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ABSTRACT

Multimodal reasoning models have recently shown promise on challenging do-
mains such as olympiad-level geometry, yet their evaluation remains dominated
by aggregate accuracy, a single score that obscures where and how models are
improving. We introduce MATHLENS, a benchmark designed to disentangle the
subskills of multimodal reasoning while preserving the complexity of textbook-
style geometry problems. The benchmark separates performance into three com-
ponents: Perception: extracting information from raw inputs, Reasoning: operat-
ing on available information, and Infegration: selecting relevant perceptual evi-
dence and applying it within reasoning. To support each test, we provide anno-
tations: visual diagrams, textual descriptions to evaluate reasoning in isolation,
controlled questions that require both modalities, and probes for fine-grained per-
ceptual skills, all derived from symbolic specifications of the problems to ensure
consistency and robustness. Our analysis reveals that different training approaches
have uneven effects: First, reinforcement learning chiefly strengthens perception,
especially when supported by textual supervision, while textual SFT indirectly im-
proves perception through reflective reasoning. Second, reasoning improves only
in tandem with perception. Third, integration remains the weakest capacity, with
residual errors concentrated there once other skills advance. Finally, robustness
diverges: RL improves consistency under diagram variation, whereas multimodal
SFT reduces it through overfitting. We will release all data and experimental logs.

1 INTRODUCTION

Recent advances in reasoning with Large Language Models (LLMs) have yielded remarkable
progress in challenging domains such as Olympiad-level mathematics (Mathematical Association
of America|(2025))), graduate-level scientific question answering (Rein et al.|(2024)), and multi-step
program synthesis (Austin et al.| (2021); Chen et al.|(2021))). Motivated by these successes, a natural
extension is to adapt similar training paradigms to Multimodal Large Language Models (MLLMs),
equipping them with reasoning capabilities over both text and visual inputs. Tasks such as math-
ematical problem solving (Lu et al.| (2024)); Wang et al.| (2024b))) and visual puzzles (Dao & Vu
(2025)); |Ghosal et al.| (2024); |[Feng et al.| (2025)) illustrate the potential of this direction, giving rise
to methods that adapt Supervised FineTuning (SFT) (Sun et al.| (2025); |Chung et al.| (2025)) and
Reinforcement Learning (RL) (Deng et al|(2025); Meng et al.| (2025))) for multimodal reasoning,
including sequentially combining both stages for enhanced reasoning.

However, unlike LLMs where reasoning-oriented training consistently yields substantial gains, mul-
timodal reasoning training exhibits highly variable outcomes. This motivates analysis of how dif-
ferent training strategies influence specific skills. To this end, multimodal reasoning may be de-
composed into perception, reasoning, and their integration, as each corresponds to a distinct source
of error. Existing benchmarks, however, rarely adopt such a decomposition and instead primarily
report aggregate accuracy, which obscures these distinctions. Some vary input modalities to approx-
imate skill-specific testing, but without strict controls they fail to isolate capacities and offer limited
diagnostic value (see Appendix [B). Consequently, it remains unclear when multimodal reasoning
training benefits MLLMs and which training signals or architectural choices are responsible.
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Figure 1: MATHLENS decomposes multimodal reasoning errors into perception, reasoning, and
integration, revealing capacity-specific shifts after fine-tuning that are hidden by aggregate accu-
racy. Each training strategy affects capacities differently; e.g., text SFT yields a minor gain (") in
reasoning but harms (/) integration (model details in appendix @)

To close this gap, we present MATHLENS, a controlled benchmark of geometry problems that iso-
lates perception, reasoning, and their integration (fig.[T). Starting from the symbolic semantic state
of (Zhang et all 2023)), we build four aligned annotations (section [2.2): (i) diagrams rendered from
geometric constraints to test perception, (ii) a definitionally equivalent textual description to test
reasoning when perception is trivialized, (iii) multimodal questions requiring both modalities, and
(iv) fine-grained probes targeting recovery of visual details. To further test robustness against vi-
sual modifications, MATHLENS introduces semantic diagram modifications that alter visual form
while preserving task correctness. By grounding the benchmark in geometry, MATHLENS retains
authentic task complexity and enables rigorous comparison to prior benchmarks.

MATHLENS demonstrates that training strategies shape multimodal reasoning capacities in distinct
ways. 1) Perception is primarily boosted by reinforcement learning, with larger gains when strong
textual SFT has already established reasoning competence (section [3.2)), while textual SFT itself,
despite lacking visual input, indirectly strengthens perception through reflective reasoning (sec-
tion 3.3). 2) Reasoning improves in tandem with perception under RL, but does not exhibit dis-
tinct additional gains beyond those coupled improvements (section [3.4). 3) Integration remains the
least improved capacity: RL offers little benefit, and as perception and reasoning advance together,
residual errors increasingly concentrate in integration, leaving it as the dominant failure mode (sec-
tion [3.4). 4) Robustness diverges across strategies, with RL enhancing consistency under diagram
variation, whereas multimodal SFT reduces robustness through overfitting (section [3.3).

Our contributions are:

* Framework for multi-axial evaluation of multimodal reasoning: A new benchmark that dis-
entangles perception, reasoning, and integration, enabling analysis beyond aggregate accuracy.

* Findings from controlled analysis: Discoveries about how different training objectives and data
settings influence the capabilities of Multimodal Language Models.

* MATHLENS dataset: A public release of all problems, annotations, evaluation scripts, and per-
turbation generators, establishing a reproducible resource for the community.

2 MATHLENS

Most multimodal reasoning benchmarks report only aggregate accuracy, obscuring whether errors
stem from perception (extracting information from inputs), reasoning (operating on extracted infor-
mation), or their interaction. Our benchmark is designed to disentangle these subskills while pre-
serving realistic problem contexts. MATHLENS comprises 926 geometry problems, each presented
with eight visual modifications and an average of ~ 7.03 visual probes per problem.

2.1 DATASET FORMALIZATION

Definitions. For a problem instance k, we consider two latent generative variables: the context
semantics S, and the query operator (. The semantics decomposes atomically,

Sk = {Sk,17 M Sk,m}v
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Figure 2: Based on MATHLENS annotations, the joint Multimodal Reasoning Test (1) is decom-
posed into a Perception Test and a textual Reasoning Test. The Perception Test evaluates questions
answerable directly from the diagram, such as reading an annotated angle (e.g., ZDF'B in (2)).
The Reasoning Test (3) replaces the diagram with a complete textual description (e.g., “There are
triangle BDF ... ZDF B = 65°”), such that the question can be solved without visual access. Fi-
nally, Integration (4) highlights cases where multimodal reasoning fails even though perception and
reasoning, when tested independently, succeed.

where each sy, ; encodes a basic fact. For example, in a geometry problem k, sj, ; could represent

(LABC = 50°). Both visual diagram C’,im“’ and textual description C/”* context are generated
conditionally on Sy,

U™~ (O™ | S1), CR o~ p(CO | ).
The surface question (Q, is generated from (j, and a subset of atoms,
Qr ~p(Q ek, SP), S} C Sk,
with ¢ = (COMPUTE ZA) and S} = {s1}, the question can be “ZABC = 50°, what is ZA?”
The ground-truth answer is defined by applying the operator to the full semantic state,

Ar = f(pr; Sk)-

Further, we generate a perception probe set QY with semantic atoms s, ;. Let
k ,
perc __ percym perc __
Qr = {qk,i i=1> Api = [sk.i],

so each probe targets a single atom of Sy and its gold answer is the atom’s valuation. For example,
a1 = “Which angle has measure of 50? A. ABC B. ABD” with a}“ = A. These probes directly

test whether a model has recovered the components of S, from the observed context.

Isolating subskills with S;; access. Having access to the semantic state Sy allows us to design
tests that separate perception, reasoning, and their integration, as shown in Figure 2]

Perception. Probe questions QP°*“k with gold answers aP®*“k, i are derived from the atomic facts
listed in Si. These probes check if the model can recover the specific facts in Sy, that are needed to
solve the problem from the given input. Errors here indicate pure perceptual failures.

Reasoning. Given Sy, we render a textual description C}** that directly encodes the relevant details.
Evaluating on (C}**, Q) trivializes perception, so the task reduces to applying ¢y, correctly. Errors

here isolate reasoning competence, free from perceptual confounds.

Integration. We isolate integration effects by combining accuracy on (C}"®, Q) with auxiliary
perception and reasoning measures. Conditional on success in perception probes and text-only rea-
soning, any remaining errors on the full task are treated as integration errors; this defines integration
as the residual after controlling for perception and reasoning under standard coverage assumptions.

'In this example, an obtuse angle is drawn acute. Such non-canonical diagrams block visual estimation and
enforce geometric deduction, consistent with Olympiad practice (“not drawn to scale,” e.g., AMC).
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Figure 3: Sample data generation process in MATHLENS. From a semantic state representation,
we build controlled fext descriptions, perception probes, and questions with no overlap with visual
content. Also, new diagrams are rendered from the semantic state to avoid visual familiarity effectﬂ

Additional uses of Sj,. First, S) allows construction of questions that require context. We define
Q). by restricting its atoms to exclude those in the context latent S§:

Qu~p@QlenSt).  SEcs, Sinsi=o.
By design, @}, cannot be answered from the query alone and thus forces reliance on Cl.

