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ABSTRACT

Neural Algorithmic Reasoning (NAR) is the research area that aims to build arti-
ficial neural networks that can mimic (classical) algorithms, reproducing interme-
diary steps from their execution traces. NAR expects to enhance neural network
generalization and help to develop more efficient, adaptable, and faster algorithms.
This capability makes it a highly promising approach for dynamic systems in un-
predictable, real-world environments. Among the existing methods for algorithm
reproduction, the Message Passing Neural Network (MPNN) architecture and its
variations, such as Triplet-GMPNN, stand out. This paper proposes a novel vari-
ant of Triplet-GMPNN, characterized by three key modifications: a streamlined
message-passing process, a new gating-type activation mechanism, and the use
of a minimum-type function for embedding reduction. To ascertain the individ-
ual contribution of each component, a comprehensive ablative analysis was con-
ducted. This study evaluates each architectural modification through the lens of
algorithmic alignment. This work advances the understanding of these systems
and opens up new design possibilities for future Neural Algorithmic Reasoning
architectures.

1 INTRODUCTION

Neural Algorithmic Reasoning (NAR) is the research field that builds artificial neural networks
to mimic (classical) algorithms, reproducing their steps from intermediary abstract inputs (traces)
(Veličković & Blundell, 2021; Georgiev et al., 2023; Bevilacqua et al., 2023; Mahdavi et al., 2023;
Cappart et al., 2023; Rodionov & Prokhorenkova, 2024). The research area emerged to help neural
network generalization enhancement, developing more efficient and faster algorithms, especially
those related to algorithmic representations (Mahdavi et al., 2023; Veličković & Blundell, 2021).

Learning algorithms must seem inappropriate at first, once classical deterministic algorithms use
a precise, finite, and effective approach so that a set of instructions is capable of transforming an
input into an output (Cormen et al., 2022; Arora & Barak, 2009; Knuth, 1997; Robert Sedgewick,
2011). Nevertheless, traditional metrics like output accuracy and correctness lose their conventional
meaning when the input data is imprecise. Using a precise algorithm on an imprecise input will not
necessarily produce an optimal value.

Neural Algorithmic Reasoning (NAR) is particularly promising for dynamic systems, especially
those in real-world, uncontrolled environments. It excels in these contexts because they contain
imprecise and noisy metrics, subject to interactive updates (feedback loops) that continuously alter
the system’s state. Real-time routing problems are an example of a practical application suitable
for NAR methods. In such problems, input data, such as distance, speed, and traffic conditions,
are constantly changing and imprecise, often forcing conventional algorithms to rely on simplified
averages (Rahemi & Mosavi, 2021; Sirish Kumar & Srilatha Indira Dutt, 2020; Rychlicki et al.,
2020; Merry & Bettinger, 2019; Zhang & Fink, 2024).

NAR aims to produce models that can generalize beyond training data, providing a robust out-of-
distribution (OOD) abstraction, representing algorithm behaviors (Georgiev et al., 2023; Reed &
de Freitas, 2016; Zhou et al., 2022). Beyond processing data akin to the training distribution (in-
distribution - ID), the models should demonstrate sufficient generalization to larger input sizes and
unseen data distributions, ensuring data abstraction (Georgiev et al., 2023; Veličković et al., 2020;
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Yan et al., 2020). Provide OOD aims to enhance neural networks’ generalization capability while
reducing their dependence on large training datasets.

This research presents new method to reproduce algorithms. It is an improvement to the well-
known Triplet-GMPNN algorithm (Ibarz et al., 2022). The main contributions of this paper are
(i) a simplified message passing mechanism for MPNN architectures that operates on node, edge,
and graph pair; (ii) the usage of a minimum function for effective dimensionality reduction within
the activation mechanism; (iii) a new gating-type activation mechanism that improved our model
performance; (iv) a detailed ablation study evaluating the individual impact of each architectural
change, allowing for an analysis through the lens of algorithmic alignment.

This work is organized as follows. Section 2 contains a brief background to understand this paper,
while related works are presented in Section 3. Section 4 outlines our method. The analysis of ex-
perimental results is presented in Section 5. Finally, Section 6 draws some conclusions and proposes
future work.

2 BACKGROUND

Neural Algorithmic Reasoning (NAR) aims to design neural network models to emulate the execu-
tion of algorithms with robust performance on novel and unseen training data distribution (OOD -
out of distribution), solving instances with higher complexity than those used in the learning phase
(Veličković & Blundell, 2021; Xu et al., 2021; Numeroso et al., 2023).

In NAR, an algorithm τ should be learned by a neural network ϕ. Considering that the algorithm τ
admits the existence of an abstracted input x, after the execution, τ produces an output y, summa-
rized by y = τ(x). NAR model expects that ϕ receives an abstracted input x, producing an output
defined by y ≈ ϕ(x) (Veličković & Blundell, 2021; Ibarz et al., 2022; Numeroso, 2024).

Considering that NAR is suitable for imprecise or noisy input data, it is possible to consider that the
abstracted input data x ≈ x, where x is the real non-abstracted input. Then, the output y for the real
problem is modeled as y ≈ τ(x), which can be modeled as y ≈ ϕ(x), once the differentiable neural
network can supposedly adjust the inherited modeled input error.

In NAR, a common paradigm to mimic algorithms is the encode-process-decode (Hamrick et al.,
2018). In that, ϕ represents an encoder-process-decoder neural network composed of an encoder
function f , a processor ρ, and a decoder function g. The processor ρ operates within a latent space,
learning a differentiable function that algorithmically maps an input x to an output y.

