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ABSTRACT

Machine learning methods have recently shown promise in solving partial differen-
tial equations (PDEs). They can be classified into two broad categories: solution
function approximation and operator learning. The Physics-Informed Neural Net-
work (PINN) is an example of the former while the Fourier neural operator (FNO)
is an example of the latter. Both these approaches have shortcomings. The opti-
mization in PINN is challenging and prone to failure, especially on multi-scale
dynamic systems. FNO does not suffer from this optimization issue since it carries
out supervised learning on a given dataset, but obtaining such data may be too
expensive or infeasible. In this work, we propose the physics-informed neural oper-
ator (PINO), where we combine the operating-learning and function-optimization
frameworks, and this improves convergence rates and accuracy over both PINN
and FNO models. In the operator-learning phase, PINO learns the solution operator
over multiple instances of the parametric PDE family. In the test-time optimization
phase, PINO optimizes the pre-trained operator ansatz for the querying instance
of the PDE. Experiments show PINO outperforms previous ML methods on many
popular PDE families while retaining the extraordinary speed-up of FNO compared
to solvers. In particular, PINO accurately solves long temporal transient flows and
Kolmogorov flows, while PINN and other methods fail to converge.

1 INTRODUCTION

Machine learning-based methods are starting to show promise in scientific computing and especially
in solving partial differential equations (PDEs). They have demonstrated advantages in both efficiency
and accuracy compared to conventional solvers. They are even able to tackle previously intractable
problems such as higher-dimensional, multi-scale, high-contrast, and chaotic PDE systems (Um et al.,
2020; Brunton et al., 2020; Fan et al., 2018; Long et al., 2018; Han et al., 2018; Bruno et al., 2021).
Broadly, ML-based approaches for PDEs can be divided into two categories: optimizing to solve for
a specific solution function of PDE vs. learning the solution operator over a family of PDEs.

Optimization of solution function and PINN. Most ML-based methods, as well as the conven-
tional solvers, fall into this category. Conventional solvers such as FDM and FEM usually discretize
the domain into a grid and optimize/approximate the solution function on the grid, which imposes
a truncation error. The Physics-Informed Neural Network (PINN)-type methods are proposed to
overcome the discretization issue (Raissi et al., 2019). They use a neural network as the ansatz of
the solution function and take advantage of auto-differentiation to compute the exact, mesh-free
derivatives. Recently, researchers have developed numerous variations of PINN with promising
results on inverse problems and partially observed tasks (Lu et al., 2021a; Zhu et al., 2019; Smith
et al., 2021). However, compared to conventional solvers, PINNs face several optimization issues: (1)
the challenging optimization landscape from soft physics or PDE constraints (Wang et al., 2021a), (2)
the difficulty to propagate information from the initial or boundary conditions to unseen parts of the
interior or to future times (Dwivedi & Srinivasan, 2020), and (3) the sensitivity to hyper-parameters
selection (Sun et al., 2020). As a result, PINNs are still unable to compete with conventional solvers
in most cases, and they often fail to converge on high-frequency or multi-scale PDEs (Wang et al.,
2020b; Fuks & Tchelepi, 2020; Raissi et al., 2020). In this work, we propose to overcome these
optimization challenges by integrating operator learning with PINN.
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Figure 1: PINO: combine operator learning and PINN optimization.
(a) learn the solution operator from a family of equations. (b) use the learned operator as ansatz to

solve for a specific instance.

Operator learning and neural operators. A recent alternative approach is to learn the solution
operator of a family of PDEs, defined by the map from the input–initial conditions and boundary
conditions, to the output–solution functions. In this case, usually, a dataset of input-output pairs
from an existing solver is given. There are two main aspects to consider (a) model: to design models
for learning highly complicated PDE solution operators, and (b) data: to be data-efficient and to
improve generalization. Recent advances in operator learning replace traditional convolutional neural
networks and U-Nets from computer vision with operator-based model tailored to PDEs with greatly
improved model expressiveness (Li et al., 2020c; Lu et al., 2019; Patel et al., 2021; Wang et al.,
2020a; Duvall et al., 2021). Specifically, the neural operator generalizes the neural network to the
operator setting where the input and output spaces are infinite-dimensional. The framework has
shown success in learning resolution-invariant solution operators for highly non-linear problems such
as turbulence flow (Li et al., 2020b;a). However, the data challenges remain: (1) the need for training
data, which assumes an existing solver or experimental setup, (2) the non-negligible generalization
error, and (3) extrapolation to unseen conditions. These issues can be addressed by adding physics or
PDE constraints to operator learning (Zhu et al., 2019; Wang et al., 2021b; Zhang et al., 2021).

Our contributions. To overcome the shortcomings of both physics-informed optimization and
data-driven operator learning, we propose the physics-informed neural operator (PINO) that combines
operator learning with equation solving (test-time optimization). It requires fewer or no data points to
learn the operator and generalizes better. In PINO, we use the pre-trained operator as the ansatz to
optimize for the solution function at test time, which reduces the generalization error. Compared to
PINN, PINO has a much better optimization landscape and representation space, and hence, PINO
converges faster and more accurately. Our contributions can be summarized as follows:

• We propose the physics-informed neural operator (PINO), combining the operator-learning and
physics-informed settings. We introduce the pre-training and test-time optimization schemes that
utilize both the data and equation constraints (whichever are available). We develop an efficient
method to compute the exact gradient for neural operators to incorporate the equation constraints.

• By utilizing pre-trained operator ansatz, PINO overcomes the challenge of propagating information
from the initial condition to future time steps with (soft) physics constraints. It can solve the 2d
transient flow over an extremely long time period, where PINN and DeepONet (Lu et al., 2019)
fail. Even without any pre-training and using only PDE constraints for the given instance, PINO
still outperforms PINN by 20x smaller error and 25x speedup on the chaotic Kolmogorov flow,
demonstrating superior expressivity of the neural operator over standard neural networks.

