High-Performance Arithmetic Circuit Optimization
via Differentiable Architecture Search

Xilin Xia! * Jie Wang! T Wanbo Zhang! Zhihai Wang!
Mingxuan Yuan®> Jianye Hao*>® Feng Wu!
! MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition,
University of Science and Technology of China
2 Noahs Ark Lab, Huawei Technologies
3 College of Intelligence and Computing, Tianjin University

Abstract

Arithmetic circuit optimization remains a fundamental challenge in modern inte-
grated circuit design. Recent advances have cast this problem within the Learn-
ing to Optimize (L20) paradigm, where intelligent agents autonomously explore
high-performance design spaces with encouraging results. However, existing ap-
proaches predominantly target coarse-grained architectural configurations, while
the crucial interconnect optimization stage is often relegated to oversimplified
proxy models or a heuristic approach. This disconnect undermines design quality,
leading to suboptimal solutions in the circuit topology search space. To bridge this
gap, we present ARITH-DAS , a Differentiable Architecture Search framework
for Arithmetic circuits. To the best of our knowledge, ARITH-DAS is the first to
formulate interconnect optimization within arithmetic circuits as a differentiable
edge prediction problem over a multi-relational directed acyclic graph, enabling
fine-grained, proxy-free optimization at the interconnection level. We evaluate
ARITH-DAS on a suite of representative arithmetic circuits, including multipli-
ers and multiply-accumulate units. Experiments show substantial improvements
over state-of-the-art L20 and conventional methods, achieving up to 27.05% gain
in hypervolume of area-delay Pareto frontiers, a standard metric for evaluating
multi-objective optimization performance. Moreover, integrating our optimized
arithmetic units into large-scale Al accelerators yields up to 6.59% delay reduc-
tion, demonstrating both scalability and real-world applicability.

1 Introduction

Arithmetic circuits, including multipliers and multiply-accumulate units, constitute the computa-
tional foundation of modern hardware platforms such as CPUs, GPUs, Al accelerators, and digital
signal processors [[-3]. These circuits perform essential arithmetic operations that dominate the
computational workload across a broad range of compute-intensive applications [4-8]. In deep neu-
ral networks, for example, multiplication operations account for over 99% of total computation [[].
As machine learning and high-performance computing systems continue to grow in scale and com-
plexity, optimizing arithmetic circuits for both latency and area efficiency has become a critical
challenge for enabling scalable and effective Al hardware systems.

Arithmetic circuit optimization poses a fundamental NP-hard challenge in discrete combinatorial
optimization. The discrete design space scales exponentially with the bit width, reaching a com-

plexity of O(24N 2) as detailed in Appendix Bl. Recent studies have reformulated arithmetic circuit

*This work was done when Xilin Xia was an intern at Huawei Noahs Ark Lab.

fCorrespondence author. Email: <jiewangx @ustc.edu.cn>
The code is available at https://github.com/MIRALab-USTC/Arith-DAS.git

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/MIRALab-USTC/Arith-DAS.git

optimization as a Learning to Optimize (L20) problem [B, 7-9], wherein learning-based agents are
employed to explore efficient design strategies for performance improvement. These approaches
typically initialize from expert-crafted designs, iteratively refine local structures, and leverage per-
formance improvements between successive designs as reward signals to guide the optimization
process, achieving promising results.

However, despite the notable successes, existing L20 approaches remain predominantly confined to
coarse-grained architectural optimization, which primarily focuses on basic component allocation at
each bit position. Fine-grained interconnect routing is still governed by heuristic rules that overlook
the complex structural constraints of the design space, thereby compromising circuit quality. Recent
efforts [[I7], T1] have attempted to model the interconnection in the arithmetic circuits through permu-
tation matrix generation, leveraging mixed-integer programming (MIP) and differentiable optimiza-
tion to enhance interconnect assignment. However, these methods are fundamentally constrained by
oversimplified proxy formulations, which fail to faithfully reflect complex post-synthesis physical
metrics. As circuit complexity increases, the misalignment between proxy and actual performance
escalates, causing the optimization to converge prematurely to inferior design solutions.

To address these challenges, we present ARITH-DAS , a differentiable architecture search frame-
work that directly targets the interconnection design space in arithmetic circuits. In contrast to prior
work focused on coarse architectural component allocation, ARITH-DAS formulates fine-grained
interconnection optimization as an edge prediction task over a multi-relational directed acyclic graph,
capturing signal-level structural semantics. It employs multi-relational graph neural networks with
attention mechanisms to model connection probabilities across relation types, and adopts a proxy-
free objective aligned with post-synthesis metrics to ensure fidelity. ARITH-DAS further integrates
with high-level allocation optimizers, enabling unified, multi-granularity circuit optimization.

