
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WHAT MLLMS LEARN ABOUT WHEN THEY
LEARN ABOUT MULTIMODAL REASONING:
PERCEPTION, REASONING, OR THEIR INTEGRATION?

Anonymous authors
Paper under double-blind review

ABSTRACT

Multimodal reasoning models have recently shown promise on challenging do-
mains such as olympiad-level geometry, yet their evaluation remains dominated
by aggregate accuracy, a single score that obscures where and how models are
improving. We introduce MATHLENS, a benchmark designed to disentangle the
subskills of multimodal reasoning while preserving the complexity of textbook-
style geometry problems. The benchmark separates performance into three com-
ponents: Perception: extracting information from raw inputs, Reasoning: operat-
ing on available information, and Integration: selecting relevant perceptual evi-
dence and applying it within reasoning. To support each test, we provide anno-
tations: visual diagrams, textual descriptions to evaluate reasoning in isolation,
controlled questions that require both modalities, and probes for fine-grained per-
ceptual skills, all derived from symbolic specifications of the problems to ensure
consistency and robustness. Our analysis reveals that different training approaches
have uneven effects: First, reinforcement learning chiefly strengthens perception,
especially when supported by textual supervision, while textual SFT indirectly im-
proves perception through reflective reasoning. Second, reasoning improves only
in tandem with perception. Third, integration remains the weakest capacity, with
residual errors concentrated there once other skills advance. Finally, robustness
diverges: RL improves consistency under diagram variation, whereas multimodal
SFT reduces it through overfitting. We will release all data and experimental logs.

1 INTRODUCTION

Recent advances in reasoning with Large Language Models (LLMs) have yielded remarkable
progress in challenging domains such as Olympiad-level mathematics (Mathematical Association
of America (2025)), graduate-level scientific question answering (Rein et al. (2024)), and multi-step
program synthesis (Austin et al. (2021); Chen et al. (2021)). Motivated by these successes, a natural
extension is to adapt similar training paradigms to Multimodal Large Language Models (MLLMs),
equipping them with reasoning capabilities over both text and visual inputs. Tasks such as math-
ematical problem solving (Lu et al. (2024); Wang et al. (2024b)) and visual puzzles (Dao & Vu
(2025); Ghosal et al. (2024); Feng et al. (2025)) illustrate the potential of this direction, giving rise
to methods that adapt Supervised FineTuning (SFT) (Sun et al. (2025); Chung et al. (2025)) and
Reinforcement Learning (RL) (Deng et al. (2025); Meng et al. (2025)) for multimodal reasoning,
including sequentially combining both stages for enhanced reasoning.

However, unlike LLMs where reasoning-oriented training consistently yields substantial gains, mul-
timodal reasoning training exhibits highly variable outcomes. This motivates analysis of how dif-
ferent training strategies influence specific skills. To this end, multimodal reasoning may be de-
composed into perception, reasoning, and their integration, as each corresponds to a distinct source
of error. Existing benchmarks, however, rarely adopt such a decomposition and instead primarily
report aggregate accuracy, which obscures these distinctions. Some vary input modalities to approx-
imate skill-specific testing, but without strict controls they fail to isolate capacities and offer limited
diagnostic value (see Appendix B). Consequently, it remains unclear when multimodal reasoning
training benefits MLLMs and which training signals or architectural choices are responsible.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Automatic error decomposition in MathLens, revealing sources of improvements:
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Figure 1: MATHLENS decomposes multimodal reasoning errors into perception, reasoning, and
integration, revealing capacity-specific shifts after fine-tuning that are hidden by aggregate accu-
racy. Each training strategy affects capacities differently; e.g., text SFT yields a minor gain (↗) in
reasoning but harms (↓) integration (model details in appendix D).

To close this gap, we present MATHLENS, a controlled benchmark of geometry problems that iso-
lates perception, reasoning, and their integration (fig. 1). Starting from the symbolic semantic state
of (Zhang et al., 2023), we build four aligned annotations (section 2.2): (i) diagrams rendered from
geometric constraints to test perception, (ii) a definitionally equivalent textual description to test
reasoning when perception is trivialized, (iii) multimodal questions requiring both modalities, and
(iv) fine-grained probes targeting recovery of visual details. To further test robustness against vi-
sual modifications, MATHLENS introduces semantic diagram modifications that alter visual form
while preserving task correctness. By grounding the benchmark in geometry, MATHLENS retains
authentic task complexity and enables rigorous comparison to prior benchmarks.

MATHLENS demonstrates that training strategies shape multimodal reasoning capacities in distinct
ways. 1) Perception is primarily boosted by reinforcement learning, with larger gains when strong
textual SFT has already established reasoning competence (section 3.2), while textual SFT itself,
despite lacking visual input, indirectly strengthens perception through reflective reasoning (sec-
tion 3.3). 2) Reasoning improves in tandem with perception under RL, but does not exhibit dis-
tinct additional gains beyond those coupled improvements (section 3.4). 3) Integration remains the
least improved capacity: RL offers little benefit, and as perception and reasoning advance together,
residual errors increasingly concentrate in integration, leaving it as the dominant failure mode (sec-
tion 3.4). 4) Robustness diverges across strategies, with RL enhancing consistency under diagram
variation, whereas multimodal SFT reduces robustness through overfitting (section 3.5).

Our contributions are:

• Framework for multi-axial evaluation of multimodal reasoning: A new benchmark that dis-
entangles perception, reasoning, and integration, enabling analysis beyond aggregate accuracy.

• Findings from controlled analysis: Discoveries about how different training objectives and data
settings influence the capabilities of Multimodal Language Models.

• MATHLENS dataset: A public release of all problems, annotations, evaluation scripts, and per-
turbation generators, establishing a reproducible resource for the community.

2 MATHLENS

Most multimodal reasoning benchmarks report only aggregate accuracy, obscuring whether errors
stem from perception (extracting information from inputs), reasoning (operating on extracted infor-
mation), or their interaction. Our benchmark is designed to disentangle these subskills while pre-
serving realistic problem contexts. MATHLENS comprises 926 geometry problems, each presented
with eight visual modifications and an average of ∼ 7.03 visual probes per problem.

2.1 DATASET FORMALIZATION

Definitions. For a problem instance k, we consider two latent generative variables: the context
semantics Sk and the query operator φk. The semantics decomposes atomically,

Sk = {sk,1, . . . , sk,m},

2
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Figure 2: Based on MATHLENS annotations, the joint Multimodal Reasoning Test (1) is decom-
posed into a Perception Test and a textual Reasoning Test. The Perception Test evaluates questions
answerable directly from the diagram, such as reading an annotated angle (e.g., ∠DFB in (2)).
The Reasoning Test (3) replaces the diagram with a complete textual description (e.g., “There are
triangle BDF . . .∠DFB = 65◦”), such that the question can be solved without visual access. Fi-
nally, Integration (4) highlights cases where multimodal reasoning fails even though perception and
reasoning, when tested independently, succeed.

where each sk,i encodes a basic fact. For example, in a geometry problem k, sk,1 could represent
(∠ABC = 50◦). Both visual diagram Cimg

k and textual description Ctxt
k context are generated

conditionally on Sk,

C img
k ∼ p(C img | Sk), Ctxt

k ∼ p(Ctxt | Sk).

The surface question Qk is generated from φk and a subset of atoms,

Qk ∼ p
(
Q | φk, S

q
k

)
, Sq

k ⊆ Sk,

with φk = (COMPUTE ∠A) and Sq
k = {sk,1}, the question can be “∠ABC = 50◦, what is ∠A?”

The ground-truth answer is defined by applying the operator to the full semantic state,

Ak = f(φk, Sk).

Further, we generate a perception probe set Qperc
k with semantic atoms sk,i. Let

Qperc
k = {qperck,i }mi=1, aperck,i = Jsk,iK,

so each probe targets a single atom of Sk and its gold answer is the atom’s valuation. For example,
qperck,1 = “Which angle has measure of 50? A. ABC B. ABD” with aperck,1 = A. These probes directly
test whether a model has recovered the components of Sk from the observed context.

Isolating subskills with Sk access. Having access to the semantic state Sk allows us to design
tests that separate perception, reasoning, and their integration, as shown in Figure 2.

Perception. Probe questions Qperck with gold answers aperck, i are derived from the atomic facts
listed in Sk. These probes check if the model can recover the specific facts in Sk that are needed to
solve the problem from the given input. Errors here indicate pure perceptual failures.

Reasoning. Given Sk, we render a textual description Ctxt
k that directly encodes the relevant details.

Evaluating on (Ctxt
k , Qk) trivializes perception, so the task reduces to applying φk correctly. Errors

here isolate reasoning competence, free from perceptual confounds.

Integration. We isolate integration effects by combining accuracy on (C img
k , Qk) with auxiliary

perception and reasoning measures. Conditional on success in perception probes and text-only rea-
soning, any remaining errors on the full task are treated as integration errors; this defines integration
as the residual after controlling for perception and reasoning under standard coverage assumptions.

1In this example, an obtuse angle is drawn acute. Such non-canonical diagrams block visual estimation and
enforce geometric deduction, consistent with Olympiad practice (“not drawn to scale,” e.g., AMC).
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a)

b)

c)

d)

e)

Figure 3: Sample data generation process in MATHLENS. From a semantic state representation,
we build controlled text descriptions, perception probes, and questions with no overlap with visual
content. Also, new diagrams are rendered from the semantic state to avoid visual familiarity effects1.

Additional uses of Sk. First, Sk allows construction of questions that require context. We define
Q′

k by restricting its atoms to exclude those in the context latent Sc
k:

Q′
k ∼ p(Q | φk, S

q′

k ), Sq′

k ⊆ Sk, Sq′

k ∩ Sc
k = ∅.