• By utilizing the equation constraints, PINO requires fewer or no training data and generalizes
better compared to FNO (Li et al., 2020c). On average it has 7% smaller error on the transient
and Kolmogorov flows, while matching the speedup of FNO (400x) compared to the GPU-based
pseudo-spectral solver (He & Sun, 2007), matching FNO. Further, the pre-trained PINO model on
the Navier Stokes equation can be easily transferred to different Reynolds numbers ranging from
100 to 500 using test-time optimization.

• We propose the forward and backward PINO models for inverse problems. Our approach accurately
recovers the coefficient function in the Darcy flow which is 3000x faster than the conventional
solvers using accelerated MCMC (Cotter et al., 2013).

Our major novelty and contributions are to use the pre-trained operator ansatz with instance-wise
fine-tuning to overcome the optimization challenges in PINN and the generalization challenges
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in operator learning. Previous works such as PINN-DeepONet (Wang et al., 2021b) and Physics-
constrained modeling (Zhu et al., 2019) use the PDE constraints in operator learning, like we do
during the pre-training phase in PINO. However, we propose several methodological advances as
well as extensive experiments to understand the optimization and generalization challenges. Our
methodological advances include: (1) Instance-wise fine-tuning at test-time to further improve the
fidelity of the operator ansatz. (2) Efficient Fourier-space methods for computing derivatives present
in the PDE loss. (3) Efficient learning through the design of data augmentation and loss functions. (4)
Novel formulation for inverse problems that results in accurate recovery as well as good speedups.

PINN vs. PINO: pointwise vs. function-wise optimization. The neural operator ansatz in PINO
has an easier optimization landscape and a more expressive representation space compared to the
neural networks ansatz in PINN. The neural operator parameterizes the solution function as an
aggregation of basis functions, and hence, the optimization is in the function space. This is easier
than just optimizing a single function as in PINN. Further, we can learn these basis functions in the
pre-training phase which makes the test-time optimization on the querying instance even easier. In this
case, PINO does not need to solve from scratch. It just fine-tunes the solution function parameterized
by the solution operator. Thus, PINO is much faster and more accurate compared to PINN.

2 PRELIMINARIES AND PROBLEM SETTINGS

2.1 PROBLEM SETTINGS

We consider two natural class of PDEs. In the first, we consider the stationary system

P(u, a) = 0, in D ⊂ Rd

u = g, in ∂D
(1)

where D is a bounded domain, a ∈ A ⊆ V is a PDE coefficient/parameter, u ∈ U is the unknown,
and P : U ×A → F is a possibly non-linear partial differential operator with (U ,V,F) a triplet of
Banach spaces. Usually the function g is a fixed boundary condition (potentially can be entered as a
parameter). This formulation gives rise to the solution operator G† : A → U defined by a 7→ u. A
prototypical example is the second-order elliptic equation P(u, a) = −∇ · (a∇u) + f .

In the second setting, we consider the dynamical system

du

dt
= R(u), in D × (0,∞)

u = g, in ∂D × (0,∞)

u = a in D̄ × {0}

(2)

where a = u(0) ∈ A ⊆ V is the initial condition, u(t) ∈ U for t > 0 is the unknown, and R is a
possibly non-linear partial differential operator with U , and V Banach spaces. As before, we take
g to be a known boundary condition. We assume that u exists and is bounded for all time and for
every u0 ∈ U . This formulation gives rise to the solution operator G† : A → C

(
(0, T ];U

)
defined

by a 7→ u. Prototypical examples include the Burgers’ equation and the Navier-Stokes equation.

2.2 SOLVING EQUATION USING THE PHYSICS-INFORMED LOSS (PINN)

Given an instance a and a solution operator G† defined by equations (1) or (2) , we denote by
u† = G†(a) the unique ground truth. The equation solving task is to approximate u†. This setting
consists of the ML-enhanced conventional solvers such as learned finite element, finite difference, and
multigrid solvers (Kochkov et al., 2021; Pathak et al., 2021; Greenfeld et al., 2019), as well as purely
neural network-based solvers such as the Physics-Informed Neural Networks (PINNs), Deep Galerkin
Method, and Deep Ritz Method (Raissi et al., 2019; Sirignano & Spiliopoulos, 2018; Weinan &
Yu, 2018). Especially, these PINN-type methods use a neural network uθ with parameters θ as the
the ansatz to approximate the solution function u† . The parameters θ are found by minimizing the
physics-informed loss with exact derivatives computed using automatic-differentiation (autograd). In
the stationary case, the physics-informed loss is defined by minimizing the l.h.s. of equation (1) in
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the squared norm of F . A typical choice is F = L2(D), giving the loss function

Lpde(a, uθ) = ‖P(a, uθ)‖2L2(D) + α‖uθ|∂D − g‖2L2(∂D)

=

∫
D

|P(uθ(x), a(x))|2dx+ α

∫
∂D

|uθ(x)− g(x)|2dx
(3)

In the case of a dynamical system, it minimizes the residual of equation (2) in some natural norm up
to a fixed final time T > 0. A typical choice is the L2

(
(0, T ];L2(D)

)
norm, yielding

Lpde(a, uθ) =

∫ T

0

∫
D

|duθ
dt

(t, x)−R(uθ)(t, x)|2dxdt+ α

∫ T

0

∫
∂D

|uθ(t, x)− g(t, x)|2dxdt

+ β

∫
D

|uθ(0, x)− a(x)|2dx

(4)

The PDE loss consists of the physics loss in the interior and the data loss on the boundary and initial
conditions, with hyper-parameters α, β > 0. It can be generalized to variational form as in (Weinan
& Yu, 2018).