We conduct systematic evaluations on a suite of representative arithmetic circuits, including multipli-
ers and multiply-accumulate (MAC) units. Experimental results show that our method consistently
achieves Pareto dominance over state-of-the-art approaches in area and delay, with hypervolume im-
provements of up to 27.05%. Furthermore, when integrating the optimized circuits into large-scale
AT computing systems, our approach delivers up to 6.59% latency reduction compared to the state-
of-the-art baseline designs, demonstrating its scalability and practical engineering applicability.

Contributions of this paper are summarized as follows: (1) We identify key limitations in existing
arithmetic circuit optimization approaches and reveal the critical role of the interconnection design
space in determining post-synthesis performance. (2) To the best of our knowledge, ARITH-DAS
is the first to formulate the fine-grained interconnect synthesis of arithmetic circuits as a differen-
tiable architecture search problem. (3) We propose a novel differentiable architecture search frame-
work tailored for arithmetic circuits, which combines multi-relational graph neural networks with
Graphormer-style attention mechanisms. The entire framework is trained in a proxy-free manner,
directly aligning with post-synthesis performance metrics. (4) Extensive experimental results across
representative circuits demonstrate that our method achieves state-of-the-art post-synthesis perfor-
mance, while maintaining strong applicability to real-world design flows.

2 Preliminary: Arithmetic Circuit Optimization

Arithmetic circuits are typically composed of three main components: the Partial Product Gen-
erator (PPG), the Compressor Tree (CT), and the Carry Propagate Adder (CPA). As shown in
Figure [, PPG encodes the inputs into a matrix of partial products based on the arithmetic operations,
using schemes such as AND-gate encoding, Booth encoding, or more complicated methods [I2-T4].
Then the compressor tree reduces this matrix to two rows through parallel compression, and finally
the CPA adds them to produce the final output. The compressor tree dominates both area and delay of
the entire arithmetic circuit, making it the primary target for arithmetic circuit optimization [B, [, 15].
The optimization of compressor trees typically involves three key steps:

Compressor Allocation This step determines the number and types of compressors used at each
column of the compressor tree. The allocation must satisfy basic constraints such as input/output
balance and convergence to two or fewer final rows. It forms the architectural backbone of the
compression process and directly influences both the area and delay of the overall circuit.

Compressor Stage Assignment Given a valid compressor allocation, the stage assignment step
specifies the execution order of each compressor, subject to data dependency and topological con-

D ® © @x[30]
0l @ @ y30]

In Out Visual Node

0] [0 [2] [@ [N

(2) Compressor Partial Product

D OOD® (ogeWird) || DRDODOOE | Allocation 322 Compressor
D 0000 O 2:2 Compressor
00038 a Carty 2:2 Compressor’ Virsual Node I:::J
Encoding Circuit b Sum (Half Adder) Columns Stages Rt
" clation a
(1) Partial Product Generator Sum=a@b Carry=ab e Cireuit Design
Relation e ==----
(2) Compressor Tree a s}
b Carry 3:2 compressor c c
YT c Sum (Full Adder) [o i - \\ b\]
P00 o Sum=a®b®c ! \b‘ AR
- y

Carry=ab+(a@b)c

Multi-Relation
Formulation

OEOIOIOINO Graph Representation

(3) Carry-Propagate Adder
(a) Multiplier Architecture

(1) Basic Component (3) Compressor Interconnection

(b) Compressor Tree

(¢) Graph Representation
Figure 1: An illustration of a 4-bit multiplier with AND-gate based PPG.

AND-Encoding Multiplier
-

Booth-Encoding Multiplier AND-Encoding Multiplier

Delay (ns) : Delay (ns)

Figure 2: Delay distribution of 1000 randomly
interconnected 16-bit multipliers using Wallace
Tree compression with both AND and Booth
partial product encoding PPG.

Figure 3: Comparison of estimated and post-
synthesis delays for multipliers ranging from 4-
bit to 64-bit, using Wallace Tree with both AND
and Booth partial product encoding PPG.

straints. This process enforces legal signal propagation through the stages but does not yet define
the exact ordering of partial product summation within each column. The resulting assignment
determines the temporal alignment of computation without resolving interconnect details.

