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Abstract

Multimodal Large Language Models (Multimodal
LLMs) have shown their strength in Video Ques-
tion Answering (VideoQA). However, due to the
black-box nature of end-to-end training strate-
gies, existing approaches based on Multimodal
LLMs suffer from the lack of interpretability
for VideoQA: they can neither present reason-
ing paths nor indicate where the answers are de-
rived from the video. To address this issue, we
propose MSR-ViR (Modularized Self-Reflected
Video Reasoner), which for the first time inte-
grates modular networks to Multimodal LLMs,
capable of providing VideoQA with explicit rea-
soning paths for more interpretability. Specifi-
cally, a MoST-Grounding (Modularized Spatial-
Temporal Grounding) network is proposed to de-
compose complex questions via tree-structured
policies, localizing relevant temporal and spatial
segments within videos through step-by-step rea-
soning. The proposed MoST-Grounding network
provides explicit visually grounded information
for Multimodal LLMs with clear reasoning paths,
thus enhancing interpretability for the predicted
answers. To further improve the reasoning qual-
ity, we design an Alternate Self-reflection Train-
ing Strategy to jointly optimize policy genera-
tion and Multimodal LLMs. Experiments on real-
world datasets demonstrate the superiority of our
proposed MSR-ViR framework in video under-
standing, reasoning transparency, and providing
explicit localization evidence for answers.
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1. Introduction
Video Question Answering (VideoQA) is a representative
task in video understanding, aiming to answer questions
based on the content of a given video. Leveraging their
rich external knowledge and strong generalization capabili-
ties, multimodal large language models (Multimodal LLMs)
have emerged as powerful tools for tackling video under-
standing tasks such as VideoQA, video captioning and so
on. However, existing approaches based on Multimodal
LLMs suffer from the following issue in VideoQA tasks:
the classic end-to-end training approaches operate as black-
box systems, which inherently suffer from the lack of inter-
pretability. Falling short in terms of transparency, they are
unable to unveil the reasoning paths or pinpoint the specific
segments of the video from which the answers are derived.

To solve this issue, we marry modular network with Multi-
modal LLMs for interpretable VideoQA. In particular, we
propose the Modularized Self-Reflected Video Reasoner
(MSR-ViR) framework, which is able to obtain clear rea-
soning paths when answering the questions. The pro-
posed MSR-ViR framework contains a Modularized Spatial-
Temporal Grounding (MoST-Grounding) module, to-
gether with a reinforcement learning-based Alternate Self-
reflection Training strategy to train a Multimodal LLM
for VideoQA, as is shown in Figure 1 (c). Concretely, by
following a tree-structured execution policy generated by
a Question Parser, MoST-Grounding first decomposes a
complex question into several small parts. Then through
step-by-step spatial-temporal grounding and reasoning, it
progressively derives the most relevant visual information
in the video, which will be fed to a Multimodal LLM to
answer the question. The execution policy provides a clear
reasoning path from the question to the answer, providing
interpretability for making predictions, while the spatial-
temporal grounding results can provide visual evidence for
the predicted answers. As for model optimization, on the
one hand, the proposed Alternate Self-reflection Training
strategy optimizes policy generation via letting the Multi-
modal LLM undergo Supervised Finetuning (SFT) based on
the execution results of the policies generated by the Ques-
tion Parser in order to better understand the video content.
On the other hand, the predicted result of the Multimodal
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Figure 1. Comparison between existing works and our method. (a) shows the common framework of existing grounding-based methods,
and (b) shows the common framework of existing modular methods. (c) is our MSR-ViR framework.

LLM also serves as a feedback to train the Question Parser
through reinforcement learning. The training of the Ques-
tion Parser and the Multimodal LLM alternates in a cyclical
manner, and both are optimized during this alternate self-
reflected training process.

We train the Multimodal LLM with both classic methods
and our proposed model over the training sets of commonly
used VideoQA datasets, NExT-QA (Xiao et al., 2021) and
STAR (Wu et al., 2021), and evaluate them on their corre-
sponding test sets. We also conduct zero-shot experiments
on long-form VideoQA datasets EgoSchema (Mangalam
et al., 2023) and VideoMME (Fu et al., 2024a) for further
evaluation. The results show that our proposed MSR-ViR
framework significantly outperforms classic training meth-
ods as well as other grounding-based VideoQA methods.
Furthermore, we conduct evaluations on NExT-GQA (Xiao
et al., 2024), a widely-used grounding-based VideoQA
dataset, whose results demonstrate that the proposed MSR-
ViR framework is able to not only improve the performance
of VideoQA but also more accurately localize the temporal
segments relevant to the questions compared to baseline
methods. We also prove a theoretical upper bound over the
computational complexity of MSR-ViR, demonstrating that
the additional computational overhead introduced can be
strictly bounded and is reasonable.

Our contributions can be summarized as follows:

• We propose a modularized VideoQA framework with
self-reflection training. To the best of our knowledge,
this is the first VideoQA work incorporating modular
networks into Multimodal LLMs for interpretability.

• We propose a modular network MoST-Grounding to
decompose complex questions into small parts and
derive the most relevant visual information. We also
propose an Alternate Self-reflection Training Strat-

egy to generate reasoning paths.

• We provide a theoretical proof of the upper bound
computational complexity of our MSR-ViR frame-
work, demonstrating that the computational overhead
is strictly bounded.

• We conduct extensive experiments to demonstrate that
i) our MSR-ViR framework can significantly outper-
form baseline methods, and ii) MSR-ViR can accu-
rately localize the temporal segments, providing visu-
ally grounded evidence for the predicted answers.

2. Related Works
Video Understanding with Multimodal LLMs. Multi-
modal LLMs have been widely used for video understand-
ing tasks (Zhang et al., 2023; Lin et al., 2024; Maaz et al.,
2024; Li et al., 2023b; 2024a; Zhang et al., 2024c; Song
et al., 2024; Yao et al., 2024; Li et al., 2025). Most Mul-
timodal LLMs for videos are built on open-source LLMs
such as LLaMA (Touvron et al., 2023) and Vicuna (Chiang
et al., 2023), and adapters are utilized to align encoded vi-
sual information with the textual space. However, classic
end-to-end training methods of Multimodal LLMs remain
black boxes, resulting in a lack of interpretability as they
are unable to provide inference process as well as grounded
evidence of the answer in the video.

Grounded VideoQA with LLMs. Grounded VideoQA
aims to indicate where in the video the answer originates
while answering questions. Most existing grounding-based
(retrieval-based) VideoQA methods (Wang et al., 2024f;
Xiao et al., 2024; Qian et al., 2024b; Yu et al., 2024; Wang
et al., 2024a) attempt to localize time segments relevant
to the question within the video in the first place and then
sample frames from the identified segments to serve as
inputs to Multimodal LLMs, as is shown in Figure 1 (a).
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Figure 2. Framework of MSR-ViR. The left part (a) shows Alternate Self-reflection Training Strategy, including (i) Multimodal LLM
Supervised Finetuning and (ii) Question Parser Reinforcement Learning. The right part (b) demonstrates forward propagation details of
MSR-ViR during Multimodal LLM supervised fine-tuning.

Other work like GroundVQA (Di & Xie, 2024) integrates
query grounding and answer generation into a unified model
to achieve grounded VideoQA. Grounded-based methods
address the issue of providing visual evidence in videos
to some extent, but still they lack interpretability as they
typically rely on black-box models to perform temporal
localization without a clear reasoning path, especially for
questions with complicated structures.

Modular VideoQA with LLMs. Modular methods utilize
various smaller models according to execution policies gen-
erated by certain LLM to handle sub-tasks derived from
the original complex question, and another LLM integrates
the outputs of these smaller models to produce the final
answer (Min et al., 2024; Zhang et al., 2024a; Surı́s et al.,
2023; Wang et al., 2024c;g), as shown in Figure 1 (b). While
this approach enhances interpretability, the unimodal LLMs
used can only receive video information through video cap-
tions, potentially missing temporal context and detailed
information with the video. Additionally, policies generated
without training might be unreasonable, affecting accuracy
of question answering. Appendix A presents some other
works that are related to our work.