Second, the symbolic representation Sy, allows us to apply semantic perturbations of the context. Let

7 € Tap denote a transformation from the set of admissible perturbations (e.g., relabeling points,

rotating a diagram, or permuting equivalent elements). Applying 7 yields a perturbed specification
i. = 7(Sk), while preserving the problem semantics so that

f(er, Sk) = f(or, Sk)-

Re-rendered contexts (C},'¢ ~ p(C'™8 | S}) and CiX* ~ p(C™* | S})) serve as systematic distrac-
tors. We measure robustness by prediction agreement across contexts from Sy and .S}, testing se-
mantic invariance beyond pixel-level augmentation. Pixel-level perturbations are insufficient, since
they often cause prediction shifts driven by abnormal appearance rather than semantic change.

2.2 DATA GENERATION PIPELINE

Thus, we build on latent semantics Sy, for a set of practical multimodal reasoning problems, match-
ing problem domain and complexity with popular benchmarks in the literature (Zhang et al.|(2024);
Lu et al.|(2024)). Each instance is first specified symbolically as Sy and ¢y, then rendered into its

observable forms: diagrams C}™, textual descriptions C**, and multiple types of questions.

Data source (fig.d{a). We build on FormalGeo-7K (Zhang et al.|(2023))), which provides symbolic
annotations for geometry problems. Each diagram cue or condition is encoded as a predicate (e.g.,
COLLINEAR(AB, BC'), EQUALLENGTH(AB, CD)), forming the semantic state Si. This yields
realistic problems with formal representations from which we build the required artifacts.

Questions (fig. E] b). We represent each question (), as clauses [52; ©k], with facts S,% and goal
operator ¢y,. For a strictly multimodal question, we drop clauses overlapping with the context .S}

Qi = fa([(SE\ S5); ¢xl),

where fq linearizes them into natural language. Thus @}, requires contextual information to solve.

Textual descriptions (fig. [Z_f]c). Each detail s;, ; € S}, is mapped by template function fq to clause,
Cp** = concat; fq(sk.i),

yielding a faithful textual rendering of formal representation Sj without stylistic variation (e.g.,
EQUALLENGTH(AB, CD)— “Segment AB is equal in length to segment C D”).
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Figure 4: Impact of multimodal reasoning training on MATHLENS performance. We evaluate
pretrained backbones alongside models finetuned for multimodal reasoning tasks, reporting accu-
racy (%). MATHLENS is sensitive to gains from multimodal reasoning—oriented finetuning.

Perception Probes (fig. E| d). Each atomic detail sj ; € S, is converted to a probe via templating
function f, with gold answer [sy ;]:

voo={hlrati aGC = [skal-
For example, COLLINEAR(AB, BC) yields “Which points are collinear? A. ABC B. ABD” with
answer A and negative B. Thus probes directly test recovery of Sj; from context.

Diagram rendering (fig. de). Each clause sj, ; € S) is converted into geometric constraints (e.g.,
PERPENDICULAR(AB, BC) = (24 — ) (e — %5) + (Yo — Yb) (e — Y») = 0). A numerical solver
computes coordinates that satisfy all constraints, which are then rendered into diagrams. We then
manually filter outputs to remove artifacts such as occlusions or overlaps.

Diagram modifications. To test robustness against distractions, we alter the semantic state Sy
to generate diagram variants. Modifications include adding auxiliary geometric elements, applying
flips or rotations, merging instances, and relabeling points, while preserving the ground-truth answer.
All variants are manually screened to discard visually invalid cases.

2.3 MATHLENS-GENERAL: A COMPLEMENTARY GENERAL-DOMAIN SET

The main dataset, MATHLENS, solely consists of geometry problems. While this symbolic struc-
ture enables precise control, it also risks overfitting analyses to a narrow domain. To mitigate this
limitation, we construct MATHLENS-GENERAL, a set of multimodal reasoning problems spanning
diverse domains. Unlike MATHLENS, it cannot maintain the same rigor afforded by formal semantic
states, but is instead curated from prior sources through a rigorous pipeline to ensure reliability and
diversity. Curation procedures and experimental results are provided in Appendices [C|and [E]

3 EXPERIMENTS

We focus on open-weight multimodal reasoning models in the 7-9B parameter range, along with the
backbone counterparts. This setup is motivated by two factors: transparency of training methods and
data, which is available only for open models, and the fact that most publicly released multimodal
reasoning models fall within this size range. We assemble seven model families, yielding 13 check-
points in total by including both SFT-only and RL-finetuned variants where available. We include
Qwen-2.5-VL (Bai et al.| 2025)) and GLM-4.1V-Base (Hong et al.| |2025) as backbone models. Di-
rect multimodal Reinforcement Learning (RL) models comprise VL-Rethinker (Wang et al., 2025)
and ShareVL-R1 (Yao et al.| 2025). Models trained with multimodal Supervised Finetuning (SFT)
followed by multimodal RL include Vision-R1 (Huang et al., 2025)) and R1-Onevision (Yang et al.,
2025]), while those using textual SFT followed by multimodal RL include Revisual-R1 (Chen et al.,
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Figure 5: (left) Correlation of MATHLENS with popular benchmarks. MATHLENS shows high
correlation with standard multimodal reasoning benchmarks. (right) Performance gains by input
modality. Bars show percentage point shifts from finetuning for text versus diagram inputs. Visual
gains exceed textual ones when models are primed with strong reasoning (textual SFT).

2025/f] and Open-Vision-Reasoner (OVR) 2025). Finally, GLM-4.1V-Thinking

et al.l [2025) falls outside these categories, since its training data is not publicly disclosed.

We additionally evaluate six larger models, yielding eight runs in total by including both Gemini-
2.5-Flash (Comanici et al.| 2025) and Claude 4 Sonnet 2025) in “thinking” and “non-
thinking” modes: Qwen-2.5-VL-72B, VL-Rethinker-72B, Gemini-2.5-Flash, Claude 4 Sonnet, and
GPT-03/40 2025). For each model, we follow the recommended decoding configurations
to generate both reasoning and final answers. Most models employ greedy decoding and yield
deterministic outputs. Full experimental details and results are in Appendix [E-4]

Weak textual reasoning in existing multimodal SFT models. We take it as baseline that current
multimodal SFT models show limited reasoning following (2025): their data are easier
than text-only sets, leading to weaker performance on reasoning benchmarks. Building stronger data
is hindered by the lack of open multimodal reasoning traces (see Appendix [EI]for discussion).

3.1 VALIDATING MATHLENS AS A MULTIMODAL REASONING BENCHMARK

Before using MATHLENS to study finetuning effects, we first validate it as a multimodal reasoning
benchmark, showing that it captures the same skills as established benchmarks.

Sensitivity to finetuning. We assess whether MATHLENS reflects gains from multimodal reason-
ing finetuning by comparing pretrained backbones with their finetuned variants on its downstream
task of solving geometry problems from diagrams. As shown in Figure ] finetuned models consis-
tently surpass backbones, demonstrating that MATHLENS is sensitive to these adaptations.

Correlation with established benchmarks. To test whether MATHLENS captures patterns con-

sistent with prior benchmarks, we compare it to MathVista (2024)), MathVerse
(2024)), and MathVision (Wang et al (2024b)) by correlating model accuracies across eight

models (Figure [3] left; full results in Appendix). MATHLENS shows strong Spearman’s p correla-
tion with MathVista (p = 0.83) and MathVerse (p = 0.86), confirming alignment with established
benchmarks, while correlation with MathVision is weaker but still positive (p = 0.67). Importantly,
our goal is not a new downstream benchmark but a controlled, decomposition-focused resource;
high correlations therefore underscore its consistency.

3.2 HOW MUCH OF THE GAIN IS EXPLAINED BY IMPROVEMENT IN TEXTUAL REASONING?

To isolate the role of textual reasoning, we compare performance on textual descriptions C}** and
visual diagrams C;"®, which encode identical information conditioned on the question Q. This

Revisual-R1 adds additional textual RL, yet we group it as textual SFT — multimodal RL for consistency.
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Figure 6: (left) Perception performance shifts from finetuning in percentage points. Except for
multimodal SFT, all methods contribute to increased perception capacity. (right) Sample distribu-
tion over reflection count. Reflection is more frequent in false—true cases than in true—true cases,
showing that perception gains from textual SFT arise partially from reflective reasoning.

parallel annotation lets us track how multimodal training affects each modality. We report accuracy
differences (percentage points) before and after multimodal finetuning.

Figure [3] (right) shows that textual SFT mainly improves textual reasoning, while multimodal RL
applied afterward yields larger multimodal gains by shifting its effect to perception and integration.
Direct multimodal RL without textual SFT gives only modest improvements in both modalities, and
poor-quality multimodal SFT degrades multimodal performance more than textual reasoning, with
RL only partially recovering the gap.

Finding 1: Multimodal RL impact varies with textual reasoning strength. With strong tex-
tual SFT it mainly boosts perception; without it, it modestly improves both modalities (fig. [5).

3.3 HOW MUCH OF THE GAIN IS EXPLAINED BY IMPROVEMENT IN PERCEPTION?

Next, we evaluate how multimodal reasoning training affects low-level perception. For each problem
Q. we use the perception probes Q)" = ¢p 7", . . ., q,ﬂ’z.rc. Figure@(left) shows that all RL models
contribute to better perception required for geometry problem solving. Hence, we conclude that
perception is elicited even by training with correctness reward signals on the downstream problems.