Compressor Interconnection With allocation and stage assignment fixed, the final step involves
establishing the logical interconnection between compressors, determining how outputs are routed to
inputs across stages. This step has been largely overlooked in existing learning-to-optimize (L20)
frameworks, which typically assume simplistic sequential interconnection. Unlike allocation and
stage assignment, which operate on regularized representations, interconnect optimization requires
reasoning over graph-structured data and exposes a vast and irregular search space, making it both
critical and challenging to optimize effectively.

3 Motivation Challenge: Interconnection Optimization

Existing arithmetic circuit optimization frameworks predominantly focus on allocation-level design
using regularized structural representations, whereas interconnections between compressors are typ-
ically handled through simplistic sequential wiring schemes. However, recent studies reveal that
interconnects constitute a critical and nontrivial design space [0, 1], with considerable impact on
post-synthesis delay. In essence, existing approaches exhibit three fundamental limitations: (1) the
neglect of interconnect-level optimization; (2) dependence on oversimplified heuristics and proxy de-
lay models; (3) the absence of a unified framework for jointly optimizing coarse-grained allocation
and fine-grained interconnect design. We elaborate on these limitations in the following discussion.

Design Space of Interconnection The interconnection of compressors plays a critical role in
determining the critical path of the compression tree. We illustrate this often-overlooked design
space through a randomized experiment. Specifically, we perform random interconnection assign-
ments on 16-bit multipliers using both AND-gate and Booth PPG schemes with fixed compressor
allocation, and evaluate the post-synthesis delay of these randomly generated designs. The results
are compared against the sequential interconnection strategy adopted by the recent state-of-the-art
L20 method MUTE [[I]. We present the post-synthesis delay distribution of the randomly routed
designs in Figure O, revealing that with a fixed compressor tree allocation, there exists a substantial
timing optimization space of up to over 10%. Notably, the sequential wiring scheme does not exhibit
a clear advantage over these randomized interconnection designs.

Misaligned Proxy Objective Existing interconnect optimization methods leverage mixed-integer
programming (MIP) [[] or differentiable approaches [IT], both relying on oversimplified proxy

delay models. However, due to the complex and nonlinear nature of post-synthesis delays, which
are closely coupled with the technology library and EDA toolchain, such proxy objectives often fail
to reflect the true performance characteristics and lead to suboptimal routing solutions. To illustrate
this, we conduct randomized interconnect experiments on 4- to 64-bit multipliers with both AND
and Booth PPG. For each bit-width, 50 random interconnected designs are evaluated using the proxy
delay model in UFO-MAC [I0] as well as the actual post-synthesis delay. As shown in Figure B,
the discrepancy between proxy and actual delay metric increases with bit-width, underscoring the
growing inaccuracy of proxy-driven optimization in large-scale designs.

To address these challenges and fully exploit the vast yet underexplored design space of compressor
interconnections, we propose ARITH-DAS , a proxy-free differentiable architecture search frame-
work based on graph neural networks. ARITH-DAS optimizes complex compressor-to-compressor
routing by enabling accurate and efficient interconnect prediction aligned with post-synthesis met-
rics. It can be seamlessly integrated with any allocation optimization algorithm, forming a unified
and extensible framework for circuit-level design optimization.

4 Methodology

We begin with an overview of our proposed ARITH-DAS in Section BEIl. Next, we propose our
architecture search formulation in Section BE7, including detailed multi-relational graph representa-
tion in Section EZZT and differentiable relaxation in Section B2, Finally, Section B3 provides a
detailed description of the core components of our framework, along with the training procedure
aligned with post-synthesis performance metrics.

4.1 Overview of Our Framework

As illustrated in Figure B, our ARITH-DAS framework consists of three principal components.
To thoroughly explore the design space of arithmetic circuits, we first construct a coarse-grained
compressor allocation using an adaptable circuit evolutionary strategy. This initial configuration
is then expanded into a multi-relational directed acyclic graph (DAG), which defines a rich and
expressive interconnect search space. A multi-relational graph neural network is employed to encode
both topological and semantic relationships among architectural components, while a graph attention
mechanism estimates the probabilistic significance of candidate connections. Finally, the entire
framework is trained end-to-end via a PPO-inspired algorithm, enabling proxy-free optimization
directly guided by post-synthesis performance metrics.

