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Abstract
Differentially private generative model (DPGM)
is designed to generate data that are distribution-
ally similar to the original sensitive data yet with
differential privacy (DP) guarantees. While GAN
attracts major attention, existing DPGMs based
on flow generative models are limited and only
developed on low-dimensional tabular datasets.
The capability of exact density estimation makes
the flow model exceptional especially when den-
sity estimation is of interest. In this work, we
will first show that it is challenging (or even in-
feasible) to train a DP-flow via DP-SGD, i.e.
the workhorse algorithm for private deep learn-
ing, on high-dimensional image sets with accept-
able utility, and then we give an effective solution
by reducing the generation from the pixel space
to a lower dimensional latent space. We show
the effectiveness and scalability of the proposed
method via extensive experiments. Notably, our
method is scalable to high-resolution image sets,
which is rarely studied in related works.

1. Introduction
Large-scale datasets (Deng et al., 2009; Lewis et al., 2004;
Bennett et al., 2007) facilitate the great success of modern
machine learning (ML) systems. However, privacy con-
cerns arise when sensitive data (e.g. face images) are in-
volved in the training. Among various privacy-preserving
techniques, differential privacy (DP) (Dwork, 2006) is rec-
ognized as a rigorous quantization of privacy, which be-
comes the gold standard in the current ML community.

DPGM aims to synthesize data that are distributionally
similar to the private data while satisfying DP guarantees.
Therefore, DPGMs can (1) serve as a proxy for releasing
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private data and can (2) generate data for private data anal-
ysis tasks without incurring further privacy cost, as ensured
by the post-processing theorem (Dwork et al., 2014).

Generative adversarial network (GAN) (Goodfellow et al.,
2014) attracts the most attention in developing DPGMs
(Xie et al., 2018; Torkzadehmahani et al., 2019; Jordon
et al., 2019; Long et al., 2021; Augenstein et al., 2020;
Chen et al., 2020). In contrast, the DPGMs based on the
normalizing flow are relatively limited (Waites & Cum-
mings, 2021; Lee et al., 2022). The capability of the exact
density computation makes flow models particularly use-
ful when density is of interest in some applications, e.g.
anomaly detection in a privacy-preserving manner (Waites
& Cummings, 2021). However, existing DP-flow works are
restricted to tabular datasets (with lower dimensions).

The core steps of DP-SGD (Abadi et al., 2016), i.e. the
leading algorithm for training a DP deep learner, are gra-
dient clipping and noise addition. Briefly, let p denote
the model dimension, the noise introduced by DP-SGD is
z ∼ N (0p, σ

2C2Ip×p), where C is the gradient clipping
bound and σ is a noise multiplier. Apparently, E[∥z∥22] =
pσ2C2 ∝ p, i.e. the model utility may not be preserved
with a large model size under DP-SGD. For example, Yu
et al. (2021) show that the gradient will be submerged in
the added noise (by DP-SGD) when the model becomes
larger on a series of ResNet (He et al., 2016) variants. This
utility drop could become more pronounced under strong
privacy guarantees (e.g. ϵ = 1).

Training a normalizing flow with DP-SGD on image set
seems ostensibly easy, but any ML researcher/engineer will
encounter the two non-trivial empirical challenges, as also
pointed out by Lee et al. (2022): (1) batch normalization
(BN) challenge: flow models usually apply a batch normal-
ization (BN) layer in each block to boost the performance,
where the per-example gradient (in DP-SGD) is not avail-
able; (2) model complexity (MC) challenge: flow models
generally consist of repetitive blocks of invertible transfor-
mations with a large depth, which results in higher model
complexity compared to other generative models. We ex-
plore the challenges with two SoTA flow models, i.e. Re-
alNVP (Dinh et al., 2017) and Glow (Kingma & Dhari-
wal, 2018). Figure 1 show that the generations from a
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Figure 1. Training a RealNVP (∼150 MegaBytes (MB)) on
CelebA (a) non-privately with BN layers, (b) non-privately with-
out BN layers, (c) under (10, 10−5)-DP without BN layers

DP-RealNVP (subfigure (c)) are largely submerged in the
noise. In contrast, Glow uses activation normalization as an
alternative to BN, thus per-example gradient is computable
(i.e. no BN challenge for Glow). However, we trained
Glow with DP-SGD but end up with null synthesis when
targeting (10, 10−5)-DP. Both RealNVP and Glow suffer
from the MC challenge.

Our contributions can be summarized as follows:

• We explore the challenge of training a DP flow via DP-
SGD on image sets, and propose an efficient and effec-
tive solution, i.e. differentially private latent flow (DP-
LFlow), by reducing the training of flow from the full
pixel space to a lower-dimensional latent space, which is
more resilient to the noise perturbation (by DP-SGD).