Challenges of PINN PINNs take advantage of the universal approximability of neural networks,
but, in return, suffer from the low-frequency induced bias. Empirically, PINNs often fail to solve
challenging PDEs when the solution exhibits high-frequency or multi-scale structure (Wang et al.,
2021a; 2020b; Fuks & Tchelepi, 2020; Raissi et al., 2020). Further, as an iterative solver, PINNs
have difficulty propagating information from the initial condition or boundary condition to unseen
parts of the interior or to future times (Dwivedi & Srinivasan, 2020). For example, in challenging
problems such as turbulence, PINNs are only able to solve the PDE on a relatively small domain (Jin
et al., 2021), or otherwise, require extra observational data which is not always available in practice
(Raissi et al., 2020; Cai et al., 2021). In this work, we propose to overcome the challenges posed by
the optimization by integrating operator learning with PINNs.

2.3 LEARNING THE SOLUTION OPERATOR (NEURAL OPERATOR)

An alternative setting is to learn the solution operator G. Given a PDE as defined in (1) or (2) and
the corresponding solution operator G†, one can use a neural operator Gθ with parameters θ as a
surrogate model to approximate G†. Usually we assume a dataset {aj , uj}Nj=1 is available, where
G†(aj) = uj and aj ∼ µ are i.i.d. samples from some distribution µ supported on A. In this case,
one can optimize the solution operator by minimizing the empirical data loss on a given data pair

Ldata(u,Gθ(a)) = ‖u− Gθ(a)‖2U =

∫
D

|u(x)− Gθ(a)(x)|2dx (5)

where we assume the setting of (1) for simplicity of the exposition. The operator data loss is defined
as the average error across all possible inputs

Jdata(Gθ) = ‖G† − Gθ‖2L2
µ(A;U) = Ea∼µ[Ldata(a, θ)] ≈

1

N

N∑
j=1

∫
D

|uj(x)− Gθ(aj)(x)|2dx. (6)

Similarly, one can define the operator PDE loss as

Jpde(Gθ) = Ea∼µ[Lpde(a,Gθ(a))]. (7)

In general, it is non-trivial to compute the derivatives dGθ(a)/dx and dGθ(a)/dt for model Gθ. In the
following section, we will discuss how to compute these derivatives for Fourier neural operator.

2.4 NEURAL OPERATORS

In this work, we will focus on the neural operator model designed for the operator learning problem.
The neural operator, proposed in (Li et al., 2020c), is formulated as an generalization of standard
deep neural networks to operator setting. Neural operator compose linear integral operator K with
pointwise non-linear activation function σ to approximate highly non-linear operators.
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Definition 1 (Neural operator Gθ) Define the neural operator

Gθ := Q ◦ (WL +KL) ◦ · · · ◦ σ(W1 +K1) ◦ P (8)

where P : Rda → Rd1 , Q : RdL → Rdu are the pointwise neural networks that encode the lower
dimension function into higher dimensional space and vice versa. The model stack L layers of
σ(Wl +Kl) where Wl ∈ Rdl+1×dl are pointwise linear operators (matrices), Kl : {D → Rdl} →
{D → Rdl+1} are integral kernel operators, and σ are fixed activation functions. The parameters θ
consists of all the parameters in P,Q,Wl,Kl.

Recently, Li et al. (2020a) proposes the Fourier neural operator (FNO) that deploys convolution
operator for K. In this case, it can apply the Fast Fourier Transform (FFT) to efficiently compute K.
This leads to a fast architecture that obtains state-of-the-art results for PDE problems.

Definition 2 (Fourier convolution operator K) Define the Fourier convolution operator(
Kvt

)
(x) = F−1

(
R · (Fvt)

)
(x) ∀x ∈ D (9)

where R is part of the parameter θ to be learn.

Challenges of Operator learning. Operator learning is similar to the supervised learning in com-
puter vision and language where data play a very important role. One needs to assume the training
points and testing points follow the same problem setting and the same distribution. Especially, the
previous FNO model trained on one coefficient (e.g. Reynolds number) or one geometry cannot be
easily generalized to another. Moreover, for more challenging PDEs where the solver is very slow or
the solver is even not existent, it is hard to gather a representative dataset. On the other hand, since
FNO doesn’t use any knowledge of the equation, it is cannot get arbitrary close to the ground truth
by using higher resolution as in conventional solvers, leaving a gap of generalization error. These
challenges limit FNO’s applications beyond accelerating the solver. In the following section, we will
introduce the PINO framework to overcome these problems by using the equation constraints.

3 PHYSICS-INFORMED NEURAL OPERATOR (PINO)

We propose the PINO framework that uses one neural operator model Gθ for solving both operator
learning problems and equation solving problems. It consists of two phases

• Pre-train the solution operator: learn a neural operator Gθ to approximate G† using either/both
the data loss Jdata and/or the PDE loss Jpde which can be additional to the dataset.

• Test-time optimization: use Gθ(a) as the ansatz to approximate u† with the pde loss Lpde and/or
an additional operator loss Lop obtained from the pre-train phase.

3.1 PRE-TRAIN: OPERATOR LEARNING WITH PDE LOSS

Given a fixed amount of data {aj , uj}, the data loss Jdata offers a stronger constraint compared to
the PDE loss Jpde. However, the PDE loss does not require a pre-existing dataset. One can sample
virtual PDE instances by drawing additional initial conditions or coefficient conditions aj ∼ µ for
training, as shown in Algorithm 1. In this sense, we have access to the unlimited dataset by sampling
new aj in each iteration.

3.2 TEST-TIME OPTIMIZATION: SOLVING EQUATION WITH OPERATOR ANSATZ

Given a learned operator Gθ, we use Gθ(a) as the ansatz to solve for u†. The optimization procedure
is similar to PINNs where it computes the PDE loss Lpde on a, except that we propose to use a neural
operator instead of a neural network. Since the PDE loss is a soft constraints and challenging to
optimize, we also add an optional operator loss Lop (anchor loss) to bound the further optimized
model from the pre-trained model

Lop
(
Gθi(a),Gθ0(a)

)
:= ‖Gθi(a)− Gθ0(a)‖2U
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Algorithm 1: Pre-training scheme for Physics-informed neural operator learning

Data: Data: input output function pairs {aj , uj}Nj=1
Result: Neural operator G : A → U .