The simplicity of mapping and reproducing the structures, components, procedures, and calcula-
tions of an algorithm τ into the neural network ϕ is defined as algorithm alignment. It means that
the model ϕ can learn “easily” the algorithm τ (Xhonneux et al., 2021; Xu et al., 2020; Dudzik &
Veličković, 2022). Graph Neural Networks and Transformer architectures stand out in the litera-
ture for representing the processor ρ. They can converge and extrapolate nonlinear tasks in NAR,
representing features of unseen data (Xu et al., 2020; 2021).

3 RELATED WORK

Before the rise of Graph Neural Networks (GNNs), Reinforcement Learning (RL) stood out as a
differentiable architecture to reproduce algorithms. Even before the definition of Neural Algorithm
Reasoning, some authors (Vinyals et al., 2015; Zaremba & Sutskever, 2015; Madsen & Johansen,
2020; Schwarzschild et al., 2021; Graves et al., 2014; Łukasz Kaiser & Sutskever, 2016; Li et al.,
2017; Graves et al., 2016; Chang et al., 2019) built methods and architectures to replicate part of the
algorithms, as loops, internal states, recursion, and other structures, specially for simple tasks, as
addition, multiplication, if loops, and variable assignment.

After 2019, Graph Neural Networks (GNNs) emerged as the prevailing methodology for algorithmic
reasoning tasks. This is attributed to their inherent suitability for representing algorithms, especially
those based on Dynamic Programming (Xu et al., 2020). The introduction of the CLRS-30 bench-
mark (Veličković et al., 2022) in 2022 accelerated this trend, creating a standard that biased the
use of graph-based architectures. The CLRS-30 framework later inspired new benchmarks, includ-
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ing SALSA-CLRS (Minder et al., 2023), which focuses on scalability and sparsity, and CLRS-Text
(Markeeva et al., 2024), an adaptation of the original benchmark into a textual format.

Before the establishment of the CLRS-30 benchmark, research in algorithmic learning was char-
acterized by efforts to reproduce algorithms or their core components, including basic structures,
if-structures, and loops (Veličković et al., 2020; Veličković et al., 2020; Yan et al., 2020; Xhonneux
et al., 2021). A significant limitation, however, was the lack of a standardized evaluation frame-
work. Individual work reproduced a set of algorithms, as Breadth-First Search (BFS), Bellman-
Ford, Prim’s Minimum Spanning Trees (Veličković et al., 2020), Selection Sort, Merge Sort, and
Dijkstra’s Shortest Path (Yan et al., 2020). Further applications included developing heuristics for
the A* algorithm (Numeroso et al., 2022) and the emulation of the Ford-Fulkerson algorithm, based
on max-flow, min-cut theorem (Numeroso et al., 2023).

The introduction of the CLRS-30 (Veličković et al., 2022) dataset provided a benchmark for com-
paring NAR architectures and accelerated new model development. Ibarz et al. (2022) built Triplet-
GMPNN, a generalist learner using triplet messages. Hint-ReLIC (Bevilacqua et al., 2023) added
a self-supervision method to improve OOD performance. Triplet Learning was also used as a base
method for Triplet Edge Attention (Jung & Ahn, 2023), which included an attention mechanism
with edge features, and Triplet-GMPNN with No-Hint (Rodionov & Prokhorenkova, 2023), which
removed intermediate supervision, producing a new graph representation without a hint regime.

Different approaches were applied to CLRS-30, as ForgetNet (Bohde et al., 2024), which uses histor-
ical embeddings to realign the graph with the algorithms. Memory-enhanced GNNs were presented
in Neural Priority Queues (Jain et al., 2023), an extension that uses priority queues as memory. Re-
cursive Algorithmic Reasoning (Jayalath et al., 2023) used a stack as memory for reasoning, tested
only in the CLRS-30 DFS dataset, enabling learning recursive structures.

In addition to GNNs, Transformer-based architectures have been used to emulate algorithmic exe-
cution. For instance, Li et al. (2024) created an attention mechanism that aggregates information
across similar algorithms to improve multitask learning, validating their approach on the CLRS-
30 benchmark. Other models, such as Relational Transformers (Diao & Loynd, 2023) and the 2-
Weisfeiler-Lehman GNN (Mahdavi et al., 2023), have also been applied to this benchmark. Further
advancements include the use of Discrete NAR (Rodionov & Prokhorenkova, 2024) on the SALSA-
CLRS dataset to enforce finite-state reasoning, and the Transformer-NAR (Bounsi et al., 2024), a
variant of Triplet-GMPNN, applied on both the CLRS-Text and CLRS-30 benchmarks.

Theoretical fundamentals that suggested that neural networks can reproduce algorithms were also
presented in the literature. Dudzik & Veličković (2022) established a formal relationship between
Graph Neural Networks and Dynamic Programming, suggesting that Message Passing Neural Net-
works (MPNN) can represent relational structures required for algorithmic execution In related
work, Back De Luca & Fountoulakis (2024) demonstrated that Transformer Networks are able to
reproduce algorithms and their intermediate steps. Complementing these findings, Georgiev et al.
(2024) related equilibrium models and algorithmic processes.