• Training DPGM on high-resolution images (256 × 256
pixels and beyond) is extraordinarily challenging due to
the inevitably increased model dimension, and to our best
knowledge, none of the existing related works attempt
to do so. In this work, we will show that DP-LFlow is
also scalable to the high-resolution image (256 × 256)
generation with DP constraints.

• DP-LFlow yields state-of-the-art (SoTA) performance on
model utility on widely compared image benchmarks,
with more robustness and scalability on different datasets
(gray-scale and RGB) and different DP constraints.

We defer the preliminary to Appendix C and related works
to Appendix D.

2. Method: DP-LFlow
As shown in (Yu et al., 2021), a smaller ResNet is more re-
silient to DP training. The intuition is that the model utility
will saturate as the model complexity increases. We first
confirm this insight for DPGMs (see Appendix G). In fact,
shrinking the model size under the DP training will benefit
from the following aspects: (1) smaller models are more

resilient to (larger) noises (associated with strong DP guar-
antees); (2) a significant training time overhead remains a
notable challenge for DP-SGD (Subramani et al., 2021) due
to the gradient clipping and randomization. Smaller models
could facilitate more efficient DP training.

Latent Flow: However, a too-simple model is undesired
either. We aim to design a model that is small yet expres-
sive enough so that we can achieve a better privacy-utility
trade-off with DP-SGD. Inspired by the recent latent dif-
fusion model (Rombach et al., 2022) that achieves SoTA
text-to-image generation performance via reducing the dif-
fusion process from the raw input space to a lower dimen-
sional latent space, we propose to train a normalizing flow
in a similar manner by simultaneously minimizing the re-
construction loss of the autoencoder and the negative log-
likelihood of the flow. As shown in Rombach et al. (2022),
the semantic meaning of most images still remains after ag-
gressive compression, thus allowing us to train a flow in an
aggressively trimmed latent space, which avoids unneces-
sary and expensive computation on full input dimensions.
It is worth mentioning that latent flow is also not sensitive
to BN layers (e.g. for RealNVP), i.e. the utility of latent
RealNVP is slightly reduced by removing the BN layer,
which validates the use of DP-SGD for latent flow models.

Partitioning Dataset: Current SOTA methods tend to
apply conditional generative models, where the label is en-
coded in the model as part of the input, thus the noise per-
turbation also distorts the label information, which is un-
necessary. We run DP-SGD on the proposed model under
the conditional setting (autoencoder + conditional flow),
and observe that the label information is largely distorted
when ϵ = 1. To circumvent the perturbation to labels, we
propose to partition the dataset according to labels, train
unconditional generative models on each of the subsets,
and release the union of all unconditional generators as
the resulting model. The partitioning is also beneficial for
shrinking the model size, as each generator is only interac-
tive with a sole data modality instead of multi-modalities.
Adapted from proposition 2.5 in (Li et al., 2016), the DP
guarantee for the union can be derived from the parallel
composition, by extending the original parallel composi-
tion theorem (Theorem C.2) from ϵ-DP notion to (ϵ, δ)-DP
notion. The proof can be found in Appendix A.

Theorem 2.1. Let Mi (i = 1, 2, . . . , k) be k
DP mechanisms, and each Mi satisfies (ϵi, δi)-DP.
Given a deterministic partitioning function f , let
D1, D2, . . . , Dk be the disjoint partitions by executing
f on D. Releasing M1(D1), . . . ,Mk(Dk) satisfies
(maxi∈{1,2,...,k} ϵi,maxi∈{1,2,...,k} δi)-DP.

For simplicity, we set ϵi the same as the target ϵ for all sub-
models in the experiment.
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3. Experiments
In this section, we evaluate and compare DP-LFlow against
SoTA baselines through extensive experiments. RealNVP
is used as the flow model in DP-LFlow, as it yields better
performance in practice. Implementation details and neural
network configurations are given in the Appendix E.

3.1. Experimental Setup

Datasets: We consider three widely used image datasets,
i.e. MNIST (LeCun et al., 1998), Fashion MNIST (Xiao
et al., 2017), and CelebA (Liu et al., 2015), as well as one
high-resolution RGB datasets (CelebA-HQ (Karras et al.,
2018), for our presentation only). For MNIST and Fashion
MNIST, we condition on 10 respective labels. For CelebA
and CelebA-HQ, we condition on gender. Details of the
datasets are given in the Appendix B.

Evaluation Tasks & Metrics: We evaluate and compare
DPGMs by two metrics via 60k generated images:

• Fréchet Inception Distance (FID) (Heusel et al., 2017).

• Classification accuracy. We train three different classi-
fiers, e.g. logistic regression (LR), multi-layer percep-
tron (MLP), and convolutional neural network (CNN), on
generated images, then test the classifier on real images,
where the performance is measured by the classification
accuracy. We take 5 runs and report the average.