How textual SFT improves perception. Textual SFT does not use visual inputs, yet it enhances
perceptual performance. These gains suggest influences beyond direct perceptual learning. We
hypothesize that one contributing factor is that enhanced reasoning alters how the model interprets
ambiguous visual evidence. In particular, stronger reasoning promotes cognitive strategies such as
reflection and self-correction, which allow the model to revise initial perceptual judgments.

We examined the reasoning traces of two models with textual SFT in Figure 3 (right). Correct
predictions were divided into those accurate both before and after training (true—true) and those
that became accurate only after training (false—true). We found that reflective reasoning was more
frequent in the latter, where accuracy improved post-training. These results indicate that textual SFT
promotes reflective reasoning, which enables models to revisit and correct initial perceptual errors.

[ Finding 2: Textual SFT also improves perception by fostering reflective reasoning (fig. [6). ]

3.4 ERROR TYPE ANALYSIS

MATHLENS’s annotation designs enable systemic categorization of model outputs into the follow-
ing error categories: (1) Perception & Reasoning, failures on both perception probes and textual
reasoning; (2) Perception, failure on perception probes but correct reasoning from text; (3) Reason-
ing, correct perception probes but failed text-based reasoning; (4) Integration, correct perception
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Figure 8: Robustness to semantic-level visual modifications. Box plots show accuracy on modi-
fied diagrams. Points report accuracy on the unmodified base diagrams and the overall consistency
score. Multimodal RL improves consistency, whereas multimodal SFT reduces it.

and text in isolation but failure on the combined multimodal task. Correct categories: (5) Trivial,
solvable from text alone; and (6) Rest, all other correct cases.

Figure [T] (see full results in Figure [T3] of Appendix) shows that RL primarily reduces perception
and reasoning errors on the same problems, indicating correlated gains. Yet many of the reductions
manifest as Integration errors, suggesting that finetuning often shifts them into coordination failures.

Finding 3: RL improves perception and reasoning in a correlated manner, and unveils
integration as the remaining source of error once the other capacities improve (fig. [I).

3.5 DOES MULTI-MODAL FINETUNING EFFECT MODEL’S ROBUSTNESS TO VISUAL INPUTS?

We extend the visual familiarity analysis
from Section by testing robustness under

Existing Diagrams (Potentially Leaked) Rendered Diagrams (OOD)
Direct Multimodal RL

controlled diagram variations. Instead of pixel-
level augmentations (e.g., blurring), we apply
semantic modifications to the geometric specifi-
cation, isolating structural variation without in-
troducing low-level artifacts (see Appendix [C).

Downstream accuracy can mask familiarity
effects. Figure[/|shows that while most train-
ing methods are stable under familiar diagrams,
multimodal SFT suffers a sharp drop on modi-
fied diagrams. This indicates that similar down-
stream accuracy on public benchmarks can hide
reliance on visual familiarity.
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Figure 7: Finetuning shifts by diagram type.
Bars show percentage point changes for existing
versus out-of-distribution rendered diagrams.

RL improves visual consistency. To quantify robustness, we use Consistency Rate (CR) (Zhao
et al.| (2024)), the expected agreement of predictions across perturbations of the same diagram:

CR= EQ%NQI |: Eék)i, C'kJNC'k]‘ [M(Q;ga ék,i) = M(Q;ga C_(kd)jl :| 5

i#£j

(D

where C}, is the set of diagram variants for question Q.

Figure [8| shows that accuracy on base diagrams is generally higher than on modified ones, indicat-
ing vulnerability to semantic perturbations. Consistency increases after multimodal RL, suggesting
robustness to variation. By contrast, multimodal SFT lowers consistency.

[ Finding 4: Multimodal RL improves visual consistency under structural variations (fig. [§). ]
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Figure 9: Perception probe results by question type. Improvements differ across skills: angle-
related and cocircularity tasks improve with multimodal RL, line-length tasks show little change,
and polygon detection improves only with textual SFT. A likely factor is whether notations are
colocated with the geometric element they describe or spatially separated.

3.6 WHICH PERCEPTION SKILLS BENEFIT FROM MULTIMODAL REASONING TRAINING?

We decompose perception probe performance (Section [3.3) by relation type (full details in Ap-
pendix [E.4). This analysis reveals uneven gains, as shown in Figure[9} Relation types such as cocir-
cular, parallel, and collinear improve consistently, as they rely on simple primitives. same_angle,
val_angle, triangle, and quadrilateral improve only with textual SFT plus multimodal RL, since they
require multi-constraint reasoning or symbol-geometry links. By contrast, same_length, val_length,
and perpendicular remain difficult, as their cues are spatially offset or visually ambiguous.

Finding 5: Perception gains are uneven. Direct geometric cues improve reliably, while tasks
relying on symbolic marks or distant annotations remain difficult (fig. [9).

4 CONCLUSION

We introduced MATHLENS, a controlled benchmark that disentangles perception, reasoning, inte-
gration, and robustness in multimodal reasoning. Our findings show that reinforcement learning
primarily boosts perception, with stronger gains when supported by textual supervision, while tex-
tual SFT indirectly strengthens perception through reflective reasoning. Reasoning improves in
tandem with perception under RL but does not exhibit distinct additional gains, leaving integration
as the least improved capacity and the dominant failure mode once other skills advance. Robustness
further diverges across strategies, as RL enhances consistency under diagram variation, whereas
multimodal SFT reduces it through overfitting.

Looking ahead, our results motivate future architectures and training strategies that explicitly target
integration, for example by introducing auxiliary pretext objectives for RL that enforce cross-modal
grounding, or by structuring training data to better capture causal correspondences between percep-
tual details and reasoning trajectories. In parallel, scaling atomic perception probes into auxiliary
supervision offers a promising direction for directly improving perceptual capacity.
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ETHICS STATEMENT

MATHLENS consists solely of mathematical problems and does not involve human subjects or sensi-
tive data. MATHLENS-GENERAL is constructed as an extension of existing benchmarks, and ethical
considerations are therefore inherited from those sources. All human annotations were performed
directly by the authors. As the benchmark is derived from publicly available resources, it does
not raise additional privacy or copyright concerns beyond those already addressed in the original
sources. As the content is limited to mathematical problems, concerns of bias, fairness, or harmful
applications are not applicable.

REPRODUCIBILITY STATEMENT

All experiments are conducted using existing models without additional training. The complete
list of models is provided in Table [T} with hyperparameter configurations in Appendix [D] Results
are reported under deterministic decoding, aside from a small subset of models requiring random
sampling to mitigate repetition. Minor nondeterminism from computation kernels, common across
current LLM decoding environments (both local and API-based), is generally not treated as a con-
trolled factor (He & Labl2025)). As API services may evolve over time with undocumented changes,
our main experiments focus on open-weight models, with API model results reported as auxiliary
reference. The full dataset and model outputs will be released for reproducibility.
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OVERVIEW OF THE APPENDIX

This Appendix is organized as follows:

* Appendix |A|contains related work;

* Appendix |B|contains a comparison with other benchmarks and discusses the benefit of automatic
error analysis;

* Appendix [C] contains details of the data generation process for the main MATHLENS subset as
well as the MATHLENS-GENERAL subset;

* Appendix D] contains implementation details, including hyperparameters and computational re-
sources;

* Appendix |[E| contains the complete experimental results corresponding to the main paper figures,
as well as results on MATHLENS-GENERAL;

* Appendix [Fcontains qualitative examples.

A RELATED WORK

Evaluation of multimodal reasoning capacity. Multimodal reasoning is a compositional process
that requires the integration of perception and abstract reasoning (Li et al.| (2025)). Inspired by tex-
tual reasoning benchmarks, recent multimodal reasoning datasets focus on verifiable domains such
as mathematics (Lu et al.|(2024)); [Wang et al.| (2024b)); Zhang et al.|(2024)), scientific diagrams (Yue
et al.| (2024a); [Hao et al.| (2025)), and charts (Wang et al.| (2024c))). However, most of these bench-
marks report only a single downstream accuracy per model, without systematic means to identify the
source of errors. Some further provide manually annotated error-type analyses (Zhang et al.| (2024);
Hao et al.| (2025))), but these rely on non-standard category definitions across benchmarks, depend
on post-hoc semantic inspection of reasoning traces rather than causal diagnosis, and suffer from
annotator variance. In addition, the necessity of multimodal context is often left unverified (Yue
et al.| (2024b))). Finally, many benchmarks extract problems from publicly available sources such
as textbooks, raising risks of data leakage and familiarity bias. To overcome these limitations, our
study builds on FormalGeo-7K (Zhang et al.| (2023))), which provides formal abstractions for both
context and goal in practical mathematical geometry problems, enabling rigorous and fine-grained
analysis.