3. The Proposed MSR-ViR Framework
In this section, we describe our proposed framework MSR-
ViR, a modularized VideoQA framework with alternate self-

reflection training strategy. Figure 2 demonstrates our over-
all framework. We will first introduce the Question Parser
in Section 3.1, and then introduce our MoST-Grounding
module in Section 3.2. In Section 3.3, we will present how
to process various information from both MoST-Grounding
module and naive inputs based on a Multimodal LLM. Then,
our proposed Alternate Self-reflection Training Strategy is
introduced in Section 3.4. Finally, the computational com-
plexity of the framework will be discussed in Section 3.5.

3.1. Question Parser

Many video language questions actually involve a “multi-
step” reasoning process rather than the end-to-end “one-
step” processing. As the example shown in Figure 2, our
MSR-ViR framework mirrors the “multi-step” reasoning
process how humans tackle VideoQA tasks: when facing
a video together with a complex question, we first utilize
a Question Parser to decompose the question into several
sub-questions, allowing us to identify the relevant video seg-
ments and regions, together with a tree-structured reasoning
process, to explicitly help answer the question.

Given a question q, our Question Parser Q aims to generate
the policy p = Q(q), which serves as the execution plan
for the subsequent MoST-Grounding module (illustrated in
Section 3.2) to invoke various small modules for temporal
and spatial localization. Considering the diversity of ques-
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Figure 3. Prompting the Question Parser to generate modulariza-
tion policies.

tion content and structure, as well as the limited training
data for question policies, we utilize a large language model
as the Question Parser and take advantage of its in-context
learning capabilities (Brown et al., 2020). As shown in
Figure 3, we carefully design the prompt as an instruction
and stimulate the Question Parser to generate policies in the
uniform JSON format, organizing and chaining the small
modules in a specific structure. The JSON structure allows
MoST-Grounding module to recursively call each module,
ultimately generating the spatial-temporal grounding results.
The complete prompt for the Question Parser is presented
in Appendix B.

3.2. Modularized Spatial-Temporal Grounding Module

MoST-Grounding module is the core component of our
framework, recursively invoking various small modules ac-
cording to the modular policy generated by the Question
Parser to achieve temporal and spatial localization for com-
plex questions. Our MoST-Grounding module consists of
two parts: temporal localizer Ft and spatial localizer Fs,
each containing several small modules for temporal and
spatial localization, respectively.

Given a concept ct and a video v = {v1, v2, . . . , vT } con-
taining T frames, temporal localizer aims to generate the
most relevant segments vs = {vi, . . . , vj} from the video
v, where 1 ≤ i ≤ j ≤ T . Later the output of the temporal
localizer, namely video segments vs, along with concepts
cs are processed to the spatial localizer, generating most
relevant visual bounding box bvs within video segments
vs. Formally, MoST-Grounding module M is written as
follows:

M(v, ct, cs) = Fs

(
Ft(v, ct), cs

)
. (1)

To address complex semantic scenarios, both the temporal
localizer and spatial localizer consist of several types of
small modules that can be dynamically assembled accord-
ing to the policy. To be specific, there are 7 small modules
in our MoST-Grounding module. As the core module of
temporal localizer, DetectAct module temporally local-
izes a simple action described by a short query (like “car
approaching”) in the video. In this module we utilize a uni-
fied video temporal grounding model UniVTG (Lin et al.,
2023). Spatial localizer contains a LocateObj module
localizing an object described by a short query (like “man
wearing cap”) in a video frame. In this module we take
advantages of an open-vocabulary real-time object detec-
tor YOLO-World (Cheng et al., 2024). Details about other
modules are presented in Appendix C.

In our execution policies, both temporal localizer and spatial
localizer will dynamically assemble corresponding modules
{mt

i} and {ms
i}, respectively. With the policy p generated

by Question Parser, Ft and Fs in Equation (1) would be
instantiated as follows:

Ft|p(·) = I
(
{mt

i}, p
)
(·), Fs|p(·) = I

(
{ms

i}, p
)
(·). (2)

After instantiating with the policy, the modules within the
temporal localizer are called first to locate and extract the
temporal-grounded frames from the video. Subsequently,
the modules within the spatial localizer are invoked to gen-
erate the corresponding spatial-grounded frame for each
temporal-grounded frame. In this modular manner, MoST-
Grounding extracts several temporally and spatially local-
ized video frames from the video, which will serve as visual
input to our Multimodal LLM.

3.3. Multimodal LLM Answerer

After MoST-Grounding localizes the temporal segments and
spatial regions relevant to the question, a Multimodal LLM
is needed to understand the textual and visual information
in order to answer the question. Formally, the answer of a
question q given the video v can be written as follows:

ŷ(q, v) = F
(
q, vs, bvs

)
, (3)

where vs and bvs represent the video segments and bounding
box generated from MoST-Grounding module, and F(. . . )
denotes the forward propagation of Multimodal LLM. To
better enhance the video understanding ability of the Multi-
modal LLM, we extend the input of the Multimodal LLM
in Equation (3) with the following two strategies. Firstly,
we provide an additional global representation of the video
to the Multimodal LLM by compressing several uniformly
sampled frames through average pooling. This is necessary
because the MoST-Grounding module may not always accu-
rately localize the segments relevant to the question, and the
Multimodal LLM might overlook essential information if it
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relies solely on the grounding results. Secondly, in addition
to the original question and the aforementioned visual in-
formation, we provide the Multimodal LLM with a guiding
prompt that explains the specific meanings of various visual
input components. With these two designs, Equation (3)
would be modified with:

ŷ(q, v) = F
(
Pt(q, vs, bvs

, gv)
)
, (4)

where Pt(. . . ) represents the guiding prompt and gv de-
notes the global video representation. Specific input format
of the Multimodal LLM is presented in Appendix F.

With the ground-truth of question q being y, the supervised
finetuning loss of the Multimodal LLM is defined as a cross
entropy loss LCE:

LCE(ŷ(q, v), y) = −
∑

(v,q,y)∈D

y log(ŷ(q, v)), (5)

where y is the target answer, D is the dataset. By opti-
mizing the loss function in Equation (5), the Multimodal
LLM undergoes supervised finetuning on VideoQA datasets,
learning to answer questions based on all the provided in-
formation.

3.4. Alternate Self-reflection Training Strategy

As discussed in Section 3.1, we can teach the Question
Parser to generate modularization policies from complex
questions by providing examples in the prompt. However,
relying solely on in-context learning does not ensure the
quality of the policies. To address this issue, we propose the
Alternate Self-reflection Training Strategy, which enables
the Question Parser to improve the quality of its policies
through reinforcement learning.

We assume that for a given question, provided that all our
modules remain unchanged, a reasonable modular policy is
more likely to accurately localize the correct temporal seg-
ments and spatial regions. Consequently, the loss computed
by the Multimodal LLM is likely to be smaller. There-
fore, we provide feedback to the Question Parser using the
loss noticed during the training process of the Multimodal
LLM, thereby guiding it through reinforcement learning
training. Specifically, we utilize Direct Preference Opti-
mization (DPO) (Rafailov et al., 2024) to train the Question
Parser. Different from previous RLHF methods, DPO di-
rectly optimizes a language model without explicit reward
models, making the training process straightforward and sta-
ble. Specifically in DPO, the policy objective is formulated
as:

LDPO(πθ;πref) = −E [log σ (r̂θ(pw, q)− r̂θ(pl, q))] , (6)

where r̂θ(x, y) = β log πθ(x|y)
πref(x|y) is the reward of policy x

for question y implicitly defined by the language model πθ

and reference model πref, pw denotes the positive policy, pl
denotes the negative policy and q is the input question. πθ

is our Question Parser to be trained, while πref is a refer-
ence model initialized with the Question Parser itself but
remain frozen. Through DPO training, the probability of
generating positive policies increases, while the probability
of generating negative policies decreases. In other words,
the Question Parser learns to generate more reasonable poli-
cies. We prompt the Question Parser to view the same
question from multiple perspectives, generating different
modular policies. The MoST-Grounding module executes
each policy, producing their respective grounding results.
The Multimodal LLM then computes the corresponding
losses. We classify the policy with the smaller loss as posi-
tive and the one with the larger loss as negative, training the
Question Parser according to Equation (6).