By design, Q′
k cannot be answered from the query alone and thus forces reliance on Ck.

Second, the symbolic representation Sk allows us to apply semantic perturbations of the context. Let
τ ∈ TAP denote a transformation from the set of admissible perturbations (e.g., relabeling points,
rotating a diagram, or permuting equivalent elements). Applying τ yields a perturbed specification
S′
k = τ(Sk), while preserving the problem semantics so that

f(φk, Sk) = f(φk, S
′
k).

Re-rendered contexts (C img
k′ ∼ p(C img | S′

k) and Ctxt
k′ ∼ p(Ctxt | S′

k)) serve as systematic distrac-
tors. We measure robustness by prediction agreement across contexts from Sk and S′

k, testing se-
mantic invariance beyond pixel-level augmentation. Pixel-level perturbations are insufficient, since
they often cause prediction shifts driven by abnormal appearance rather than semantic change.

2.2 DATA GENERATION PIPELINE

Thus, we build on latent semantics Sk for a set of practical multimodal reasoning problems, match-
ing problem domain and complexity with popular benchmarks in the literature (Zhang et al. (2024);
Lu et al. (2024)). Each instance is first specified symbolically as Sk and φk, then rendered into its
observable forms: diagrams C img

k , textual descriptions Ctxt
k , and multiple types of questions.

Data source (fig. 4 a). We build on FormalGeo-7K (Zhang et al. (2023)), which provides symbolic
annotations for geometry problems. Each diagram cue or condition is encoded as a predicate (e.g.,
COLLINEAR(AB,BC), EQUALLENGTH(AB,CD)), forming the semantic state Sk. This yields
realistic problems with formal representations from which we build the required artifacts.

Questions (fig. 4 b). We represent each question Qk as clauses [Sq
k;φk], with facts Sq

k and goal
operator φk. For a strictly multimodal question, we drop clauses overlapping with the context Sc

k:

Q′
k = fq

(
[(Sq

k \ Sc
k);φk]

)
,

where fq linearizes them into natural language. Thus Q′
k requires contextual information to solve.

Textual descriptions (fig. 4 c). Each detail sk,i ∈ Sk is mapped by template function fd to clause,

Ctxt
k = concatifd(sk,i),

yielding a faithful textual rendering of formal representation Sk without stylistic variation (e.g.,
EQUALLENGTH(AB,CD)→ “Segment AB is equal in length to segment CD”).

4
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Figure 4: Impact of multimodal reasoning training on MATHLENS performance. We evaluate
pretrained backbones alongside models finetuned for multimodal reasoning tasks, reporting accu-
racy (%). MATHLENS is sensitive to gains from multimodal reasoning–oriented finetuning.

Perception Probes (fig. 4 d). Each atomic detail sk,i ∈Sk is converted to a probe via templating
function fp with gold answer Jsk,iK:

Qperc
k = {fp(sk,i)}i, aperck,i = Jsk,iK.

For example, COLLINEAR(AB,BC) yields “Which points are collinear? A. ABC B. ABD” with
answer A and negative B. Thus probes directly test recovery of Sk from context.

Diagram rendering (fig. 4 e). Each clause sk,i∈Sk is converted into geometric constraints (e.g.,
PERPENDICULAR(AB,BC)→ (xa−xb)(xc−xb)+ (ya− yb)(yc− yb) = 0). A numerical solver
computes coordinates that satisfy all constraints, which are then rendered into diagrams. We then
manually filter outputs to remove artifacts such as occlusions or overlaps.

Diagram modifications. To test robustness against distractions, we alter the semantic state Sk

to generate diagram variants. Modifications include adding auxiliary geometric elements, applying
flips or rotations, merging instances, and relabeling points, while preserving the ground-truth answer.
All variants are manually screened to discard visually invalid cases.

2.3 MATHLENS-GENERAL: A COMPLEMENTARY GENERAL-DOMAIN SET

The main dataset, MATHLENS, solely consists of geometry problems. While this symbolic struc-
ture enables precise control, it also risks overfitting analyses to a narrow domain. To mitigate this
limitation, we construct MATHLENS-GENERAL, a set of multimodal reasoning problems spanning
diverse domains. Unlike MATHLENS, it cannot maintain the same rigor afforded by formal semantic
states, but is instead curated from prior sources through a rigorous pipeline to ensure reliability and
diversity. Curation procedures and experimental results are provided in Appendices C and E.

3 EXPERIMENTS

We focus on open-weight multimodal reasoning models in the 7–9B parameter range, along with the
backbone counterparts. This setup is motivated by two factors: transparency of training methods and
data, which is available only for open models, and the fact that most publicly released multimodal
reasoning models fall within this size range. We assemble seven model families, yielding 13 check-
points in total by including both SFT-only and RL-finetuned variants where available. We include
Qwen-2.5-VL (Bai et al., 2025) and GLM-4.1V-Base (Hong et al., 2025) as backbone models. Di-
rect multimodal Reinforcement Learning (RL) models comprise VL-Rethinker (Wang et al., 2025)
and ShareVL-R1 (Yao et al., 2025). Models trained with multimodal Supervised Finetuning (SFT)
followed by multimodal RL include Vision-R1 (Huang et al., 2025) and R1-Onevision (Yang et al.,
2025), while those using textual SFT followed by multimodal RL include Revisual-R1 (Chen et al.,

5
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Figure 5: (left) Correlation of MATHLENS with popular benchmarks. MATHLENS shows high
correlation with standard multimodal reasoning benchmarks. (right) Performance gains by input
modality. Bars show percentage point shifts from finetuning for text versus diagram inputs. Visual
gains exceed textual ones when models are primed with strong reasoning (textual SFT).

2025)2 and Open-Vision-Reasoner (OVR) (Wei et al., 2025). Finally, GLM-4.1V-Thinking (Hong
et al., 2025) falls outside these categories, since its training data is not publicly disclosed.

We additionally evaluate six larger models, yielding eight runs in total by including both Gemini-
2.5-Flash (Comanici et al., 2025) and Claude 4 Sonnet (Anthropic, 2025) in “thinking” and “non-
thinking” modes: Qwen-2.5-VL-72B, VL-Rethinker-72B, Gemini-2.5-Flash, Claude 4 Sonnet, and
GPT-O3/4O (OpenAI, 2025). For each model, we follow the recommended decoding configurations
to generate both reasoning and final answers. Most models employ greedy decoding and yield
deterministic outputs. Full experimental details and results are in Appendix E.4.

Weak textual reasoning in existing multimodal SFT models. We take it as baseline that current
multimodal SFT models show limited reasoning following Chen et al. (2025): their data are easier
than text-only sets, leading to weaker performance on reasoning benchmarks. Building stronger data
is hindered by the lack of open multimodal reasoning traces (see Appendix E.1 for discussion).

3.1 VALIDATING MATHLENS AS A MULTIMODAL REASONING BENCHMARK

Before using MATHLENS to study finetuning effects, we first validate it as a multimodal reasoning
benchmark, showing that it captures the same skills as established benchmarks.

Sensitivity to finetuning. We assess whether MATHLENS reflects gains from multimodal reason-
ing finetuning by comparing pretrained backbones with their finetuned variants on its downstream
task of solving geometry problems from diagrams. As shown in Figure 4, finetuned models consis-
tently surpass backbones, demonstrating that MATHLENS is sensitive to these adaptations.

Correlation with established benchmarks. To test whether MATHLENS captures patterns con-
sistent with prior benchmarks, we compare it to MathVista (Lu et al. (2024)), MathVerse (Zhang
et al. (2024)), and MathVision (Wang et al. (2024b)) by correlating model accuracies across eight
models (Figure 5, left; full results in Appendix). MATHLENS shows strong Spearman’s ρ correla-
tion with MathVista (ρ = 0.83) and MathVerse (ρ = 0.86), confirming alignment with established
benchmarks, while correlation with MathVision is weaker but still positive (ρ = 0.67). Importantly,
our goal is not a new downstream benchmark but a controlled, decomposition-focused resource;
high correlations therefore underscore its consistency.

3.2 HOW MUCH OF THE GAIN IS EXPLAINED BY IMPROVEMENT IN TEXTUAL REASONING?

To isolate the role of textual reasoning, we compare performance on textual descriptions Ctxt
k and

visual diagrams C img
k , which encode identical information conditioned on the question Qk. This

2Revisual-R1 adds additional textual RL, yet we group it as textual SFT → multimodal RL for consistency.
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Figure 6: (left) Perception performance shifts from finetuning in percentage points. Except for
multimodal SFT, all methods contribute to increased perception capacity. (right) Sample distribu-
tion over reflection count. Reflection is more frequent in false→true cases than in true→true cases,
showing that perception gains from textual SFT arise partially from reflective reasoning.

parallel annotation lets us track how multimodal training affects each modality. We report accuracy
differences (percentage points) before and after multimodal finetuning.

Figure 5 (right) shows that textual SFT mainly improves textual reasoning, while multimodal RL
applied afterward yields larger multimodal gains by shifting its effect to perception and integration.
Direct multimodal RL without textual SFT gives only modest improvements in both modalities, and
poor-quality multimodal SFT degrades multimodal performance more than textual reasoning, with
RL only partially recovering the gap.

Finding 1: Multimodal RL impact varies with textual reasoning strength. With strong tex-
tual SFT it mainly boosts perception; without it, it modestly improves both modalities (fig. 5).

3.3 HOW MUCH OF THE GAIN IS EXPLAINED BY IMPROVEMENT IN PERCEPTION?

Next, we evaluate how multimodal reasoning training affects low-level perception. For each problem
Qk, we use the perception probes Qperc

k = qperck,1 , . . . , qperck,j . Figure 6 (left) shows that all RL models
contribute to better perception required for geometry problem solving. Hence, we conclude that
perception is elicited even by training with correctness reward signals on the downstream problems.