4.2 Architecture Search Formulation for Arithmetic Circuit

4.2.1 Graph Representation for Compressor Tree

Combinational logic circuits can be naturally represented as directed acyclic graphs (DAGs), exhibit-
ing structural equivalence between the circuit and its graph-based abstraction. In our representation,
partial products and compressors are modeled as nodes, and logical dependencies are modeled as
directed edges, as illustrated in Figure Mi(c). To address the inherent complexity of fine-grained
interconnect modeling, we employ a principled graph construction strategy, detailed below.

(1) Topology Ordering via Stage Assignment To preserve acyclicity, a fundamental constraint of
combinational logic, we assign each compressor to a specific stage and allow interconnections only
between stages of increasing order. This stage-wise ordering induces a valid acyclic circuit topology
and establishes explicit dataflow dependencies.

(2) Virtual Nodes for Cross-Stage Connections To address mismatches in input and output port
counts that necessitate signal bypassing, we introduce virtual nodes, which serve as auxiliary 1:1
compressor-like entities that propagate signals across stages. This mechanism enforces stage-wise
connectivity while preserving topological consistency and simplifying graph construction.

(3) Multi-Relational Graph for Asymmetric Input Semantics While addition is logically com-
mutative, the compressor input ports are physically asymmetric. To capture this asymmetry, we rep-
resent the compressor tree as a multi-relational graph [I6-TX], where each edge type corresponds to
a specific input port of the target node. This formulation enables the model to distinguish structurally
similar yet semantically distinct connections.

More formally, we define the compressor tree as a multi-relational directed acyclic graph [IY], de-
noted by the tuple (V,E, R). Here, V = {v1,vq, ...} is the set of nodes, each representing a circuit

element. R = {ry,ro,...} is the set of relation types, where each r € R corresponds to a seman-
tically distinct input port. The edge set £ C V x R x V consists of typed directed edges, where
each edge (v;,7,v;) € € indicates that node v; connects to input port r of node v;. The graph can
also be encoded as a three-dimensional binary tensor G € {0, 1}RI*IVIXIVI 'where G,.; ; = 1 if and
only if (v;,r, vj) € &. Following previous works [3, [Z, [5, 20, 21], we represent the allocation of a
compressor tree by a matrix s € N+7*¥ 'where T is the number of compressor types and N is the
input bit width of the compressor tree. Each entry s, ,, denotes the number of compressors of type ¢
assigned to column n. We denote the set of valid designs by G and the set of valid structures by S.
The detailed design constraints are provided in Appendix 3. Finally, our goal is to maximize a
composite objective function:

max R(G) = —w; - area(G) — wa - delay(G), (1)
€

where the objective function R : G — R is the weighted linear combination of post-synthesis area
and delay metrics following prior works [3, [, 9, I5].

4.2.2 Differentiable Reformulation for Discrete Search Space

Problem () constitutes a large-scale combinatorial optimization challenge, involving highly irreg-
ular graph structures and complex design constraints. To address this, we draw inspiration from
differentiable architecture search [Z2—26], which offers a scalable and efficient alternative. By relax-
ing discrete structural decisions into continuous probability distributions, these methods enable joint
optimization over a vast design space within a single forward pass, thereby significantly enhancing
search efficiency and scalability.

Specifically, we replace the hard edge assignments in the compressor tree graph G € G with soft,
learnable probability distributions over candidate source nodes. Each potential connection is pa-
rameterized by a real-valued score and passed through a softmax function, yielding a continuous
relaxation G € [0, 1]/RI*VIXIVI 'where G, ; ; denotes the probability of establishing an edge from
node v;, conditioned on edge type r and target node v;, with normalization), G, , ; = 1 for each
(r, 7) pair. This target-centric formulation arises from the structural constraints and multi-relational
graph design, which are inherently defined from the perspective of the receiving node. By mod-
eling connection probabilities in this manner, each input port selects its optimal driver from valid
candidates, enabling fine-grained, port-specific connectivity through softmax-based selection. This
relaxation implicitly defines a distribution 7w : G — [0, 1] over the graph search space, with corre-
sponding parameter space II. Following previous works[22, 73], the objective is relaxed to

Egr|R = Egrs) | R , 2
max Bg.. [R(J)] max max Eg.x) [R(9)] @
where IIg C II denotes the set of graph distributions associated with a given allocation s. This

naturally forms a two-stage optimization framework where we first determine the allocation of the
compressor tree, and next we optimize the corresponding interconnection.

4.3 ARITH-DAS : Differentiable Architecture Search for Arithmetic Circuit

In this section, we present ARITH-DAS , a novel differentiable architecture search framework
tailored to arithmetic circuit optimization. By encoding structural information via a multi-relational
graph neural network and modeling interconnect prediction through graph attention, it enables end-
to-end, gradient-based optimization directly guided by post-synthesis performance metrics.