Our training strategy alternates between SFT of the Multi-
modal LLM and reinforcement learning for the Question
Parser, optimizing with the loss functions in Equation (5)
and Equation (6), respectively. While training one large
model, the other model’s parameters remain frozen. Dur-
ing this process, the Multimodal LLM periodically pauses
to adapt based on the modular policies from the Question
Parser. After a set of training period, the Question Parser
utilizes these refined policies to further train the Multimodal
LLM, allowing both models to optimize continuously. See
Appendix D for detailed training process.

3.5. Computational Complexity

Considering that our framework introduces an LLM as the
Question Parser and several smaller grounding models as
sub-modules in MoST-Grounding, we provide an analysis
of the upper bound computational complexity of our frame-
work. We present the following propositions:
Proposition 3.1. Given parameters of Multimodal LLM P1,
P2, P3, P4, video with N input frames and resolution H ×
W , text input with length l, the complexity of Multimodal
Answerer is O

(
P1NH2W 2 + P2N

2 + P3l
2 + P4Nl

)
.

Proposition 3.2. Given small modules in MoST-Grounding
with complexity c1, c2, and large models in Ques-
tion Parser and Multimodal LLM with complexity C1,
C2, C3, question with length L, prompt for Ques-
tion Parser with length lp, video with length T and
resolution H × W , the complexity of MSR-ViR is
O
(
c1TH

2W 2 + c2T
2 + C1H

2W 2 + C2L
2 + C3l

2
p

)
.

Detailed proof of these propositions is provided in Ap-
pendix H. It is worth noting that c1, c2 are significantly
smaller than C1, C2, C3, and N is a small constant in our
framework. Therefore, compared to its baseline Multimodal
LLM, the additional complexity introduced by our frame-
work mainly stems from C3l

2
p, which is the complexity of

Question Parser. This computational overhead is bounded
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Table 1. Experiments on NExT-QA and STAR-sub. All models are finetuned on the corresponding training set.The first part contains
small vision-language models, and in the second part models or methods are based on Multimodal LLMs. Qwen-VL and LLaVA-NeXT
are our direct baselines, MSR-ViRQ is our framework based on Qwen-VL and MSR-ViRL is our framework based on LLaVA-NeXT. Bold
number denotes the best result. Model size and inference speed could be found in Appendix G.2.

Method NExT-QA STAR-sub

Temporal Causal Descriptive Average Interaction Sequence Average

ATP 49.3 48.6 65.0 51.5 50.6 52.8 51.7
MIST 56.6 54.6 66.9 57.1 55.5 54.2 54.9

CoVGT 57.4 58.8 69.3 60.0 - - -
HiTeA 58.3 62.4 75.6 63.1 - - -

InternVideo 58.5 62.5 75.8 63.2 62.7 65.6 64.4

BLIP-2 64.9 69.7 79.4 69.6 65.4 69.0 67.2
TGB 66.5 72.8 81.2 72.1 - - -

InstructBLIP 70.5 71.5 79.8 72.5 - - -
SeViLa 69.4 74.2 81.3 73.8 63.7 70.4 67.1
GCG 72.6 74.2 80.7 74.6 - - -

Qwen-VL 68.4 71.3 80.6 71.9 60.4 65.5 63.0
LLaVA-NeXT 69.5 73.3 79.7 73.1 67.6 72.1 69.9

MSR-ViRQ(ours) 69.9 73.4 81.5 73.6 64.8 68.0 66.4
MSR-ViRL(ours) 72.2 74.6 80.9 74.9 68.9 73.1 71.0

because Question Parser utilizes prompt with fixed length
lp irrelevant to the complexity of VideoQA scenario. It is
also reasonable, as Question Parser generates modular poli-
cies as clear reasoning paths enhancing interpretability of
our framework. We also conduct inference speed experi-
ments on NExT-QA dataset, and the results are presented in
Appendix G.2.

4. Experiments
In this section, we first introduce the basic setups of our
experiments in Section 4.1. Next, we introduce our ex-
periments on VideoQA datasets NExT-QA, STAR in Sec-
tion 4.2, after which experiments on long-form VideoQA
datasets EgoSchema and VideoMME will be discussed in
Section 4.3. Then in Section 4.4 we present our experi-
ments on grounded VideoQA dataset NExT-GQA. Finally,
we present the ablation study in Section 4.5.

4.1. Experiments Setups

Datasets. We conduct experiments on VideoQA datasets
NExT-QA (Xiao et al., 2021), STAR (Wu et al., 2021) and
long-form VideoQA datasets EgoSchema (Mangalam et al.,
2023) and VideoMME (Fu et al., 2024a), together with a
grounded VideoQA dataset NExT-GQA (Xiao et al., 2024).
NExT-QA and STAR contain various reasoning tasks in-
cluding spatial-temporal reasoning, logical attribution and
so on, while EgoSchema and VideoMME include longer
videos and more complex questions, making them partic-
ularly well-suited for evaluating video understanding and
reasoning capabilities of models. NExT-GQA is derived

from NExT-QA, providing ground-truth temporal clips for
validation and test sets to evaluate temporal grounding accu-
racy. It is worth mentioning that for STAR, we create a sub-
set (STAR-sub) with Interaction and Sequence questions
(82.5% of STAR), excluding Prediction and Feasibility
types as they lack temporal and spatial grounding in videos,
making them unsuitable for our framework.

Baselines. On NExT-QA and STAR, our baselines include
vision-language models ATP (Buch et al., 2022), MIST (Gao
et al., 2023), CoVGT (Xiao et al., 2023), HiTeA (Ye et al.,
2023), InternVideo (Wang et al., 2022), Multimodal LLMs
BLIP2 (Li et al., 2023a), InstructBLIP (Dai et al., 2023)
and grounding-based Multimodal LLMs TGB (Wang et al.,
2024f), SeViLa (Yu et al., 2024), GCG (Wang et al., 2024a).
On EgoSchema and NExT-GQA, our baselines include
vision-language models VGT (Xiao et al., 2022), VIO-
LETv2 (Fu et al., 2023), Temp[CLIP] (Radford et al., 2021),
FrozenBiLM (Yang et al., 2022) (which achieve grounded
VideoQA with the method in (Xiao et al., 2024)), grounding-
based method TGB, SeViLa, LangRepo (Kahatapitiya et al.,
2025) and modular method LLoVi (Zhang et al., 2024a),
MoReVQA (Min et al., 2024). On VideoMME, our base-
lines include Video LLMs Video-LLaVA (Lin et al., 2024),
ShareGPT4Video (Chen et al., 2024), LongVA (Zhang et al.,
2024b), Video-CCAM (Fei et al., 2024b) and VITA 1.5 (Fu
et al., 2024b). We utilize Qwen-VL (Bai et al., 2023) and
LLaVA-NeXT (Zhang et al., 2024c) as direct baselines on
NExT-QA, STAR and EgoSchema, while Qwen2-VL (Wang
et al., 2024b) and LLaVA-Video (Zhang et al., 2024e) are
our direct baselines on VideoMME.

Implementations. We implement our method based on
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Table 2. Zero-shot experiments on EgoSchema. Sub. shows
the results on EgoSchema subset and Full shows the results on
EgoSchema full set. The numbers in parentheses represent the
improvement of our method compared to their direct baselines.
Bold number denotes the best result.