Training Methods for Multimodal Reasoning. Approaches to adapting MLLMs for multimodal
reasoning typically fall into three types: multimodal supervised finetuning, where models are trained
on paired image—text inputs with ground-truth reasoning traces and answers; multimodal reinforce-
ment learning, where models are optimized with rewards from verifiable outcomes or reasoning-
trace feedback; and textual supervised finetuning, where models are tuned on large-scale textual
reasoning corpora without multimodal context. These strategies are often applied sequentially or
in combination, such as multimodal SFT followed by multimodal RL (e.g., [Huang et al| (2025)
and|Yang et al.[(2025))) to improve robustness, or textual SFT followed by MM-RL (e.g.,|Chen et al.
(2025) and |Wei et al| (2025)) to transfer reasoning priors into multimodal domains. In addition,
some models adopt direct RL without prior SFT (e.g.,|Deng et al.|(2025)),[Meng et al.|(2025),Wang
et al.[ (2025), and |Yao et al.| (2025)), demonstrating that reinforcement learning alone can yield
competitive reasoning performance. Closed-weight systems (e.g., OpenAll (2025), |Comanici et al.
(2025)), and |Anthropic| (2025))) also report strong multimodal reasoning ability, although their train-
ing data and pipelines remain undisclosed.

B COMPARISON WITH EXISTING BENCHMARKS

Comparison with MathVerse. Multimodal mathematical problems are a popular testbed for eval-
uating multimodal reasoning. Among existing benchmarks (Lu et al.| (2024); Wang et al.| (2024b));
Yue et al.|(20244)), the closest to ours is MathVerse (Zhang et al.|(2024))), which, like our benchmark,
primarily focuses on mathematical geometry problems and partly draws from Geometry3K (Lu et al.
(2021)), a subset of FormalGeo-7K (Zhang et al.| (2023)). MathVerse also provides multiple input
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MathVerse_6_TextOnly

As shown in the figure, AB // CD, and EF
intersects AB and CD at points E, F, angle 1
= 50.0, then the degree of angle 2 is ()
Choices: A:50° B:120° C:130° D:150°

MathVerse_83_TextOnly

As shown in the figure, it is known that in
circle O, the central angle angle AOB =
100.0, then the angle of circumference
angle ACB is equal to ().

Choices: A:130° B:120° C:110° D:100°

MathVerse_98_TextOnly

As shown in the figure, given the angle of
circumference angle A = 50.0, then the
size of angle OBC is ()

Choices: A:50° B:40° C:130° D:80°

Figure 10: Example of MathVerse text descriptions. The textual description fails to fully encode
geometric relations, requiring external information to be inferred from the diagram. This incom-
pleteness makes it unsuitable for evaluating pure reasoning capacity.

EMMA MathVision MathVerse
Error Type
@ Perceptual Error :ﬁ:
Visual Reasoning Error 24%
@ Text Reasoning Error Vision Recognition
Lack of Knowledge
ERERD Reasoning Error  Ans. o
P . 42.2% X Ans.
30.19% ol Partial x Rea.
o 39.7%
Knowledge
Error
15.1% 6.9% 13%
2.6%  Ans.
Partial x Re:
Calculation Error “1% b I
Question Misunderstood _Reject Rea, 'ﬁm'
9.43 Error to Answer V Rea.
0.0% 74%

Figure 11: Inconsistencies in manual error analyses across benchmarks. Pie charts show varia-
tion in error categories across multimodal reasoning datasets, underscoring the lack of standardized
criteria. Analyses are typically restricted to a single model. Figures are taken from the respective
papers (Hao et al., 2025; [Wang et al., 2024b; Zhang et al., [ 2024)).

modalities ranging from text-only to vision-only, enabling skill-specific evaluation of multimodal
reasoning models, which is conceptually aligned with our design.

However, MathVerse does not meet the criteria necessary for rigorous capacity isolation: 1) it re-
lies on curated diagrams, making it vulnerable to data leakage or familiarity effects; 2) its text
descriptions are incomplete for evaluating pure reasoning, often requiring external information to
be inferred from diagrams (see Figure[T0); 3) overlap between question and diagram content is not
explicitly controlled. Due to these limitations, analyses in this paper cannot be reproduced with the
same rigor using prior benchmarks.

Benefits of automatic error analysis. Error type analysis offers actionable insights into model
weaknesses and guides directions for improvement. However, in multimodal reasoning research,
such analyses lack standardization and are almost always performed manually. Consequently, as
shown in Figure [T1] categories and criteria vary across datasets, making it difficult to generalize
findings. Moreover, manual analysis is costly and typically applied to a single model, quickly be-
coming outdated along with its conclusions. By contrast, MATHLENS’s automatic analysis pipeline
enables consistent, scalable, and up-to-date error categorization across models and datasets.

C DATA GENERATION DETAILS

C.1 MATHLENS

Diagram rendering. Each clause sj ; € S, is mapped to a corresponding set of algebraic con-
straints. For instance, PERPENDICULAR(AB, BC) is encoded as ((xq — 2p)(zec — 2p) + (Yo —
) (ye — y») = 0). Taken together, the constraints form a nonlinear system defining admissible
coordinates for all points. We solve this system using the sequential least-squares programming
routine (SLSQP) in scipy.optimize.minimize (Virtanen et al. (2020)), which searches for
coordinates that minimize the residual of all constraints subject to feasibility bounds. To improve ro-
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bustness, initial coordinates are randomly sampled, and optimization is repeated until convergence.
Up to ten attempts with different random seeds are allowed, after which the sample is discarded if no
feasible solution is found. Valid solutions are rendered with amatplot1ib-based backend (Hunter:
(2007)) that draws points, line segments, arcs, and annotations according to the computed geometry.
Since automatic optimization may still yield degenerate layouts (e.g., overlapping vertices, occluded
labels, or extreme aspect ratios), we apply a post-processing step in which such outputs are manually
filtered to preserve clarity and readability.

Diagram modification. For each geometry problem, we generate eight diagram variants: (1) the
original diagram from the source dataset, (2) a rendered diagram generated directly from the sym-
bolic representation, and six symbolic modifications: (3) add_shapes, which inserts 1-3 random
shapes (triangles or quadrilaterals), (4) add_lines, which inserts 1-3 random lines between existing
points, (5) flip, which mirrors the canvas while preserving label orientation, (6) rotate, which ro-
tates the canvas while keeping labels upright, (7) merge, which concatenates the current diagram
with another randomly chosen one and revises labels accordingly, (8) rename, which replaces the
label set (e.g., A,B,C — X,Y,Z). All auto-rendered figures are manually filtered after generation. If
any version is invalid or visually unsuitable (e.g., severe occlusions, degenerate angles), the entire
problem is discarded.

C.2 MATHLENS-GENERAL

MATHLENS-GENERAL is a curated, re-annotated benchmark that extends the scope of MATHLENS
to a broader range of images and problem domains. It includes 107 problems, each paired with an
average of ~ 7.96 visual probe questions. Representative samples are shown in Figure |12 and Fig-
ure T3] with the data generation procedure detailed below.

Sample collection. Problems are sourced from six established multimodal reasoning datasets:
BLINK (Fu et al.|(2024)), V* (Wu & Xie|(2024)), SpatialEval-Real (Wang et al.|(2024a)), MMMU-
Pro (Yue et al.| (2024b))), EMMA (Hao et al.| (2025))), and MathVista (Lu et al.| (2024)), with math-
ematical geometry items excluded using metadata. We retain only multiple-choice problems to
maintain consistency. Problems requiring more than two images are discarded, and dual-image in-
puts are concatenated into single images to ensure compatibility with models that do not support
multi-image inputs.

Data filtering. Problems that appear multimodal may in fact be solvable from text-only correla-
tions (Yue et al.| (2024b))), while others that look complex may reduce to simple pattern matching.
To guard against such shortcuts, we use model-based validation to test multimodality and reason-
ing requirements. Each problem is evaluated with Gemini-2.5-Flash (Comanici et al.|(2025)) under
three settings: (1) full input, (2) text-only input without the image, and (3) full input with reasoning
disabled. We generate eight responses per setting at temperature 0.6 to capture variability.

A problem passes the multimodality check if text-only accuracy does not exceed chance (1/k for
k-way choice, e.g., 25% for 4 options). It satisfies the reasoning check if accuracy with reasoning
disabled falls below chance. We enforce solvability by discarding problems for which the model
fails to answer correctly in all eight full-input attempts. Image-level deduplication is then applied to
remove visually similar items.

Finally, human annotators enforce validity by independently solving each filtered problem, retaining
only those with clearly determinable correct answers. This process reduces the initial pool of ~2,000
problems to 200 high-quality samples that meet all four criteria.

Manual annotation. We generate seed annotations with Gemini-2.5-Flash, then manually revise
them to remove hallucinations and add missing details needed for solvability. Textual descriptions
are structured in a scene-graph format and decomposed into atomic clauses, from which perception
probes are automatically derived.

