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Abstract In automated machine learning and other applications of Bayesian optimization, deciding
when to stop evaluating expensive black-box functions is practically important. Existing
adaptive stopping rules lack guarantees ensuring they stop before incurring excessive func-
tion evaluation costs. We propose a cost-aware stopping rule for Bayesian optimization
that is free of heuristic tuning and grounded in a theoretical connection to state-of-the-art
cost-aware acquisition functions, namely the Pandora’s Box Gittins Index (PBGI) and log
expected improvement per cost. We prove a theoretical guarantee bounding the expected
cumulative evaluation cost incurred by our stopping rule when paired with these two acqui-
sition functions. Empirical results on hyperparameter optimization and neural architecture
size search show that combining our stopping rule with the PBGI acquisition function con-
sistently matches or outperforms other acquisition-function–stopping-rule pairs in terms
of cost-adjusted simple regret, a metric capturing trade-offs between solution quality and
cumulative evaluation cost.

1 Introduction
Bayesian optimization is a framework designed to efficiently solve optimization problems involving
expensive-to-evaluate black-box functions, particularly in hyperparameter tuning [13]. It iteratively
updates a probabilistic model of the objective based on current data and selects new evaluation
points via an acquisition function balancing exploration and exploitation.

This work considers the cost-aware setting, where each evaluation incurs an input-dependent
costs. For example, hyperparameter tuning in cloud environments incurs CPU/GPU hour costs
depending on chosen hyperparameters, creating a tradeoff between the compute cost of training
and the business value of deploying an accurate model. We therefore aim to design adaptive
stopping rules that optimizes expectation of cost-adjusted simple regret, which defined as the sum
of simple regret and the cumulative cost of data collection.

Several stopping rules have been proposed for Bayesian optimization. Simple heuristics—such as
fixing a maximum number of iterations or stopping when improvement falls below a threshold—are
widely used in practice [9, 10], but can either stop too early or lead to unnecessary evaluations.
Other more advanced approaches have been proposed [4, 7, 9–11], but none of them allow for
varying function evaluation costs.

In this work, we study how to design cost-aware stopping rules, motivated by two primary
factors. First, state-of-the-art cost-aware acquisition functions such as the Pandora’s Box Gittins
Index (PBGI) [16] and log expected improvement per cost (LogEIPC) [1] have not yet been studied
in the adaptive stopping setting. This is important because—as our experiments in Section 4 will
show—for best performance, one should pair different acquisition functions with different stopping
rules. Second, while certain stopping rules, such as UCB-LCB [10], are guaranteed to achieve a
low simple regret, they are not necessarily guaranteed to do so with low evaluation costs. This
is important because—as our experiments will show—UCB-LCB will often incur high evaluation
costs, resulting in a high cost-adjusted simple regret.

Our main methodological contribution is a stopping rule that is provably Bayesian-optimal in
the independent evaluation case, and empirically strong in the general case. This stopping rule is
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constructed based on ideas from Pandora’s Box theory, which forms the theoretical foundation for
the recently-proposed PBGI acquisition function. It also aligns closely with an existing stopping
rule in the uniform-cost setting, namely one based on expected improvement [11]; our work thus
extends this stopping rule to the varying-cost setting. Our specific contributions are as follows:

1. A Novel Cost-Aware Stopping Criterion. We propose an adaptive stopping rule derived naturally
from Pandora’s box theory, establishing a unified and principled framework applicable to cost-
aware Bayesian optimization.

2. Theoretical Guarantee. We prove in Theorem 1 that our stopping rule, when paired with the PBGI
or LogEIPC acquisition functions, satisfies a theoretical upper bound on expected cumulative
cost up to stopping, which constitutes the first theoretical guarantee of this type for any adaptive
stopping rule for Bayesian optimization.

3. Empirical Validation. Our experiments show that combining the PBGI acquisition function
with our proposed stopping rule consistently matches or outperforms other combinations of
acquisition functions and stopping rules on two AutoML benchmarks [3, 17].

2 Bayesian Optimization and Adaptive Stopping
In classic finite-horizon Bayesian optimization the goal is to adaptively evaluate an unknown
function 𝑓 : 𝑋 → R, which is assumed to be sampled from a Gaussian process (GP) [12], at𝑇 points
𝑥1, . . . , 𝑥𝑇 , with the general aim of minimizing the lowest objective value observed. A specific
metric that measures this is expected simple regret [5, Sec. 10.1].