Method Size Sub. Full

SeViLa 3B 25.7 22.7
LLoVi 7B 50.8 33.5

LangRepo 7B 60.8 38.9

Qwen-VL 7B 44.6 36.8
MSR-ViRQ(ours) 7B 49.0(+4.4) 38.7(+1.9)

LLaVA-NeXT 7B 54.8 43.3
MSR-ViRL(ours) 7B 61.2(+6.4) 46.0(+2.7)

SWIFT framework (Zhao et al., 2025) and utilize LoRA (Hu
et al., 2022) during supervised finetuning. We utilize a
large language model Qwen2-7B (Yang et al., 2024) for
our Question Parser. Qwen-VL (Bai et al., 2023), LLaVA-
NeXT (Zhang et al., 2024c), Qwen2-VL (Wang et al.,
2024b) and LLaVA-Video (Zhang et al., 2024e) are utilized
for our Multimodal LLMs, denoted as MSR-ViRQ, MSR-
ViRL, MSR-ViRQ2 and MSR-ViRLV respectively. Following
the classic training strategy, we uniformly sample 4 frames
from videos for Qwen-VL, 8 frames for LLaVA-NeXT, 32
frames for Qwen2-VL and LLaVA-Video to implement our
direct baselines. For MSR-ViRQ, we sample 2 temporal-
and 2 spatial-grounded frames. For MSR-ViRL, we sample
8 temporal- 8 spatial-grounded frames. For MSR-ViRQ2
and MSR-ViRLV, we sample 16 temporal- and 16 spatial-
grounded frames. As for our Alternate Self-reflection Train-
ing Strategy, the period for alternating training between two
LLMs is 200 steps, with the gradient accumulation step set
to 16. We conduct 5 epochs of SFT on NExT-QA and STAR
for Qwen-VL, LLaVA-NeXT and our MSR-ViR framework,
selecting the best model according to the results on vali-
dation set. On EgoSchema, we present zero-shot results.
We conduct 1 epoch of SFT on a subset of LLaVA-Video-
178K (Zhang et al., 2024e) for Qwen2-VL, LLaVA-Video
and our corresponding MSR-ViR framework, and present
zero-shot results on VideoMME.

4.2. Experiments on VideoQA

We compare our MSR-ViR framework with existing vision-
language models, Multimodal LLMs and grounding-based
methods on NExT-QA and STAR-sub. As shown in Table 1,
MSR-ViRL achieves best results on the overall NExT-QA
and STAR-sub dataset together with most subsets formed
by different types of questions. Particularly, MSR-ViRL sur-
passes TGB and SeViLa, which also utilize grounding-based
Multimodal LLMs, on Temporal questions where temporal
information is essential, demonstrating the superior tempo-

Table 3. Zero-shot experiments on VideoMME. Short, Medium,
Long represents 3 subsets with different video length. The num-
bers in parentheses represent the improvement of our method
compared to their direct baselines. Bold number denotes the best
result.

Method Short Medium Long Avg.

Video-LLaVA 45.3 38.0 36.2 39.9
ShareGPT4Video 48.3 36.3 35.0 39.9

LongVA 61.9 51.4 45.4 52.9
Video-CCAM 62.2 50.6 46.7 53.2

VITA 1.5 67.0 54.2 47.1 56.1

Qwen2-VL 65.2 52.2 48.3 55.3
MSR-ViRQ2(ours) 66.8 55.4 51.3 57.9(+2.6)

LLaVA-Video 69.7 56.6 49.3 58.5
MSR-ViRLV(ours) 72.3 60.7 52.6 61.9(+3.4)

ral understanding ability of our method comparing to pre-
vious grounding-based methods. Besides, for Interaction
questions where spatial information is relatively important,
our method MSR-ViRL also presents the best performance.
Comparing MSR-ViRQ and MSR-ViRL with their own di-
rect baselines, we prove that our framework help enhance
VideoQA abilities of Multimodal LLMs by providing them
with most relevant grounded information, ignoring redun-
dant information that may impair understanding.

4.3. Experiments on Long-form VideoQA

To further evaluate the performance of our method in com-
plex scenarios, we conduct zero-shot experiments on a long-
form VideoQA dataset EgoSchema (Mangalam et al., 2023).
The long videos and complex questions in EgoSchema
makes it an ideal benchmark for testing a model’s abil-
ity to accomplish intricate VideoQA tasks. We selected
several methods with comparable LLM sizes to ours as
baselines, with the results shown in Table 2. Size refers
to the number of parameters in the largest LLM utilized in
each method. As shown, our method MSR-ViRL achieves
the best results on both the EgoSchema subset and the full
set, demonstrating its superiority. Additionally, compared
to their respective direct baselines, both MSR-ViRQ and
MSR-ViRL show significant improvements, indicating that
our method enhances the ability of Multimodal LLMs to
understand long videos and complex questions.

To further demonstrate the superiority of our method, we
also conduct experiments on a longer VideoQA dataset
VideoMME (Fu et al., 2024a), which contains hour-long
videos. Limited by total frame number, Qwen-VL and
LLaVA-Next are not suitable for this dataset, so we utilize
Qwen2-VL and LLaVA-Video, and the results are demon-
strated in Table 3. As shown, both MSR-ViRQ2 and MSR-
ViRLV significantly outperform the relative baseline. It could
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Table 4. Experiments on NExT-GQA. VGT, VIOLETv2, Frozen-
BiLM, Temp[CLIP], TGB, SeViLa, MSR-ViRQ(ours) and MSR-
ViRL(ours) are finetuned on the training set. Method in gray lines
utilize significantly larger LLMs (Palm-2 and GPT-4). Bold num-
ber denotes the best result excluding gray methods.

Method mIoU IoU
@0.3

IoU
@0.5

Acc
@GQA

VGT 3.0 3.6 1.7 14.4
VIOLETv2 3.1 4.3 1.3 12.8
Temp[CLIP] 12.1 17.5 8.9 16.0
FrozenBiLM 9.6 13.5 6.1 17.5

TGB 19.9 23.3 11.2 -
LangRepo 8.7 - 6.0 11.2

SeViLa 21.7 29.2 13.8 16.6

LLoVi(Mistral-7B) 8.7 - 6.0 11.2
LLoVi(GPT-4) 20.0 - 15.3 24.3

MoReVQA(Palm-2) 19.7 - 15.4 39.6

MSR-ViRQ(ours) 22.8 33.0 16.4 18.5
MSR-ViRL(ours) 23.4 33.6 16.4 18.6

also be seen that the improvement is more significant on
longer subsets, where grounding and reasoning are more
essential for VideoQA, further demonstrating the superiority
of our MSR-ViR framework.

4.4. Experiments on Grounded VideoQA

To further confirm MSR-ViR is capable of more accurately
grounding the relevant information thus enhancing VideoQA
ability of Multimodal LLMs, we conduct experiments on
the NExT-GQA (Xiao et al., 2024) dataset. NExT-GQA not
only contains the answer to the question, but also presents a
human-annotated ground-truth time span, indicating where
the answer is derived from the video, in other words, the
most relevant time period to the question. The dataset re-
quires VideoQA models to provide “evidence” of their an-
swer, evaluating the grounding accuracy with IoP (Intersec-
tion over Prediction) and IoU (Intersection over Union). It
also measures Acc@GQA, which is the proportion of ques-
tions that are correctly answered, and at the same time IoP
between predicted time span and ground-truth time span is
larger than 0.5.

We compare our MSR-ViR framework with existing
grounding-based methods and modular methods, together
with vision-language models and Multimodal LLMs which
utilizes NG+ method in (Xiao et al., 2024) for training. The
results are shown in Table 4. Here we only present the
results of IoU and Acc@GQA in Table 4, and the com-
plete results can be found in Appendix G.1. Methods in
the first part are models implemented with NG+, while the
second part includes grounding-based methods and the third
part contains modular methods. We de-emphasize meth-

Table 5. Ablation study on NExT-QA and NExT-GQA. Bold num-
ber denotes the best result. SR means self-reflection, RP means
reasoning path, prompts means instruction prompts, ms represents
spatial modules and gv means global representation of the video.

NExT-QA

Tem. Cau. Des. Avg.