1 for i = 0, 1, 2 . . . do
2 Compute Ldata and Lpde on (ai, ui). Update neural operator G;
3 for j = 1 to K do
4 Sample a′ from distribution µ;
5 Compute Lpde on a′. Update neural operator G;
6 end
7 end

where Gθi(a) is the model at ith training epoch. We update the operator Gθ using the lossLpde+αLop.
It is possible to further apply optimization techniques to fine-tune the last fewer layers of the neural
operator and progressive training that gradually increase the grid resolution and use finer resolution
in test time.

Optimization landscape. Using the operator as the ansatz has two major advantages: (1) PINN
does point-wise optimization, while PINO does optimization in the space of functions. In the linear
integral operation K, the operator parameterizes the solution function as a sum of the basis function.
Optimization of the set of coefficients and basis is easier than just optimizing a single function as
in PINNs. (2) we can learn these basis functions in the operator learning phase which makes the
later test-time optimization even easier. In PINO, we do not need to propagate the information from
the initial condition and boundary condition to the interior. It just requires fine-tuning the solution
function parameterized by the solution operator.

Trade-off (1) complexity and accuracy: the test-time optimization is an option to spend more
computation in exchange of better accuracy. When the speed is most desired, one should use the
pre-trained model to directly output the prediction. However, if one wants to solve for a specific
instance accurately, then the person can use test-time optimization to correct the generalization error
posed in operator learning. (2) resolution effects on optimization landscape and truncation error:
using higher resolution and finer grid will reduce the truncation error. However, it may make the
optimization instable. Using hard constraints such as the anchor loss Lop relieve such problem.

3.3 DERIVATIVE OF NEURAL OPERATORS

In order to use the equation loss Lpde, one of the major technical challenge is to efficiently compute
the derivatives D(Gθa) = d(Gθa)(x)/dx for neural operators. In this section, we discuss three
efficient methods to compute the derivatives of neural operator Gθ as defined in 8.

Numerical differentiation. A simple but efficient approach is to use conventional numerical
gradients such as finite difference and Fourier gradient (Zhu et al., 2019; Gao et al., 2021). These
numerical gradient are fast and memory-efficient: given a n-points grid, finite difference requiresO(n)
and Fourier method require O(n log n). However, they face the same challenges as the corresponding
numerical solvers: finite difference methods require a fine-resolution uniform grid; spectral methods
require smoothness and uniform grids. Especially. These numerical errors on the gradient will be
amplified on the output solution.

Autograd. Similar to PINN (Raissi et al., 2019), the most general way to compute the exact gradient
is to use the auto-differentiation library of neural networks (autograd). To apply autograd, one needs
to use a neural network to parameterize the solution function û : x 7→ u(x). However, it is not
straightforward to write out the solution function in the neural operator which directly outputs the
numerical solution u = Gθ(a) on a grid, especially for FNO which uses FFT. To apply autograd, we
design a query function û that input x and output u(x). Recall Gθ := Q◦ (WL +KL) ◦ · · · ◦ σ(W1 +
K1) ◦ P and u = Gθa = QvL = Q(WL +KL)vL−1 . . .. Since Q is pointwise,

u(x) = Q(vL(x)) = Q((WLvL−1)(x) +KLvL−1(x)) (10)
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(a) the long-temporal transient flow with Re ∼ 20, T = 50. PINO can output the full trajectory in
one step, which leads to 400x speedup compared to the solver. PINN cannot converge to a reasonable
error rate due to the long time window. (b) the chaotic Kolmogorov flow with Re =∼ 500, T = 0.5.
PINO retains 10x speed up compared to the solver, while converges much faster compared to PINN.

Figure 2: The accuracy-complexity trade-off on PINO, PINN, and the pseudo-spectral solver.

To query any location x, we need to evaluate the Fourier convolution KLvL−1(x) and the bias part
(WLvL−1)(x). For the first part, we can directly query the Fourier coefficient R · Fvt at spatial
location x without doing the inverse FFT F . For the second part, we can define the query function
as an interpolation or a low-rank integral operator as in (Kovachki et al., 2021). Then we can use
autograd to take the exact derivative for (10). The autograd method is general and exact, however, it
is less efficient. Since the number of parameters |θ| is usually much greater than the grid size n, the
numerical methods are indeed significantly faster. Empirically, the autograd method is usually slower
and memory-consuming.

Exact gradients. We develop an efficient and exact gradient method based on the architecture of
the neural operator. The idea is similar to the autograd, but we explicitly write out the gradient on the
Fourier space and apply the chain rule. Given the explicit form (10), D(KLvL−1) can be directly
compute on the Fourier space. The linear part D(WLvL−1) can be interpolated using the Fourier
method. Therefore to exactly compute the derivative of vL, one just needs to run the numerical Fourier
gradient. Then we just need to apply chain rule for Jacobian Ju = J(Q ◦ vL) = J(Q(vL)) ◦ J(vL)
and Hessian Hu = H(Q ◦ vL) = J(vL) ◦H(Q(vL)) ◦ J(vL) + J(Q(vL)) ◦H(vL). Since Q is
pointwise, this can be much simplified. In the experiments, we mostly use the exact gradient and the
numerical Fourier gradient.

4 EXPERIMENTS

In this section, we conduct empirical experiments to examine the efficacy of the proposed PINO. In 4.1,
we show the physics constraints helps operator-learning with fewer data and better generalization.
Then in 4.2, we investigate how PINO uses operator ansatz to solve harder equations with improved
speed and accuracy. We study on three concrete cases of PDEs on Burgers’ Equation, Darcy Equation,
and Navier-Stokes equation.