D IMPLEMENTATION DETAILS AND RESOURCES

Models. Details of the model configurations and corresponding sources are provided in Table
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Model Type Source
7-9B Open-Weight
VL-Rethinker backbone Qwen/Qwen2.5-VL-7B-Instruct

mm-rl TIGER-Lab/VL-Rethinker-7B
ShareVL-R1 backbone Qwen/Qwen2.5-VL-7B-Instruct
mm-rl HuanjinYao/R1-ShareVL-7B

R1-OneVision backbone Qwen/Qwen2.5-VL-7B-Instruct
mm-sft Fancy-MLLM/R1-Onevision-7B

mm-rl Fancy-MLLM/R1-Onevision-7B-RL

Vision-R1 backbone Qwen/Qwen2.5-VL-7B-Instruct
mm-sft Osilly/Vision-R1-CI-7B
mm-rl Osilly/Vision-R1-7B

Revisual-R1 backbone Qwen/Qwen2.5-VL-7B-Instruct
text-sft csfufu/Revisual-R1-Coldstart
mm-rl csfufu/Revisual-Rl1-final

OVR backbone Qwen/Qwen2.5-VL-7B-Instruct
text-sft Kangheng/OVR-7B-ColdStart
mm-rl Kangheng/OVR-7B-RL

GLM-4.1V backbone zai-org/GLM-4.1V-9B-Base
mm-rl zali-org/GLM-4.1V-9B-Thinking

72B Open-Weight
VL-Rethinker backbone Qwen/Qwen2.5-VL-72B-Instruct

mm-rl TIGER-Lab/VL-Rethinker-72B
Closed-Weight
OpenAl backbone GPT-40 (gpt-40.2024-11-20)
thinking ~ GPT-O3 (03.2025-04-16)
Gemini backbone gemini-2.5-flash (thinking=disabled)
thinking  gemini-2.5-flash (thinking=enabled)
Claude backbone claude-4-sonnet (thinking=disabled)

thinking claude-4-sonnet (thinking=enabled)

Table 1: Model configurations studied in this work.

Model configuration for Figure[I, All models are fine-tuned from Qwen-2.5-VL-7B as the back-
bone MLLM. VL-Rethinker represents the direct RL setting, Vision-R1 serves as the multimodal
SFT model, and Revisual-R1 corresponds to the textual SFT model. Vision-R1 and Revisual-R1
further include their respective RL-extended variants.

Hyperparameters & computation. We use Eureka ML Insights Framework (Balachandran et al.
(2024)) for reproducible evaluation. We run 7-9B parameter models on four NVIDIA A100 80GB
GPUs, and 72B models on eight. Generation is accelerated and parallelized with the vLLM (Kwon
et al.[(2023)) library. Most experiments use greedy decoding (temperature 0.0) for deterministic out-
puts. For models that otherwise suffer from text degeneration through severe repetition (e.g., Huang
et al.| (2025))), we apply stochastic decoding with temperature 0.6 and top-p 0.65. The default max-
imum generation length is 32,768 tokens to accommodate long reasoning chains. For OVR (Wei
et al.[(2025)), we extend this limit to 48,000 tokens due to frequent truncations at lower cutoffs.

Visual resources. Visual icons used in Figure [3|are adapted from|flaticon. com.

Large Language Model Usage. LLMs (ChatGPT, GPT-4/5 class and Claude 4 Sonnet) were em-
ployed to refine phrasing, improve clarity, and standardize style in sections of the manuscript, but
all scientific ideas, experiments, and analyses were conceived, executed, and validated by the au-
thors. LLMs were also used in a limited capacity to assist with literature discovery (e.g., surfacing
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related work for manual screening). All substantive content decisions, experiment design, and result
interpretation remain entirely author-driven.

E EXPERIMENT

E.1 PRELIMINARIES

Weak textual reasoning in multimodal SFT models. Prior work (Sun et al.| (2025)) highlights
that multimodal SFT datasets are considerably easier than textual SFT datasets, which contributes
to weaker textual reasoning capacity in trained models. For example, the Vision-R1 dataset (Huang
et al.[(2025)) averages 821.5 tokens per reasoning trace with a 96.0% pass rate, whereas the text-only
DeepMath dataset (He et al. (2025)) averages 8,207.8 tokens with a 75.0% pass rate. This differ-
ence suggests that multimodal SFT data require substantially less reasoning effort. Consistent with
this, multimodal SFT models trained on such data underperform on standard reasoning benchmarks
compared to textual SFT models. Finally, while textual SFT data can be constructed by distilling
reasoning traces from large language models (Guo et al.|(2025)), no comparably strong multimodal
reasoning models with open reasoning traces currently exist, making effective multimodal SFT data
generation particularly challenging.

E.2 FURTHER INSIGHTS

Insight on visual familiarity effects. In Figure 3 (left) of the main paper, we additionally evalu-
ate MATHLENS-E, a variant that uses the same geometry problems but replaces rendered diagrams
with existing diagrams from the original sources. Interestingly, MATHLENS-E correlates strongly
with MathVision (p = 0.81), while showing weaker correlations with MathVista and MathVerse.
This difference suggests that models may leverage visual familiarity with diagram styles from text-
books or public tests when tackling MathVision, an advantage that disappears with freshly-rendered
diagrams. This underscores that high benchmark accuracy does not necessarily indicate strong mul-
timodal reasoning, as performance may be inflated by visual familiarity effects from training data.

E.3 MATHLENS-GENERAL

Figure [I4] presents the error-type distribution for MATHLENS-GENERAL. Consistent with the
main experiment (Section [3.4), most effects of multimodal reasoning finetuning concentrate on
perception-related cases (Perception & Reasoning or Perception). However, these gains are less
stable, reflecting that MATHLENS-GENERAL spans broader domains than MATHLENS and often
demands out-of-distribution generalization from the multimodal training sets. An exception is tex-
tual SFT models, which show substantial reductions in pure Reasoning errors. This indicates that,
unlike in math geometry tasks, the diverse reasoning skills required for MATHLENS-GENERAL are
not well represented in the backbone (Qwen-2.5-VL). Finally, the higher fraction of Trivial correct
cases arises from MATHLENS-GENERAL ’s multiple-choice format, in contrast to the open-ended
geometry subset MATHLENS.

E.4 FULL RESULTS

Correlation plot details. Table[2]reports the full benchmark scores for all models used in the cor-
relation analysis of Figure E] (left). Results for MathVista, MathVerse, and MathVision are drawn
from prior work (Wang et al.| (2025)). Consequently, the set of models differs from our main eval-
vation and includes additional variants such as MM-Eureka (Meng et al.| (2025)) and ThinkLite-
VL (Deng et al.|(2025)). These models were excluded from the main analysis for two reasons: (i) to
maintain a balanced number of models across categories, particularly those trained with direct RL,
and (ii) to focus on the stronger-performing models on other benchmarks.

Error type analysis. Figure [T5] show full error type analysis results for all models tested in this
work.

Downstream performance under diagram modifications. Table |3| reports the complete down-
stream evaluation results on MATHLENS, including all diagram modifications. These values under-
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Model | MathVista MathVerse MathVision | MathLens-E  MathLens
Qwen2.5-VL-7B 68.2 46.3 25.1 34.7 33.2
R1-Onevision-7B 64.1 46.4 29.9 354 29.8
MM-Eureka-Qwen-7B 73.0 50.3 26.9 34.0 31.3
ThinkLite-VL-7B 74.3 52.2 29.9 34.3 329
R1-ShareVL-7B 75.4 52.8 29.5 36.7 354
VL-Rethinker-7B 74.9 54.2 32.3 37.6 35.7
Qwen2.5-VL-72B 74.8 57.2 38.1 41.6 41.0
VL-Rethinker-72B 80.4 63.5 44.9 47.6 45.0

Table 2: Full results of all models used to produce the correlation plot in Figure |5|(left).

Model Variant Text | Raw | Base Add Add Flip Merge Rename Rotate | Consistency
lines shapes

: Backbone | 38.9 | 347 | 332 | 261 281 306 269 294 314 310
VL-Rethinker- 7By RL | 411 | 376 ‘ 35.7 ‘ 314 294 347 306 335 355 ‘ 373
Backbone | 38.9 | 347 | 332 | 261 281 306 269 294 314 310
ShareVL-RI-TB \iMeRL ‘ 2.1 ‘ 36.7 ‘ 35.4 ‘ 31 327 339 337 351 353 ‘ 413
Backbone | 38.9 | 347 | 332 | 261 281 306 269 294 314 310
R1-OneVision-7B  MM-SFT | 367 | 354 | 208 | 219 261 297 253 276 292 240
MM-RL | 359|330 | 320 | 251 285 340 233 307 323 285
Backbone | 38.9 | 347 | 332 | 261 281 306 269 294 314 310
Vision-R1-7B MM-SFT | 352 | 343 | 268 | 191 217 278 206 231 280 211
MM-RL | 486 | 445 | 360 | 330 315 366 306 342 378 39.4
Backbone | 38.9 | 347 | 332 | 261 281 306 269 294 314 310
Revisua-R1-7B  Text-SFT | 623 | 438 | 392 | 329 351 427 328 374 3938 41.0
MM-RL | 638 | 517 | 458 | 353 380 444 300 422 447 46.9
Backbone | 38.9 | 347 | 332 | 261 281 306 269 294 314 310
OVR-7B Text-SFT | 662 | 467 | 387 | 338 337 379 325 381 407 429
MM-RL | 704 | 498 | 437 | 384 382 449 362 397 449 49.9
Backbone | 40.0 | 446 | 447 | 377 378 447 367 404 437 39.7
GIM-4IVIB - MMeRL ‘ 69.2 ‘ 65.8 ‘ 59.9 ‘ 523 502 608 500 570  6l4 ‘ 62.8
: Backbone | 52.9 | 416 | 41.0 | 362 355 422 375 384 416 40.0
VL-Rethinker-72B - v RL | 56.2 ‘ 47.6 ‘ 450 ‘ 382 300 455 384 446 448 ‘ 439
Backbone | 49.1 [ 407 | 39.1 | 352 329 407 336 390 408 38.7
OpenAL40/03  myinking | 74.5 ‘ 66.8 ‘ 61.4 ‘ 5.9 499 617 558 578 629 ‘ 59.0
. o Backbone | 79.9 - 69.2 - - - - - -
Gemini-2.5-Flash  pyiniing | 823 ‘ - ‘ 72.7 ‘ - - - - - ‘ -
Clanded-Somnet _ Backbone [ 751|607 | 612 533 604 481 570 606 5.7
Thinking | 84.1 | 65.6 | 64.4 550 656 515 610 670 57.0

Table 3: Downstream accuracy across diagram modifications with output consistency under these
conditions. Text indicates performance from textual descriptions instead of diagrams, Raw de-
notes original human-generated diagrams, Base the newly rendered diagrams, and the other cases
semantic-space modifications followed by rendering.

lie Figure [} Figure[5] (right), Figure[8] and Figure[7] Note that the error-type analysis in Figure
relies on per-sample categorization and cannot be obtained directly from the aggregate scores pre-
sented here.