Researchers have also investigated training methodologies for these models. Mahdavi et al. (2023)
and Rodionov & Prokhorenkova (2023) analysed the impact of the usage of hints (intermediate
supervision) in training, suggesting that practice can lead to lower performance. However, offering
a different perspective, Bevilacqua et al. (2023) observed that hints are advantageous when inputs
share computational steps (different inputs can have the same intermediate computations), enabling
data augmentation, which helps generalization. Xhonneux et al. (2021), in another line of research,
studied transfer learning on NAR, indicating that similar algorithms can be used to create an effective
bias to help the training of other algorithms.

4 METHOD

This section outlines the development and evaluation process for our proposal. Subsection 4.1 de-
scribes the CLRS-30 benchmark, used as the basis for our experiments. Subsection 4.2 details the
Triplet-GMPNN method (Ibarz et al., 2022), the model on which our work is based. Finally, Sub-
section 4.3 contains our method, detailing its architecture, components, and our training procedure.
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4.1 DATASET

The CLRS Algorithmic Reasoning Benchmark (Veličković et al., 2022) features 30 algorithms from
the textbook “Introduction to Algorithms” by Cormen, Leiserson, Rivest, and Stein (Cormen et al.,
2009), categorized into sorting, searching, dynamic programming, graphs, strings, and geometry. In
CLRS-30, all algorithms are modeled as graph problems, regardless of their original domain. Each
task’s data includes an input, an output, and a series of “hints” - intermediate steps that capture the
algorithm’s state, enabling a step-by-step replication of its execution. These hints enable tracing the
algorithm’s execution (Veličković et al., 2022; Diao & Loynd, 2023; Jung & Ahn, 2023).

4.2 FOUNDATIONAL METHOD

The model’s architecture employs the encode-process-decode paradigm (Hamrick et al., 2018), a
structure well-documented in prior works (Ibarz et al., 2022; Mahdavi et al., 2023; Bevilacqua et al.,
2023; Jung & Ahn, 2023) and suggested by the authors of the CLRS-30 benchmark (Veličković
et al., 2022). To maintain consistency and simplify comparison, this section will use a notation
similar to Ibarz et al. (2022).

For each algorithm τ , an encoder fτ takes the inputs and hints, which are first concatenated into a
single multidimensional vector. The input and hint vectors are concatenated, and the resulting tensor
is fed into the intermediate layers of the model (hidden size, h). Node, edge, and graph embeddings
have, at a given time t, respectively, the dimensions n× h, n×n× h, and h, where n is the number
of nodes and h is the number of hidden size. Algorithms trained on the CLRS-30 benchmark can
share these embeddings (Ibarz et al., 2022).

The processor used on the Triplet-GMPNN network (Ibarz et al., 2022) is derived from the well-
known Message-passing Neural Network (Gilmer et al., 2017). The model combines the features
from nodes, x(t)

i , edges, e(t)ij , the graph, g(t), and an adjacency matrix, m(t)
i , representing the hints.

The node features x(t)
i are concatenated with the node embeddings of the intermediate layers h(t−1)

i

to create a set of features z(t) = x
(t)
i ||h(t−1)

i , for training the model. Subsequently, the input nodes,
z(t), edges, e(t)ij , and graphs, g(t), are each transformed independently by a fully connected layer.

Once the fully connected layers generate the embeddings, the model combines them. As previously
described, the node and graph embeddings differ in size from the edge embeddings. Consequently,
they must be expanded to matching dimensions before the combination step can occur. The com-
bination of the embeddings m

(t)
i feeds a Multi-layer Perceptron Neural network, which increases

stability and enables the model to capture relationships between data. The resulting embedding is
multiplied by the hints, followed by a reduction operation using max aggregation. Finally, both the
output z(t) and m

(t)
i are independently transformed and combined. In the Triplet-GMPNN algo-

rithm, the model passes through a gating function, defined as g(t)i = fg

(
z
(t)
i ,m

(t)
i

)
.

The decoder gτ is responsible for interpreting the results generated by the processor. It decodes three
types of embeddings - scalar, categorical, and pointers - in addition to the final graph output. The
decoding process for each embedding type involves computing the similarity between the model’s
prediction and the target value, using a specific criterion (argmax or softmax) determined by a code
parameter (Ibarz et al., 2022; Veličković et al., 2022).

The loss function is computed after the predictions are decoded. The calculation method is tailored
to the data type (scalar, categorical, or pointer) for both the primary predictions and, optionally,
hints. If used, hint loss is added to the main prediction loss to help the learning process (Ibarz et al.,
2022; Veličković et al., 2022).

4.3 METHOD CONTRIBUTION

Our analysis of the Triplet-GMPNN architecture (Ibarz et al., 2022), whose implementation is avail-
able in the CLRS-30 benchmark (Veličković et al., 2022), identified opportunities to improve the
algorithm by simplifying certain structures, all while maintaining performance comparable to the
original. For comparison purposes, only changes were made to the processor, despite the possibility
of improvements to the encoder and decoder, as existing in the literature (Li et al., 2024).
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Keeping the same structure as the MPNN and Triplet-GMPNN approaches, the model combines the
embeddings of nodes, x(t)

i , edges, e(t)ij , and the graph, g(t). Different from the base methods, the

embedding nodes g(t) were not concatenated to the intermediate inputs h
(t−1)
i . Subsequently, the

node, edge, graph, and hidden embeddings are each transformed by a dedicated, independent fully
connected layer.

The model builds four fully connected networks derived from node, edge, graph, and hidden em-
beddings, respectively. Since these fully connected models have different dimensions, a second step
is performed to ensure compatibility. Node, graph, and hidden embeddings are resized to match the
dimensions of the edge-derived model, n×n× h, as described in Section 4.2. In the tensor, a batch
input b is still used, forming a tensor of size b× n× n× h.