SoTA Baselines: DP-CGAN (Torkzadehmahani et al.,
2019), DP-MERF (Harder et al., 2021), Datalens (Wang
et al., 2021), PATE-GAN (Jordon et al., 2019), G-PATE
(Long et al., 2021), GS-WGAN (Chen et al., 2020), DP-
Sinkhorn (Cao et al., 2021).

3.2. Comparison with SoTA Baselines

The proposed DP-LFlow is compared with SoTA baselines
through extensive qualitative and quantitative experiments
on both grayscale and RGB image datasets.

Existing works perform reasonably when ϵ = 10 (Fig-
ure 7). Nevertheless, as shown in Table 1, DP-LFlow
achieves significant quantitative improvement.

When ϵ = 1, Figure 2 and Figure 3 show that the exist-
ing works are not readily amenable to a small ϵ such as 1.
In contrast, DP-LFlow exhibits significant visual improve-
ment on all three datasets, which is verified by superior nu-
merical performance in Table 2.

3.3. Generating High-resolution Images under DP

To our best knowledge, the highest resolution image dataset
used in related works is CelebA downsampled at 64 × 64

Figure 2. Qualitative comparison on MNIST and Fashion MNIST
under (1, 10−5)-DP.

Figure 3. Qualitative comparison on CelebA conditioned on gen-
der under (1, 10−5)-DP. Top row: female. Bottom row: male.

pixels (Long et al., 2019). Here we consider a real high-
resolution dataset CelebA-HQ in 256×256. Note that now
the input dimension increases from 1× 28× 28 = 784 (for
MNIST) to 3 × 256 × 256 ≈ 1.97 × 105, which means
that the model generally has to drastically scale up to ade-
quately learn the input distribution, leading to a significant
challenge for training a DPGM with DP-SGD.

Nevertheless, with the help of lower dimensional latent
space where we can apply aggressive compression, we are
able to restrict the generative model to a size that is suit-
able for DP training. Figure 4 shows that DP-LFlow is able
to produce diverse and recognizable face images with DP
constraints on such high dimensional input space.

3.4. Out-of-distribution Detection under DP

A natural method to detect out-of-distribution (OOD) in-
put by flow models is to thresholding the density (like-
lihood) given any input, since the flow model is trained
by maximizing the likelihood of in-distribution (InD) data.
This idea can be readily extended to latent flow models
by checking the density of latent code mapped from the
input data. As our sub-models are privately trained on
each subset by class, we can immediately conduct the DP
intra-dataset OOD detection, by treating each training class
as the InD and the rest classes combined as OOD. We
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Table 1. Quantitative comparison on MNIST and Fashion MNIST given (10, 10−5)-DP.

Method ϵ
MNIST Fashion MNIST

FID ↓ LR MLP CNN FID ↓ LR MLP CNN
Acc ↑ Acc ↑ Acc ↑ Acc ↑ Acc ↑ Acc ↑

DP-CGAN 10 179.2 60 60 63 243.8 51 50 46
DP-MERF 10 121.4 79.1 81.1 82.0 110.4 72.3 70.8 73.2
G-PATE 10 150.6 N/A N/A 80.9 171.9 N/A N/A 69.3
DataLens 10 173.5 N/A N/A 80.7 167.7 N/A N/A 70.6
GS-WGAN 10 61.3 79 79 80 131.3 68 65 65
DP-Sinkhorn (m = 1) 10 61.2 79.5 80.2 83.2 145.1 73.0 72.8 70.9
DP-Sinkhorn (m = 3) 10 55.6 79.1 79.2 79.1 129.4 70.2 70.2 68.9

Ours 10 25.4 85.1 92.4 94.8 80.8 78.1 78.4 80.7

Table 2. Quantitative comparison on image datasets given (1, 10−5)-DP.

Dataset Metrics PATE-GAN DP-MERF GS-WGAN G-PATE DataLens Ours

MNIST FID ↓ 231.5 118.3 489.8 153.4 186.1 83.4
CNN Acc ↑ 41.7 80.5 14.3 58.8 71.2 88.2

FMNIST FID ↓ 253.2 104.2 587.3 214.8 195.0 143.5
CNN Acc ↑ 42.22 73.1 16.61 58.12 64.8 76.8

CelebA FID ↓ 434.5 219.4 437.3 293.2 297.7 217.7
CNN Acc ↑ 44.48 57.6 62.9 70.2 70.6 72.1

Figure 4. Samples from DP-LFlow trained on CelebA-HQ under
(10, 10−5)-DP. Top 2 rows: female. Bottom 2 rows: male. FID =
328.6, LR classification accuracy = 77.4.

use Area Under Receiver Operating Curve (AUROC) as
the evaluation metric. Table 3 indicates that DP-LFlow is
able to effectively detect intra-dataset OOD input on both
MNIST and Fashion MNIST across all InD classes in a
privacy-preserving manner.

