin et al., 2014). Recall from Section §4 that we set k,
α, and β in Eq. (4) for MS-COCO as 45, 0.1, 2.0, respectively. To isolate the effect of each hyperparameter,
in every experiment, we only vary the value of one hyperparamter while keeping others constant.

Effect of k. Figure 3(a) shows the performances (i.e., CIDEr and ROUGE-L) of MAGIC Search by varing
k from 5 to 55. We observe that, when k is too small (i.e., k ≤ 40), the performances are not optimal. The
reason is that, a small k leads to a too constrained search space, therefore MAGIC Search cannot find the
optimal text sequence that best describes the given image. On the other hand, when k is too large (i.e.,
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Figure 3: Ablation Study on MS-COCO: (a) Effect of k on MAGIC Search; (b) Effect of α on MAGIC
Search; (c) Effect of β on MAGIC Search. (Best viewed in color and by zooming in.)

k ≥ 50), the search space becomes too large therefore introducing extra noise that causes the performance
drop in CIDEr and ROUGE-L. In our experiments, the optimal setup for k in MAGIC Search is 45.

Effect of α. Figure 3(b) demonstrates the performances on MS-COCO by varying α from 0.0 to 1.0. We
see that when α is small (i.e., α ≤ 0.2), the performances are relatively the same. On the other hand, a large
α (i.e., α ≥ 0.3) causes notable drop in the performances. This is due to the fact that a large α forces the
language model to generate the text continuation that is less semantically similar to the previously generated
context (Su et al., 2022), therefore affecting the performances of MAGIC Search. In our experiments, the
optimal setup for α is 0.1.

Effect of β. Lastly, Figure 3(c) illustrates the effect of β (from 0.0 to 4.0) on MAGIC Search. Recall
from Eq. (4) that, when β = 0.0, the visual control (i.e., magic score in Eq. (4)) is disabled, therefore
MAGIC Search degenerates to the vanilla contrastive search (Su et al., 2022). From the results, we see
that, by increasing β from 0.0 to 0.5, a significant performance improvement in CIDEr is obtained. Such
performance gain clearly demonstrates that the magic score in MAGIC Search is the key factor that enables
the language model to generate text grounded on the given image. When β is within the range of [0.5, 2.0],
the performances of MAGIC Search are relatively the same, indicating the robustness of our approach in
terms of the choice of β. On the other hand, we also see that a large β (i.e., β ≥ 2.5) causes the performances
to drop, suggesting that the importance of different terms (i.e., model confidence, degeneration penalty, and
magic score in Eq. (4)) in MAGIC Search should be properly balanced. In our experiments, the optimal
setup for β is 2.0.
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C Detailed Results of Zero-Shot Image Captioning

In-domain Result

Method run MS-COCO Flickr30k

B@1 B@4 METEOR R-L CIDEr SPICE B@1 B@4 METEOR R-L CIDEr SPICE

Top-k

run-1 33.8 2.4 8.4 25.7 3.9 1.8 34.1 3.1 9.0 24.4 3.3 2.8
run-2 33.7 2.5 8.4 25.6 4.0 1.7 34.4 2.8 9.1 24.8 3.3 2.7
run-3 33.4 2.2 8.2 25.6 3.6 1.6 33.4 2.9 8.9 23.9 3.2 2.7

average 33.6 2.4 8.3 25.6 3.8 1.7 34.0 2.9 9.0 24.4 3.3 2.7
std 0.2 0.1 0.1 0.0 0.2 0.1 0.4 0.1 0.1 0.4 0.0 0.0

Nucleus

run-1 32.6 2.3 7.8 24.8 3.2 1.5 32.5 2.5 8.4 23.5 2.7 2.4
run-2 32.5 2.3 7.8 24.8 3.1 1.4 32.6 2.4 8.1 23.2 2.6 2.5
run-3 32.7 2.2 7.9 24.9 3.0 1.3 32.6 2.3 7.9 23.4 2.3 2.3

average 32.6 2.3 7.8 24.8 3.1 1.4 32.6 2.4 8.1 23.4 2.5 2.4
std 0.1 0.0 0.0 0.0 0.1 0.1 0.0 0.1 0.2 0.1 0.2 0.1

Cross-domain Result

Method run MS-COCO =⇒ Flickr30k Flickr30k =⇒ MS-COCO

B@1 B@4 METEOR R-L CIDEr SPICE B@1 B@4 METEOR R-L CIDEr SPICE

Top-k

run-1 34.6 2.1 7.3 24.0 2.2 1.7 29.9 1.7 8.4 23.6 2.4 1.7
run-2 35.2 2.5 7.5 24.2 2.3 1.7 30.0 1.8 8.5 23.6 2.6 1.7
run-3 35.0 2.6 7.6 24.5 2.5 1.8 30.0 1.8 8.5 23.6 2.6 1.7

average 34.9 2.4 7.5 24.2 2.3 1.7 30.0 1.8 8.5 23.6 2.5 1.7
std 0.2 0.2 0.1 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0

Nucleus

run-1 33.3 1.8 7.0 23.3 1.6 1.4 29.0 1.6 8.0 22.9 2.2 1.6
run-2 33.4 1.8 7.1 23.3 2.0 1.4 29.1 1.6 7.9 22.8 2.1 1.6
run-3 33.5 1.5 6.9 23.4 1.9 1.2 29.1 1.6 8.0 22.9 2.0 1.5

average 33.4 1.7 7.0 23.3 1.8 1.3 29.1 1.6 8.0 22.9 2.1 1.6
std 0.1 0.1 0.1 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.1 0.0

Table 5: Complete numerical results of stochastic methods on zero-shot image captioning. The average and
std rows show the mean and standard deviation of results from three different runs.