How textual SFT improves perception. Textual SFT does not use visual inputs, yet it enhances
perceptual performance. These gains suggest influences beyond direct perceptual learning. We
hypothesize that one contributing factor is that enhanced reasoning alters how the model interprets
ambiguous visual evidence. In particular, stronger reasoning promotes cognitive strategies such as
reflection and self-correction, which allow the model to revise initial perceptual judgments.

We examined the reasoning traces of two models with textual SFT in Figure 3 (right). Correct
predictions were divided into those accurate both before and after training (true→true) and those
that became accurate only after training (false→true). We found that reflective reasoning was more
frequent in the latter, where accuracy improved post-training. These results indicate that textual SFT
promotes reflective reasoning, which enables models to revisit and correct initial perceptual errors.

Finding 2: Textual SFT also improves perception by fostering reflective reasoning (fig. 6).

3.4 ERROR TYPE ANALYSIS

MATHLENS’s annotation designs enable systemic categorization of model outputs into the follow-
ing error categories: (1) Perception & Reasoning, failures on both perception probes and textual
reasoning; (2) Perception, failure on perception probes but correct reasoning from text; (3) Reason-
ing, correct perception probes but failed text-based reasoning; (4) Integration, correct perception

7
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Figure 8: Robustness to semantic-level visual modifications. Box plots show accuracy on modi-
fied diagrams. Points report accuracy on the unmodified base diagrams and the overall consistency
score. Multimodal RL improves consistency, whereas multimodal SFT reduces it.

and text in isolation but failure on the combined multimodal task. Correct categories: (5) Trivial,
solvable from text alone; and (6) Rest, all other correct cases.

Figure 1 (see full results in Figure 15 of Appendix) shows that RL primarily reduces perception
and reasoning errors on the same problems, indicating correlated gains. Yet many of the reductions
manifest as Integration errors, suggesting that finetuning often shifts them into coordination failures.

Finding 3: RL improves perception and reasoning in a correlated manner, and unveils
integration as the remaining source of error once the other capacities improve (fig. 1).

3.5 DOES MULTI-MODAL FINETUNING EFFECT MODEL’S ROBUSTNESS TO VISUAL INPUTS?

We extend the visual familiarity analysis
from Section 3.1 by testing robustness under
controlled diagram variations. Instead of pixel-
level augmentations (e.g., blurring), we apply
semantic modifications to the geometric specifi-
cation, isolating structural variation without in-
troducing low-level artifacts (see Appendix C).

Downstream accuracy can mask familiarity
effects. Figure 7 shows that while most train-
ing methods are stable under familiar diagrams,
multimodal SFT suffers a sharp drop on modi-
fied diagrams. This indicates that similar down-
stream accuracy on public benchmarks can hide
reliance on visual familiarity.

10 5 0 5 10

rethinker

sharevl

2.92
2.59

2.05
2.27

10 5 0 5 10

r1_onevision

vision-r1

0.76
-3.35
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-6.59
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-2.38
2.16

8.86
8.32
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revisual 9.18
6.05
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7.78

6.59

Direct Multimodal RL

Multimodal SFT  Multimodal RL

Textual SFT  Multimodal RL

Accuracy  (%) pre post fine-tuning

Existing Diagrams (Potentially Leaked) Rendered Diagrams (OOD)

Figure 7: Finetuning shifts by diagram type.
Bars show percentage point changes for existing
versus out-of-distribution rendered diagrams.

RL improves visual consistency. To quantify robustness, we use Consistency Rate (CR) (Zhao
et al. (2024)), the expected agreement of predictions across perturbations of the same diagram:

CR = EQ′
k∼Q′

[
EC̄k,i, C̄k,j∼C̄k

i ̸=j

1
[
M(Q′

k, C̄k,i) = M(Q′
k, C̄k,j)

] ]
, (1)

where C̄k is the set of diagram variants for question Q′
k.

Figure 8 shows that accuracy on base diagrams is generally higher than on modified ones, indicat-
ing vulnerability to semantic perturbations. Consistency increases after multimodal RL, suggesting
robustness to variation. By contrast, multimodal SFT lowers consistency.

Finding 4: Multimodal RL improves visual consistency under structural variations (fig. 8).
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Figure 9: Perception probe results by question type. Improvements differ across skills: angle-
related and cocircularity tasks improve with multimodal RL, line-length tasks show little change,
and polygon detection improves only with textual SFT. A likely factor is whether notations are
colocated with the geometric element they describe or spatially separated.

3.6 WHICH PERCEPTION SKILLS BENEFIT FROM MULTIMODAL REASONING TRAINING?

We decompose perception probe performance (Section 3.3) by relation type (full details in Ap-
pendix E.4). This analysis reveals uneven gains, as shown in Figure 9. Relation types such as cocir-
cular, parallel, and collinear improve consistently, as they rely on simple primitives. same angle,
val angle, triangle, and quadrilateral improve only with textual SFT plus multimodal RL, since they
require multi-constraint reasoning or symbol–geometry links. By contrast, same length, val length,
and perpendicular remain difficult, as their cues are spatially offset or visually ambiguous.

Finding 5: Perception gains are uneven. Direct geometric cues improve reliably, while tasks
relying on symbolic marks or distant annotations remain difficult (fig. 9).

4 CONCLUSION

We introduced MATHLENS, a controlled benchmark that disentangles perception, reasoning, inte-
gration, and robustness in multimodal reasoning. Our findings show that reinforcement learning
primarily boosts perception, with stronger gains when supported by textual supervision, while tex-
tual SFT indirectly strengthens perception through reflective reasoning. Reasoning improves in
tandem with perception under RL but does not exhibit distinct additional gains, leaving integration
as the least improved capacity and the dominant failure mode once other skills advance. Robustness
further diverges across strategies, as RL enhances consistency under diagram variation, whereas
multimodal SFT reduces it through overfitting.

Looking ahead, our results motivate future architectures and training strategies that explicitly target
integration, for example by introducing auxiliary pretext objectives for RL that enforce cross-modal
grounding, or by structuring training data to better capture causal correspondences between percep-
tual details and reasoning trajectories. In parallel, scaling atomic perception probes into auxiliary
supervision offers a promising direction for directly improving perceptual capacity.
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ETHICS STATEMENT

MATHLENS consists solely of mathematical problems and does not involve human subjects or sensi-
tive data. MATHLENS-GENERAL is constructed as an extension of existing benchmarks, and ethical
considerations are therefore inherited from those sources. All human annotations were performed
directly by the authors. As the benchmark is derived from publicly available resources, it does
not raise additional privacy or copyright concerns beyond those already addressed in the original
sources. As the content is limited to mathematical problems, concerns of bias, fairness, or harmful
applications are not applicable.

REPRODUCIBILITY STATEMENT

All experiments are conducted using existing models without additional training. The complete
list of models is provided in Table 1, with hyperparameter configurations in Appendix D. Results
are reported under deterministic decoding, aside from a small subset of models requiring random
sampling to mitigate repetition. Minor nondeterminism from computation kernels, common across
current LLM decoding environments (both local and API-based), is generally not treated as a con-
trolled factor (He & Lab, 2025). As API services may evolve over time with undocumented changes,
our main experiments focus on open-weight models, with API model results reported as auxiliary
reference. The full dataset and model outputs will be released for reproducibility.
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OVERVIEW OF THE APPENDIX

This Appendix is organized as follows:

• Appendix A contains related work;

• Appendix B contains a comparison with other benchmarks and discusses the benefit of automatic
error analysis;

• Appendix C contains details of the data generation process for the main MATHLENS subset as
well as the MATHLENS-GENERAL subset;

• Appendix D contains implementation details, including hyperparameters and computational re-
sources;

• Appendix E contains the complete experimental results corresponding to the main paper figures,
as well as results on MATHLENS-GENERAL;

• Appendix F contains qualitative examples.

A RELATED WORK

Evaluation of multimodal reasoning capacity. Multimodal reasoning is a compositional process
that requires the integration of perception and abstract reasoning (Li et al. (2025)). Inspired by tex-
tual reasoning benchmarks, recent multimodal reasoning datasets focus on verifiable domains such
as mathematics (Lu et al. (2024); Wang et al. (2024b); Zhang et al. (2024)), scientific diagrams (Yue
et al. (2024a); Hao et al. (2025)), and charts (Wang et al. (2024c)). However, most of these bench-
marks report only a single downstream accuracy per model, without systematic means to identify the
source of errors. Some further provide manually annotated error-type analyses (Zhang et al. (2024);
Hao et al. (2025)), but these rely on non-standard category definitions across benchmarks, depend
on post-hoc semantic inspection of reasoning traces rather than causal diagnosis, and suffer from
annotator variance. In addition, the necessity of multimodal context is often left unverified (Yue
et al. (2024b)). Finally, many benchmarks extract problems from publicly available sources such
as textbooks, raising risks of data leakage and familiarity bias. To overcome these limitations, our
study builds on FormalGeo-7K (Zhang et al. (2023)), which provides formal abstractions for both
context and goal in practical mathematical geometry problems, enabling rigorous and fine-grained
analysis.