MSR-ViRQ 69.9 73.4 81.5 73.6
w/o SR 67.2 72.5 80.5 72.1
w/o ms 67.0 72.5 81.4 72.2
w/o prompts 68.3 72.4 82.4 72.8
w/o gv 66.9 70.1 78.0 70.4
only w/ gv 63.3 68.4 77.5 68.3

NExT-GQA

Acc
@QA

Acc
@GQA mIoU IoU

@0.5

MSR-ViRQ 69.9 18.5 22.8 16.4
w/o SR 68.3 17.9 22.2 15.7
w/o RP 66.8 14.4 18.5 11.4

ods implemented with significantly larger LLMs (LLoVi
with GPT-4 for example) for fair comparison. MSR-ViRQ
achieves best results on mIoP, while MSR-ViRL achieves
best results on mIoU, indicating that our method grounds
the temporal segment relevant to the question more precisely
than existing grounding-based and modular methods. The
best result of Acc@GQA demonstrates that our method can
perform VideoQA tasks more effectively, while also pro-
viding more reasonable temporal evidence indicating which
specific segment of the video the answer derives from.

4.5. Ablation Study

As demonstrated in Table 5, to further validate the effective-
ness of modules and designs in our MSR-ViR framework,
we conduct ablation study on NExT-QA and NExT-GQA
dataset for MSR-ViRQ concerning the following questions:

Is Alternate Self-reflection Training Strategy necessary?
We remove the self-reflection training process, only fine-
tuning our Multimodal LLM without training the Question
Parser, and the results are shown by w/o self-reflection in
Table 5. The average accuracy on NExT-QA declines by 1.5,
and accuracy on each subsets decreases to varying degrees.
The grounded accuracy as well as IoU of temporal ground-
ing also decline as shown in experiments on NExT-GQA.
This demonstrates the necessity of Alternate Self-reflection
Training Strategy. To further verify the necessity of reason-
ing path, we utilize MoST-Grounding to directly provide
grounding results based on original questions without rea-
soning paths, shown in Table 5 as “w/o RP”.

Is spatial localizer necessary in MoST-Grounding mod-
ule? Most existing grounding-based methods only consider
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Figure 4. An example of MSR-ViR reasoning process. (a) is the reasoning process of MSR-ViR without self-reflection training. (b) is the
reasoning process of MSR-ViR with self-reflection training.

temporal grounding, so we remove the spatial localizer
including all small modules in it, only providing our Mul-
timodal LLM with temporal grounding results, denoted by
w/o spatial modules. The average accuracy on NExT-QA
drops by 1.4, proving that spatial grounding results pro-
vided by spatial localizer contain useful information for
Multimodal LLM to answer the question correctly.

Are our designs in training Multimodal LLM necessary?
In Section 3.3, we introduce two designs for our Multi-
modal LLM training: global representation and instruction
prompts. We remove these two designs separately and con-
duct tests on NExT-QA. The results show that the average
accuracy on NExT-QA decreases to varying degrees for
both, indicating that the two designs we proposed for train-
ing Multimodal LLMs are effective. We also attempt to
make Multimodal LLMs answer questions utilizing only the
information from global representation, results of which are
shown in Table 5 as “only w/ gv”.

In addition to the above questions, to investigate the choice
of small modules in MoST-Grounding, we replace UniVTG
in MoST-Grounding with different grounding models and
conduct experiments on the NExT-GQA dataset, the results
of which are presented in Appendix G.3. We also conduct
ablation study on frame sampling strategy, and the results

are presented in Appendix G.4.

Figure 4 demonstrates the reasoning process of MSR-ViR
with and without self-reflection training. As shown in Fig-
ure 4, after self-reflection training, Question Parser gen-
erates more reasonable policies accurately grounding the
questions in the videos, leading to correct answers. More
visualization examples can be found in Appendix E.

5. Conclusion
In summary, we propose Modularized Self-Reflected Video
Reasoner (MSR-ViR), a self-reflected framework that inte-
grates a Modularized Spatial-Temporal Grounding (MoST-
Grounding) module into a Multimodal LLM for inter-
pretable VideoQA. Modularization policies generated by
a Question Parser demonstrates clear reasoning paths en-
hancing interpretability of our framework, while spatial-
temporal grounding results present visual evidence for an-
swers. Through the proposed alternate self-refection train-
ing process, policies are gradually refined, becoming more
reasonable. Extensive experiments demonstrate that MSR-
ViR significantly improves VideoQA capabilities of Multi-
modal LLMs while grounding answers in videos more accu-
rately. Future work could explore further enhancements to
the design of modular network and its execution efficiency.
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A. Other Related Works
Video Grounding with Multimodal LLM. In order to explore whether Multimodal LLMs are capable of understanding the
temporal information in videos, some works have attempted to study the temporal perception ability of Multimodal LLMs
for tasks like video grounding (Lan et al., 2023). For example, VTimeLLM (Huang et al., 2024) introduces a boundary
perception training process on multi-event datasets, improving the performance of Multimodal LLMs on tasks such as
video grounding and dense video captioning. HawkEye (Wang et al., 2024d) constructs a large-scale video-text corpus
with segment-level captions and negative spans, on which a coarse-grained segment representation method and a recursive
grounding strategy are utilized to train Multimodal LLMs. Other works (Ren et al., 2024; Qian et al., 2024a; Li et al., 2024b;
Chen et al., 2023; Feng et al., 2023) also explore the grounding ability of Multimodal LLMs.

Visual/Video Question Answering with Modular Method. The modular approach (Wang et al., 2025), which decomposes
complex questions into multiple sub-questions and solves each of them through dedicated models, has been attempted in
visual/video question answering tasks (Qian et al., 2022; Duan et al., 2022; Nie et al., 2024; Zhang et al., 2024d; Zhong
et al., 2024; Khademi et al., 2023; Wang et al., 2024e; Fan et al., 2024; Choudhury et al., 2024; Shi et al., 2024; Ayyubi
et al., 2025; Fei et al., 2024a). Specifically, MM-Reasoner (Khademi et al., 2023) leverages vision APIs and LLMs to extract
and utilize query-specific knowledge for visual question answering. (Zhong et al., 2024) introduces Visual Table, a novel
visual representation that provides detailed object descriptions and knowledge in structured text, significantly boosting
performance in visual reasoning tasks. ProViQ (Choudhury et al., 2024) and ENTER (Ayyubi et al., 2025) utilize LLM to
generate executable programs, leveraging external tools for modular video question answering. VideoAgent (Fan et al.,
2024) and MotionEpic (Fei et al., 2024a) utilize Chain-of-Thought which involves multi-round conversation with LLM
leveraging several expert small models, while AoTD distills knowledge from CoT into Video LLMs to improve instruction
tuning. Different from existing methods, MSR-ViR is the first framework that not only integrates a modular network into a
Multimodal LLM but also jointly optimizes them with self-reflection training for reasoning path refinement and QA accuracy
improvement.

B. Prompt for Question Parser
We carefully design a prompt for our Question Parser to generate policies from given questions from in-context learning. The
complete prompt is presented in Figure 5, Figure 6, Figure 7. We first inform the Question Parser of some basic information
and an introduction to the functions of each module. Then we tell it the general template of the policy and several variants
under special circumstances. Finally, through a few examples, we teach the Question Parser how to generate a policy based
on the question.

C. Module Implementation

Table 6. Illustration of our modules. Type is the type of the module, where T represents modules in temporal localizer and S represents
modules in spatial localizer. Vision-Language Model denotes the small vision-language model we use in the module. As for the input
and output, V denotes the input video, I denotes the video frame, TS denotes a time period, BBOX denotes a bounding box, Qa

denotes the action query, Qo denotes the object query, p is a preposition representing certain temporal relationship and r is a word or
phrase representing certain spatial relationship.

Module
Name Type Vision-Language

Model Input Ouput

DetectAct T UniVTG V , Qa TS
TemporalLocalize T - p, TS(in) TS(out)

TemporalBetween T - TS1, TS2 TS(out)

TemporalTruncate T - V , TS I1, I2, ...