The outputs of the fully connected layers for each embedding type are combined into a single repre-
sentation m

(t)
ij , through concatenation. Similarly to the foundational method, the combination of the

embeddings m(t)
i feeds a Multi-layer Perceptron (MPL) neural network with an ELU ELU activa-

tion function (Clevert et al., 2016). The resulting outputs are reduced through the minimum (min)
aggregation function. The chosen aggregation function was selected empirically and outperformed
common alternatives (e.g., max, average, sum, etc). After the aggregation, the resulting value is
defined as m̄(t) = min

(
m

(t)
ij

)
. Prior to aggregation, the baseline model multiplies its feature

representation by the hint information.

The output m(t)
i , the nodes, x(t)

i , and hidden, h(t−1)
i inputs, are independently transformed and, fi-

nally, combined in a single representation. To improve training stability and enable dynamic control
over information flow, the representation passes through a linear normalization layer to standardize
the feature distributions. Subsequently, this normalized output is fed into a gating function, which
emphasizes features. Our gating mechanisms, defined as g(t)i = fg

(
x
(t)
i , h

(t−1)
i ,m

(t)
i

)
, differ from

the Triplet-GMPNN representation, multiplying values from hidden output in the gating function.

4.3.1 REASONING MODEL

Our initial assessment of the triplet reasoning mechanism suggested that the high dimensionality of
the embeddings was producing overly complex fully connected layers. An initial attempt was made
to simplify models, avoiding the passage of messages in the format b× n× n× n× h, as found in
the literature.

After analyzing the algorithm, we initially opted for a simpler approach, using the b × n × n × h
model, with only one edge feature embedding, similar to that found in m̄(t). However, we found
that reducing the number of triplet embeddings resulted in poorer results than previously observed -
a problem caused not by the data format, but by the lack of variability in the information. So, first,
we decided to duplicate the node and graph embeddings to increase data variability. This procedure
improved the results obtained, leading to further improvements in our model.

The final messaging model uses doubles of node, graph, and intermediate layer embeddings. To
maintain a concise representation and improve variability, edge embeddings were also duplicated.
Although increasing variability generally improved results, some empirical unstructured experi-
ments have indicated limited gains from increasing the number of embeddings, leading us to keep a
more concise structure for message passing.

5 RESULTS

Experiments were conducted using the CLRS-30 benchmark (Veličković et al., 2022), described in
Section 4.1. The experiments were developed using the benchmark suite, running in a GeForce RTX
3060 16GB GPU. Some experiments were also run in a Google Colab instance, but those were not
reported under time constraints.

We trained each algorithm for 10,000 epochs using a uniform hyperparameter configuration to avoid
a biased comparison. The settings applied to all models were a learning rate lr = 0.001, a batch size
of 16 for all algorithms, and a dropout probability of 0.1. In our experiments, we set the hidden size
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Figure 1: Test scores of our method on the CLRS-30 benchmark.

for node, edge, and graph embeddings to h = 256 - variations of these parametrizations are detailed
in Section 5.1. No individual parameter tuning was performed. The variations for our experiments
are described in Section 5.1.

As illustrated in Figure 1, the algorithms achieved an average accuracy of 75.50%, with the majority
(22 out of 30) achieving accuracy above 75%. Table 1 compares our main results against other
methods from the literature. For a complete comparison of all algorithms against the literature, see
the Appendix A.

Table 1 shows that our method achieved results comparable to the Triplet-GMPNN algorithm (Ibarz
et al., 2022) - our reference for architectural simplification. On average, our method achieved a score
of 75.50%, performing within a very narrow margin of the Triplet-GMPNN algorithm’s 75.98%,
with superior performance on multiple algorithms. Furthermore, our algorithm is competitive with
existing methods, outperforming several models, despite its simplicity.

Our method performed well, especially on sorting algorithms like Bubble sort, Heapsort, Insertion
sort, and Quicksort. In these algorithms, our solution surpassed most of the selected methods in
the literature, including the state of the art, Open-Book NAR (Li et al., 2024). This suggests it has
characteristics suitable for this type of problem, which warrants further analysis.

Due to the uniform parameterization adopted in the experiments, inferior results were obtained in
some algorithms. The method’s final average was brought down by poor performance on Depth-First
Search, Floyd-Warshall, Knuth-Morris-Pratt, and Quickselect, as available in Figure 1. Furthermore,
one of the most unexpected findings was the performance of the BFS algorithm. While it consistently
nears 100% accuracy in the literature, it only achieved 80.62% in our experiments. This easily
demonstrates that parameter tuning could further improve the results obtained by our algorithm.

5.1 ABLATIVE ANALYSIS

The ablative analysis sought to evaluate the impact of specific parameters on the results obtained.
Table 2 details the experimental variations for the main algorithms, including changes to the hidden
size, activation function, and the removal of the gating activation mechanism.

During initial experiments, the hidden size h = 128 was used. However, after setting the parame-
terization to h = 256, an improvement in the average results was observed, making it our preferred
setting. However, this choice involved a trade-off. While the average score for h = 256 was higher,
the median for h = 128 is superior. This discrepancy suggests that low results present a greater
influence of the average of the algorithms.

For practical applications, the highest-performing results are the most critical, as they demonstrate
the method’s feasibility. In contrast, average or low scores represent unsuccessful outcomes with
high error rates and can be disregarded. Based on the median score, the h = 64 setup was optimal,
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Table 1: Comparison of our main results with literature methods on the CLRS-30 benchmark. See
Appendix A for all algorithm results.