Burgers’ Equation. The 1-d Burgers’ equation is a non-linear PDE with periodic boundary condi-
tions where u0 ∈ L2

per((0, 1);R) is the initial condition and ν = 0.01 is the viscosity coefficient. We
aim to learn the operator mapping the initial condition to the solution, G† : u0 7→ u|[0,1].

∂tu(x, t) + ∂x(u2(x, t)/2) = ν∂xxu(x, t), x ∈ (0, 1), t ∈ (0, 1]

u(x, 0) = u0(x), x ∈ (0, 1)
(11)

Darcy Flow. The 2-d steady-state Darcy Flow equation on the unit box which is the second order
linear elliptic PDE with a Dirichlet boundary where a ∈ L∞((0, 1)2;R+) is a piecewise constant
diffusion coefficient and f = 1 is a fixed forcing function. We are interested in learning the operator
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mapping the diffusion coefficient to the solution, G† : a 7→ u. Note that although the PDE is linear,
the operator G† is not.

−∇ · (a(x)∇u(x)) = f(x) x ∈ (0, 1)2

u(x) = 0 x ∈ ∂(0, 1)2
(12)

Navier-Stokes Equation. We consider the 2-d Navier-Stokes equation for a viscous, incompress-
ible fluid in vorticity form on the unit torus, where u ∈ C([0, T ];Hr

per((0, l)
2;R2)) for any r > 0 is

the velocity field, w = ∇× u is the vorticity, w0 ∈ L2
per((0, l)

2;R) is the initial vorticity, ν ∈ R+

is the viscosity coefficient, and f ∈ L2
per((0, l)

2;R) is the forcing function. We want to learn the
operator mapping the vorticity from the initial condition to the full solution G† : w0 7→ w|[0,T ].

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x), x ∈ (0, l)2, t ∈ (0, T ]

∇ · u(x, t) = 0, x ∈ (0, l)2, t ∈ [0, T ]

w(x, 0) = w0(x), x ∈ (0, l)2
(13)

Specially, we consider two problem settings:

• Long temporal transient flow: we study the build-up of the flow from the initial condition u0
near-zero velocity to uT that reaches the ergodic state. We choose t ∈ [0, 50], l = 1, Re = 20 as in
Li et al. (2020a). The main challenge is to predict the long time interval.

• Chaotic Kolmogorov flow: In this case u lies in the attractor where arbitrary starting time t0. We
choose t ∈ [t0, t0 + 0.5] or [t0, t0 + 1], l = 1, Re = 500 similar to Li et al. (2021). The main
challenge is to capture the small details that evolve chaotically.

4.1 OPERATOR LEARNING WITH PDE LOSSES

We first show the effectiveness of applying the physics constraints Jpde to learn the solution operator.

Burgers equation and Darcy equation. PINO can learn the solution operator without any data
on simpler problems such as Burgers and Darcy. Compared to other PDE-constrained operators,
PINO is more expressive and thereby achieves better accuracy. On Burgers (11), PINN-DeepONet
achieves 1.38% (Wang et al., 2021b); PINO achieves 0.37%. Similarly, on Darcy flow (12), PINO
outperforms FNO by utilizing physics constraints, as shown in Table 1. For these simpler equation,
test-time optimization may not be needed. The implementation detail and and the search space of
parameters are included in the Appendix A.1 and A.2.

4.2 SOLVE EQUATION USING OPERATOR ANSATZ

Long temporal transient flow. It is extremely challenging to propagate the information from the
initial condition to future time steps over such a long interval T = [0, 50] just using the soft physics
constraint. None of the PINN, DeepONet, and PINO (from scratch without pre-training) can handle
this case (error > 50%), no matter solving the full interval at once or solving per smaller steps.
However, when the pre-training data is available for PINO, we can use the learned neural operator
ansatz and the anchor loss Lop. The anchor loss is a hard constraint that makes the optimization
much easier. Providing N = 4800 training data, the PINO without test-time optimization achieves
2.87% error, lower than FNO 3.04% and it retains a 400x speedup compared to the GPU-based
pseudo-spectral solver (He & Sun, 2007), matching FNO. Further doing test time optimization with
the anchor loss and PDE loss, PINO reduces the error to 1.84%.

Chaotic Kolmogorov flow. We show an empirical study on how PINO can improve the generaliza-
tion of neural operators by enforcing more physics. For this experiment, the training set consists of
4000 data points of initial condition and corresponding solution. Using Algorithm 1, we can sample
unlimited additional initial conditions from Gaussian random field at any resolution. Table 2 and
4 compare the generalization error of neural operators trained by different schemes and different
amounts of simulated data. The result shows that training neural operator with additional PDE
instances consistently improves the generalization error on all three resolutions we are evaluating.
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Figure 3: Darcy inverse problem

Based on the solution operators learned in the above operator-learning section, we continue to do
test-time optimization. The results are shown in Figure and Table 3. Overall, PINO outperforms
PINN by 20x smaller error and 25x speedup. Using pre-trained model make PINO converge faster.
The implementation detail and the search space of parameters are included in the Appendix B.2.

Transfer Reynolds numbers. The extrapolation of different parameters and conditions is one of
the biggest challenges for ML-based methods. By doing test-time optimization, the pre-trained PINO
model on the Kolmogorov flow can be easily transferred to different Reynolds numbers ranging from
100 to 500 in test-time optimization as shown in Table 5. Such property envisions broad applications.

4.3 INVERSE PROBLEM

One of the major advantages of the physics-informed method is to solve the inverse problem. In this
case, we investigate PINO on the inverse problem of the Darcy equation to recover the coefficient
function a† from the given solution function u†. We assume a dataset {aj , uj} is available to pre-train
the operator. We propose two formulations of PINO for the inverse problem:

• Forward model: Learn the forward operator Gθ : a 7→ u with data. Initialize â to approximate a†.
Optimize â using

Jforward := Lpde(â, u†) + Ldata(Gθ(â)) +R(â).