Training Methods for Multimodal Reasoning. Approaches to adapting MLLMs for multimodal
reasoning typically fall into three types: multimodal supervised finetuning, where models are trained
on paired image–text inputs with ground-truth reasoning traces and answers; multimodal reinforce-
ment learning, where models are optimized with rewards from verifiable outcomes or reasoning-
trace feedback; and textual supervised finetuning, where models are tuned on large-scale textual
reasoning corpora without multimodal context. These strategies are often applied sequentially or
in combination, such as multimodal SFT followed by multimodal RL (e.g., Huang et al. (2025)
and Yang et al. (2025)) to improve robustness, or textual SFT followed by MM-RL (e.g., Chen et al.
(2025) and Wei et al. (2025)) to transfer reasoning priors into multimodal domains. In addition,
some models adopt direct RL without prior SFT (e.g., Deng et al. (2025), Meng et al. (2025), Wang
et al. (2025), and Yao et al. (2025)), demonstrating that reinforcement learning alone can yield
competitive reasoning performance. Closed-weight systems (e.g., OpenAI (2025), Comanici et al.
(2025), and Anthropic (2025)) also report strong multimodal reasoning ability, although their train-
ing data and pipelines remain undisclosed.

B COMPARISON WITH EXISTING BENCHMARKS

Comparison with MathVerse. Multimodal mathematical problems are a popular testbed for eval-
uating multimodal reasoning. Among existing benchmarks (Lu et al. (2024); Wang et al. (2024b);
Yue et al. (2024a)), the closest to ours is MathVerse (Zhang et al. (2024)), which, like our benchmark,
primarily focuses on mathematical geometry problems and partly draws from Geometry3K (Lu et al.
(2021)), a subset of FormalGeo-7K (Zhang et al. (2023)). MathVerse also provides multiple input
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As shown in the figure, given the angle of 
circumference angle A = 50.0, then the 
size of angle O  is ()

Choices: A:50° B:40° C:130° D:80°

BC

As shown in the figure, it is known that in 
circle O, the central angle angle AOB = 
100.0, then the angle of circumference 
angle A B is equal to ().

Choices: A:130° B:120° C:110° D:100°

C

As shown in the figure, AB // CD, and EF 
intersects AB and CD at points E, F,  
= 50.0, then the degree of  is ()

Choices: A:50° B:120° C:130° D:150°

angle 1
angle 2

MathVerse_6_TextOnly MathVerse_83_TextOnly MathVerse_98_TextOnly

Figure 10: Example of MathVerse text descriptions. The textual description fails to fully encode
geometric relations, requiring external information to be inferred from the diagram. This incom-
pleteness makes it unsuitable for evaluating pure reasoning capacity.

EMMA MathVision MathVerse

GPT-O1 GPT-4V GPT-4V

Figure 11: Inconsistencies in manual error analyses across benchmarks. Pie charts show varia-
tion in error categories across multimodal reasoning datasets, underscoring the lack of standardized
criteria. Analyses are typically restricted to a single model. Figures are taken from the respective
papers (Hao et al., 2025; Wang et al., 2024b; Zhang et al., 2024).

modalities ranging from text-only to vision-only, enabling skill-specific evaluation of multimodal
reasoning models, which is conceptually aligned with our design.

However, MathVerse does not meet the criteria necessary for rigorous capacity isolation: 1) it re-
lies on curated diagrams, making it vulnerable to data leakage or familiarity effects; 2) its text
descriptions are incomplete for evaluating pure reasoning, often requiring external information to
be inferred from diagrams (see Figure 10); 3) overlap between question and diagram content is not
explicitly controlled. Due to these limitations, analyses in this paper cannot be reproduced with the
same rigor using prior benchmarks.

Benefits of automatic error analysis. Error type analysis offers actionable insights into model
weaknesses and guides directions for improvement. However, in multimodal reasoning research,
such analyses lack standardization and are almost always performed manually. Consequently, as
shown in Figure 11, categories and criteria vary across datasets, making it difficult to generalize
findings. Moreover, manual analysis is costly and typically applied to a single model, quickly be-
coming outdated along with its conclusions. By contrast, MATHLENS’s automatic analysis pipeline
enables consistent, scalable, and up-to-date error categorization across models and datasets.

C DATA GENERATION DETAILS

C.1 MATHLENS

Diagram rendering. Each clause sk,i ∈ Sk is mapped to a corresponding set of algebraic con-
straints. For instance, PERPENDICULAR(AB,BC) is encoded as ((xa − xb)(xc − xb) + (ya −
yb)(yc − yb) = 0). Taken together, the constraints form a nonlinear system defining admissible
coordinates for all points. We solve this system using the sequential least-squares programming
routine (SLSQP) in scipy.optimize.minimize (Virtanen et al. (2020)), which searches for
coordinates that minimize the residual of all constraints subject to feasibility bounds. To improve ro-
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bustness, initial coordinates are randomly sampled, and optimization is repeated until convergence.
Up to ten attempts with different random seeds are allowed, after which the sample is discarded if no
feasible solution is found. Valid solutions are rendered with a matplotlib-based backend (Hunter
(2007)) that draws points, line segments, arcs, and annotations according to the computed geometry.
Since automatic optimization may still yield degenerate layouts (e.g., overlapping vertices, occluded
labels, or extreme aspect ratios), we apply a post-processing step in which such outputs are manually
filtered to preserve clarity and readability.

Diagram modification. For each geometry problem, we generate eight diagram variants: (1) the
original diagram from the source dataset, (2) a rendered diagram generated directly from the sym-
bolic representation, and six symbolic modifications: (3) add shapes, which inserts 1–3 random
shapes (triangles or quadrilaterals), (4) add lines, which inserts 1–3 random lines between existing
points, (5) flip, which mirrors the canvas while preserving label orientation, (6) rotate, which ro-
tates the canvas while keeping labels upright, (7) merge, which concatenates the current diagram
with another randomly chosen one and revises labels accordingly, (8) rename, which replaces the
label set (e.g., A,B,C → X,Y,Z). All auto-rendered figures are manually filtered after generation. If
any version is invalid or visually unsuitable (e.g., severe occlusions, degenerate angles), the entire
problem is discarded.

C.2 MATHLENS-GENERAL

MATHLENS-GENERAL is a curated, re-annotated benchmark that extends the scope of MATHLENS
to a broader range of images and problem domains. It includes 107 problems, each paired with an
average of ∼ 7.96 visual probe questions. Representative samples are shown in Figure 12 and Fig-
ure 13, with the data generation procedure detailed below.

Sample collection. Problems are sourced from six established multimodal reasoning datasets:
BLINK (Fu et al. (2024)), V* (Wu & Xie (2024)), SpatialEval-Real (Wang et al. (2024a)), MMMU-
Pro (Yue et al. (2024b)), EMMA (Hao et al. (2025)), and MathVista (Lu et al. (2024)), with math-
ematical geometry items excluded using metadata. We retain only multiple-choice problems to
maintain consistency. Problems requiring more than two images are discarded, and dual-image in-
puts are concatenated into single images to ensure compatibility with models that do not support
multi-image inputs.

Data filtering. Problems that appear multimodal may in fact be solvable from text-only correla-
tions (Yue et al. (2024b)), while others that look complex may reduce to simple pattern matching.
To guard against such shortcuts, we use model-based validation to test multimodality and reason-
ing requirements. Each problem is evaluated with Gemini-2.5-Flash (Comanici et al. (2025)) under
three settings: (1) full input, (2) text-only input without the image, and (3) full input with reasoning
disabled. We generate eight responses per setting at temperature 0.6 to capture variability.

A problem passes the multimodality check if text-only accuracy does not exceed chance (1/k for
k-way choice, e.g., 25% for 4 options). It satisfies the reasoning check if accuracy with reasoning
disabled falls below chance. We enforce solvability by discarding problems for which the model
fails to answer correctly in all eight full-input attempts. Image-level deduplication is then applied to
remove visually similar items.

Finally, human annotators enforce validity by independently solving each filtered problem, retaining
only those with clearly determinable correct answers. This process reduces the initial pool of ∼2,000
problems to 200 high-quality samples that meet all four criteria.

Manual annotation. We generate seed annotations with Gemini-2.5-Flash, then manually revise
them to remove hallucinations and add missing details needed for solvability. Textual descriptions
are structured in a scene-graph format and decomposed into atomic clauses, from which perception
probes are automatically derived.

D IMPLEMENTATION DETAILS AND RESOURCES

Models. Details of the model configurations and corresponding sources are provided in Table 1.
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Model Type Source
7–9B Open-Weight
VL-Rethinker backbone Qwen/Qwen2.5-VL-7B-Instruct

mm-rl TIGER-Lab/VL-Rethinker-7B
ShareVL-R1 backbone Qwen/Qwen2.5-VL-7B-Instruct

mm-rl HuanjinYao/R1-ShareVL-7B
R1-OneVision backbone Qwen/Qwen2.5-VL-7B-Instruct

mm-sft Fancy-MLLM/R1-Onevision-7B
mm-rl Fancy-MLLM/R1-Onevision-7B-RL

Vision-R1 backbone Qwen/Qwen2.5-VL-7B-Instruct
mm-sft Osilly/Vision-R1-CI-7B
mm-rl Osilly/Vision-R1-7B

Revisual-R1 backbone Qwen/Qwen2.5-VL-7B-Instruct
text-sft csfufu/Revisual-R1-Coldstart
mm-rl csfufu/Revisual-R1-final

OVR backbone Qwen/Qwen2.5-VL-7B-Instruct
text-sft Kangheng/OVR-7B-ColdStart
mm-rl Kangheng/OVR-7B-RL

GLM-4.1V backbone zai-org/GLM-4.1V-9B-Base
mm-rl zai-org/GLM-4.1V-9B-Thinking

72B Open-Weight
VL-Rethinker backbone Qwen/Qwen2.5-VL-72B-Instruct

mm-rl TIGER-Lab/VL-Rethinker-72B

Closed-Weight
OpenAI backbone GPT-4O (gpt-4o 2024-11-20)

thinking GPT-O3 (o3 2025-04-16)
Gemini backbone gemini-2.5-flash (thinking=disabled)

thinking gemini-2.5-flash (thinking=enabled)
Claude backbone claude-4-sonnet (thinking=disabled)

thinking claude-4-sonnet (thinking=enabled)

Table 1: Model configurations studied in this work.