4.3.1 Adaptable Allocation Search via Circuit Evolution

The compressor allocation s € S specifies the number of compressors across columns, shaping
the coarse-grained structure and reduction stages of the compression tree. This aspect has been
extensively studied [B, [, 9, [0, 15, 0], with methods ranging from reinforcement learning to mixed-
integer programming for optimizing compressor configurations under fixed encoding schemes.

To ensure simplicity, extensibility, and structural diversity, we adopt the evolution-based method
introduced in [[]. Specifically, we maintain a population of candidate architectures in an elite pool,
each representing a compressor allocation matrix across all columns. New candidates are generated
through two key mechanisms: (1) local perturbation, where a small number of compressors are
randomly added, removed, or shifted across columns, and (2) substructure crossover, where two
parent architectures exchange subregions of their compressor allocation matrices.

N

Ve

A

a Relation a \ /7 N
b—— \Q_ = u W ¢ //\ Graph Probability|
? f -
> Pol
N g \I/ N - 4 e
Multi-Relational ~ Topology \O/\ / i Attention Scores l i
. < : Samplin;
Edge Types Graph Structure ~ Order) A pling
- Relation b Q T K
(b) Graph Structure / 04 [} [} 3
<
Representation \\\1‘/ it $ Gy o
4 N { AN 1—‘_1
v < \ //
(o]
Update Relation ¢) 1 hu & &
ooooo) (Aggregation Function Sample 1 Sample 2
TMutation / Crossover ,
p— h® R® h© Ry Ry
ooooo P — = Hidden State of Each Relation
Allocation G l Multi-Relational Cross-Relational Synthesis Environment
location Gene ite Poo | : . |
) \ Message Passing Aggregation Y, L)

(a) Circuit Structure Evaluation (c) Graph Attention Based Edge Prediction (d) EDA-Aligned Training

Figure 4: Overview of our proposed ARITH-DAS framework.

This evolutionary process promotes exploration of diverse architectural patterns while preserving
high-performing solutions across generations. Crucially, it operates independently of the intercon-
nect structure, enabling seamless integration with the differentiable wiring search described in the
next stage. Once a compressor allocation configuration is sampled, we construct the corresponding
multi-relational graph and optimize its interconnects accordingly.

4.3.2 Multi-Relational Graph Attention Based Link Prediction

Multi-Relational Graph Encoder Given a compressor allocation s € S, our objective is to de-
termine its optimal interconnect configuration. To this end, we leverage a multi-relational graph
neural network to encode the underlying circuit topology and model the propagation of physical
information through the circuit. Each edge type captures a distinct semantic relation, such as a spe-
cific input port of a compressor, and is processed independently during message passing, enabling
the network to learn asymmetric and relation-specific connection patterns. Concretely, we adopt a
multi-relational message passing scheme. At layer [, the hidden state of node v; under relation r is
updated by:

+1 _
hi T

1
- jEN’%U{i} \/|N7"(Z)| ’ \/|NT(J)|

where N,.(i) = {v; € V| (v;,7,v;) € € or (vj,r,v;) € E} denotes the set of nodes bidirectionally
connected to v; under relation 7, and ¢'. is a relation-specific message function at layer /, augmented
with self-loops and reverse edges to support comprehensive message flow, while directional seman-
tics are embedded in node features. To integrate information across all relations, we concatenate the
relation-specific representations and apply a shared aggregation function ~':

hi'H = fyl (CODC&tTeR(hij‘;l)) ' @

oL (hh,nh), reR, 3)

Graph Attention Based Edge Prediction The final node embedding h; encodes the structural
context of vertex v;. To predict interconnect probabilities, we employ a Graphormer-style attention
mechanism [Z7], wherein each target node and its candidate source nodes are projected into relation-
specific query and key spaces, respectively. Let O = {sum, carry} denote the set of output port
types. Given a target node v; and a port pair (0,7) € O X R, the attention score from a candidate
source node v; is computed as:

0O — exp {(W5h) T (Wieha)} - MG 5
iﬁj a 0,7’7
R exp{(WcS j)T(W;‘éhw)} - MY

where W, and Wy are linear projections specific to the input and output port types, respectively.
The binary mask Mf; € {0,1} imposes structural constraints by limiting the softmax normal-
ization to valid source-target-port combinations, as detailed in Appendix CZ32. This formulation
conforms to the probabilistic semantics of our relaxation: for each target node and input port type, it
defines a distribution over valid source nodes. The target node acts as the query and the source node
as the key, ensuring consistency between the attention logits and relaxed edge selection probabilities.