4. Conclusion
Though DP-SGD is currently the workhorse algorithm for
training a deep learning model, it remains a big challenge
whether it can be reliably applied to large models. In this
paper, we first show that training a DP flow via DP-SGD is
highly challenging (or even infeasible) with achieving ac-
ceptable utility due to a few particular challenges of flow
models, and then propose an effective solution, i.e. DP-
LFlow, by reducing the flow training from the full input

Table 3. Differentially private OOD detection results. The evalu-
ation metric is shown by AUROC (higher is better, and 1.0 means
InD and OOD likelihood are perfectly separable).

InD class MNIST Fashion MNIST

ϵ = 10 ϵ = 1 ϵ = 10 ϵ = 1

0 0.98 0.87 0.90 0.87
1 0.99 0.98 0.97 0.96
2 0.86 0.75 0.90 0.88
3 0.88 0.82 0.91 0.91
4 0.95 0.85 0.87 0.85
5 0.90 0.75 0.91 0.86
6 0.97 0.77 0.84 0.82
7 0.93 0.88 0.97 0.97
8 0.89 0.74 0.86 0.79
9 0.95 0.83 0.94 0.93

Average 0.93 0.82 0.91 0.88

space to a lower dimensional latent space, so that the model
is more resilient to (larger) noise perturbation introduced
by DP-SGD. Experimental results on widely compared im-
age benchmarks demonstrate the generality and scalabil-
ity of DP-LFlow on different image spaces (grayscale and
RGB) and different DP constraints (weak and strong DP
guarantees). Notably, to our best knowledge, DP-LFlow
is the first DPGM approach that is amenable to high-
resolution image datasets, which further validates its effec-
tiveness and versatility.

4



DP-LFlow: Differentially Private Latent Flow for Scalable Sensitive Image Generation

References
Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,

Mironov, I., Talwar, K., and Zhang, L. Deep learning
with differential privacy. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 308––318, 2016.

Acs, G., Melis, L., Castelluccia, C., and De Cristofaro, E.
Differentially private mixture of generative neural net-
works. IEEE Transactions on Knowledge and Data En-
gineering, 31(6):1109–1121, 2018.

Augenstein, S., McMahan, H. B., Ramage, D., Ra-
maswamy, S., Kairouz, P., Chen, M., Mathews, R., and
y Arcas, B. A. Generative models for effective ml on pri-
vate, decentralized datasets. In International Conference
on Learning Representations, 2020.

Bennett, J., Lanning, S., et al. The Netflix prize. In Pro-
ceedings of KDD cup and workshop, pp. 35, 2007.

Cao, T., Bie, A., Vahdat, A., Fidler, S., and Kreis, K. Don’t
generate me: Training differentially private generative
models with Sinkhorn divergence. In Advances in Neu-
ral Information Processing Systems 21, 2021.

Chen, D., Orekondy, T., and Fritz, M. GS-WGAN: A
gradient-sanitized approach for learning differentially
private generators. In Advances in Neural Information
Processing Systems, pp. 12673–12684, 2020.

Chen, Q., Xiang, C., Xue, M., Li, B., Borisov, N., Kaarfar,
D., and Zhu, H. Differentially private data generative
models. arxiv:1812.0227, 2018.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and
Fei-Fei, L. Imagenet: A large-scale hierarchical image
database. In IEEE conference on computer vision and
pattern recognition, pp. 248–255, 2009.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density esti-
mation using real nvp. In International Conference on
Learning Representations, 2017.

Dwork, C. Differential privacy. In International Collo-
quium on Automata, Languages, and Programming, pp.
1–12, 2006.

Dwork, C., Roth, A., et al. The algorithmic foundations of
differential privacy. Found. Trends Theor. Comput. Sci.,
9(3-4):211–407, 2014.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Advances in neural
information processing systems, volume 27, 2014.

Harder, F., Adamczewski, K., and Park, M. DP-MERF:
Differentially private mean embeddings with random
features for practical privacy-preserving data generation.
In International Conference on Artificial Intelligence
and Statistics, pp. 1819–1827, 2021.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. GANs trained by a two time-scale update
rule converge to a local Nash equilibrium. In Advances
in Neural Information Processing Systems, volume 30,
2017.

Jordon, J., Yoon, J., and Van Der Schaar, M. PATE-GAN:
Generating synthetic data with differential privacy guar-
antees. In International conference on learning repre-
sentations, 2019.

Karras, T., Aila, T., Laine, S., and Lehtinen, J. Progres-
sive growing of gans for improved quality, stability, and
variation. In International Conference on Learning Rep-
resentations, 2018.