We study a cost-aware variant of Bayesian optimization that differs in three ways from the finite-
horizon version above. First, different points have different evaluation costs, with a cost function
𝑐 : 𝑋 → R+ mapping each point 𝑥 to its evaluation cost 𝑐 (𝑥). In this abstract, we assume the cost
function is known to the algorithm, but it is possible to extend our method to unknown costs.
Second, instead of a fixed number of time steps, the algorithm decides when to stop. That is, in
addition to adaptively choosing the points 𝑥𝑡 , it also adaptively chooses a stopping time 𝜏 ≥ 0.
Specifically, after inspecting 𝑥𝑡 and observing 𝑦𝑡 = 𝑓 (𝑥𝑡 ), the algorithm must decide whether to
stop now—in which case 𝜏 = 𝑡—or to continue. Third, instead of the evaluation costs being part of
a constraint, the costs are incorporated into the objective. Specifically, we aim to optimize a metric
we call expected cost-adjusted simple regret, defined by

R𝑐 = E

[
min
1≤𝑡≤𝑇

𝑦𝑡 − inf
𝑥∈𝑋

𝑓 (𝑥)︸                   ︷︷                   ︸
simple regret

+
𝑇∑︁
𝑡=1

𝑐 (𝑥𝑡 )︸    ︷︷    ︸
cumulative cost

]
. (1)

2.1 Acquisition Functions

Most Bayesian optimization algorithms select their next points using an acquisition function,
denoted 𝛼𝑡 (𝑥), which gives a "rating" to each point 𝑥 at each time 𝑡 . When using an acquisition
function, the point 𝑥𝑡+1 is chosen to maximize or minimize of the acquisition function 𝛼𝑡 (𝑥).

In this work, we consider a number of acquisition functions—chiefly, log expected improvement
per cost (LogEIPC) [1] and the Pandora’s Box Gittins Index (PBGI) [16]. These, respectively, are

𝛼
LogEIPC
𝑡 (𝑥) = log

EI𝑓 |𝑥1:𝑡 ,𝑦1:𝑡
(
𝑥 ;𝑦∗1:𝑡

)
𝑐 (𝑥) (choose maximizer) (2)

𝛼PBGI𝑡 (𝑥) = 𝑔 where 𝑔 solves EI𝑓 |𝑥1:𝑡 ,𝑦1:𝑡 (𝑥 ;𝑔) = 𝑐 (𝑥) (choose minimizer) (3)

where EI𝜓 (𝑥 ;𝑦) = E [max(0, 𝑦 −𝜓 (𝑥))] is the expected improvement at point 𝑥 with respect to
some random function𝜓 : 𝑋 → R and a comparison value𝑦; 𝑦∗1:𝑡 = min1≤𝑠≤𝑡 𝑦𝑠 is the best observed
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value up to time 𝑡 ; and 𝑐 (𝑥) is the evaluation cost at point 𝑥 . In the classical uniform-cost setting,
we also consider the classical lower confidence bound (LCB) and Thompson sampling (TS) acquisition
functions: see Garnett [5] for additional details.

2.2 Adaptive Stopping Rules
A number of stopping rules have been proposed for Bayesian optimization. These include methods
that stop when they estimate that convergence has occurred [2], when acquisition function values
fail to cross a threshold [4, 7–9, 11], and when they estimate that regret is low [7, 10, 15]. We use
several of these methods as baselines in our experiments in Section 4. However, to the best of our
knowledge, all of these prior methods do not explicitly account for varying evaluation costs.

3 A Stopping Rule Based on the Gittins Index
In this work, we propose a new stopping rule tailored for two state-of-the-art acquisition functions
used in cost-aware Bayesian optimization: LogEIPC and PBGI, introduced in Section 2.

The inspiration for our stopping rule comes from the Pandora’s Box problem [14], which Xie
et al. [16] observed can be viewed as a (generalization of a) special case of cost-aware Bayesian
optimization with two significant simplifications: (1) there are only finitely many points 𝑋 =

{1, . . . , 𝑁 }; and (2) the objective function has no correlations, i.e. 𝑓 (𝑥) and 𝑓 (𝑦) are independent if
𝑥 ≠ 𝑦. In this special case, using the PBGI acquisition function together with the following stopping
rule is Bayes-optimal for cost-adjusted regret:

stop at 𝜏 = 𝑡 if min
𝑥∈𝑋

𝛼PBGI𝑡 (𝑥) ≥ 𝑦∗1:𝑡 . (4)

Our proposal is to use this stopping rule in general Bayesian optimization. The intuition behind it
is that the PBGI acquisition value 𝛼PBGI𝑡 (𝑥), called the Gittins index of point 𝑥 [6], is in some sense
the "fair value" of that point. If 𝑥 = 𝑥𝑡 has been evaluated, its Gittins index is simply its revealed
value 𝑦𝑡 = 𝑓 (𝑥𝑡 ). If 𝑥 has not been evaluated, its Gittins index summarizes the utility of being able
to reveal a new random value 𝑓 (𝑥) by paying cost 𝑐 (𝑥). From this view, (4) says to stop when the
best Gittins index is at an evaluated point.