LocateObj S YOLO-World I , Qo BBOX
SpatialLocalize S YOLO-World I , BBOX(in), r BBOX(out)

SpatialTruncate S - I , BBOX1, BBOX2, ... I(out)

All small modules in our MoST-Grounding module are listed in Table 6, the detailed implementation of which are as follows:
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Figure 5. Prompt for Question Parser (Part I).
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Figure 6. Prompt for Question Parser (Part II).
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Figure 7. Prompt for Question Parser (Part III).
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DetectAct. Define the UniVTG model as MT , text encoder as Et, video encoder as Ev . V = (v1, v2, ..., vT is an input
video with T frames sampled at 1fps, and Qa is a query desribing an action. We have:

TS = MT (Ev(V ), Et(Qa)), (7)

where TS = [ts, te] represents a time period.

TemporalLocalize. p is a preposition representing certain temporal relationship. TS(in) = [t
(in)
s , t

(in)
e ] is an input

time span. We have:

TS(out) =


TS(in), p ∈ {when,while, as}
[t
(in)
e ,min(2t

(in)
e − t

(in)
s , T )], p ∈ {after}

[max(0, 2t
(in)
s − t

(in)
e ), t

(in)
s ], p ∈ {before}

(8)

where TS(out) = [t
(out)
s , t

(out)
e ] is an output time span. T is the video duration.

TemporalBetween. Given two input time spans TS1 = [t1s, t1e] and TS2 = [t2s, t2e], we have:

TS(out) = [min(t1s, t2s),max(t1e, t2e)], (9)

where TS(out) = [t
(out)
s , t

(out)
e ] is an output time span.

TemporalTruncate. Given an input video V = (v1, v2, ..., vT ) and a time span TS = [ts, te], define s = ⌊ts⌋, e = ⌈te⌉.
We get I = (I1, I2, ...In), where:

Ii = v
(s+

(e−s)(i−1)
n−1 )

, (10)

and n denotes the number of sampled frames.

LocateObj. Given the YOLO-World model MS , an input image I , a query of an object Qo, and an image encoder EI

together with a text encoder ET , we have:

BBOX = MS(EI(I), ET (Qo)), (11)

where BBOX = (x1, y1, x2, y2) is an output bounding box.

SpatialLocalize. Given an input image I , an input bounding box BBOX(in) = (x1, y1, x2, y2) and a word or phrase
representing certain spatial relationship r, we have:

BBOX(out) =



[max(0, 2x1 − x2), y1, x1, y2], p ∈ {left}
[x2, y1,min(w, 2x2 − x1), y2], p ∈ {right}
[x1, y2, x2,min(h, 2y2 − y1)], p ∈ Sdown

[x1,max(0, 2y1 − y2), x2, y1], p ∈ Sup

[max(0, 2x1 − x2),max(0, 2y1 − y2),

min(w, 2x2 − x1),min(h, 2y2 − y1)], p ∈ Ssurround

(12)

where Sdown = {bottom, down, below, under, beneath, sit on, stand on, lying on}, Sup = {top, above, up, carry, lift, on},
Ssurround = {next to, beside, near, surround}. Particularly, if p ∈ {hold, touch, contact, take}, we have:

BBOX(out) = SpatialLocalize(I,BBOX(hand), “surround”), (13)

where BBOX(hand) = LocateObj(I, “hand”).

SpatialTruncate. Given an input image I and a list of bounding boxes BBOX1, BBOX2, ... where BBOXi =
(xi1, yi1, xi2, yi2), we have:

I(out) = RESIZEI(I[min
i

xi1,min
i

yi1,max
i

xi2,max
i

yi2]), (14)

where RESIZEI(I
′) is the operation that resizes an image I ′ into the shape of I .
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D. Detailed Alternate Self-reflection Training Strategy
The detail of our Alternate Self-reflection Training Strategy is demonstrated in Algorithm 1.

Algorithm 1 Alternate Self-reflection Training Strategy
1: Input: Question parser Q, MoST-Grounding moduleM, temporal localizer Ft, spatial localizer Fs, modules in

temporal localizer {mt
i}4i=1, modules in spatial localizer {ms

i}3i=1, Multimodal LLM F , instruction prompt Pt,
dataset D = {(vi, qi, yi}Ni=1, total training steps S, gradient accumulate step s, alternate training period P

2: Initialize: Q,M, CACHE
3: Freeze:M, {mt

i}, {ms
i}, Q, Activate: F

4: for t = 1, . . . , S do
5: for j = 1, . . . , s do
6: i← ((t− 1)s+ j − 1)%N + 1, Prepare data (vi, qi, yi), Derive global representation gv .
7: Generate policy p = Q(qi)
8: Set Ft|p(·) = I

(
{mt

i}, p
)
(·),Fs|p(·) = I

(
{ms

i}, p
)
(·), derive ct, cs from p

9: M execution: vs, bvs =M(vi, ct, cs) = Fs

(
Ft(v, ct), cs

)
10: F forward propagation: ŷ(qi, vi) = F

(
Pt(qi, vs, bvs , gv)

)
11: Optimize F with loss: LCE in Equation (5)
12: Add (vi, qi, yi) to CACHE
13: end for
14: if t%P = 0 then
15: Freeze F , activate Q, initialize πθ = Q, πref = Q
16: for i = 1, . . . , sP do
17: Prepare data (vi, qi, yi)
18: Generate policies p1, p2 = Q(qi)
19: Forward propagation to get LCE1, LCE2 for p1, p2 respectively
20: if LCE1 < LCE2 then
21: pw ← p1, pl ← p2
22: else
23: pw ← p2, pl ← p1
24: end if
25: Optimize πθ with loss: LDPO in Equation (6)
26: end for
27: Q← πθ, clear CACHE, freeze Q, activate F
28: end if
29: end for

E. More Visualization Examples of MSR-ViR Reasoning
Here we present some more visualization results on inference examples of our MSR-ViR framework in Figure 8 and
Figure 9.

F. Multimodal LLM Input Format
The specific input of our Multimodal LLM is illustrated in Figure 10 together with our instruction prompt. Global
representation tokens are encoded and aligned global video representation gv. Similarly, temporal-grounded video tokens
and spatial-grounded video tokens are encoded and aligned video segments vs and bounding boxes bvs respectively. Special
tokens glob, tp and sp are designed to help the Multimodal LLM understand different types of tokens.
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Figure 8. MSR-ViR inference example 1.

Figure 9. MSR-ViR inference example 2.
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Figure 10. Specific input of our Multimodal LLM and the instruction prompt.

G. More Experiments
G.1. Complete Results on NExT-GQA

Table 7 presents the complete results on NExT-GQA dataset. Our framework MSR-ViR achieves best results on IoP, IoU
and Acc@GQA.

Table 7. Complete results of the experiments on NExT-GQA. Bold number denotes the best result excluding gray methods.

Method mIoP IoP@0.3 IoP@0.5 mIoU IoU@0.3 IoU@0.5 Acc@GQA

VGT 25.3 26.4 25.3 3.0 3.6 1.7 14.4
VIOLETv2 23.6 25.1 23.3 3.1 4.3 1.3 12.8
Temp[CLIP] 25.7 31.4 25.5 12.1 17.5 8.9 16.0
FrozenBiLM 24.2 28.5 23.7 9.6 13.5 6.1 17.5

TGB - - - 19.9 23.3 11.2 -
LangRepo 20.3 - 20.0 8.7 - 6.0 11.2

SeViLa 29.5 34.7 22.9 21.7 29.2 13.8 16.6

LLoVi(Mistral-7B) 20.7 - 20.5 8.7 - 6.0 11.2
LLoVi(GPT-4) 37.3 - 36.9 20.0 - 15.3 24.3

MoReVQA(Palm-2) 37.8 - 37.6 19.7 - 15.4 39.6

MSR-ViRQ(ours) 30.0 39.8 25.0 22.8 33.0 16.4 18.5
MSR-ViRL(ours) 29.6 39.0 24.1 23.4 33.6 16.4 18.6

G.2. Experiments on Computational Efficiency of MSR-ViR

For further comparison between our MSR-ViR framework and baselines, including end-to-end Multimodal LLMs and other
grounding-based methods, we conduct experiments on NExT-QA to test their inference speed, and the results, together with
parameter size and accuracy on NExT-QA, are demonstrated in Table 8. The inference speed is tested on one NVIDIA A100
GPU. Our framework’s additional parameters mainly stem from the Question Parser, and MoST-Grounding contributes less
than 0.1B. For comprehensive comparison, we test total parameters, inference speed, and accuracy using Question Parsers
of different sizes (Qwen2-7B and Qwen2-1.5B). With Qwen2-7B Question Parser, the inference speed of MSR-ViR is about
twice that of the direct baseline, consistent with our complexity estimates. With Qwen2-1.5B Question Parser, although
accuracy slightly drops, it still outperforms the direct baseline with fewer additional parameters and less computational
overhead.
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Table 8. Model size and inference speed on NExT-QA dataset. * denotes the method is designed for high-efficiency inference.