Kingma, D. P. and Dhariwal, P. Glow: Generative flow
with invertible 1x1 convolutions. In Advances in Neural
Information Processing Systems, volume 31, 2018.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Pro-
ceedings of the IEEE, 86(11):2278–2324, 1998.

Lee, J., Kim, M., Jeong, Y., and Ro, Y. Differentially pri-
vate normalizing flows for synthetic tabular data gen-
eration. In AAAI Conference on Artificial Intelligence,
2022.

Lewis, D. D., Yang, Y., Russell-Rose, T., and Li, F. Rcv1:
A new benchmark collection for text categorization re-
search. Journal of machine learning research, 5:361–
397, 2004.

Li, N., Lyu, M., Su, D., and Yang, W. Differential privacy:
From theory to practice. Synthesis Lectures on Informa-
tion Security, Privacy, & Trust, 8(4):1–138, 2016.

Liew, S. P., Takahashi, T., and Ueno, M. PEARL: Data
synthesis via private embeddings and adversarial re-
construction learning. In International Conference on
Learning Representations, 2022.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning face
attributes in the wild. In Proceedings of International
Conference on Computer Vision (ICCV), 2015.

5



DP-LFlow: Differentially Private Latent Flow for Scalable Sensitive Image Generation

Long, Y., Lin, S., Yang, Z., Gunter, C. A., and Li, B. Scal-
able differentially private generative student model via
pate. arXiv:1906.09338, 2019.

Long, Y., Wang, B., Yang, Z., Kailkhura, B., Zhang, A.,
Gunter, C. A., and Li, B. G-PATE: Scalable differen-
tially private data generator via private aggregation of
teacher discriminators. In Advances in Neural Informa-
tion Processing Systems, 2021.

McSherry, F. D. Privacy integrated queries: an extensible
platform for privacy-preserving data analysis. In Pro-
ceedings of the 2009 ACM SIGMOD International Con-
ference on Management of data, pp. 19–30, 2009.
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A. Proof
Theorem 2.1. Let Mi (i = 1, 2, . . . , k) be k DP mechanisms, and each Mi satisfies (ϵi, δi)-DP. Given a deterministic par-
titioning function f , let D1, D2, . . . , Dk be the disjoint partitions by executing f on D. Releasing M1(D1), . . . ,Mk(Dk)
satisfies (maxi∈{1,2,...,k} ϵi,maxi∈{1,2,...,k} δi)-DP.

Proof. Without loss of generality, given two neighboring datasets D and D′, assume that D contains one more element
than D′. Executing f on D and D′, we have partitions D1, D2, . . . , Dk and D′

1, D
′
2, . . . , D

′
k, respectively. There exists

j such that (1) Dj contains one more element than D′
j , and (2) Ds = D′

s for s = 1, 2, . . . , k and s ̸= j. Denote
M1(D1), . . . ,Mk(Dk) by M(D). Since the subsets are disjoint from each other, running k algorithms on each subset is
independent from each other. For any sequence t = (t1, t2, . . . , tk) of outputs of M1, . . . ,Mk where ti ∈ Range(Mi),
we have:

Pr[M(D) = t] = Pr[M1(D1) = t1 ∧M2(D2) = t2 ∧ . . . ∧Mk(Dk) = tk] (1)

= Pr[Mj(Dj) = tj ]
∏

s=1,2,...,k,s ̸=j

Pr[Ms(Ds) = ts] (2)

≤
(
exp(ϵj)Pr[Mj(D

′
j) = tj ] + δj

) ∏
s=1,2,...,k,s̸=j

Pr[Ms(D
′
s) = ts] (3)

= exp(ϵj)
∏

i=1,2,...,k

Pr[Mi(D
′
i) = ti] + δj

∏
s=1,2,...,k,s ̸=j

Pr[Ms(D
′
s) = ts] (4)

= exp(ϵj)Pr[M(D′) = t] + δj
∏

s=1,2,...,k,s ̸=j

Pr[Ms(D
′
s) = ts] (5)

≤ exp(ϵj)Pr[M(D′) = t] + δj (6)
≤ exp( max

i=1,2,...,k
ϵi)Pr[M(D′) = t] + max

i=1,2,...,k
δi (7)

B. Datasets
We briefly introduce the public datasets and associated preprocessing. Image size is shown in #channels × height ×
width. Images are normalized to the range of [0, 1].

MNIST (LeCun et al., 1998) & Fashion MNIST (Xiao et al., 2017): MNIST contains hand-written digits images,
whereas Fashion MNIST contains cloth and shoe images. Images in both datasets are single-channel, in the size of 1 ×
28× 28, and have 10 classes. We adopt the official training and test split. 10k images from the training split are randomly
held out as the validation set.