NEURAL NETWORK ARCHITECTURE

ALGORITHM A B C D E F G H I

Bellman-Ford 97.39 96.08 98.96 99.18 87.50 94.24 96.00 95.18 93.80

Binary Search 77.58 85.31 66.49 85.96 28.79 81.48 64.71 87.44 85.30

Bridges 93.99 97.53 84.10 99.43 1.83 37.88 72.22 99.26 93.45

Bubble Sort 67.68 74.35 55.51 83.19 17.78 38.22 95.78 73.16 77.88

DAG Shortest Paths 98.19 98.13 82.56 99.37 96.19 96.61 96.40 97.79 96.19

Dijkstra 96.05 93.14 96.02 99.14 83.94 91.20 95.04 98.29 96.04

Heapsort 31.04 54.42 16.28 57.47 16.37 32.96 93.07 85.71 89.40

Insertion Sort 78.14 90.73 61.69 98.40 8.16 89.43 93.00 92.61 95.85

LCS Length 80.51 85.67 87.75 85.43 67.50 83.32 66.91 85.54 77.98

Matrix Chain Order 91.68 94.46 90.45 91.08 78.74 91.89 25.12 90.85 92.67

MST-Prim 86.39 93.30 76.68 95.19 60.31 85.77 86.60 93.41 91.06

Optimal BST 73.77 70.70 81.82 83.58 59.89 74.40 36.04 70.04 75.96

Quicksort 64.64 55.49 46.46 73.28 17.71 39.42 94.73 83.13 88.38

SCC 43.43 44.3 32.53 53.53 22.50 28.59 48.43 65.83 56.25

Task Scheduling 87.25 87.70 86.34 84.55 77.79 82.93 88.08 90.93 84.24

LIST OF ALGORITHMS:

A - Triplet-GMPNN (Ibarz et al., 2022)

B - Triplet Edge Attention Message (Jung & Ahn, 2023)

C - LinearPGN (Mirjanić et al., 2023)

D - ForgetNet / G-ForgetNet (Bohde et al., 2024)

E - Neural Priority Queues (Jain et al., 2023)

F - Relational Transformers (Diao & Loynd, 2023)

G - Recurrent NAR (Xu & VeliČkoviĆ, 2024)

H - Open-Book NAR (Li et al., 2024)

I - Our method, 256-MIN-F6.

as detailed in Appendix B. This variation significantly reduces the number of parameters, resulting
in a faster algorithm. Details about the training time of the algorithms can be seen in Appendix C.

After the h = 256 configuration produced the best average results, we tested an even larger model
with h = 512, to explore the possibility of further improvement. This attempt, however, was unsuc-
cessful. The h = 512 model yielded worse results, suggesting it may have had difficulty learning
effectively. Furthermore, this larger configuration was too memory-intensive, causing some experi-
ments to fail due to insufficient resources.

To benchmark our unconventional minimum aggregation function, we ran a comparative experiment
using the maximum function, which is a more standard approach in the literature. The maximum
function generally led to worse outcomes, especially for algorithms with moderate to low perfor-
mance, reducing both the average and median results. However, it’s noteworthy that for a few
specific algorithms, the maximum function was beneficial, enabling them to achieve their best per-
formance compared to all other variations.

Motivated by studies indicating that multitask learning improves overall results (Chang et al., 2019;
Xhonneux et al., 2021), we conducted an experiment to evaluate this technique. The model was
trained with algorithms grouped into the following classes according to CLRS benchmark: division
and conquer, dynamic programming, geometric, graphs, greedy, searching, sorting, and strings.
It was possible to observe an improvement in the performance of a few algorithms compared to
previous results. However, on average, the results were inferior to those obtained with individual
algorithm training.
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Table 2: Ablation study for the main results, evaluating the model’s components and parameteriza-
tions on the CLRS-30 benchmark. See Appendix B for all algorithm results.

NEURAL NETWORK ARCHITECTURE

ALGORITHM 256-MIN-F6 128-MIN-F6 64-MAX-F6 512-MIN-F6 256-MAX-F6 MULTITASK-F6 NO-GATE-F6

Bellman-Ford 93.80 83.25 86.08 89.65 94.48 50.63 92.38

Binary Search 85.30 83.64 87.30 18.80 84.03 65.43 80.91

Bridges 93.45 89.18 90.75 24.60 89.40 77.87 95.57

Bubble Sort 77.88 92.58 84.18 71.39 84.77 84.62 87.94

DAG Shortest Paths 96.19 95.41 94.34 71.19 96.14 71.24 95.31

Dijkstra 96.04 95.21 92.72 67.77 94.68 71.19 95.02

Heapsort 89.40 79.59 25.59 83.06 86.23 90.87 82.52

Insertion Sort 95.85 93.07 86.72 74.56 90.09 89.50 89.36

LCS Length 77.98 85.88 85.63 86.10 86.13 85.53 85.53

Matrix Chain Order 92.67 91.45 88.56 - 92.55 92.46 93.33

MST-Prim 91.06 90.38 87.26 57.03 83.74 51.03 87.26

Optimal BST 75.96 79.72 77.12 - 70.73 69.85 78.80

Quicksort 88.38 79.93 90.92 84.96 92.92 77.25 93.07

SCC 56.25 39.84 49.32 29.15 18.99 28.37 26.32

Task Scheduling 84.24 83.83 85.27 81.74 83.78 82.52 84.60

DESCRIPTION OF ARCHITECTURES:

256-MIN-F6 - Original own method, with min aggregation and 256 nodes in the hidden input.