Model configuration for Figure 1. All models are fine-tuned from Qwen-2.5-VL-7B as the back-
bone MLLM. VL-Rethinker represents the direct RL setting, Vision-R1 serves as the multimodal
SFT model, and Revisual-R1 corresponds to the textual SFT model. Vision-R1 and Revisual-R1
further include their respective RL-extended variants.

Hyperparameters & computation. We use Eureka ML Insights Framework (Balachandran et al.
(2024)) for reproducible evaluation. We run 7–9B parameter models on four NVIDIA A100 80GB
GPUs, and 72B models on eight. Generation is accelerated and parallelized with the vLLM (Kwon
et al. (2023)) library. Most experiments use greedy decoding (temperature 0.0) for deterministic out-
puts. For models that otherwise suffer from text degeneration through severe repetition (e.g., Huang
et al. (2025)), we apply stochastic decoding with temperature 0.6 and top-p 0.65. The default max-
imum generation length is 32,768 tokens to accommodate long reasoning chains. For OVR (Wei
et al. (2025)), we extend this limit to 48,000 tokens due to frequent truncations at lower cutoffs.

Visual resources. Visual icons used in Figure 3 are adapted from flaticon.com.

Large Language Model Usage. LLMs (ChatGPT, GPT-4/5 class and Claude 4 Sonnet) were em-
ployed to refine phrasing, improve clarity, and standardize style in sections of the manuscript, but
all scientific ideas, experiments, and analyses were conceived, executed, and validated by the au-
thors. LLMs were also used in a limited capacity to assist with literature discovery (e.g., surfacing
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related work for manual screening). All substantive content decisions, experiment design, and result
interpretation remain entirely author-driven.

E EXPERIMENT

E.1 PRELIMINARIES

Weak textual reasoning in multimodal SFT models. Prior work (Sun et al. (2025)) highlights
that multimodal SFT datasets are considerably easier than textual SFT datasets, which contributes
to weaker textual reasoning capacity in trained models. For example, the Vision-R1 dataset (Huang
et al. (2025)) averages 821.5 tokens per reasoning trace with a 96.0% pass rate, whereas the text-only
DeepMath dataset (He et al. (2025)) averages 8,207.8 tokens with a 75.0% pass rate. This differ-
ence suggests that multimodal SFT data require substantially less reasoning effort. Consistent with
this, multimodal SFT models trained on such data underperform on standard reasoning benchmarks
compared to textual SFT models. Finally, while textual SFT data can be constructed by distilling
reasoning traces from large language models (Guo et al. (2025)), no comparably strong multimodal
reasoning models with open reasoning traces currently exist, making effective multimodal SFT data
generation particularly challenging.

E.2 FURTHER INSIGHTS

Insight on visual familiarity effects. In Figure 3 (left) of the main paper, we additionally evalu-
ate MATHLENS-E, a variant that uses the same geometry problems but replaces rendered diagrams
with existing diagrams from the original sources. Interestingly, MATHLENS-E correlates strongly
with MathVision (ρ = 0.81), while showing weaker correlations with MathVista and MathVerse.
This difference suggests that models may leverage visual familiarity with diagram styles from text-
books or public tests when tackling MathVision, an advantage that disappears with freshly-rendered
diagrams. This underscores that high benchmark accuracy does not necessarily indicate strong mul-
timodal reasoning, as performance may be inflated by visual familiarity effects from training data.

E.3 MATHLENS-GENERAL

Figure 14 presents the error-type distribution for MATHLENS-GENERAL. Consistent with the
main experiment (Section 3.4), most effects of multimodal reasoning finetuning concentrate on
perception-related cases (Perception & Reasoning or Perception). However, these gains are less
stable, reflecting that MATHLENS-GENERAL spans broader domains than MATHLENS and often
demands out-of-distribution generalization from the multimodal training sets. An exception is tex-
tual SFT models, which show substantial reductions in pure Reasoning errors. This indicates that,
unlike in math geometry tasks, the diverse reasoning skills required for MATHLENS-GENERAL are
not well represented in the backbone (Qwen-2.5-VL). Finally, the higher fraction of Trivial correct
cases arises from MATHLENS-GENERAL ’s multiple-choice format, in contrast to the open-ended
geometry subset MATHLENS.

E.4 FULL RESULTS

Correlation plot details. Table 2 reports the full benchmark scores for all models used in the cor-
relation analysis of Figure 5 (left). Results for MathVista, MathVerse, and MathVision are drawn
from prior work (Wang et al. (2025)). Consequently, the set of models differs from our main eval-
uation and includes additional variants such as MM-Eureka (Meng et al. (2025)) and ThinkLite-
VL (Deng et al. (2025)). These models were excluded from the main analysis for two reasons: (i) to
maintain a balanced number of models across categories, particularly those trained with direct RL,
and (ii) to focus on the stronger-performing models on other benchmarks.

Error type analysis. Figure 15 show full error type analysis results for all models tested in this
work.

Downstream performance under diagram modifications. Table 3 reports the complete down-
stream evaluation results on MATHLENS, including all diagram modifications. These values under-
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Model MathVista MathVerse MathVision MathLens-E MathLens
Qwen2.5-VL-7B 68.2 46.3 25.1 34.7 33.2
R1-Onevision-7B 64.1 46.4 29.9 35.4 29.8
MM-Eureka-Qwen-7B 73.0 50.3 26.9 34.0 31.3
ThinkLite-VL-7B 74.3 52.2 29.9 34.3 32.9
R1-ShareVL-7B 75.4 52.8 29.5 36.7 35.4
VL-Rethinker-7B 74.9 54.2 32.3 37.6 35.7
Qwen2.5-VL-72B 74.8 57.2 38.1 41.6 41.0
VL-Rethinker-72B 80.4 63.5 44.9 47.6 45.0

Table 2: Full results of all models used to produce the correlation plot in Figure 5 (left).

Model Variant Text Raw Base Add Add Flip Merge Rename Rotate Consistencylines shapes

VL-Rethinker-7B Backbone 38.9 34.7 33.2 26.1 28.1 30.6 26.9 29.4 31.4 31.0
MM-RL 41.1 37.6 35.7 31.4 29.4 34.7 30.6 33.5 35.5 37.3

ShareVL-R1-7B Backbone 38.9 34.7 33.2 26.1 28.1 30.6 26.9 29.4 31.4 31.0
MM-RL 42.1 36.7 35.4 31.1 32.7 33.9 33.7 35.1 35.3 41.3

R1-OneVision-7B
Backbone 38.9 34.7 33.2 26.1 28.1 30.6 26.9 29.4 31.4 31.0
MM-SFT 36.7 35.4 29.8 21.9 26.1 29.7 25.3 27.6 29.2 24.0
MM-RL 35.9 33.0 32.0 25.1 28.5 34.0 23.3 30.7 32.3 28.5

Vision-R1-7B
Backbone 38.9 34.7 33.2 26.1 28.1 30.6 26.9 29.4 31.4 31.0
MM-SFT 35.2 34.3 26.8 19.1 21.7 27.8 20.6 23.1 28.0 21.1
MM-RL 48.6 44.5 36.0 33.0 31.5 36.6 30.6 34.2 37.8 39.4

Revisual-R1-7B
Backbone 38.9 34.7 33.2 26.1 28.1 30.6 26.9 29.4 31.4 31.0
Text-SFT 62.3 43.8 39.2 32.9 35.1 42.7 32.8 37.4 39.8 41.0
MM-RL 63.8 51.7 45.8 35.3 38.0 44.4 39.1 42.2 44.7 46.9

OVR-7B
Backbone 38.9 34.7 33.2 26.1 28.1 30.6 26.9 29.4 31.4 31.0
Text-SFT 66.2 46.7 38.7 33.8 33.7 37.9 32.5 38.1 40.7 42.9
MM-RL 70.4 49.8 43.7 38.4 38.2 44.9 36.2 39.7 44.9 49.9

GLM-4.1V-9B Backbone 40.0 44.6 44.7 37.7 37.8 44.7 36.7 40.4 43.7 39.7
MM-RL 69.2 65.8 59.9 52.3 50.2 60.8 50.0 57.0 61.4 62.8

VL-Rethinker-72B Backbone 52.9 41.6 41.0 36.2 35.5 42.2 37.5 38.4 41.6 40.0
MM-RL 56.2 47.6 45.0 38.2 39.1 45.5 38.4 44.6 44.8 43.9

OpenAI 4O / O3 Backbone 49.1 40.7 39.1 35.2 32.9 40.7 33.6 39.0 40.8 38.7
Thinking 74.5 66.8 61.4 51.9 49.9 61.7 55.8 57.8 62.9 59.0

Gemini-2.5-Flash Backbone 79.9 – 69.2 – – – – – – –
Thinking 82.3 – 72.7 – – – – – – –

Claude-4-Sonnet Backbone 75.1 60.7 61.2 51.0 53.3 60.4 48.1 57.0 60.6 55.7
Thinking 84.1 65.6 64.4 51.0 55.0 65.6 51.5 61.0 67.0 57.0

Table 3: Downstream accuracy across diagram modifications with output consistency under these
conditions. Text indicates performance from textual descriptions instead of diagrams, Raw de-
notes original human-generated diagrams, Base the newly rendered diagrams, and the other cases
semantic-space modifications followed by rendering.

lie Figure 4, Figure 5 (right), Figure 8, and Figure 7. Note that the error-type analysis in Figure 15
relies on per-sample categorization and cannot be obtained directly from the aggregate scores pre-
sented here.