• Backward model: Learn the backward operatorFθ : u 7→ awith data. UseFθ(u†) to approximate
a†. Optimize Fθ using

Jbackward := Lpde(Fθ(u†), u†) + Lop(Fθ(u†),Fθ0(u†)) +R(Fθ(u†))

Where R(a) is the regularization term. We use the PDE loss Lpde to deal with the small error in Gθ
and the ill-defining issue of Fθ.

We perform a showcase example on the Darcy equation, where we are given the full-field observation
of u (clean data) to recover the coefficient function a. The coefficient function a is piecewise constant
(representing two types of media), so the inverse problem can be viewed as a classification problem.
We define R(a) as the total variance. As shown in Figure 3, the PINO backward model has the best
performance: it has 2.29% relative l2 error on the output u and 97.10% classification accuracy on
the input a; the forward model has 6.43% error on the output and 95.38% accuracy on the input.
As a reference, we compare the PINO inverse frameworks with PINN and the conventional solvers
using the accelerated MCMC method with 500,000 steps (Cotter et al., 2013). The posterior mean
of the MCMC has 4.52% error and 90.30% respectively ( Notice the Bayesian method outputs the
posterior distribution, which is beyond obtaining a maximum a posteriori estimation) Meanwhile,
PINO methods are 3000x faster compared to MCMC. PINN does not converge in this case. The
major advantage of the PINO backward model compared to the PINO forward model is that it uses a
neural operator Fθ(u†) as the ansatz for the coefficient function. Similar to the forward problem, the
operator ansatz has an easier optimization landscape while being expressive.
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Figure 4: PINO on Kolmogorov flow (left) and Lid-cavity flow (right)

A IMPLEMENTATION DETAILS

In this section, we list the detailed experiment setups and parameter searching for each experiment
in Section 4. Without specification, we use Fourier neural operator backbone with width = 64,
mode = 8, L = 4 and GeLU activation. The numerical experiments are performed on Nvidia V100
GPUs.

A.1 BURGERS EQUATION

We use the 1000 initial conditions u0 ∼ µ where µ = N (0, 625(−∆ + 25I)−2) to train the solution
operator on PINO with width = 64, mode = 20, and GeLU activation. We use the numerical
method to take the gradient. We use Adam optimizer with the learning rate 0.001 that decays by half
every 100 epochs. 500 epochs in total. The total training time is about 1250s on a single Nvidia 3090
GPU. PINO achieves 0.37% relative l2 error averaged over 200 testing instances. PINN-DeepONet
achieves 1.38% which is taken from Wang et al. (2021b) which uses the same problem setting.

A.2 DARCY FLOW

We use the 1000 coefficient conditions a to train the solution operator where a ∼ µ where µ =
ψ#N (0, (−∆ + 9I)−2), ψ(a(x)) = 12 if a(x) ≥ 0; ψ(a(x)) = 3 if a(x) < 0. The zero boundary
condition is enforced by multiplying a mollifier m(x) = sin(πx) sin(πy) for all methods. The
parameter of PINO on Darcy Flow is the same as in the Burgers equation above. Regarding the
implementation detail of the baselines: as for FNO, we use the same hyperparameters as its paper
did (Li et al., 2020c); DeepONet (Lu et al., 2019) did not study Darcy flow so we grid search
the hyperparameters of DeepONet: depth from 2 to 12, width from 50 to 100. The best result of
DeepONet is achieved by depth 8, width 50. The results are shown in Table 1.

Method Solution error Equation error
DeepONet with data (Lu et al., 2019) 6.97± 0.09% -
FNO with data (Li et al., 2020c) 1.98± 0.05% 1.3645± 0.014
PINO with data 1.22± 0.03% 0.5740± 0.008
PINO w/o data 1.50± 0.03% 0.4868± 0.007

Table 1: Operator learning on Darcy Flow.
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A.3 LONG TEMPORAL TRANSIENT FLOW.

We study the build-up of the flow from the initial condition u0 near-zero velocity to uT that reaches
the ergodic state. We choose T = 50, l = 1 as in Li et al. (2020a). We choose the weight
parameters of error α = β = 5. The initial condition w0(x) is generated according to w0 ∼ µ
where µ = N (0, 73/2(−∆ + 49I)−2.5) with periodic boundary conditions. The forcing is kept
fixed f(x) = 0.1(sin(2π(x1 + x2)) + cos(2π(x1 + x2))). We compare FNO, PINO (no test-time
optimization), and PINO (with test-time optimization). They get 3.04%, 2.87%, and 1.84% relative
l2 error on the last time step u(50) over 5 testing instance.

# data samples # additional PDE instances Solution error Equation error
0 100k 74.36% 0.3741
0.4k 0 33.32% 1.8779
0.4k 40k 31.74% 1.8179
0.4k 160k 31.32% 1.7840
4k 0 25.15% 1.8223
4k 100k 24.15% 1.6112
4k 400k 24.22% 1.4596

Table 2: Operator-learning on Kolmogorov flow Re = 500. Each relative L2 test error is averaged
over 300 instances, which is evaluated with resolution 128× 128× 65. Complete results of other
resolutions are reported in Table 4 in appendix.

A.4 CHAOTIC KOLMOGOROV FLOW.

For this experiment, u lies in the attractor. We choose T = 0.5 or 1, and l = 1, similar to
Li et al. (2021). The training set consists of 4000 initial condition functions and corresponding
solution functions with a spatial resolution of 64× 64 and a temporal resolution of 65. Extra initial
conditions are generated from Gaussian random field N

(
0, 73/2(−∆ + 49I)−5/2

)
. We estimate the

generalization error of the operator on a test set that contains 300 instances of Kolmogorov flow
and reports the averaged relative L2 error. Each neural operator is trained with 4k data points plus
a number of extra sampled initial conditions. The Reynolds number in this problem is 500. The
reported generalization error is averaged over 300 instances.