4.3.3 Post-Synthesis Alignment via Proxy-Free PPO-Like Training

Given a fixed compressor allocation s, the attention scores aZ’T define a structured distribution over

interconnect candidates. A valid discrete realization is obtained via sequential sampling along a

legal topological order, with the legality mask Mf; dynamically updated to ensure acyclicity, stage

consistency, and port compatibility. This process yields a deterministic graph sample G ~ 7y (- | 8),

where the probability is factorized as 79(G | s) = [1,.; ; , Grij - @7}, fully parameterized by the

learnable attention logits 05?7’; . To optimize the interconnect structure with respect to post-synthesis

performance metrics, we employ a proxy-free, PPO-like training paradigm [P8]. Specifically, we

treat my as a stochastic policy over the graph space and maximize the expected objective defined by
post-synthesis metrics R:

m(G | s)

max J(0 | s) = maxEg ., (.1s) | R =maxEg . (. — R 6

(0]) = mx g 1o [RO)] = mpxEgoryio | GEISR@) . ©

where 75 is a fixed reference policy used for importance sampling. To enforce conservative updates

and prevent large deviations from the reference policy, we optimize the clipped surrogate objective:

M
. 1 . .
JO1s)=4; > min (pn R(Grm), clib(pm, 1= €, 14 €)R(Gm)), (7)
m=1
where p,,, = :ggg;::g is the likelihood ratio between the current and reference policies, and G,,, ~

m5(- | s) are i.i.d. sampled graphs. The hyperparameter € controls the trust region for updates.
Additionally, we introduce a regularization term to promote structural discreteness and enforce port-
level sparsity constraints of the output ports [[1]. The overall loss is defined as:

2

L(0|s)= Z [af”; (1= afj)]Q + Z 1— Z Mg Oé;;

1,7€[|V]], 0€O0, rER 1€[|V]], 0€O JE[IV]], reR

Discretization penalty Output-port exclusivity constraint

®

The first term penalizes probabilities that lie in the ambiguous region (0, 1), thus promoting discrete-
like selection. The second term enforces that each output port selects exactly one target input (i.e.,
normalized to 1). Finally, the complete training objective combines the PPO-style reward maximiza-
tion with the regularization:

max £(6) = Eavs [J(0 | 5) = nL(0 |)],)

where 7 > 0 controls the trade-off between reward fidelity and structural regularity. A theorem-
guided discussion is detailed in Appendix C3 6.

S Experiments

We begin by describing the experimental setup, baseline methods, and evaluation metrics in Sec-
tion Bl. The experiments are designed to pursue three primary objectives: (1) Evaluate the effec-
tiveness of ARITH-DAS in optimizing computing multipliers and MAC units across a broad range
of input bit-widths (Section B); (2) Assess the generalization ability of ARITH-DAS -optimized
multipliers when scaled to large macro designs representative of real-world Al accelerators (Sec-
tion B3); (3) Perform ablation studies to quantify the contributions of individual components within
ARITH-DAS and elucidate the rationale behind its design (Section B4).

5.1 Experiment Setup

Experimental Setup Our framework leverages OpenROAD [29] for physical implementation.
Logic synthesis is performed using Yosys [BU] with the Nangate45 technology library [B1], while
static timing analysis (STA) is conducted through OpenSTA [?Y]. Functional verification employs
Verilator [BZ] for cycle-accurate simulation. The machine learning pipeline is implemented in Py-
Torch [B3] and PyTorch Geometric [B4], optimized via the Adam algorithm [35]. We evaluate
our methodology across eight distinct multiplier architectures, encompassing 8-bit, 16-bit, 32-bit,
and 64-bit implementations employing both AND gate-based and Booth encoding-based techniques.
More experiment configurations are provided in Appendix O.