Perception probe results by question type. Table 4 reports the full benchmark scores for each
perception probe question type, providing the numerical values underlying Figure 9.

F QUALITATIVE EXAMPLES

Sample outputs on downstream geometry problems. We compare the fine-tuned multimodal
reasoners with their corresponding backbone MLLMs. Figure 16 and Figure 17 present cases where
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Model Variant Tri- Quad- Parallel Perpen- Collinear Co- Same len. Val. len. Same ∠ Val. ∠-angle -rilateral -dicular -circular

VL-Rethinker-7B Backbone 69.1 52.3 49.0 78.2 59.5 65.6 57.4 86.6 50.0 68.1
MM-RL 67.6 55.2 60.6 76.6 67.4 81.7 50.0 86.9 50.0 75.8

ShareVL-R1-7B Backbone 69.1 52.3 49.0 78.2 59.5 65.6 57.4 86.6 50.0 68.1
MM-RL 71.4 57.7 62.5 78.2 66.0 88.9 57.4 86.4 69.2 72.4

R1-OneVision-7B
Backbone 69.1 52.3 49.0 78.2 59.5 65.6 57.4 86.6 50.0 68.1
MM-SFT 67.6 48.1 56.7 67.4 53.2 60.0 48.5 76.7 46.2 63.5
MM-RL 71.4 54.4 59.6 72.2 61.1 59.4 55.9 79.1 61.5 66.9

Vision-R1-7B
Backbone 69.1 52.3 49.0 78.2 59.5 65.6 57.4 86.6 50.0 68.1
MM-SFT 65.8 49.4 43.3 73.5 64.8 60.0 45.6 78.6 61.5 73.8
MM-RL 70.9 56.1 49.0 76.1 65.7 77.8 57.4 88.9 61.5 76.9

Revisual-R1-7B
Backbone 69.1 52.3 49.0 78.2 59.5 65.6 57.4 86.6 50.0 68.1
Text-SFT 79.1 64.0 65.4 77.5 59.8 67.8 57.4 81.7 69.2 82.3
MM-RL 84.3 72.0 65.4 82.8 68.0 77.2 60.3 88.1 84.6 87.8

OVR-7B
Backbone 69.1 52.3 49.0 78.2 59.5 65.6 57.4 86.6 50.0 68.1
Text-SFT 83.5 61.5 79.8 82.2 61.0 69.4 57.4 83.2 69.2 86.0
MM-RL 82.2 67.8 76.9 85.9 66.9 80.6 50.0 83.0 80.8 89.0

GLM-4.1V-9B Backbone 74.3 52.3 76.9 77.8 68.2 74.4 57.4 90.1 53.8 74.5
MM-RL 82.2 66.5 88.5 88.8 66.2 91.7 82.4 95.3 92.3 88.0

VL-Rethinker-72B Backbone 66.7 49.8 76.9 80.4 66.8 94.4 67.6 94.5 69.2 87.4
MM-RL 83.3 57.7 79.8 84.3 65.2 96.7 64.7 93.7 80.8 86.7

OpenAI 4O / O3 Backbone 81.9 60.3 78.8 80.3 69.5 95.0 67.6 93.4 80.8 87.5
Thinking 94.0 95.4 95.2 92.8 94.1 93.9 95.6 98.9 100.0 96.7

Gemini-2.5-Flash Backbone 92.7 90.0 97.1 92.8 89.5 96.1 95.6 97.5 88.5 92.1
Thinking 93.2 92.1 97.1 95.5 91.8 96.7 98.5 98.4 92.3 93.9

Claude-4-Sonnet Backbone 88.6 75.3 79.8 85.2 82.3 95.0 77.9 98.1 84.6 92.5
Thinking 93.5 93.7 85.6 88.8 83.1 89.4 83.8 98.5 88.5 93.7

Table 4: Perception probe accuracy by question types.

fine-tuning corrected an initially wrong answer, while Figure 18 and Figure 19 illustrate cases where
the model produced incorrect answers both before and after fine-tuning.

Sample outputs on perception probes. Figure 20, Figure 21, and Figure 22 show cases where
textual SFT corrected initially wrong answers. Consistent with the quantitative results in Section 3.3,
the stronger cognitive patterns induced by textual SFT also promote improved perception.
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Please directly answer the question and provide the corect option letter, e.g., A, B, C, D.

Question: 

Given the following two images, a reference point is annotated on the first image, labeled with 
REF. You are given multiple red-circled points on the second image, choices of "A, B, C, D" are 
drawn beside each circle. Select between the choices on the second image and find the 
corresponding point for the reference point. Which point is corresponding to the reference 
point?

Choices: A. Point A B. Point B C. Point C D. Point D

QuestionQuestion

Text DescriptionText Description Perception-Centric QA

Is the point REF located on the left leg of the egret?

Choices: A. right leg B. left leg

Is point A located on the egret's head?

Choices: A. neck B. head

Is point B located on the egret's leg?

Choices: A. leg B. wing

Is point C located on a joint of the egret's leg?

Choices: A. leg joint B. leg shaft

Is point D located on the egret's leg?

Choices: A. body B. leg

{

  ...,

  "parts": [

    {

      "id": "REF",

      "class": "body",

      "part_of": "bird_left",

      "location": "joint of left leg"

    },

    {

      "id": "A",

      "class": "head",

      "part_of": "bird_right",

      "location": "beak"

    },

    {

      "id": "B",

      "class": "leg",

      "part_of": "bird_right",

      "location": "talon of left leg"

    },

    {

      "id": "C",

      "class": "leg",

      "part_of": "bird_right",

      "location": "joint of right leg"

    },

    {

      "id": "D",

      "class": "body",

      "part_of": "bird_right",

      "location": "upper part of left leg"

    }

  ]

}

What specific part of the egret is indicated by the 
point REF?

Choices: A. a leg joint B. a wing joint

Is point B located on the egret's talon?

Choices: A. talon B. knee

Is point C located on the egret's leg?

Choices: A. body B. leg

Is point C located on the right leg of the egret?

Choices: A. right leg B. left leg

Is point D located on the upper part of the egret's leg?

Choices: A. lower part of leg B. upper part of leg

Figure 12: Data samples from MATHLENS-GENERAL. We curate problem instance from a prior
dataset (Fu et al. (2024)) and annotate the text description and perception-centric question-answers.
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A quarantined physics student decides to perform an experiment to land a small box of mass 
$m=60 \mathrm{~g}$ onto the center of a target a distance $\Delta d$ away. The student 
puts the box on a top of a frictionless ramp with height $h_{2}=0.5 \mathrm{~m}$ that is 
angled $\theta=30^{\circ}$ to the horizontal on a table that is $h_{1}=4 \mathrm{~m}$ above 
the floor. If the student pushes the spring with spring constant $k=6.5 \mathrm{~N} / 
\mathrm{m}$ down by $\Delta x=0.3 \mathrm{~m}$ compared to its rest length and lands the 
box exactly on the target, what is $\Delta d$ ? Answer in meters. You may assume friction is 
negligible.

Choices:

A. 2.63

B. \Delta d = 2.22 \, \text{m}

C. 2.47

D. 2.59 \, \text{m}

Choices: A. Point A B. Point B C. Point C D. Point D

QuestionQuestion

Text DescriptionText Description Perception-Centric QA

...

{

  "objects": [

     ...,

     {

      "id": "label_h2",

      "attributes": ["h2 = 0.5 m"],

      "location": "right of 
inclined_plane, top height",

      "relations": [

        {

          "predicate": 
"measures_height_of",

          "object": "inclined_plane"

        },

        {

          "predicate": "right_of",

          "object": "inclined_plane"

        }

      ]

    },

    {

      "id": "label_delta_d",

      "attributes": ["\u0394d = ?"],

      ...

    },

    ...

  ]

}

What is the numerical value indicated by the label 
'h1'?

Choices:

A. 4 m

B. 0.5 m

What is the numerical value indicated by the label 
'h2'?

Choices:

A. 4 m

B. 0.5 m

What is the numerical value indicated by the label 'θ'?

Choices:

A. 45°

B. 30°

What type of object is positioned on the inclined 
plane and connected to the spring?

Choices:

A. large block

B. small block

What is the shape of the object that supports the 
inclined plane?

Choices:

A. rectangular

B. triangular

Figure 13: Data samples from MATHLENS-GENERAL. We curate problem instance from a prior
dataset (Hao et al. (2025)) and annotate the text description and perception-centric question-answers.
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Figure 14: Error type distribution across models on MATHLENS-GENERAL. Most shifts are
associated with perception-related cases.
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Figure 15: Distribution of error types per model. Most gains come from cases failing in both
perception and reasoning. Integration errors become more prominent as other categories improve.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Geometry Problem

Please first conduct reasoning, and then answer 
the question and provide the final answer as a 
symbolic expression or equation involving 
variables, e.g., 2 \sqrt{x} + 43 or \frac{5 x + 1}
{2}, at the end.

Question: Here is a mathematical geometric 
problem. As shown in the diagram, find length of 
line CD. The final answer should be enclosed in 
\boxed{}.


<think> 
Okay, let's see. I need to find the length of CD in this triangle. The diagram shows triangle ABC 
with points A, B, C, and D. The  respectively.

...

So, triangle ABC, with point D somewhere on AB. , so AB must be 24 + 14 = 38. 
Then, CD is perpendicular to both AC and BC? Wait, no. If there's a right angle at C and another at 
D, maybe CD is perpendicular to AB?

...

Then, AD = 24, DB = 14, and we need to find CD. That seems plausible. Let me confirm. 
...