Comparison study. The baseline method PINN is implemented using library DeepXDE (Lu et al.,
2021c) with TensorFlow as backend. We use the two-step optimization strategy (Adam (Kingma
& Ba, 2014) and L-BFGS) following the same practice as NSFNet (Jin et al., 2021), which applies
PINNs to solving Navier Stokes equations. We grid search the hyperparameters: network depth from
4 to 6, width from 50 to 100, learning rate from 0.01 to 0.0001, the weight of boundary loss from 10 to
100 for all experiments of PINNs. Comparison between PINO and PINNs on test-time optimization.
The results are averaged over 20 instances of the Navier Stokes equation with Reynolds number 500.
The best result is obtained by PINO using pre-trained operator ansatz and virtual sampling. The
neural operator ansatz used here is trained over a set of 400 data points. The authors acknowledge
that there could exist more sophisticated variants of PINN that performs better in our test cases.

Method # data samples # additional PDE instances Solution error (w) Time cost
PINNs - - 18.7% 4577s
PINO 0 0 0.9% 608s
PINO 4k 0 0.9% 536s
PINO 4k 160k 0.9% 473s

Table 3: Equation-solving on Kolmogorov flow Re = 500.

A.5 TRANSFER LEARNING ACROSS REYNOLDS NUMBERS

We study the test-time optimization with different Reynolds numbers on the 1s Kolmogorov flow.
For the higher Reynolds number problem Re = 500, 400, the pre-training operator shows better
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# data samples # additional PDE instances Resolution Solution error Equation error

400 0
128x128x65 33.32% 1.8779
64× 64× 65 33.31% 1.8830
32× 32× 33 30.61% 1.8421

400 40k
128x128x65 31.74% 1.8179
64× 64× 65 31.72% 1.8227
32× 32× 33 29.60% 1.8296

400 160k
128x128x65 31.32% 1.7840
64× 64× 65 31.29% 1.7864
32× 32× 33 29.28% 1.8524

4k 0
128× 128× 65 0.2515 1.8223
64× 64× 65 0.2516 1.8257
32× 32× 33 0.2141 1.8468

4k 100k
128× 128× 65 0.2415 1.6112
64× 64× 65 0.2411 1.6159
32× 32× 33 0.2085 1.8251

4k 400k
128× 128× 65 0.2422 1.4596
64× 64× 65 0.2395 1.4656
32× 32× 33 0.2010 1.9146

0 100k
128× 128× 65 0.7436 0.3741
64× 64× 65 0.7438 0.3899
32× 32× 33 0.7414 0.5226

Table 4: Each neural operator is trained with 4k data points additionally sampled free initial conditions.
The Reynolds number is 500. The reported generalization error is averaged over 300 instances.
Training on additional initial conditions boosts the generalization ability of the operator.

convergence accuracy. In all cases, the pre-training operator shows better convergence speed as
demonstrated in Figure 5. The results are shown in Table 5 where the error is averaged over 40
instances. Each row is a testing case and each column is a pre-trained operator.

Testing RE From scratch 100 200 250 300 350 400 500
500 0.0493 0.0383 0.0393 0.0315 0.0477 0.0446 0.0434 0.0436
400 0.0296 0.0243 0.0245 0.0244 0.0300 0.0271 0.0273 0.0240
350 0.0192 0.0210 0.0211 0.0213 0.0233 0.0222 0.0222 0.0212
300 0.0168 0.0161 0.0164 0.0151 0.0177 0.0173 0.0170 0.0160
250 0.0151 0.0150 0.0153 0.0151 0.016 0.0156 0.0160 0.0151
200 0.00921 0.00913 0.00921 0.00915 0.00985 0.00945 0.00923 0.00892
100 0.00234 0.00235 0.00236 0.00235 0.00239 0.00239 0.00237 0.00237

Table 5: Reynolds number transfer learning. Each row is a test set of PDEs with corresponding
Reynolds number. Each column represents the operator ansatz we use as the starting point of test-time
optimization. For example, column header ’100’ means the operator ansatz is trained over a set
of PDEs with Reynolds number 100. The relative L2 errors is averaged over 40 instances of the
corresponding test set.

B ADDITIONAL EXPERIMENTS

B.1 ADDITIONAL BASELINES

We add a comparison experiment against the Locally adaptive activation functions for PINN (LAAF-
PINN) (Jagtap et al., 2020) and Self-Adaptive PINN (SA-PINN) (McClenny & Braga-Neto, 2020).
For the Kolmogorov flow problem, we set Re=500, T=[0, 0.5]. We search among the following
hyperparameters combinations: LAAF-PINN: n: 10, 100, learning rate: 0.1, 0.01, 0.001, depth 4, 6.
SA-PINNs: learning rate 0.001, 0.005, 0.01, 0.05, network width 50, 100, 200, depth 4, 6, 8.
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Figure 5: Plot of test relative L2 error versus update step for the Kolmogorov flow with Re500, T=1s.
We observe that a ll the operator ansatzs pretrained over PDE instances with different Reynolds
number can boost the test-time optimization accuracy and speed compared to training from scratch.

As shown in Figure 6, both LAAF-PINN and SA-PINN converge much faster compared to the
original PINN method, but there is still a big gap with PINO. LAAF-PINN adds learnable parameters
before the activation function; SA-PINN adds the weight parameter for each collocation point. These
techniques help to alleviate the PINNs‘ optimization problem significantly. However, they didn’t alter
the optimization landscape effectively in the authors’ opinion. On the other hand, by using operator
ansatz, PINO optimizes in a function-wise manner where the optimization is fundamentally different.