CelebA (Liu et al., 2015): CelebA is a dataset including face images of celebrities. Each image is in the size of 3 ×
178× 218 and has 40 binary attributes. All images are cropped to 3× 178× 178, and then resized to 3× 32× 32. We also
adopt the official training, validation and test split, but randomly select 50k images of each gender from the training split
as our training set.

CelebA-HQ (Karras et al., 2018): CelebA-HQ is a high-quality version of CelebA, which is commonly recognized as
a high-resolution image set. It consists of 30k images in total. We download a gender conditioned split (where images are
resized to 3× 256× 256) by following this link. 1999 images are randomly held out from the training split as the valiation
set.

C. Preliminary
In this section, we recall background knowledge in differential privacy.
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Algorithm 1 Gradient perturbation in DP-SGD

Input: Private training set X = {xi}Ni=1, loss function L(·), batch size B, noise multiplier σ, gradient clipping bound
C, model parameter θ
for i = 1 to B do
gθ(xi) = ∇θL(xi; θ)

gθ(xi) = gθ(xi) ·min
(
1, C

∥gθ(xi)∥2

)
end for
g̃θ = 1

B

[∑B
i=1 gθ(xi) +N (0, σ2C2I)

]
C.1. Differential Privacy

Differential privacy is widely regarded as a rigorous quantization of privacy, which upper-bounds the deviation in the
output distribution of a randomized algorithm given an incremental deviation in the input. Formally, we have the following
definition:

Definition C.1 ((ϵ, δ)-DP (Dwork et al., 2014)). A randomized mechanism M : D → R with domain D and range R
satisfies (ϵ, δ)-differential privacy if for any two adjacent inputs D,D′ ∈ D and for any subset of outputs S ⊆ R it holds
that

Pr[M(D) ∈ S] ≤ exp(ϵ) · Pr[M(D′) ∈ S] + δ (8)

where adjacent inputs (a.k.a. neighbouring datasets) only differ in one entry. Particularly, when δ = 0, we say that M is
ϵ-DP.

There is a convenient parallel composition theorem for ϵ-DP mechanisms:

Theorem C.2 (Parallel composition theorem of ϵ-DP, (McSherry, 2009)). Let Mi (i = 1, 2, . . . , k) be k DP mechanisms,
and each Mi satisfies ϵi-DP. Given a deterministic partitioning function f , let D1, D2, . . . , Dk be the disjoint partitions
by executing f on D. Releasing M1(D1), . . . ,Mk(Dk) satisfies maxi∈{1,2,...,k} ϵi-DP.

We will extend the above parallel composition to the (ϵ, δ)-DP notion in Section 2.

A famous theorem, i.e. post-processing theorem, which is utilized by existing works (as well as ours) for proving DP
guarantee of a published model, is given by:

Theorem C.3 (Post-processing theorem, (Dwork et al., 2014)). If M satisfies (ϵ, δ)-DP, F ◦M will satisfy (ϵ, δ)-DP for
any function F with ◦ denoting the composition operator.

Sampling from a DPGM is independent of training data, thus can be viewed as a post-processing step and does not breach
the DP guarantee.

Rényi differential privacy (RDP) extends ordinary DP using Rényi’s α divergence (Rényi, 1961) and provides tighter and
easier composition property than the ordinary DP notion, thus we adopt RDP to accumulate the privacy cost.

C.2. DP-SGD

Within predetermined training iterations, for each iteration DP-SGD (Abadi et al., 2016) subsamples a batch from the
private training set, clip and perturb the gradient as in Algorithm 1, and optimize the model with privatized gradient g̃θ. As
mentioned earlier, the norm of the Gaussian noise introduced at line 4 in Algorithm 1 will scale linearly with the model
dimension, thus will generally degrade the utility of large models.

C.3. Rényi differential privacy (RDP)

Rényi differential privacy (RDP) extends ordinary DP using Rényi’s α divergence (Rényi, 1961) and provides tighter and
easier composition property than the ordinary DP notion, thus we adopt RDP to accumulate the privacy cost. Formally, we
recall:

Definition C.4 ((α, ϵ)-RDP (Mironov, 2017)). A randomised mechanism M is (α, ϵ)-RDP if for all adjacent inputs D,D′,

8
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Rényi’s α-divergence (of order α > 1) between the distribution of M(D) and M(D′) satisfies:

Dα(M(D)∥M(D′)) := 1
α−1 logEZ∼Q

(
P (Z)
Q(Z)

)α

≤ ϵ, (9)

where P and Q are the density of M(D) and M(D′), respectively (w.r.t. some dominating measure µ).

Importantly, a mechanism satisfying (α, ϵ)-RDP also satisfies(ϵ+ log 1/δ
α−1 , δ)-DP for any δ ∈ (0, 1).