 If the problem is structured such that ABC is a right-angled triangle at C, with CD perpendicular 
to AB, splitting AB into AD = 24 and DB = 14, then CD is indeed sqrt(24*14). But let me verify this 
formula. 
Yes, in a right-angled triangle, the altitude to the hypotenuse is the geometric mean of the two 
segments. So CD² = AD * DB. Therefore, CD = sqrt(24*14) = sqrt(336). Simplifying sqrt(336): 336 
= 16 * 21, so sqrt(16*21) = 4*sqrt(21). Therefore, CD = 4√21. So that would be the answer.

... 
</think> 
...
 

sides AC and BC are both 24 and 14

AD is 24, DB is 14

\[\boxed{4\sqrt{21}}\]

Backbone: Qwen-2.5-VL-7B


Textual SFT: Revisual-R1-7B


To solve for the length of line segment \(CD\), we can use the Pythagorean theorem in the right 
triangle \(ACD\). 
Given: 
- 
- 
Since \(CD\) is perpendicular to \(AB\), we can split the triangle into two smaller right triangles, 
\(ACD\) and \(BCD\). However, we only need to focus on triangle \(ACD\) to find \(CD\). 
In triangle \(ACD\): 
- 
- \(AD\) is the other leg, which we need to find. 
- 
Using the Pythagorean theorem in triangle \(ACD\): 
\[ AC^2 = AD^2 + CD^2 \] 
\[ 24^2 = AD^2 + CD^2 \] 
\[ 576 = AD^2 + CD^2 \] 
... 
Thus, the length of line segment \(CD\) is: 

\(AC = 24\) 
\(AB = 14\) 

\(AC\) is one leg, which is 24. 

\(CD\) is the hypotenuse. 

\[ \boxed{2\sqrt{119}} \]

Figure 16: Model responses for a downstream geometry problem in MATHLENS. The backbone
model fails in perception, leading to an incorrect answer. The textual SFT model initially makes the
same mistake but recovers the perceptual detail and produces the correct answer.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Geometry Problem

Please first conduct reasoning, and then 
answer the question and provide the final 
answer as a symbolic expression or equation 
involving variables, e.g., 2 \sqrt{x} + 43 or 
\frac{5 x + 1}{2}, at the end.

Question: Here is a mathematical geometric 
problem. As shown in the diagram, measure 
of arc DBC equals 170. D is centre of circle D. 
Find measure of angle CAB. The final answer 
should be enclosed in \boxed{}.


To solve the problem, we need to understand the relationship between the arc and the central 
angle, and then use that to find the inscribed angle.  

1. **Identify the central angle:** 
   The measure of arc DBC is given as 170 degrees. Since D is the center of the circle, the central 
angle BDC that subtends this arc is also 170 degrees.  

2. **Find the measure of angle BAC:** 
   Angle BAC is an inscribed angle that subtends the same arc BDC. The measure of an inscribed 
angle is half the measure of the central angle that subtends the same arc. Therefore, the measure 
of angle BAC is: 
   \[\text{Measure of angle BAC} = \frac{1}{2} \times \text{Measure of arc BDC} = \frac{1}{2} \times 
170 = 85 \text{ degrees}\]  

So, the measure of angle CAB is .
\boxed{85}

Backbone: Qwen-2.5-VL-72B


Multimodal RL: VL-Rethinker-72B


To solve for the measure of angle CAB, we need to use properties of circles and angles.
 

1. **Identify the given information:** 
   - The measure of arc DBC is 170 degrees. 
   - D is the center of the circle. 
2. **Determine the measure of angle BDC:** 
   - Since D is the center of the circle, angle BDC is a central angle that intercepts arc BDC. 
   - The measure of a central angle is equal to the measure of the intercepted arc. 
   - Therefore, angle BDC = 170 degrees. 

4. **Determine the measure of angle CAB:** 
   - Angle CAB is an inscribed angle that intercepts the same arc BC as the central angle BDC. 
   - The measure of an inscribed angle is half the measure of the intercepted arc. 
   - The measure of arc BC is 180 - 170 = 10 degrees (since the full circle is 360 degrees and arc 
DBC is 170 degrees). 
   - Therefore, angle CAB = 1/2 * 10 = 5 degrees.
 

Thus, the measure of angle CAB is . 

3. **Use the fact that the sum of angles in triangle BDC is 180 degrees:** 
   - In triangle BDC, the sum of the interior angles is 180 degrees. 
   - Let angle DBC = x and angle DCB = y. 
   - We have: angle BDC + angle DBC + angle DCB = 180 degrees. 
   - Substituting the known value: 170 + x + y = 180. 
   - Simplifying, we get: x + y = 10. 

\boxed{5}

Figure 17: Model responses for a downstream geometry problem in MATHLENS. The backbone
model exhibits a reasoning error, whereas the multimodal RL model provides the correct solution.
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Geometry Problem

Please first conduct reasoning, and then 
answer the question and provide the final 
answer as a symbolic expression or equation 
involving variables, e.g., 2 \sqrt{x} + 43 or 
\frac{5 x + 1}{2}, at the end.

Question: Here is a mathematical geometric 
problem. As shown in the diagram, find 
length of line XZ. The final answer should be 
enclosed in \boxed{}.


To solve for the length of line \(XZ\) in the given geometric problem, 

Given: 
- \(XY = 3x + 5\) 
- \(YZ = 5x - 7\) 
According to the Pythagorean theorem: 
\[ XZ^2 = XY^2 + YZ^2 \] 
Substitute the given values: 
\[ XZ^2 = (3x + 5)^2 + (5x - 7)^2 \] 
Expand both squares: 
\[ (3x + 5)^2 = 9x^2 + 30x + 25 \] 
\[ (5x - 7)^2 = 25x^2 - 70x + 49 \] 
...

Let's double check the problem statement and assumptions. If there was an intention to find a 
specific numerical value, it would likely involve solving for \(x\) or providing additional information. 
Since the problem doesn't specify any particular value for \(x\) and just asks for the length of 
\(XZ\), the expression itself is the solution. 
Therefore, the length of line \(XZ\) is: 

we need to use the 
Pythagorean theorem since \(XYZW\) forms a right-angled triangle with \(\angle XYZ = 
90^\circ\). 

\[ \sqrt{34x^2 - 40x + 74} \] 




Backbone: Qwen-2.5-VL-7B


Multimodal RL: VL-Rethinker-7B


To solve for the length of line \(XZ\), 

Given: 
- \(XY = 5x - 7\) 
- \(XZ = 3x + 5\) 
According to the Pythagorean theorem: 
\[ WY^2 = XY^2 + XZ^2 \]

Substitute the given values into the equation: 
\[ (5x - 7)^2 = (3x + 5)^2 + (5x - 7)^2 \] 
Since both sides of the equation are equal, we can simplify by recognizing that the equation 
holds true for any \(x\). However, we need to find the specific value of \(XZ\). 
Let's expand and simplify: 
\[ (5x - 7)^2 = (3x + 5)^2 + (5x - 7)^2 \] 
\[ 25x^2 - 70x + 49 = 9x^2 + 30x + 25 + 25x^2 - 70x + 49 \] 
\[ 25x^2 - 70x + 49 = 25x^2 - 40x + 74 \] 
... 
Thus, the length of line \(XZ\) is: 

we need to use the Pythagorean theorem since \(XYZ\) 
forms a right triangle with \(XY\) and \(XZ\) as the legs and \(WY\) as the hypotenuse.  

\[ \boxed{\frac{5}{2}} \] 

Figure 18: Model responses for a downstream geometry problem in MATHLENS. The multi-
modal RL model inherits the backbone model’s flawed reasoning, leading to perception errors and
downstream failure.
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Geometry Problem

Please first conduct reasoning, and then 
answer the question and provide the final 
answer as a symbolic expression or equation 
involving variables, e.g., 2 \sqrt{x} + 43 or 
\frac{5 x + 1}{2}, at the end.

As shown in the diagram, find measure of 
angle MLK. The final answer should be 
enclosed in \boxed{}.


<think>

Got it, let's analyze this geometric problem step by step. First, looking at the diagram, we can see 
that there's a quadrilateral LJMK, maybe a trapezoid or some specific quadrilateral. Let's note the 
angles at point L. There are two angles given: (6x + 8)° and (9x - 4)°, and they seem to be 
adjacent angles at point L, probably forming a right angle or some angle sum. Wait, but also, we 
have right angles at J and K, as indicated by the square symbols. So angle at J is 90°, angle at K is 
90°.  
... 
Wait, let's first look at triangle JML. , we have a right angle at J (90°), 

, and angle at M in triangle JML would be 180° - 90° - (6x + 8)° = 82° - 6x°. Then, looking 
at , which is triangle M KL, with a right angle at K (90°), , and 
angle at M in triangle MKL would be 180° - 90° - (9x - 4)° = 94° - 9x°.  
...

Since \( \angle JMK = \angle JML + \angle KML \), we have:   
\[ 
(82 - 6x) + (94 - 9x) = 176 - 15x 
\]   
This matches the earlier expression for \( \angle JMK \), confirming consistency. 

 gives:   
- \( (9x - 4)^\circ = 9(8) - 4 = 68^\circ \), which is \( \angle MLK \).   
... 
The answer is \( \).

 




In triangle JML angle at L is 
(6x + 8)°

triangle MKL angle at L is (9x - 4)°

To find \( x \), we 
use the fact that angles must be positive and test integer values. Setting \( x = 8 \) (a 
reasonable integer solution)

<|begin_of_box|>68<|end_of_box|>

Backbone: GLM-4.1V-9B-Base


Multimodal RL: GLM-4.1V-9B-Thinking


To solve for the measure of angle MLK, we need to analyze the given geometric figure and use 
the properties of angles.  