Perception probe results by question type. Table ] reports the full benchmark scores for each
perception probe question type, providing the numerical values underlying Figure[9]

F QUALITATIVE EXAMPLES

Sample outputs on downstream geometry problems. We compare the fine-tuned multimodal
reasoners with their corresponding backbone MLLMs. Figure|l16|and Figure|l/|present cases where
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Tri- Quad- Perpen- Co-

Model Variant A Parallel . Collinear . Same len. Val. len. Same / Val. £
-angle -rilateral -dicular -circular

; Backbone | 69.1 523 49.0 782 59.5 65.6 574 86.6 500  68.1
VL-Rethinker-7B - v gy | 67.6 55.2 60.6 76.6 674 81.7 50.0 86.9 500  75.8
] Backbone | 69.1 523 49.0 782 59.5 65.6 57.4 86.6 500  68.1
ShareVLRITB  \pvipL | 714 577 625 782 660 889 574 864 692 724
Backbone | 69.1 523 49.0 782 59.5 65.6 574 86.6 500  68.1

R1-OneVision-7B  MM-SFT | 67.6  48.1 56.7 67.4 532 60.0 485 76.1 462 635
MM-RL | 714 544 59.6 722 61.1 59.4 55.9 79.1 615 669

Backbone | 69.1 523 49.0 782 59.5 65.6 574 86.6 500  68.1

Vision-R1-7B MM-SFT | 658  49.4 433 735 64.8 60.0 456 78.6 615 738
MM-RL | 709  56.1 49.0 76.1 65.7 77.8 574 88.9 615 769

Backbone | 69.1 523 49.0 782 59.5 65.6 574 86.6 500  68.1

Revisual-R1-7B Text-SFT | 79.1 64.0 65.4 715 59.8 67.8 574 81.7 692 823
MM-RL | 843 720 65.4 82.8 68.0 772 60.3 88.1 846 878

Backbone | 69.1 523 49.0 782 59.5 65.6 574 86.6 500  68.1

OVR-7B Text-SFT | 83.5 615 79.8 82.2 61.0 69.4 574 832 692 860
MM-RL | 822 678 76.9 85.9 66.9 80.6 50.0 83.0 80.8  89.0

Backbone | 743 523 76.9 7718 68.2 74.4 574 90.1 538 745

GLM=4.1v-9B MM-RL | 822 665 885 8838 662 917 82.4 953 923 880
) Backbone | 66.7  49.8 76.9 80.4 66.8 94.4 67.6 945 692 874
VL-Rethinker-72B ViR | 833 577 798 843 652 967 647 937 808 867
Backbone | 819  60.3 78.8 80.3 69.5 95.0 67.6 934 80.8 875

OpenAl40703  yiniing | 94.0 95.4 95.2 92.8 94.1 93.9 95.6 98.9 100.0 967
Gemini2.S.Flasy ~ Backbone [ 927 900 97.1 92.8 89.5 96.1 95.6 975 885 921
e Thinking | 932  92.1 97.1 95.5 91.8 96.7 98.5 98.4 923 939
ClaudedSomnet  Backbone | 886 75.3 79.8 85.2 82.3 95.0 779 98.1 846 925
u Thinking | 93.5  93.7 85.6 88.8 83.1 89.4 83.8 98.5 885 937

Table 4: Perception probe accuracy by question types.

fine-tuning corrected an initially wrong answer, while Figure[I8]and Figure[T9]illustrate cases where
the model produced incorrect answers both before and after fine-tuning.

Sample outputs on perception probes. Figure 20] Figure 21} and Figure 22] show cases where
textual SFT corrected initially wrong answers. Consistent with the quantitative results in Section[3.3]
the stronger cognitive patterns induced by textual SFT also promote improved perception.
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p
Question
Please directly answer the question and provide the corect option letter, e.g., A, B, C, D.
Question:
Given the following two images, a reference point is annotated on the first image, labeled with
REF. You are given multiple red-circled points on the second image, choices of "A, B, C, D" are
drawn beside each circle. Select between the choices on the second image and find the
corresponding point for the reference point. Which point is corresponding to the reference
point?
Choices: A. Point A B. Point B C. Point C D. Point D
Text Description Perception-Centric QA
{
What specific part of the egret is indicated by the
"parts": [ point REF?
{ Choices: A. a leg joint B. a wing joint
"id": "REF",
“class": "body", Is the point REF located on the left leg of the egret?
"part_of": "bird_left", Choices: A. right leg B. left leg
"location": "joint of left leg"
b Is point A located on the egret's head?
{,,. e wAn Choices: A. neck B. head
id": "A",
“class": "head",
“part_of": "bird_right", Is point B located on the egret's leg?
"location": "beak" Choices: A. leg B. wing
Bs
{ Is point B located on the egret's talon?
“id": "B", Choices: A. talon B. knee
"class": "leg",
"part_of": "bird_right", Is point C located on the egret's leg?
"location": "talon of left leg" Choices: A. body B. leg
}I
{"id"' non Is point C located on a joint of the egret's leg?
R Choices: A. leg joint B. leg shaft
class": "leg",
"part_of": "bird_right",
"location": "joint of right leg" Is point C located on the right leg of the egret?
B Choices: A. right leg B. left leg
{
ef 1or, Is point D located on the egret's leg?
il el Choices: A. body B. leg .
"part_of": "bird_right", T ’
"location": "upper part of left leg" .
} Is point D located on the upper part of the egret's leg?
] Choices: A. lower part of leg B. upper part of leg
}
.

Figure 12: Data samples from MATHLENS-GENERAL. We curate problem instance from a prior
dataset (Fu et al.|(2024)) and annotate the text description and perception-centric question-answers.
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hy =0.5m

hy =4m

Ad =?
Question

A quarantined physics student decides to perform an experiment to land a small box of mass
$m=60 \mathrm{~g}$ onto the center of a target a distance $\Delta d$ away. The student
puts the box on a top of a frictionless ramp with height $h_{2}=0.5 \mathrm{~m}$ that is
angled $\theta=30"{\circ}$ to the horizontal on a table that is $h_{1}=4 \mathrm{~m}$ above
the floor. If the student pushes the spring with spring constant $k=6.5 \mathrm{~N} /
\mathrm{m}$ down by $\Delta x=0.3 \mathrm{~m}$ compared to its rest length and lands the
box exactly on the target, what is $\Delta d$ ? Answer in meters. You may assume friction is
negligible.

Choices:

A.2.63

B.\Deltad = 2.22 \, \text{m}

C.2.47

D. 2.59\, \text{m}

Choices: A. Point A B. Point B C. Point C D. Point D

Text Description Perception-Centric QA
{ What is the numerical value indicated by the label
"objects": [ 'n1'?
Choices:
{ A 4m
"id": "label_h2", B.0.5m

"attributes": [*h2 = 0.5 m"],

"location"; "right of What is the numerical value indicated by the label

inclined_plane, top height", 'h2".f .
"relations": [ Choices:
{ A.4m
"predicate": B.0.5m
"measure§_he|ght_9f", What is the numerical value indicated by the label '0'?
"object": "inclined_plane" Choices:
b A. 45°
{ " . B. 30°
"predicate": "right_of",
"object": "inclined_plane" What type of object is positioned on the inclined
} plane and connected to the spring?
] Choices:
B A. large block

B. small block

"id": "label_delta_d", . .
"attributes”: ["\u0394d = ?"], What is the shape of the object that supports the

inclined plane?
}'" Choices:
' A. rectangular
] B. triangular

Figure 13: Data samples from MATHLENS-GENERAL. We curate problem instance from a prior
dataset (Hao et al.|(2025)) and annotate the text description and perception-centric question-answers.
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- Geometry Problem ~

Please first conduct reasoning, and then answer

21 the question and provide the final answer as a
symbolic expression or equation involving
variables, e.g., 2 \sqrt{x} + 43 or \frac{5 x + 1}

PN D {2}, at the end.
Question: Here is a mathematical geometric
problem. As shown in the diagram, find length of
1 line CD. The final answer should be enclosed in
& \boxed{}.