128-MIN-F6 - Variation with min aggregation and 128 nodes in the hidden input.

64-MIN-F6 - Variation with min aggregation and 64 nodes in the hidden input.

512-MIN-F6 - Variation with min aggregation and 512 nodes in the hidden input.

256-MAX-F6 - Variation with max aggregation and 256 nodes in the hidden input.

MULTITASK-F6 - Original algorithm, trained using multitask learning.

NO-GATE-F6 - Variation of the original algorithm without gating mechanism.

Finally, we conducted an experiment to evaluate the performance of the gating-activation mechanism
compared to the non-activation baseline version. The results show that combining a gating-activation
with linear normalization significantly improved the performance of our method in the majority of
the algorithms.

6 CONCLUSION

This work introduces a variant of the Triplet-GMPNN (Ibarz et al., 2022) algorithm featuring an
improved message-passing mechanism for MPNN networks (Gilmer et al., 2017). The proposed
mechanism reduces both the dimensionality and the information content of embeddings during mes-
sage passing. To complement this change, we developed a novel gating-activation function and
employed an uncommon minimum-order method for dimensionality reduction. To analyze the in-
fluence of each modification, a comprehensive ablation study was conducted, containing parameter
variations that influence the algorithm’s performance.

Our solution, despite its simplicity, achieves results that are comparable to those in the current
literature. An important advantage is that the models with fewer parameters are highly effective for
applications demanding a balance between performance and efficiency. Furthermore, these findings
contribute to advancing the understanding of Neural Algorithmic Reasoning (NAR) and help to build
new solutions.

For future work, we are planning to focus on both practical enhancements and theoretical grounding.
We plan to integrate state-of-the-art architectures from recent literature, using different datasets, as
SALSA-CLRS (Minder et al., 2023) and CLRS-Text (Markeeva et al., 2024). We also plan to

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

conduct a more fine-grained analysis to better understand the architectural characteristics from the
perspective of algorithmic alignment.

LLM-ASSISTANCE DECLARATION

This paper was drafted in Portuguese, translated to English with Google Translate, and then polished
using the Gemini LLM. We used the prompt “rewrite <sentence>” to refine the language. The AI-
generated text was manually reviewed and integrated by the authors.

REPRODUCIBILITY STATEMENT

The source code required to reproduce this work is available in the supplementary material. It has
been anonymized and can be executed using the run.py script available in the root directory. The
code follows the structure of the publicly available CLRS-30 benchmark source code.
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Adrià Puigdomènech Badia, Karl Moritz Hermann, Yori Zwols, Georg Ostrovski, Adam Cain,
Helen King, Christopher Summerfield, Phil Blunsom, Koray Kavukcuoglu, and Demis Hassabis.
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626):
471–476, Oct 2016. ISSN 1476-4687. doi: 10.1038/nature20101. URL https://doi.org/
10.1038/nature20101.

Jessica B. Hamrick, Kelsey R. Allen, Victor Bapst, Tina Zhu, Kevin R. McKee, Joshua B. Tenen-
baum, and Peter W. Battaglia. Relational inductive bias for physical construction in humans and
machines. CoRR, abs/1806.01203, 2018. URL http://arxiv.org/abs/1806.01203.

Borja Ibarz, Vitaly Kurin, George Papamakarios, Kyriacos Nikiforou, Mehdi Bennani, Róbert
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https://arxiv.org/abs/2307.00337.

Yeonjoon Jung and Sungsoo Ahn. Triplet edge attention for algorithmic reasoning, 2023. URL
https://arxiv.org/abs/2312.05611.

Donald E. Knuth. The Art of Computer Programming, Vol. 1: Fundamental Algorithms. Addison-
Wesley, Reading, Mass., third edition, 1997. ISBN 0201896834 9780201896831.

Chengtao Li, Daniel Tarlow, Alexander L. Gaunt, Marc Brockschmidt, and Nate Kushman. Neural
program lattices. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=HJjiFK5gx.

Hefei Li, Chao Peng, Chenyang Xu, and Zhengfeng Yang. Open-book neural algorithmic reasoning,
2024. URL https://arxiv.org/abs/2501.00072.

Andreas Madsen and Alexander Rosenberg Johansen. Neural arithmetic units. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=H1gNOeHKPS.

Sadegh Mahdavi, Kevin Swersky, Thomas Kipf, Milad Hashemi, Christos Thrampoulidis, and
Renjie Liao. Towards better out-of-distribution generalization of neural algorithmic reasoning
tasks. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL https:
//openreview.net/forum?id=xkrtvHlp3P.