Conveniently, RDP is linearly composable:

Theorem C.5 (Sequential composition of RDP (Mironov, 2017)). If mechanism Mi satisfies (α, ϵi)-RDP for i =

1, 2, . . . , k, then releasing the composed mechanism (M1, . . . ,Mk) satisfies (α,
∑k

i=1 ϵi)-RDP.

We also adopt the Gaussian mechanism for achieving RDP:

Definition C.6 (Gaussian mechanism for RDP (Dwork et al., 2014; Mironov, 2017)). Let f : D → Rp be an arbitrary
p-dimensional function with sensitivity:

∆2f = max
D,D′

∥f(D)− f(D′)∥2 (10)

for all adjacent datasets D,D′ ∈ D. The Gaussian mechanism Mσ perturb the output of f with Gaussian noise:

Mσ = f(D) +N (0, σ2 · I) (11)

where I is identity matrix. Then, Mσ satisfies (α, α(∆2f)
2

2σ2 )-RDP.

DP-SGD tracks the total privacy consumption as follows: (1) for each training iteration, compute the RDP privacy cost
for a subsampled batch where Gaussian mechanism is applied; (2) compose RDP mechanisms over training iterations; (3)
convert RDP back to (ϵ, δ)-DP. The implementation details are given below.

C.4. Flow-based Generative Models

We briefly recap the flow generative models. Flow models learn a bijective map T between a simple prior distribution
q0 (e.g. Gaussian) and the target distribution q: z ∼ q0 ⇔ T(z) ∼ q. Through the change-of-variable formula, the
log-likelihood of input is tractable:

qT(x) = q0(z)/|T′(z)| (12)

where z = T−1(x). Parameterize the bijective map by neural networks, we can train flow models by minimizing the
Kullback–Leibler (KL) divergence between the true and estimated distribution:

min
T
DKL(q(x)||qT(x)) = min

T

∫
q(x) log

q(x)

qT(x)
dx (13)

= min
T
Ex∼q(x)[− log qT(x)]−H[q] (14)

where H[q] is the entropy of true distribution. Therefore, training the flow model amounts to minimizing the negative
log-likelihood of input.

D. Related work
We categorize related works by approaches:

DP-SGD: The vast majority of related works are realized by training different generative models with DP-SGD. GAN:
DP-GAN (Xie et al., 2018) first trains GAN with DP-SGD algorithm, where the discriminator is trained with DP-SGD,
then the generator is automatically DP as ensured by post-processing theorem. DP-CGAN (Torkzadehmahani et al., 2019)
extends the idea into the conditional setting. VAE: DP-VaeGM (Chen et al., 2018) trains k VAEs on k classes of private data
with the DP-SGD algorithm, and returns the union as generations. This work only focuses on privacy attacks. DP-kVAE

9
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Table 4. Network configurations for different datasets in the experiments. #h conv denotes the number of hidden sizes in the convo-
lutional layers. #h lin denotes the number of hidden sizes in the linear layers. #c denotes the length of latent code. #b means the
number of blocks in flow.

Dataset #h conv in encoder #h conv of decoder #c #b #h lin of flow

MNIST [32, 64] [64, 32] 20 9 200
FMNIST [32, 64] [64, 32] 20 9 200
CelebA [64, 128, 256] [256, 128, 64] 32 9 200
CelebA-HQ [16, 32, 64, 128, 256, 512] [512, 256, 128, 64, 32, 16] 64 12 256

(Acs et al., 2018) first partitions the dataset into k clusters by differentially private kernel k-means method, then trains k
VAEs on each data cluster with DP-SGD. However, their generation exhibits clear mode-collapse. Flow: DP-NF (Waites
& Cummings, 2021) directly trains a flow-based model by DP-SGD. DP-HFlow (Lee et al., 2022) designs a fine-grained
gradient clipping strategy to increase the signal-to-noise ratio and accelerate the training. However, both works relating to
flow models are limited to (low dimensional) tabular datasets.

PATE Mechanism: Private Aggregation of Teacher Ensembles (PATE) (Papernot et al., 2017; 2018) is another mech-
anism for learning a DP model, by perturbing the aggregated information from an ensemble of teacher models with
noise. PATE-GAN (Jordon et al., 2019) first applies PATE mechanism to GAN, where the discriminator becomes non-
differentiable, thus a student discriminator is trained with all teacher ensembles, which is then used to train the generator.
G-PATE (Long et al., 2021) sanitizes the aggregated gradients from teacher discriminators to the generator to make the
generator DP. However, gradient vectors need to be discretized in each dimension to employ the PATE mechanism that
only takes categorical data as input. DataLens (Wang et al., 2021) further improves G-PATE by introducing a three-step
gradient compression and aggregation algorithm called TopAgg.