: Qwen-2.5-VL-7B
To solve for the length of line segment \(CD\), we can use the Pythagorean theorem in the right
triangle \(ACD\).
Given:
-\(AC = 24)\)
-\(AB =14)\)
Since \(CD\) is perpendicular to \(AB\), we can split the triangle into two smaller right triangles,
\(ACD\) and \(BCD\). However, we only need to focus on triangle \(ACD\) to find \(CD\).
In triangle \(ACD\):
-\(AC\) is one leg, which is 24.
- \(AD\) is the other leg, which we need to find.
- \(CD\) is the hypotenuse.
Using the Pythagorean theorem in triangle \(ACD\):
\[ AC*2 = AD"2 + CD"2\]
\[ 24~2 = AD"2 + CD"2\]
\[ 576 = AD"2 + CD"2\]

;I.'.hus, the length of line segment \(CD\) is:
\[ \boxed{2\sqrt{119}} \]1

Textual SFT: Revisual-R1-7B

<think>
Okay, let's see. | need to find the length of CD in this triangle. The diagram shows triangle ABC
with points A, B, C, and D. The sides AC and BC are both 24 and 14 respectively.

So, triangle ABC, with point D somewhere on AB. AD is 24, DB is 14, so AB must be 24 + 14 = 38.
Then, CD is perpendicular to both AC and BC? Wait, no. If there's a right angle at C and another at
D, maybe CD is perpendicular to AB?

Then, AD = 24, DB = 14, and we need to find CD. That seems plausible. Let me confirm.

If the problem is structured such that ABC is a right-angled triangle at C, with CD perpendicular
to AB, splitting AB into AD = 24 and DB = 14, then CD is indeed sqrt(24+14). But let me verify this
formula.

Yes, in a right-angled triangle, the altitude to the hypotenuse is the geometric mean of the two
segments. So CD? = AD * DB. Therefore, CD = sqrt(24%14) = sqrt(336). Simplifying sqrt(336): 336
=16 * 21, so sqrt(16*21) = 4*sqrt(21). Therefore, CD = 4v21. So that would be the answer.

</think>

\[\boxed{4\sqrt{21}}\]
\.

Figure 16: Model responses for a downstream geometry problem in MATHLENS. The backbone
model fails in perception, leading to an incorrect answer. The textual SFT model initially makes the
same mistake but recovers the perceptual detail and produces the correct answer.
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~ Geometry Problem ~

Please first conduct reasoning, and then
answer the question and provide the final
answer as a symbolic expression or equation
involving variables, e.g., 2 \sqrt{x} + 43 or
\frac{5 x + 1}{2}, at the end.

Question: Here is a mathematical geometric
problem. As shown in the diagram, measure
of arc DBC equals 170. D is centre of circle D.
Find measure of angle CAB. The final answer
should be enclosed in \boxed{}.

At
: Qwen-2.5-VL-72B
To solve for the measure of angle CAB, we need to use properties of circles and angles.

1. **|dentify the given information:**
- The measure of arc DBC is 170 degrees.
- D is the center of the circle.
2. **Determine the measure of angle BDC:**
- Since D is the center of the circle, angle BDC is a central angle that intercepts arc BDC.
- The measure of a central angle is equal to the measure of the intercepted arc.
- Therefore, angle BDC = 170 degrees.
3. **Use the fact that the sum of angles in triangle BDC is 180 degrees:**
- In triangle BDC, the sum of the interior angles is 180 degrees.
- Let angle DBC = x and angle DCB = y.
- We have: angle BDC + angle DBC + angle DCB = 180 degrees.
- Substituting the known value: 170 + x + y = 180.
- Simplifying, we get: x + y = 10.
4. **Determine the measure of angle CAB:**
- Angle CAB is an inscribed angle that intercepts the same arc BC as the central angle BDC.
- The measure of an inscribed angle is half the measure of the intercepted arc.
- The measure of arc BC is 180 - 170 = 10 degrees (since the full circle is 360 degrees and arc
DBC is 170 degrees).
- Therefore, angle CAB = 1/2 * 10 = 5 degrees.

Thus, the measure of angle CAB is \boxed{5}.

Multimodal RL: VL-Rethinker-72B

To solve the problem, we need to understand the relationship between the arc and the central
angle, and then use that to find the inscribed angle.

1. **|dentify the central angle:**
The measure of arc DBC is given as 170 degrees. Since D is the center of the circle, the central
angle BDC that subtends this arc is also 170 degrees.

2. **Find the measure of angle BAC:**

Angle BAC is an inscribed angle that subtends the same arc BDC. The measure of an inscribed
angle is half the measure of the central angle that subtends the same arc. Therefore, the measure
of angle BAC is:

\[\text{Measure of angle BAC} = \frac{1}{2} \times \text{Measure of arc BDC} = \frac{1}{2} \times
170 = 85 \text{ degrees}\]

So, the measure of angle CAB is \boxed{85}.
. J

Figure 17: Model responses for a downstream geometry problem in MATHLENS. The backbone
model exhibits a reasoning error, whereas the multimodal RL model provides the correct solution.
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- Geometry Problem ~

DX

m\ié
<

Please first conduct reasoning, and then
answer the question and provide the final
answer as a symbolic expression or equation
involving variables, e.g., 2 \sqrt{x} + 43 or
45 \frac{5 x + 1}{2}, at the end.
Question: Here is a mathematical geometric
problem. As shown in the diagram, find
length of line XZ. The final answer should be
enclosed in \boxed{}.

vB o7

: Qwen-2.5-VL-7B
To solve for the length of line \(XZ\), we need to use the Pythagorean theorem since \(XYZ\)
forms a right triangle with \(XY\) and \(XZ\) as the legs and \(WY)) as the hypotenuse.

Given:

-\(XY = 5x - 7\)

-\(XZ = 3x + 5\)

According to the Pythagorean theorem:

\[WY?2 = XY*2 + XZ*2 \]

Substitute the given values into the equation:

\[ (5x - 7)*2 = (3x + 5)*2 + (5x - 7)"2\]

Since both sides of the equation are equal, we can simplify by recognizing that the equation
holds true for any \(x\). However, we need to find the specific value of \(XZ\).
Let's expand and simplify:

\[ (5% - 7)*2 = (3x + 5)*2 + (5x - 7)"2 \]

\[ 25x"2 - 70x + 49 = 9x"2 + 30x + 25 + 25x*2 - 70x + 49 \]

\[ 25x"2 - 70x + 49 = 25x"2 - 40x + 74 \]

;I"'hus, the length of line \(XZ\) is:
\[ \boxed{\frac{5}{2}} \]

Multimodal RL: VL-Rethinker-7B

To solve for the length of line \(XZ\) in the given geometric problem, we need to use the
Pythagorean theorem since \(XYZW\) forms a right-angled triangle with \(\angle XYZ =

90"\circ\).
Given:

-\(XY = 3x +5\)
-\(YZ =5x-7\)

According to the Pythagorean theorem:
\[XZ"2 = XY*2 + YZ"2 \]

Substitute the given values:

\[XZ"2 = (3x + 5)*2 + (5x - 7)"2\]
Expand both squares:

\[ (3x + 5)*2 = 9x"2 + 30x + 25]

\[ (5x - 7)*2 = 25x"2 - 70x + 49 \]

Let's double check the problem statement and assumptions. If there was an intention to find a
specific numerical value, it would likely involve solving for \(x\) or providing additional information.
Since the problem doesn't specify any particular value for \(x\) and just asks for the length of
\(XZ\), the expression itself is the solution.

Therefore, the length of line \(XZ\) is:

\\[ \sqrt{34x"2 - 40x + 74} \]

Figure 18: Model responses for a downstream geometry problem in MATHLENS. The multi-
modal RL model inherits the backbone model’s flawed reasoning, leading to perception errors and
downstream failure.
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- Geometry Problem ~

Please first conduct reasoning, and then
answer the question and provide the final
answer as a symbolic expression or equation
involving variables, e.g., 2 \sqrt{x} + 43 or
\frac{5 x + 1}{2}, at the end.

As shown in the diagram, find measure of
angle MLK. The final answer should be
enclosed in \boxed{}.

(6z,48)°
5 (9 -4y u

: GLM-4.1V-9B-Base

To solve for the measure of angle MLK, we need to analyze the given geometric figure and use
the properties of angles.

1. **|dentify the angles:**
- Angle JLM is given as \( (6x + 8)"\circ \).
- Angle LKM is given as \( (9x - 4)*\circ \).
- Angle JKL is a right angle, so it measures \( 90"\circ \).
2. **Use the property of a straight line:**
- The sum of angles on a straight line is \( 180"\circ \).
- Therefore, angle JLM and angle LKM are supplementary to angle JKL.

Therefore, the measure of angle MLK is \( 47.6"\circ \).

\[
\boxed{47.6}

\]

Multimodal RL: GLM-4.1V-9B-Thinking

<think>

Got it, let's analyze this geometric problem step by step. First, looking at the diagram, we can see
that there's a quadrilateral LJMK, maybe a trapezoid or some specific quadrilateral. Let's note the
angles at point L. There are two angles given: (6x + 8)° and (9x - 4)°, and they seem to be
adjacent angles at point L, probably forming a right angle or some angle sum. Wait, but also, we
have right angles at J and K, as indicated by the square symbols. So angle at J is 90°, angle at K is
90°.

Wait, let's first look at triangle JML. In triangle JML, we have a right angle at J (90°), angle at L is
(6x + 8)°, and angle at M in triangle JML would be 180° - 90° - (6x + 8)° = 82° - 6x°. Then, looking
at triangle MKL, which is triangle M KL, with a right angle at K (90°), angle at L is (9x - 4)°, and
angle at M in triangle MKL would be 180° - 90° - (9x - 4)° = 94° - 9x°.