8-bit And 16-bit And 32-bit And . 64-bit And

Delay (n)

Tors SN T3 % ! T
z s S = h: z
g S 2, W , . 2
010 - ‘\ 1 N
> y 2
0.65 L 20
14 18
W w0 40 40 40 40 W0 2000 200 2400 2600 7000 7500 $000 §500 9000 9500 10000 25000 36000 35000 40000 42000
Area (UM?) Area (Um?) Area (Um?) (um?)
8-bit Booth 16-bit Booth 32-bit Booth 64-bit Booth
26 34
050 a |
24
50 =" 155 a2 | = =
? g N g I g 2, o -
Sos Sis - = S0 e z
z z w0 Fo
S 075 S .,] 3
a a2 -BT% 824
wn . N
065 T 20 S
10 14
W00 a5 as 45 S0 5 s 55 1400 1600 1500 2000 200 S0 600 6500 7000 7500 000 2000 200 24000 2
Area (UmM?) Area (UM?) Area (UM?) Area (UM?)
—=— Arith-DAS —— MUTE ArithTreeRL —— UFO-MAC DOMAC GOMIL Wallace

Figure 6: Pareto frontiers of our ARITH-DAS and baselines on eight multiplier design tasks.

Comparative Baselines We evaluate our methodology against six representative approaches
spanning classical heuristic designs to contemporary learning-to-optimize (L20) paradigms: (1)
Wallace [36]: A foundational heuristic compression technique; (2) UFO-MAC [I0] and (3)
GOMIL [20]: A solution framework based on integer programming; (4) DOMAC [8]: A differ-
entiable interconnection optimization framework; (5) ArithTreeRL [U]: A leading deep reinforce-
ment learning (RL) architecture; (6) MUTE [[]: The current state-of-the-art hybrid RL-Evolutionary
framework. Extended comparative analyses including implementation specifics and hyperparameter
configurations are provided in Appendix (4.

Evaluation Metrics Arithmetic circuit optimization constitutes a canonical multi-objective opti-
mization problem. We employ two established evaluation protocols from multi-objective optimiza-
tion theory: (1) Pareto Frontier Analysis: Following established methodologies [3, 7-T1, T5], we
simulate diverse design preferences through parametric target delay configurations. This enables
comprehensive synthesis of corresponding solutions and visualization of their Pareto frontiers [B7].
(2) Hypervolume (HV) Metric: We conduct comparative analysis of solution quality through hy-
pervolume measurements [B8] across different Pareto frontiers, quantifying their multi-objective
characteristics. More details are provided in Appendix C3R.

5.2 Main Evaluation

We highlight the superiority of ARITH-DAS Delay Comparison
through a comparative analysis with six competitive

baselines on eight multiplier design problems across

a wide range of input sizes. The results in Figure B

demonstrate that multipliers optimized by ARITH-

DAS consistently and significantly outperform de-

signs optimized by all baselines across all eight mul-

tiplier design tasks. Moreover, we present the hy-

pervolume (HV) of the Pareto points discovered by

ARITH-DAS in Table M. The results demonstrate |I |I |I
that ARITH-DAS achieves a substantial improve- ston s con e ivisoe sl b st
ment over the previous SOTA, improving the hy- — A pomac vallace
pervolume by up to 27.05%. Overall, these results

demonstrate the strong ability of ARITH-DAS to op-
timize multipliers, leading to significant reductions
in both area and delay. More results, including evaluation on multiply-accumulators (MACs) and
visualization of results, are provided in Appendix D.

Delay (ns)

°

®

Figure 5: Delay of practical Al chips with
our ARITH-DAS and baselines integrated.

5.3 Generalization to Large-Scale Computing Circuit

To assess the generalization capability of the optimized computing units, we integrate those pro-
duced by ARITH-DAS and baseline methods into six representative Al accelerator circuits from
the Koios 2.0 benchmark [BY]. In addition, we deploy and evaluate these units within a typical
processing element (PE) array architecture, which is widely used in applications, following previ-
ous works [, 15, ZT]. As shown in Figure B and Figure O, circuits incorporating ARITH-DAS
-optimized units consistently outperform these baseline counterparts across multiple metrics. These

Table 1: Hypervolume (HV.) of multiplier design.

Mult. (AND) 8 bit 16 bit 32 bit 64 bit
Method HV.? Impr(%) HV.? Impr.(%) HV.T Impr.(%) HV. 1 Impr.(%)
Wallace 343 NA 107.53 NA 793.19 NA 4,796.14 NA
GOMIL 11.56 237.25 265.17 146.60 1,216.48 53.36 8,784.55 83.16

UFO-MAC 12.83 274.08 269.18 150.32 1,076.70 35.74 7,932.19 65.39
DOMAC 4.60 34.29 177.52 65.09 1,267.22 59.76 9,941.63 107.28

ArithTreeRL 9.61 180.29 315.19 193.11 2,779.56 250.43 14,237.63 196.86

MUTE 11.67 240.30 310.89 189.11 2,470.47 211.46 16,656.60 247.29
ARITH-DAS (Ours) 16.30 375.32 361.84 236.49 3,247.06 309.37 19,563.48 307.90