Method Parameter Size Inference Speed Acc on NExT-QA

BLIP-2 4.1B 1.21 s / sample 69.6
TGB* 4.3B 1.62 s / sample 72.1

InstructBLIP 7.9B 1.75 s / sample 72.5
SeViLa 8.3B 2.79 s / sample 73.8

Qwen-VL 9.6B 1.32 s / sample 71.9
MSR-ViRQ(1.5B parser) 11.2B 2.35 s / sample 73.1
MSR-ViRQ(7B parser) 16.7B 3.10 s / sample 73.6

LLaVA-NeXT 7.1B 2.19 s / sample 73.1
MSR-ViRL(1.5B parser) 8.7B 4.29 s / sample 74.2
MSR-ViRL(7B parser) 14.2B 4.96 s / sample 74.9

G.3. Ablation Study on Grounding Model

In MoST-Grounding module, we utilize a small grounding model UniVTG as our temporal grounding module. To
demonstrate the effectiveness of UniVTG, we further conduct ablation study on the choice of temporal grounding model.
We utilize R2-Tuning (Liu et al., 2024) and Moment-DETR (Lei et al., 2021) to replace UniVTG and test on NExT-GQA
dataset, and the results are shown in Table 9. MSR-ViRQ with UniVTG achieves the best results on NExT-GQA.

Table 9. Ablation study for temporal grounding models on NExT-GQA. This is the test result of MSR-ViRQ with different temporal
grounding models UniVTG, R2-Tuning and Moment-DETR.

Grounding Model Acc@QA Acc@GQA mIoP IoP@0.5 mIoU IoU@0.5

UniVTG 69.9 18.5 30.0 25.0 22.8 16.4
R2-Tuning 67.3 16.6 28.7 23.2 22.7 15.9

Moment-DETR 67.4 17.2 28.6 24.1 21.4 14.7

G.4. Ablation Study on Frame Sampling Strategy

In Section 4.1, we provide detailed implementations of MSR-ViR and its direct baseline, including the leveraged frame
sampling strategy. Here we present further ablation study on frame sampling strategy for Qwen-VL, LLaVA-NeXT, MSR-
ViRQ and MSR-ViRL on NExT-QA dataset to show that our implementations are optimized for each model. The results are
shown in Figure 11. We utilize the sampling strategy with the highest accuracy on NExT-QA. It could also be seen that
with the same number of sampled frames, MSR-ViR significantly outperforms its direct baseline, further demonstrating the
effectiveness of our proposed framework.

H. Upper Bound Computational Complexity of MSR-ViR
To enhance interpretability of Multimodal LLMs, MSR-ViR incorporates several additional models (as illustrated in Sec-
tion 3.1 and Appendix C), thereby elevating the computational complexity of the reasoning framework. For comprehensive
evaluation, we furnish the upper bound computational complexity of our reasoning framework MSR-ViRQ. With this
upper bound, we demonstrate that the computational complexity of our reasoning framework lies within a reasonable and
controllable range. As transformers are widely utilized in our framework, we first furnish the proof of the following lemma:

Lemma H.1. For a given transformer with NL layers, hidden size d, intermediate size dff (in feed forward networks) and
a given input with l tokens, the computational complexity of inference is O

(
NL

(
4d2l + 2dl2 + 2ddff l

))
.

Proof. The computational time bottlenecks of a transformer lie in the multi-head self-attention and feed-forward network,
so we calculate the computational complexity of these two components respectively.
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Figure 11. Ablation study on frame sampling strategy on NExT-QA. For MSR-ViR, the number in the figures represents (temporal-
grounded frames + spatial-grounded frames + global representation frames).

In multi-head self-attention, the calculation of the Q,K, V matrices is required first, which involves matrix multiplication
between a matrix of shape l × d and a matrix of shape d× d. So the computational complexity of this process is O

(
3d2l

)
.

Next, assume the number of heads in multi-head self-attention is h. So the dimension of each attention head will be
dk = d/h. For each attention head:

Attention(Q,K, V ) = softmax
(
QKT
√
dk

)
V.

So the computational complexity of one attention head is l2dk + l2dk = 2l2dk. For h heads, the overall computational
complexity will be 2l2dk × h = 2l2d. The final linear layer involves the matrix multiplication between a matrix of shape
l × d and a matrix of shape d × d, thus the computational complexity is ld2. Overall, the computational complexity of
multi-head self-attention is 3d2l + 2dl2 + d2l = 4d2l + 2dl2.

The feed-forward network involves two linear layers, the hidden size of which is dff , so the computational complexity of
feed-forward network is 2ddff l. With NL layers, the computational complexity will be multiplied by NL. Up to this point,
we have proved Lemma H.1: the computational complexity of a transformer is O

(
NL

(
4d2l + 2dl2 + 2ddff l

))
.

Next, we will calculate the computational complexity of each modules in MSR-ViRQ. For the Question Parser Qwen2-7B:

Proposition H.2. Given an input with l tokens, the computational complexity of Qwen2-7B is O
(
P1l

2
)
, where P1 is a

constant relevant to parameters of Qwen2-7B.

Proof. Trivially, the computational bottlenecks of Qwen2-7B lie in transformers. According to Lemma H.1, the com-
putational complexity of Qwen2-7B is O

(
NL

(
4d2l + 2dl2 + 2ddff l

))
. Considering d, NL and dff as constants and

eliminating low-order terms, the complexity expression of Qwen2-7B could be simplified as O
(
P1l

2
)
.

Proposition H.3. Given a video with length T and resolution H ×W , and a query with lq tokens, the computational
complexity of UniVTG is O

(
P2TH

2W 2 + P3T
2 + P4l

2
q + P5T lq

)
, where P2, P3, P4 and P5 are constants relevant to

parameters of UniVTG.

Proof. UniVTG incorporates a CLIP model, which involves a visual encoder and a text encoder, to encode the input videos
and queries. Then a multimodal encoder is utilized for cross-modal interaction. All sub-modules of UniVTG are based on
transformers. We will calculate the computational complexity of the three encoders respectively. Assume the parameters of
transformers in the visual encoder are dV , LV , dffV , the parameters of transformers in the text encoder are dT , LT , dffT
and the parameters of transformers in the multimodal fusion encoder are dF , LF , dffF . (The parameters of transformers are
as illustrated in Lemma H.1.)
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For the visual encoder, the image is first input into a convolution layer Conv2d(3, dV , kernel size=(s, s), stride=(s, s)). The
complexity of this step would be HW

s2 × s× s× 3× dV = 3dV HW . Then the encoded image of shape HW
s2 × dV is fed

into a vision transformer. Let nV = HW
s2 be the number of visual tokens. According to Lemma H.1, the computational

complexity of the vision transformer would be LV (4nV d
2
V + 2n2

V dV + 2nV dV dffV ). For a video with length T , the
total complexity of the visual encoder would be O

(
T
(
3dV HW + LV (4nV d

2
V + 2n2

V dV + 2nV dV dffV )
))

. For the text
encoder, given the length of query lq, the computational complexity would be O

(
LT

(
4lqd

2
T + 2l2qdT + 2lqdT dffT

))
according to Lemma H.1.