Since \( \angle JMK = \angle JML + \angle KML \), we have:

\[

(82 - 6x) + (94 - 9x) =176 - 15x

\]

This matches the earlier expression for \( \angle JMK'\), confirming consistency. To find \( x \), we
use the fact that angles must be positive and test integer values. Setting \( x = 8) (a
reasonable integer solution) gives:

-\( (9x - 4)"\circ = 9(8) - 4 = 68"\circ \), which is \( \angle MLK \).

The answer is \(<|begin_of_box|>68<|end_of_box|>\).
\

Figure 19: Model responses for a downstream geometry problem in MATHLENS. The multi-
modal RL model corrects the perceptual error of the backbone model but ultimately fails to produce
the correct answer due to a reasoning error.
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- Perception-Centric QA ~

Voo w Please first conduct reasoning, and then answer
X the question and provide the correct option

letter between A or B at the end. Use only
explicit information from the image without
making inferences.

A Question: Which sequence of points is
collinear?
Choices:
A.VWZ

z B.VYZ

: Qwen-2.5-VL-7B

To determine which sequence of points is collinear, we need to check if the points lie on the same
straight line.

From the diagram:

- Points V, W, and Z are connected by lines that form a triangle with point A inside it.

- Point Y is also part of the diagram but does not seem to be directly connected toV, W, or Zin a
way that suggests collinearity with them.

Since there is no direct indication that points V, W, and Z are collinear (they form a triangle), and
point Y is not connected to V, W, or Z in a way that suggests collinearity, the correct sequence of
points that appears to be collinear is:

\boxed{A}

Textual SFT: Revisual-R1-7B

<think>

Okay, let's see. The question is asking which sequence of points is collinear. The options are A.
VWZ and B. VYZ. The image provided is a circle with several points labeled: V, W, X, Y, Z, and A.
There's also a 25-degree angle mentioned at point V.

First, | need to recall what collinear means. Collinear points are points that lie on the same straight
line. So, | need to check if the points in each option lie on a single straight line in the given
diagram.

But since the problem mentions a 25-degree angle at V, and the options are VWZ and VYZ,
perhaps the correct answer is B. VYZ. Because if the angle at V is between VW and VY, and Z is
on the line VY, then VYZ are collinear. Alternatively, if the angle is between VW and VZ, then VWZ
are collinear.

</think>

To determine which sequence of points is collinear, we analyze the given information: points V, W,
X, Y, Z, and A lie on a circle, and there is a 25° angle at point V. Collinear points must lie on the
same straight line.

1. **Qption A (VWZ):** If V, W, Z are collinear, the line VWZ would pass through W and Z on the
circle. However, the 25° angle at V suggests a relationship between two lines from V intersecting
the circle. If the angle is between VW and VY, Z would need to lie on VW to make VWZ collinear,
but this is not explicitly stated.

2. **Qption B (VYZ):** If V, Y, Z are collinear, the line VYZ would pass through Y and Z on the
circle. Given the 25° angle at V, it is plausible that this angle is formed by secants VW and VY
intersecting the circle. If Z lies on the line VY, then VYZ would be collinear. This configuration
aligns with typical geometric setups where angles at external points relate to secants intersecting
the circle.

Since the problem specifies using only explicit information (the 25° angle at V and the circle
containing V, W, X, Y, Z, A), the most logical conclusion is that the 25° angle involves secants VW
and VY, with Z positioned on the line VY. Thus, **VYZ (Option B)** is collinear.

\\boxed{B}

Figure 20: Model responses for a perception probe in MATHLENS. The textual SFT model
corrects the perceptual error present in the backbone model.
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- Perception-Centric QA ~

Voo w Please first conduct reasoning, and then answer
X the question and provide the correct option

letter between A or B at the end. Use only
explicit information from the image without
making inferences.

A Question: Which angle has a measure of 25
degrees?
Choices:
A.YVW

z B.ZVY

: Qwen-2.5-VL-7B

To determine which angle has a measure of 25 degrees, we need to look at the given information
in the image.

1. The image shows a circle with points V, W, X, Y, and Z.

2. There is an angle labeled as 25 degrees, and it appears to be an exterior angle formed by the
line segment VY and the tangent at point V.

Given this information, the angle that measures 25 degrees is the one formed by the line segment
VY and the tangent at point V, which corresponds to angle ZVY.

Therefore, the correct answer is:

\boxed{B}

Textual SFT: Revisual-R1-7B

<think>

Okay, let's see. The question is asking which angle has a measure of 25 degrees, and the options
are A. YVW and B. ZVY. The image provided is a circle with several points labeled: V, W, X, Y, Z,
and A. There's a 25-degree angle mentioned at point V.

First, | need to recall how angles in a circle work. If there's a 25-degree angle at point V, that might
be an inscribed angle or maybe a central angle. But in the diagram, the angle at V is between
points Y and W. Wait, the angle is labeled as 25 degrees at V, so the angle at vertex V between
points Y and W. So angle YVW is 25 degrees. That would be option A. But wait, the choices are A.
YVW and B. ZVY. So if the angle at V is 25 degrees, then A is the answer. But maybe | need to
check if there's another angle related to that.

Looking at the image, the points are connected as follows: V is connected to Y and W (since angle
YVW is 25 degrees). Then there's a circle with points Y, W, X, Z, etc. Maybe there are chords
connecting these points. For example, Y to W, W to X, X to Z, Z to Y, etc. But the key is that the
angle at V is 25 degrees, which is angle YVW. So that's angle A. Then angle ZVY would be at point
V between Z and Y. But unless there's a line from V to Z, that angle isn't present. The problem
states to use only explicit information. So if there's no line from V to Z, then angle ZVY doesn't
exist. Therefore, the 25-degree angle is angle YVW, which is option A.

Wait, but maybe the 25 degrees is part of another angle. For example, if there's a triangle or
another angle formed by intersecting chords. Let me think. If two chords intersect at a point, the
measure of the angle is half the sum or difference of the intercepted arcs. But in this case, the
angle at V is given as 25 degrees. If that's an inscribed angle, then the intercepted arc would be
50 degrees. But the problem states to use only explicit information. The explicit information is that
there's a 25-degree angle at V between Y and W. So unless there's another angle at V that's 25
degrees, which would be ZVY, but there's no line from V to Z shown.

</think>

The angle at point V between points Y and W is explicitly labeled as 25 degrees in the diagram.
This corresponds to angle YVW. There is no explicit mention or indication of a line from V to Z, so
angle ZVY cannot be confirmed.

\\boxed{A}

Figure 21: Model responses for a perception probe in MATHLENS. The textual SFT model
corrects the perceptual error present in the backbone model.
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- Perception-Centric QA ~

Please first conduct reasoning, and then answer
the question and provide the correct option
letter between A or B at the end. Use only
explicit information from the image without
making inferences.

Question: Which angle has a measure of 35
degrees?

Choices:

A.CBA

B.BCA

: Qwen-2.5-VL-7B

To determine which angle has a measure of 35 degrees, we need to identify the angle labeled as
35 degrees in the diagram.

From the image, we can see that the angle labeled as 35 degrees is located at vertex B and is
part of the triangle ABC.

Therefore, the angle with a measure of 35 degrees is BCA.

The correct answer is \boxed{B}.

Textual SFT: Revisual-R1-7B

<think>

Okay, let's see. | need to figure out which angle in the given triangle is 35 degrees. The triangle
has points A, B, and C. The given information is that angle at B is 35 degrees, angle at C is 52
degrees, and there's an angle at A labeled as x degrees. The choices are A. CBA and B. BCA. Wait,
let me make sure | understand the notation here.

First, angle CBA would be the angle at point B, right? Because the middle letter is the vertex. So
CBA is angle at B. Similarly, BCA is the angle at C. So the question is asking which of these two
angles (at B or at C) is 35 degrees. But wait, the problem states that angle B is 35 degrees. So
that would be angle CBA, which is option A. But wait, let me check again.

Wait, the problem says "angle B" is 35° so angle at B is 35°, which is angle CBA. So that's option
A. But maybe I'm missing something. Let me check the image description again. The image shows
a triangle with points A, B, C. The angle at B is 35° angle at C is 52° and angle at A is x°. So the
angles are: B = 35° C = 52° A = 93° Therefore, the angle with 35° is angle CBA (at B), which is
option A. So the answer should be A. But wait, the problem might have a different labeling. Let me
make sure.

Wait, sometimes in geometry diagrams, the labels can be tricky. Let me think. If the triangle is
labeled with vertices A, B, C, then angle CBA is the angle at B between points C and A. Similarly,
angle BCA is the angle at C between points B and A. So in the given problem, angle at B is 35°,
which is angle CBA (option A). The angle at C is 52° which is angle BCA (option B). So the 35°
angle is angle CBA, so the answer is A. Therefore, the correct option is A.

</think>

The triangle has angles at points B, C, and A. The given angles are 35° at B and 52° at C. To find
the measure of angle A, we use the triangle angle sum property:

\[

35™\circ + 52™\circ + x = 180"\circ \implies x = 180"\circ - 35*\circ - 52"\circ = 93"\circ.

\]

However, the question asks which angle is **35°** which is explicitly labeled at point B. The angle
at B is denoted as **CBA** (with vertex at B), corresponding to option **A**,

\boxed{A}
\.

Figure 22: Model responses for a perception probe in MATHLENS. The textual SFT model
corrects the perceptual error present in the backbone model.
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