In Table 5, we show the detailed numerical results of stochastic baselines (i.e., Top-k and Nucleus) on the
task of zero-shot image captioning. The upper part of Table 5 presents the results for in-domian experiments
(Section §4.1) and the lower part of Table 5 presents the results for cross-domain experiments (Section §4.2).
For each method, we report the results of three different runs with different random seeds along with the
mean and standard deviation of different runs.
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D More Visual Examples of Zero-Shot Image Captioning

Figure 4: More examples of zero-shot image captioning. (Best viewed by zooming in.)

Figure 4 presents more visual comparisons between our approach against other two strong zero-shot baselines
(i.e., CLIPRe and ZeroCap) along with the reference caption.

E Detailed Results of Story Generation

Table 6, we present the detailed numerical results of stochastic baselines (i.e., Top-k, Nucleus, and Typical)
on the task of story generation. For each method, we report the results of three different runs with different
random seeds along with the mean and standard deviation of different runs.

F Human Evaluation Guidelines

Given the story title and the image, please evaluate the system’s result with respect to the following features:
(1) Coherence; (2) Fluency; (3) Informativeness; and (4) Story-Image Relevance. In the following, we provide
some guidelines regarding how to judge the quality of the system’s result in terms of different features.
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Method run rep-2↓ rep-3↓ rep-4↓ diversity↑ coherence↑ MAUVE↑ CLIPScore↑

Top-k

run-1 3.42 0.75 0.22 0.95 0.460 0.85 0.21
run-2 3.27 0.77 0.25 0.95 0.455 0.87 0.21
run-3 3.46 0.75 0.21 0.95 0.458 0.86 0.21

average 3.38 0.76 0.23 0.95 0.458 0.86 0.21
std 0.08 0.01 0.02 0.00 0.002 0.01 0.00

Nucleus

run-1 2.88 0.57 0.16 0.96 0.448 0.88 0.21
run-2 2.88 0.61 0.18 0.96 0.454 0.87 0.22
run-3 2.99 0.62 0.20 0.96 0.454 0.88 0.21

average 2.92 0.60 0.18 0.96 0.452 0.88 0.21
std 0.05 0.02 0.02 0.00 0.003 0.00 0.00

Typical

run-1 2.44 0.42 0.11 0.97 0.454 0.83 0.18
run-2 2.56 0.48 0.12 0.97 0.448 0.84 0.19
run-3 2.55 0.48 0.14 0.97 0.448 0.85 0.19

average 2.52 0.46 0.12 0.97 0.450 0.84 0.19
std 0.05 0.03 0.01 0.00 0.002 0.01 0.00

Table 6: Complete numerical results of stochastic methods on story generation. The average and std rows
show the mean and standard deviation of results from three different runs.

F.1 Coherence

This metric measures whether the system’s result is semantically and factually consistent with the story
title. The definitions of different scores are:

• [5]: The system’s result is perfectly in line with the semantic meaning defined by the story title.
And all its content is factually supported by or can be logically inferred from the title.

• [4]: The system’s result is very related to the story title but with some minor errors that does not
affect its overall relevance with respect to the story title.

• [3]: The system’s result is, to some extent, relevant to the story title with some errors that display
minor semantic inconsistency or contradiction.

• [2]: At the first glance, the system’s result seems to be related to the story title. But with careful
inspection, the semantic inconsistency can be easily spotted.

• [1]: The system’s result is obviously off-the-topic or it is semantically contradicted to the content
contained in the story title.

F.2 Fluency

This metric measures the fluency of the system’s result. The definitions of different scores are:

• [5]: The system’s result is human-like, grammatically correct, and very easy to understand.

• [4]: Choose this score when you are hesitant between the score 3 and score 5.

• [3]: The system’s result contains minor errors but they do not affect your understanding.

• [2]: Choose this score when you are hesitant between the score 1 and score 3.

• [1]: The system’s result does not make sense and it is unreadable.
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F.3 Informativeness

This metric measures the diversity, informativeness, and interestingness of the system’s result. The definitions
of different scores are:

• [5]: The system’s result is very informative and contains novel content. In addition, it displays a
high level of diversity and it is enjoyable to read.

• [4]: Choose this score when you are hesitant between the score 3 and score 5.

• [3]: The system’s result contains some new information and it displays a certain level of diversity.

• [2]: Choose this score when you are hesitant between the score 1 and score 3.

• [1]: The system’s result is dull, repetitive, and does not have new information.

F.4 Story-Image Relevance

This metric measures the relevance between the system’s result with respect to the given image. The
definitions of different scores are:

• [5]: The system’s result is very related to the given image and contains a diverse set of concepts
that are visually displayed in the image.

• [4]: Choose this score when you are hesitant between the score 3 and score 5.

• [3]: The system’s result is partially related to the image and some of its content can be found in
the image.

• [2]: Choose this score when you are hesitant between the score 1 and score 3.

• [1]: The system’s result is completely irrelevant to the given image.

G More Examples of Story Generation

Figure 5 presents more examples generated by contrastive search along with the examples generated by
MAGIC Search grounded on the retrieved image. The image retrieved by the story title is shown on the
left-hand side of Table 5.
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Figure 5: More examples of story generation. MAGIC can generate text (highlighted in blue) that is related
to the visual concepts displayed in the image. (Best viewed in color and by zooming in.)
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