Kernel-based Methods: DP-MERF (Harder et al., 2021) proposes to perturb the kernel mean embeddings of real data
through random Fourier features, and train a generator by minimizing the maximum mean discrepancy (MMD) between the
noisy embedding of private input and embedding of generation. PEARL (Liew et al., 2022) extends the idea of DP-MERF
by introducing an adversarial objective on sampling frequencies, which indicates improvement in performance.

Others: GS-WGAN (Chen et al., 2020) creates a privacy barrier at the output of the generator of a Wasserstein GAN
(WGAN), based on the observation that only the generator will be published, thus only the generator needs to be private.
DP-Sinkhorn (Cao et al., 2021) adds a privacy barrier in a similar way as GS-WGAN, where a Sinkhorn loss is used as the
training objective.

E. Implementation
E.1. Flow models

Our code for flow generative models are adapted from public repos, i.e. Glow and RealNVP. Hyperparameters of the
network are selected by comparing the performance on the validation set, and the selection results are given in Table 4.

E.2. Privacy implementation

We use a public repo, i.e. pyvacy, for implementing DP-SGD algorithm, as well as the total privacy calculation. Pyvacy
tracks the privacy loss by RDP accountant, which is a PyTorch implementation based on Tensorflow Privacy.

For all datasets we use, we set subsampling rate as 0.1, training iterations as 300, noise multiplier as 1.25 to target
(10, 10−5)-DP and 4.5 to target (1, 10−5)-DP, respectively. With better evaluation performance on the validation set,
gradient clipping norms are set as 0.1 for MNIST and Fashion MNIST, 0.01 for CelebA, and 10 for CelebA-HQ.
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E.3. Fréchet Inception Distance (FID)

FID calculates the distance between the feature vectors extracted by InceptionV3 pool3 layer (Szegedy et al., 2016) on real
and synthetic samples. Specifically,

FID = ∥µr − µg∥22 + Tr(Σr +Σg − 2(ΣrΣg)
1
2 ) (15)

where Xr ∼ N (µr,Σr) and Xg ∼ N (µg,Σg) are activations of InceptionV3 pool3 layer of real images and generated
images, respectively, and Tr(A) refers to the trace of a matrix A. Intuitively, a lower FID means the generation Xg is more
realistic (or more similar to Xr). We use a PyTorch implementation for computing FID, which will resize images and
repeat channels three times for grayscale images to meet the input size requirement.

E.4. Classification task

We follow Cao et al. (2021) for the classifier implementation. We import scikit-learn package for implementation logistic
regression classifier (e.g. from sklearn.linear model import LogisticRegression) with default parameter settings.

The MLP network consists of following layers: linear(input dim, 100) → ReLU → linear(100, output dim) → Softmax.

The CNN consists of following layers: Conv2d(input channels, 32, kernel size=3, stride = 2, padding=1) →
Dropout(p=0.5) → ReLU → Conv2d(32, 64, kernel size=3, stride = 2, padding=1) → Dropout(p=0.5) → ReLU → flatten
→ linear(flatten dim, output dim) → Softmax.

Both MLP and CNN are optimized by Adam with default parameters. All classifiers are trained on synthetic data, and we
report test accuracy on real test data as the evaluation metric.

E.5. Baselines

All results of DP-MERF (Harder et al., 2021) are obtained by running their code with default parameters. It is worth
mentioning that DP-MERF does not implement on CelebA. We adapt their code on CelebA by using the generative network
they designed for SVHN with 16, 8, 8 channels for three convolutional layers, respectively.

GS-WGAN only implements on (10, 10−5)-DP. To target (1, 10−5)-DP, we tried two vanilla variations by tuning parame-
ters of (10, 10−5)-DP in their code, i.e. increasing noise scale while keeping the rest parameters unchanged, or decreasing
the number of iterations while keeping the rest parameters unchanged. We experimentally found that both variations will
not generate meaningful images. The former variation is not even able to generate anything on Fashion MNIST, so we
instead present the latter variation for comparison.

All other results (e.g. numbers in the tables, generated images) are cited from papers as we specify.

F. Schematic
The schematic workflow of DP-LFlow is shown in Figure 5.

G. Additional results
G.1. VAE size vs. FID

Consider privately training a VAE on MNIST (LeCun et al., 1998) for example. Figure 6 indicates that a smaller VAE
generates better images (with lower FID) than larger counterparts (both qualitatively and quantitatively) under the DP
training, even though larger VAEs perform better in the non-DP setting.

G.2. Qualitative comparison under (10, 10−5)
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Figure 5. The framework of DP-LFlow.

Figure 6. FID vs. VAE size (in MB). We only vary the model complexity, with all the rest training parameters (e.g. subsampling rate,
noise multiplier, training iterations) fixed.
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Figure 7. Qualitative comparison on MNIST and Fashion MNIST under (10, 10−5)-DP.
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