Note that the contribution of PINO is orthogonal to the above methods. One can apply the adaptive
activation functions or self-adaptive loss in the PINO framework too. All these techniques of PINNs
can be straightforwardly transferred to PINO. We believe it would be interesting future directions to
study how all these methods work with each other in different problems.

B.2 LID CAVITY FLOW.

We demonstrate an addition example using PINO to solve for lid-cavity flow on T = [5, 10] with
Re = 500. In this case, we do not have the pre-train phase and directly solve the equation (test-time
optimization). We use PINO with the velocity-pressure formulation and resolution 65 × 65 × 50
plus the Fourier numerical gradient. It takes 2 minutes to achieve a relative error of 14.52%. Figure
4 shows the ground truth and prediction of the velocity field at t = 10 where the PINO accurately
predicts the ground truth.

We assume a no-slip boundary where u(x, t) = (0, 0) at left, bottom, and right walls and u(x, t) =
(1, 0) on top, similar to Bruneau & Saad (2006). We choose t ∈ [5, 10], l = 1, Re = 500. We use
the velocity-pressure formulation as in Jin et al. (2021) where the neural operator output the velocity
field in x, y, and the pressure field. We set width = 32, mode = 20 with learning rate 0.0005
which decreases by half every 5000 iterations, 5000 iterations in total. We use the Fourier method
with Fourier continuation to compute the numerical gradient and minimize the residual error on the
velocity, the divergence-free condition, as well as the initial condition and boundary condition. The
weight parameters (α, β) between different error terms are all chosen as 1. Figure 4 shows the ground
truth and prediction of the velocity field at t = 10 where the PINO accurately predicts the ground
truth.
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Figure 6: Plot of test relative L2 error versus runtime step for the Kolmogorov flow with Re500,
T=0.5s. top: 64× 64, bottom: 128× 128. Averaged over 20 instances.
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Figure 7: Fourier Continuation by padding zeros. The x-axis is spatial dimension; the y-axis is the
temporal dimension. FNO extends the output smoothly on the padded domain.

C FOURIER CONTINUATION

The Fourier neural operator can be applied to arbitrary geometry via Fourier continuations. Given
any compact manifoldM, we can always embed it into a periodic cube (torus),

i :M→ T n

where we can do the regular FFT. Conventionally, people would define the embedding i as a
continuous extension by fitting polynomials (Bruno et al., 2007). However, in Fourier neural operator,
it can be simply done by padding zeros in the input. The loss is computed at the original space during
training. The Fourier neural operator will automatically generate a smooth extension to do padded
domain in the output, as shown in Figure 7.

This technique is first used in the original Fourier neural operator paper (Li et al., 2020a) to deal
with the time dimension in the Navier-Stokes equation. Similarly, Lu et al. (2021b) apply FNO with
extension and interpolation on diverse geometries on the Darcy equation. In the work, we use Fourier
continuation widely for non-periodic boundary conditions (Darcy, time dimension). We also added
an example of lid-cavity to demonstrate that PINO can work with non-periodic boundary conditions.

Furthermore, this Fourier continuation technique helps to take the derivatives of the Fourier neural
operator. Since the output of FNO is always on a periodic domain, the numerical Fourier gradient is
usually efficient and accurate, except if there is shock (in this case, we will use the exact gradient
method).

D CONCLUSION AND FUTURE WORKS

In this work, we develop the physics-informed neural operator (PINO) that bridges the gap between
physics-informed optimization and data-driven neural operator learning. We introduce the pre-training
and test-time optimization schemes for PINO to utilize both the data and physics constraints. In
the pre-training phase, PINO learns an operator ansatz over multiple instances of a parametric PDE
family. The test-time optimization scheme allows us to take advantage of the learned neural operator
ansatz and solve for the solution function on the querying instance faster and more accurately.

There are many exciting future directions. PINO can be used to enhance operator-learning with some
constraints, for examples: (1) Control problem: one first learns a solution operator (pre-training) and
does test-time optimization in the control phase to make sure it satisfies desired constraints (Hwang
et. al.). (2) Multiscale modeling: in multi-scale modeling, one learns a fine-scale solution operator,
which is then regulated by a coarse-scale solver. Note that the fine-scale problems do not follow
Gaussian distribution as in the training dataset (Liu et. al.). (3) Weather prediction: beyond the
observation dataset, one can add physics constraints such as the conservation of mass (Jiang et. al.).
(4) Airfoil design: the design problem can be formulated as an inverse problem as shown in Section
4.3. PINO backward formulation is particularly effective for the inverse problem (Thuerey et. al.).

PINO is also designed to work on most of the working scenarios of PINNs: if the optimization is
benign, then pre-train is not needed. The major advantage compared to PINN-based methods is
the optimization landscape. The operator ansatz, even randomly initialized, still has a much better
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optimization landscape compared to the PINN-based model. Most of the techniques and analysis of
PINN can be transferred to PINO.

It is interesting to ask how to overcome the hard trade-off of accuracy and complexity, and how the
PINO model transfers across different geometries. Furthermore, we can develop a software library of
pre-trained models. PINO’s excellent extrapolation property allows it to be applied on a broad set of
conditions, as shown in the Transfer Reynold’s number experiments.

19


	Introduction
	Preliminaries and Problem settings
	Problem settings
	Solving equation using the physics-informed loss (PINN)
	Learning the solution operator (neural operator)
	Neural operators

	Physics-informed neural operator (PINO)
	Pre-train: operator learning with PDE loss
	Test-time optimization: solving equation with operator ansatz
	Derivative of neural operators

	Experiments
	Operator learning with PDE losses
	Solve equation using operator ansatz
	Inverse problem

	Implementation details
	Burgers Equation
	Darcy Flow
	Long temporal transient flow.
	Chaotic Kolmogorov flow.
	Transfer learning across Reynolds numbers

	Additional experiments
	Additional baselines
	Lid Cavity flow.

	Fourier continuation
	Conclusion and Future works