10

https://proceedings.neurips.cc/paper_files/paper/2022/file/8248b1ded388fcdbbd121bcdfea3068c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8248b1ded388fcdbbd121bcdfea3068c-Paper-Conference.pdf
https://arxiv.org/abs/2306.06064
https://openreview.net/forum?id=SuLxkxCENa
https://arxiv.org/abs/1410.5401
https://arxiv.org/abs/1410.5401
https://doi.org/10.1038/nature20101
https://doi.org/10.1038/nature20101
http://arxiv.org/abs/1806.01203
https://arxiv.org/abs/2307.09660
https://arxiv.org/abs/2307.00337
https://arxiv.org/abs/2312.05611
https://openreview.net/forum?id=HJjiFK5gx
https://openreview.net/forum?id=HJjiFK5gx
https://arxiv.org/abs/2501.00072
https://openreview.net/forum?id=H1gNOeHKPS
https://openreview.net/forum?id=H1gNOeHKPS
https://openreview.net/forum?id=xkrtvHlp3P
https://openreview.net/forum?id=xkrtvHlp3P


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Larisa Markeeva, Sean McLeish, Borja Ibarz, Wilfried Bounsi, Olga Kozlova, Alex Vitvitskyi,
Charles Blundell, Tom Goldstein, Avi Schwarzschild, and Petar VeliČkoviĆ. The clrs-text al-
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APPENDIX

A COMPLETE RESULTS IN CLRS-30

Table 3 presents the complete results of our algorithm compared with the literature. To ensure a fair
comparison, we calculated the average performance using only those works that reported results for
all algorithms. In cases where a paper presented several method variations, we chose the one that
either performed best or was tested on a greater number of algorithms.

Table 3: Accuracy of literature algorithms in the CLRS-30 Benchmark.
NEURAL NETWORK ARCHITECTURE

ALGORITHM A B C D E F G H I J K L

Activity Selector 95.18 - 95.90 90.50 - 99.03 83.36 87.72 89.94 95.23 95.86 89.43

Articulation Points 88.32 98.45 86.89 59.99 94.55 97.97 13.40 34.15 72.46 26.32 98.30 84.27

Bellman-Ford 97.39 95.54 96.08 98.96 95.25 99.18 87.50 94.24 98.58 96.00 95.18 93.80

BFS 99.73 99.00 99.85 99.50 99.95 99.96 99.64 99.14 100.00 100.00 99.99 80.62

Binary Search 77.58 89.68 85.31 66.49 85.29 85.96 28.79 81.48 94.94 64.71 87.44 85.30

Bridges 93.99 99.32 97.53 84.10 98.91 99.43 1.83 37.88 77.96 72.22 99.26 93.45

Bubble Sort 67.68 92.94 74.35 55.51 90.67 83.19 17.78 38.22 - 95.78 73.16 77.88

DAG Shortest Paths 98.19 98.17 98.13 82.56 - 99.37 96.19 96.61 96.60 96.40 97.79 96.19

DFS 47.79 - 59.31 20.65 34.52 74.31 6.03 39.23 37.50 100.00 40.79 39.65

Dijkstra 96.05 97.74 93.14 96.02 96.97 99.14 83.94 91.20 95.04 95.04 98.29 96.04

Find Max. Subarray 76.36 - 69.79 52.77 - 78.97 19.94 66.52 74.30 83.53 74.52 66.41

Floyd-Warshall 48.52 72.23 35.33 32.52 42.16 56.32 17.84 31.59 30.32 27.49 51.52 28.04

Graham Scan 93.62 - 94.12 87.21 - 97.67 61.95 74.15 92.27 76.20 96.19 67.78

Heapsort 31.04 95.16 54.42 16.28 90.67 57.47 16.37 32.96 - 93.07 85.71 89.40

Insertion Sort 78.14 92.70 90.73 61.69 90.67 98.40 8.16 89.43 - 93.00 92.61 95.85

Jarvis’ March 91.01 - 93.02 81.57 - 88.53 92.88 94.57 - 91.83 94.74 87.95

Knuth-Morris-Pratt 19.51 - 62.59 20.59 - 12.45 3.23 0.03 - 4.54 71.24 17.09

LCS Length 80.51 - 85.67 87.75 - 85.43 67.50 83.32 88.40 66.91 85.54 77.98

Matrix Chain Order 91.68 - 94.46 90.45 - 91.08 78.74 91.89 91.59 25.12 90.85 92.67

Minimum 97.78 99.37 99.23 96.08 99.98 99.26 75.65 95.28 99.43 96.92 98.65 90.82

MST-Kruskal 89.8 96.01 78.47 85.49 92.89 91.25 43.24 64.91 87.56 67.29 91.26 86.90

MST-Prim 86.39 87.97 93.30 76.68 85.70 95.19 60.31 85.77 76.64 86.60 93.41 91.06

Naı̈ve String Matcher 78.67 - 99.90 10.16 - 97.02 3.40 65.01 14.08 93.71 73.57 62.50

Optimal BST 73.77 - 70.70 81.82 - 83.58 59.89 74.40 72.49 36.04 70.04 75.96

Quickselect 0.47 - 3.84 1.62 - 6.30 0.00 19.18 0.15 87.08 3.37 3.37

Quicksort 64.64 93.30 55.49 46.46 90.67 73.28 17.71 39.42 7.41 94.73 83.13 88.38

Segments Intersect 97.64 - 94.96 98.81 - 99.06 93.19 84.94 96.17 97.30 98.71 85.66

SCC 43.43 76.79 44.3 32.53 66.38 53.53 22.50 28.59 50.65 48.43 65.83 56.25

Task Scheduling 87.25 - 87.70 86.34 - 84.55 77.79 82.93 83.92 88.08 90.93 84.24

Topological Sort 87.27 96.59 100.00 64.27 94.58 99.92 50.98 80.62 83.18 74.00 92.80 80.15

AVERAGE 75.98 - 79.82 65.51 - 82.89 46.32 66.18 - 75.78 82.91 75.50

LIST OF ALGORITHMS:

A - Triplet-GMPNN (Ibarz et al., 2022)

B - Hint-ReLIC (Bevilacqua et al., 2023)