Connection to LogEIPC. Using the fact that the PBGI acquisition function is defined in terms of
a root-finding problem related to the expected improvement function, one can show that (4) is
equivalent to a stopping rule based on LogEIPC:

stop at 𝜏 = 𝑡 if max
𝑥∈𝑋

𝛼
LogEIPC
𝑡 (𝑥 ;𝑦∗1:𝑡 ) ≤ 0. (5)

Unwrapping the logarithm, this is in turn equivalent to

stop at 𝜏 = 𝑡 if EI
(
𝑥 ;𝑦∗1:𝑡

)
≤ 𝑐 (𝑥) for all 𝑥 ∈ 𝑋 \ {𝑥1, . . . , 𝑥𝑡 }. (6)

This gives an intuitive interpretation of the stopping rule: stop when no unevaluated point’s expected
improvement outweighs its evaluation cost. We call the stopping rule given by the equivalent
conditions (4), (5), and (6) the PBGI/LogEIPC stopping rule.

Bounding the Cost up to Stopping. The following result bounds the expected cumulative cost
incurred when using it in conjunction with the PBGI or LogEIPC acquisition functions.

Theorem 1. Consider optimizing 𝑓 ∼ GP (𝜇, 𝐾) on a compact, non-empty domain 𝑋 , and let 𝑐 be the
cost function. Suppose at time 1, a fixed point 𝑥1 is evaluated, and thereafter the acquisition function
is either PBGI or LogEIPC. Let 𝜏 be the stopping time under the PBGI/LogEIPC stopping rule from (4).
Then the expected cumulative cost starting at time 2 is bounded by

E

[
𝜏∑︁
𝑡=2

𝑐 (𝑥𝑡 )
]
≤ 𝜇 − E

[
min
𝑥∈𝑋

𝑓 (𝑥)
]
. (7)
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Figure 1: Cost-adjusted simple regret of different acquisition-function–stopping-rule pairs on LCBench
(left) and NATS-Bench (right). Squares show means, and bars show two times standard error.

While there are several results bounding the expected simple regret after stopping under
various stopping rules [7, 10, 11, 15], Theorem 1 is, to the best of our knowledge, the first theoretical
guarantee on the expected cumulative cost. We emphasize that our result requires using the PBGI or
LogEIPC acquisition functions (or, potentially, other related acquisition functions), reflecting the
importance of studying stopping-rule–acquisition-function pairs together.

4 Experiments on AutoML Benchmarks

Acquisition functions. We consider four common acquisition functions that were discussed in
Section 2: log expected improvement per cost (LogEIPC), Pandora’s Box Gittins Index (PBGI), lower
confidence bound (LCB), and Thompson sampling (TS)—chosen for their competitive performance,
computational efficiency, and close connections to existing stopping rules.

Baselines. We compare our PBGI/LogEIPC stopping rule against several stopping rules from prior
work: UCB-LCB [10], LogEIPC-med [7], SRGap-med [7], and PRB [15]. Additionally, we include two
simple heuristics used in practice: convergence (stop when the best value remains unchanged for a
fixed number of iterations) and GSS (stop when the improvement is no longer significant relative
to the inter-quartile range) used in Meta’s Ax platform [2]. Each experiment is repeated with 50
random seeds to assess variability. Each trial (run with a distinct random seed) is capped at 200
iterations; if a stopping rule is not triggered within this limit, the stopping time is set to the cap.

Benchmarks. We test our algorithms on empirical objective functions from two AutoML bench-
marks: LCBench [17], a hyperparameter tuning data set; and NATS-Bench [3], a neural architecture
search benchmark. Each of these benchmarks feature data about thousands of models trained on
several tasks; we show results for three tasks from each benchmark. While we use a GP model,
specifically one with a Matérn 5/2 kernel, to capture correlations between similar data points, we
restrict our search space to points that correspond to configurations in the benchmark data, so our
acquisition function optimization is over a discrete (but large) space.

During acquisition, we use validation error for the objective value, but when computing regret,
we use test error for the objective value. For the evaluation cost, we use an estimated training
cost based on the number of model parameters for LCBench or number of FLOPs (floating point
operations) for NATS-Bench.

Experiment results. Figure 1 compares cost-adjusted regret for acquisition function and stopping
rule pairings. Overall, our PBGI/LogEIPC stopping rule consistently performs competitively in
terms of cost-adjusted simple regret—often close to the hindsight optimum—especially when paired
with the PBGI acquisition function. When combined with either the LogEIPC or PBGI acquisition
function, it also avoids excessive spending, in line with Theorem 1, whereas other acquisition-based
and regret-based methods do not, particularly on NATS-Bench.
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