1. **Identify the angles:** 
   - Angle JLM is given as \( (6x + 8)^\circ \). 
   - 
   - Angle JKL is a right angle, so it measures \( 90^\circ \). 
2. **Use the property of a straight line:** 
   - The sum of angles on a straight line is \( 180^\circ \). 
   - Therefore, angle JLM and angle LKM are supplementary to angle JKL. 
... 
Therefore, the measure of angle MLK is \( 47.6^\circ \).  

\[ 

\] 

Angle LKM is given as \( (9x - 4)^\circ \). 

\boxed{47.6} 

Figure 19: Model responses for a downstream geometry problem in MATHLENS. The multi-
modal RL model corrects the perceptual error of the backbone model but ultimately fails to produce
the correct answer due to a reasoning error.
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Perception-Centric QA

Please first conduct reasoning, and then answer 
the question and provide the correct option 
letter between A or B at the end. Use only 
explicit information from the image without 
making inferences.

Question: Which sequence of points is 
collinear?

Choices:

A. VWZ

B. VYZ


To determine which sequence of points is collinear, we need to check if the points lie on the same 
straight line. 
From the diagram: 
- Points V, W, and Z are connected by lines that form a triangle with point A inside it. 
- Point Y is also part of the diagram but does not seem to be directly connected to V, W, or Z in a 
way that suggests collinearity with them. 
Since there is no direct indication that points V, W, and Z are collinear (they form a triangle), and 
point Y is not connected to V, W, or Z in a way that suggests collinearity, the correct sequence of 
points that appears to be collinear is:
 

\boxed{A}

<think>

Okay, let's see. The question is asking which sequence of points is collinear. The options are A. 
VWZ and B. VYZ. The image provided is a circle with several points labeled: V, W, X, Y, Z, and A. 
There's also a 25-degree angle mentioned at point V. 
First, I need to recall what collinear means. Collinear points are points that lie on the same straight 
line. So, I need to check if the points in each option lie on a single straight line in the given 
diagram.

...

But since the problem mentions a 25-degree angle at V, and the options are VWZ and VYZ, 
perhaps the correct answer is B. VYZ. Because if the angle at V is between VW and VY, and Z is 
on the line VY, then VYZ are collinear. Alternatively, if the angle is between VW and VZ, then VWZ 
are collinear.

... 
</think> 
To determine which sequence of points is collinear, we analyze the given information: points V, W, 
X, Y, Z, and A lie on a circle, and there is a 25° angle at point V. Collinear points must lie on the 
same straight line. 
1. **Option A (VWZ):** If V, W, Z are collinear, the line VWZ would pass through W and Z on the 
circle. However, the 25° angle at V suggests a relationship between two lines from V intersecting 
the circle. If the angle is between VW and VY, Z would need to lie on VW to make VWZ collinear, 
but this is not explicitly stated. 
2. **Option B (VYZ):** If V, Y, Z are collinear, the line VYZ would pass through Y and Z on the 
circle. Given the 25° angle at V, it is plausible that this angle is formed by secants VW and VY 
intersecting the circle. If Z lies on the line VY, then VYZ would be collinear. This configuration 
aligns with typical geometric setups where angles at external points relate to secants intersecting 
the circle. 
Since the problem specifies using only explicit information (the 25° angle at V and the circle 
containing V, W, X, Y, Z, A), the most logical conclusion is that the 25° angle involves secants VW 
and VY, with Z positioned on the line VY. Thus, **VYZ (Option B)** is collinear.  

\boxed{B}

Backbone: Qwen-2.5-VL-7B


Textual SFT: Revisual-R1-7B


Figure 20: Model responses for a perception probe in MATHLENS. The textual SFT model
corrects the perceptual error present in the backbone model.
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Perception-Centric QA

Please first conduct reasoning, and then answer 
the question and provide the correct option 
letter between A or B at the end. Use only 
explicit information from the image without 
making inferences.

Question: Which angle has a measure of 25 
degrees?

Choices:

A. YVW

B. ZVY


To determine which angle has a measure of 25 degrees, we need to look at the given information 
in the image. 
1. The image shows a circle with points V, W, X, Y, and Z. 
2. There is an angle labeled as 25 degrees, and it appears to be an exterior angle formed by the 
line segment VY and the tangent at point V. 
Given this information, the angle that measures 25 degrees is the one formed by the line segment 
VY and the tangent at point V, which corresponds to angle ZVY. 
Therefore, the correct answer is:  

\boxed{B}

<think>

Okay, let's see. The question is asking which angle has a measure of 25 degrees, and the options 
are A. YVW and B. ZVY. The image provided is a circle with several points labeled: V, W, X, Y, Z, 
and A. There's a 25-degree angle mentioned at point V.  
First, I need to recall how angles in a circle work. If there's a 25-degree angle at point V, that might 
be an inscribed angle or maybe a central angle. But in the diagram, the angle at V is between 
points Y and W. Wait, the angle is labeled as 25 degrees at V, so the angle at vertex V between 
points Y and W. So angle YVW is 25 degrees. That would be option A. But wait, the choices are A. 
YVW and B. ZVY. So if the angle at V is 25 degrees, then A is the answer. But maybe I need to 
check if there's another angle related to that.

... 
Looking at the image, the points are connected as follows: V is connected to Y and W (since angle 
YVW is 25 degrees). Then there's a circle with points Y, W, X, Z, etc. Maybe there are chords 
connecting these points. For example, Y to W, W to X, X to Z, Z to Y, etc. But the key is that the 
angle at V is 25 degrees, which is angle YVW. So that's angle A. Then angle ZVY would be at point 
V between Z and Y. But unless there's a line from V to Z, that angle isn't present. The problem 
states to use only explicit information. So if there's no line from V to Z, then angle ZVY doesn't 
exist. Therefore, the 25-degree angle is angle YVW, which is option A.  
... 
Wait, but maybe the 25 degrees is part of another angle. For example, if there's a triangle or 
another angle formed by intersecting chords. Let me think. If two chords intersect at a point, the 
measure of the angle is half the sum or difference of the intercepted arcs. But in this case, the 
angle at V is given as 25 degrees. If that's an inscribed angle, then the intercepted arc would be 
50 degrees. But the problem states to use only explicit information. The explicit information is that 
there's a 25-degree angle at V between Y and W. So unless there's another angle at V that's 25 
degrees, which would be ZVY, but there's no line from V to Z shown. 
</think> 
The angle at point V between points Y and W is explicitly labeled as 25 degrees in the diagram. 
This corresponds to angle YVW. There is no explicit mention or indication of a line from V to Z, so 
angle ZVY cannot be confirmed.   

\boxed{A}

Backbone: Qwen-2.5-VL-7B


Textual SFT: Revisual-R1-7B


Figure 21: Model responses for a perception probe in MATHLENS. The textual SFT model
corrects the perceptual error present in the backbone model.
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Perception-Centric QA

Please first conduct reasoning, and then answer 
the question and provide the correct option 
letter between A or B at the end. Use only 
explicit information from the image without 
making inferences.

Question: Which angle has a measure of 35 
degrees?

Choices:

A. CBA

B. BCA


To determine which angle has a measure of 35 degrees, we need to identify the angle labeled as 
35 degrees in the diagram. 
From the image, we can see that the angle labeled as 35 degrees is located at vertex B and is 
part of the triangle ABC. 
Therefore, the angle with a measure of 35 degrees is BCA.  

The correct answer is .\boxed{B}

<think> 
Okay, let's see. I need to figure out which angle in the given triangle is 35 degrees. The triangle 
has points A, B, and C. The given information is that angle at B is 35 degrees, angle at C is 52 
degrees, and there's an angle at A labeled as x degrees. The choices are A. CBA and B. BCA. Wait, 
let me make sure I understand the notation here. 
First, angle CBA would be the angle at point B, right? Because the middle letter is the vertex. So 
CBA is angle at B. Similarly, BCA is the angle at C. So the question is asking which of these two 
angles (at B or at C) is 35 degrees. But wait, the problem states that angle B is 35 degrees. So 
that would be angle CBA, which is option A. But wait, let me check again. 
... 
Wait, the problem says "angle B" is 35°, so angle at B is 35°, which is angle CBA. So that's option 
A. But maybe I'm missing something. Let me check the image description again. The image shows 
a triangle with points A, B, C. The angle at B is 35°, angle at C is 52°, and angle at A is x°. So the 
angles are: B = 35°, C = 52°, A = 93°. Therefore, the angle with 35° is angle CBA (at B), which is 
option A. So the answer should be A. But wait, the problem might have a different labeling. Let me 
make sure. 
Wait, sometimes in geometry diagrams, the labels can be tricky. Let me think. If the triangle is 
labeled with vertices A, B, C, then angle CBA is the angle at B between points C and A. Similarly, 
angle BCA is the angle at C between points B and A. So in the given problem, angle at B is 35°, 
which is angle CBA (option A). The angle at C is 52°, which is angle BCA (option B). So the 35° 
angle is angle CBA, so the answer is A. Therefore, the correct option is A. 
</think> 
The triangle has angles at points B, C, and A. The given angles are 35° at B and 52° at C. To find 
the measure of angle A, we use the triangle angle sum property:   
\[ 
35^\circ + 52^\circ + x = 180^\circ \implies x = 180^\circ - 35^\circ - 52^\circ = 93^\circ. 
\]   
However, the question asks which angle is **35°**, which is explicitly labeled at point B. The angle 
at B is denoted as **CBA** (with vertex at B), corresponding to option **A**.    

\boxed{A}

Backbone: Qwen-2.5-VL-7B


Textual SFT: Revisual-R1-7B


Figure 22: Model responses for a perception probe in MATHLENS. The textual SFT model
corrects the perceptual error present in the backbone model.
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