C - Triplet Edge Attention Message (TEAM) (Jung & Ahn, 2023)

D - LinearPGN (Mirjanić et al., 2023)

E - Triplet-GMPNN-NH (Rodionov & Prokhorenkova, 2023)

F - ForgetNet / G-ForgetNet (Bohde et al., 2024)

G - Neural Priority Queues (NPQ) (Jain et al., 2023)

H - Relational Transformers (RT) (Diao & Loynd, 2023)

I - 2-Weisfeiler-Lehman GNN (2WL-GNN) (Mahdavi et al., 2023)

J - Recurrent NAR (RNAR) (Xu & VeliČkoviĆ, 2024)

K - Open-Book NAR (OB-NAR) (Li et al., 2024)

L - Our method, 256-MIN-F6.
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B COMPLETE ABLATIVE ANALYSIS

Table 4 presents the complete ablation analysis of our method. It details the experimental varia-
tions, including changes to hidden size, activation function, and the removal of the gating activation
mechanism, applied to all algorithms in the CLRS-30 benchmark (Veličković et al., 2022).

Table 4: Ablation study of the model’s components and parameterizations to evaluate their impact
on performance on the CLRS-30 benchmark.

NEURAL NETWORK ARCHITECTURE

ALGORITHM 256-MIN-F6 128-MIN-F6 64-MAX-F6 512-MIN-F6 256-MAX-F6 MULTITASK-F6 NO-GATE-F6

Activity Selector 89.43 84.94 82.14 82.85 84.17 83.64 90.81

Articulation Points 84.27 87.92 87.62 10.71 93.35 14.22 82.91

Bellman-Ford 93.80 83.25 86.08 89.65 94.48 50.63 92.38

BFS 80.62 89.36 98.68 87.21 68.85 71.39 48.00

Binary Search 85.30 83.64 87.30 18.80 84.03 65.43 80.91

Bridges 93.45 89.18 90.75 24.60 89.40 77.87 95.57

Bubble Sort 77.88 92.58 84.18 71.39 84.77 84.62 87.94

DAG Shortest Paths 96.19 95.41 94.34 71.19 96.14 71.24 95.31

DFS 39.65 15.48 21.97 32.67 18.99 29.15 29.74

Dijkstra 96.04 95.21 92.72 67.77 94.68 71.19 95.02

Find Max. Subarray 66.41 64.45 47.56 59.47 61.47 66.85 64.99

Floyd-Warshall 28.04 21.92 24.38 - 36.76 11.53 24.52

Graham Scan 67.78 92.61 91.50 43.06 70.65 33.64 54.20

Heapsort 89.40 79.59 25.59 83.06 86.23 90.87 82.52

Insertion Sort 95.85 93.07 86.72 74.56 90.09 89.50 89.36

Jarvis’ March 87.95 91.50 89.03 53.32 90.19 59.37 80.20

Knuth-Morris-Pratt 17.09 44.63 11.04 2.10 16.16 27.05 35.60

LCS Length 77.98 85.88 85.63 86.10 86.13 85.53 85.53

Matrix Chain Order 92.67 91.45 88.56 - 92.55 92.46 93.33

Minimum 90.82 96.48 94.68 91.41 95.95 85.21 96.29

MST-Kruskal 86.90 90.29 86.51 73.20 87.74 62.39 79.15

MST-Prim 91.06 90.38 87.26 57.03 83.74 51.03 87.26

Naı̈ve String Matcher 62.50 12.89 2.88 02.20 9.67 73.44 1.66

Optimal BST 75.96 79.72 77.12 - 70.73 69.85 78.80

Quickselect 3.37 1.81 0.00 0.59 0.20 3.42 0.83

Quicksort 88.38 79.93 90.92 84.96 92.92 77.25 93.07

Segments Intersect 85.66 85.35 81.52 - 84.46 83.16 85.29

SCC 56.25 39.84 49.32 29.15 18.99 28.37 26.32

Task Scheduling 84.24 83.83 85.27 81.74 83.78 82.52 84.60

Topological Sort 80.15 62.16 77.93 60.08 76.90 23.27 82.10

AVERAGE 75.50 73.49 70.31 - 71.47 60.54 70.81

MEDIAN 84.78 85.14 85.86 - 84.31 70.52 82.72

DESCRIPTION OF ARCHITECTURES:

256-MIN-F6 - Original own method, with min aggregation and 256 nodes in the hidden input.

128-MIN-F6 - Variation with min aggregation and 128 nodes in the hidden input.

64-MIN-F6 - Variation with min aggregation and 64 nodes in the hidden input.

512-MIN-F6 - Variation with min aggregation and 512 nodes in the hidden input.

256-MAX-F6 - Variation with max aggregation and 256 nodes in the hidden input.

MULTITASK-F6 - Original algorithm, trained using multitask learning.

NO-GATE-F6 - Variation of the original algorithm without gating mechanism.

C TRAINING TIME

The total training time for all model algorithms with h = 256 was approximately 7 hours and
42 minutes, with individual algorithm times ranging from 5 minutes and 51 seconds to 1 hour, 12
minutes, and 18 seconds. For comparison, the runtimes for the models with h = 128 and h = 64
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were approximately 4 hours and 51 minutes, and 4 hours and 32 minutes, respectively. The variance
in training time was significant for the slower algorithms, while it was minimal for most of the faster
ones. Figure 2 details the training time for each of the algorithms.

Figure 2: Training time, by method and algorithm.
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