For the multimodal encoder, given the length of input (including visual tokens and text tokens) n = T + lq , the computational
complexity would be O

(
LF

(
4nd2F + 2n2dF + 2ndF dffF

))
according to Lemma H.1.

Overall, the computational complexity of UniVTG would be: O(T (3dV HW + LV (4nV d
2
V + 2n2

V dV + 2nV dV dffV )) +
LT (4lqd

2
T +2l2qdT +2lqdT dffT )+LF (4(T + lq)d

2
F +2(T + lq)

2dF +2(T + lq)dF dffF )) where nV = HW
s2 . Considering

all the parameters as constants and eliminating low-order terms, the complexity expression of UniVTG could be simplified
as O

(
P2TH

2W 2 + P3T
2 + P4l

2
q + P5T lq

)
.

Proposition H.4. Given an image with shape H × W , and a query with length lq, the computational complexity of
YOLO-World is O

(
P6HW + P7l

2
q

)
, where P6 and P7 are constants relevant to parameters of YOLO-World.

Proof. YOLO-World consists of multiple convolution structures. Since the calculation process of these structures is
repetitive and cumbersome, the detailed calculation process of the computational complexity of YOLO-World is omitted
here. Evidently, the complexity of the convolution calculation is proportional to HW , and the complexity of the text
encoding calculation is proportional to l2q (according to Lemma H.1). So the computational complexity of YOLO-World is
approximately O

(
P6HW + P7l

2
q

)
.

Proposition H.5. Given the number of input frames N , the shape of input frames H ×W and the length of text input l, the
computational complexity of Qwen-VL-7B is O

(
P8NH2W 2 + P9N

2 + P10l
2 + P11Nl

)
, where P8, P9, P10 and P11 are

constants relevant to parameters of Qwen-VL-7B.

Proof. Qwen-VL utilizes a vision transformer to encode the input images, after which a cross attention layer with learnable
query embeddings is used to project the visual tokens into the space of text tokens. Finally QwenLM gives the output
according to the input visual tokens and text tokens. Assume the parameters of the vision transformer are dV T , LV T , dffV T

,
the parameters of QwenLM are dQ, LQ, dffQ . nq is the number of queries in the cross attention layer.

As we have mentioned in the proof of Proposition H.3, the computational complexity of the vision transformer would be
O
(
3dV THW + LV T (4nV T d

2
V T + 2n2

V T dV T + 2nV T dV T dffV T
)
)
, where nV T = HW

s2 is the number of visual tokens
and s is the kernel size and stride in the convolution layer.

The calculation of the computational complexity of the cross attention layer is similar to the proof of
Lemma H.1, which is omitted here. The computational complexity of the cross attention layer is
O
(
nV T dV T dQ + 2nqnV T dQ + 2nqd

2
Q + 2nV T d

2
Q

)
. nV T dV T dQ is the complexity of the linear layer before cross-

attention, projecting the visual tokens in the space of dimension dV T to the space of dimension dQ.

Finally for QwenLM, the total length of the input would be nQ = Nnq + l. According to Lemma H.1, the computational
complexity of QwenLM would be LQ(4nQd

2
Q + 2n2

QdQ + 2nQdQdffQ).

Overall, the computation complexity of Qwen-VL would be O(N(3dV THW + LV T (4nV T d
2
V T + 2n2

V T dV T +
2nV T dV T dffV T

) +nV T dV T dQ +2nqnV T dQ +2nqd
2
Q +2nV T d

2
Q) +LQ(4(Nnq + l)d2Q +2(Nnq + l)2dQ +2(Nnq +

l)dQdffQ)), where nV T = HW
s2 . Considering all the parameters of the model as constants and eliminating low-order terms,

the complexity of Qwen-VL would be O
(
P8NH2W 2 + P9N

2 + P10l
2 + P11Nl

)
.

Proposition H.6. Given a video with length T and resolution H×W , length of our prompts for the Question Parser lp and a
question with length L, the computational complexity of MSR-ViRQ is O

(
c1TH

2W 2 + c2T
2 + C1H

2W 2 + C2L
2 + C3l

2
p

)
,
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where c1, c2 are constants relevant to parameters of small models in MSR-ViRQ, and C1, C2 and C3 are constants relevant
to parameters of large models in MSR-ViRQ.

Proof. All other modules only involve operations with a complexity of O(1), such as resizing and cropping. Therefore,
only the above four parts (Question Parser, UniVTG, YOLO-World, Qwen-VL) need to be considered when calculating the
complexity of MSR-ViRQ. When MSR-ViRQ answers a question, it invokes the Question Parser and Qwen-VL for one time
respectively. In MoST-Grounding, considering the most complex policy where TemporalBetween module is utilized to
invoke UniVTG twice, while in the spatial localizer, YOLO-World needs to be invoked twice for each image for spatial
localization.

Let the complexity of the Question Parser be TP , the complexity of UniVTG be TU , the complexity of YOLO-World be TY

and the complexity of Qwen-VL be TQ. We sample N frames as temporal-grounded frames, N frames as spatial-grounded
frames. The length of the question is L, and the length of the query for UniVTG and YOLO-World is lq . The length of the
video is T , and the resolution of which is H ×W . Then, the upper bound complexity of Qwen-VL would be:

T = TP + 2TU + 2NTY + TQ

= P1(L+ lp)
2 + 2P2TH

2W 2 + 2P3T
2 + 2P4l

2
q + 2P5T lq + 2NP6HW + 2NP7l

2
q

+ 2P8NH2W 2 + 4P9N
2 + P10L

2 + 2P11NL,

It is worth noting that lq is usually the length of a very short sentence, thus the terms with lq could be eliminated. Also
notice that the length of question L is significantly smaller than the length of prompts lp. After eliminating low-order terms:

T = P1(L+ lp)
2 + 2P2TH

2W 2 + 2P3T
2 + 2NP6HW + 2P8NH2W 2 + 4P9N

2 + P10L
2 + 2P11NL

≈ P1l
2
p + P10L

2 + 2P2TH
2W 2 + 2P3T

2 + 2P8NH2W 2

= c1TH
2W 2 + c2T

2 + C1H
2W 2 + C2L

2 + C3l
2
p,

where c1 = 2P2, c2 = 2P3 are constants relevant to parameters of the small model UniVTG, and C1 = 2NP8, C2 = P10

and C3 = P1 are constants relevant to parameters of the large models Qwen2-7B and Qwen-VL-7B. (We set N = 2 in
MSR-ViRQ, so actually C1 = 4P8).

According to Proposition H.6, the upper bound computational complexity of MSR-ViRQ is O(c1TH
2W 2 + c2T

2 +
C1H

2W 2 + C2L
2 + C3l

2
p). As c1 and c2 are constants from a small model, they are significantly smaller than C1 and C2.

So the execution time of MoST-Grounding, which is approximately O
(
c1TH

2W 2 + c2T
2
)
, would be strictly bounded,

although it is proportional to TH2W 2 and T 2. According to Proposition H.5, if we fix N as a constant, complexity for
Qwen-VL would be O(P12H

2W 2 + P10L
2). After comparison, it is obvious that the computational overhead of our

framework mostly comes from C3l
2
p, as lp is significantly larger than L.

In another word, the Question Parser is the main source of computational overhead. This is acceptable for our framework,
as the modular policies generated by the Question Parser provide interpretable reasoning path. Besides, this part of
computational complexity is irrelevant to the length and resolution of the video, and the length of question itself, making it
strictly bounded no matter how complex the scenario is. According to the complexity calculation results, the inference time
of our framework should be approximately 2 to 3 times that of the baseline. The experimental results in Table 8 verify the
correctness of this. Overall, the additional computational overhead introduced by our framework is reasonable and strictly
bounded.
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