Mult. (Booth) 8 bit 16 bit 32 bit 64 bit
Method HV.? Impr(%) HV.? Impr.(%) HV.T Impr.(%) HV. 1 Impr.(%)
Wallace 14.92 NA 130.88 NA 878.23 NA 3,146.58 NA
GOMIL 31.50 111.16 274.09 109.43 1,852.58 110.95 5,842.81 85.69

UFO-MAC 31.50 111.18 211.36 61.49 1,754.11 99.73 4,408.90 40.12
DOMAC 15.54 4.17 152.25 16.33 1,875.59 113.57 8,440.55 168.25

ArithTreeRL 29.94 100.72 311.13 137.88 2,455.28 179.57 10,728.16 240.95

MUTE 30.61 105.15 346.68 164.89 2,961.62 237.23 11,034.68 250.69

ARITH-DAS (Ours) 3994 167.70 389.63 197.71 330551 276.38 12,212.80 288.13

16-bit And 16-bit Booth 32-bit And 32-bit Booth
195
> 0 3.0
1.90 0 9 1
1 o I8
o185 I~ I~ —_
1.80 = -
D g ; T v—————a T &
B 175 2 3 26] —_——
a | a 8, L\
1.70 \ 5 \
1.65 1 24 e 2 k\'
140000 160000 180000 200000 140000 160000 180000 550000 600000 650000 700000 750000 400000 450000 500000 550000 600000
Area (UmM?) Area (UM?) Area (UmM?) Area (UM?)
—=— Arith-DAS (Ours) ~—— MUTE ArithTreeRL ~ —— UFO-MAC DOMAC GOMIL Wallace

Figure 7: Pareto front of PE arrays integrated with designs generated by ARITH-DAS and baselines.

results demonstrate the strong generalization ability of ARITH-DAS in large-scale, computation-
intensive circuits, underscoring its potential to enhance the performance of real-world Al chips.

5.4 Ablation Study

We cqnducted a c'art?fully Qes1gned ablation study Table 2: Ablation study
targeting the multiplier design task. As has been
noted, our method is composed of the following key Mult. (AND) 16 bit 32 bit
modules: (1) the Circuit Genetic Evolution (CGE) Method HV.t Impr(%) HV.T Impr(%)
module, (2) the Multi-Relational Graph Encoder . w'il)lil;eo ;27;3‘ 231\&9 37292.136 3(%A3
(MRG) module, and (3) the PPO-style training mod- —2XT-PAS ©urs) 361, : 247, =l
. .. . f w/o CGE 326.58 203.71 2427.64 206.06
ule (PPO). To assess the individual contribution of wio MRG 31357 19161 2499.68 215.14
each module within ARITH-DAS , we conduct a wlo PPO 32649 20363 3007.14 27912

comprehensive component-wise analysis focused on the optimization of multiplier architectures.
Specifically, we design three ablation experiments by removing each module, respectively, to quan-
tify its impact on overall performance: (1) w/o CGE where circuit genetic evolution is replaced with
a simulated annealing approach; (2) w/o MRG where the multi-relational graph encoder is replaced
by a heterogeneous-node graph with uniform edge types; (3) w/o PPO where the PPO-style loss is
replaced by the proxy delay model introduced in previous work [I[T]. As shown in Table [, all three
modules are critical to the overall performance. Removing the CGE module impairs structural ex-
ploration and reduces architectural diversity, underscoring the role of genetic search in design space
navigation. Removing the MRG module weakens relational reasoning, confirming the necessity of
modeling edge semantics for accurate connectivity inference. Substituting the PPO-based optimiza-
tion with a proxy delay model degrades performance, highlighting the benefit of end-to-end training
aligned with post-synthesis metrics.

6 Conclusion and Limitations

In this work, we propose ARITH-DAS , a differentiable architecture search framework for arith-
metic circuit optimization. Experiments on representative arithmetic units show that ARITH-DAS
consistently outperforms state-of-the-art baselines in area-delay trade-offs. When deployed in large-

scale Al accelerators, it achieves notable timing improvements, demonstrating strong scalability and
practical value. These results underscore the effectiveness of ARITH-DAS and offer new directions
for optimizing high-performance computing systems.

However, there still remain several limitations. Consistent with prior studies, our current experimen-
tal setup remains confined to the post-synthesis stage, which does not account for the intricate back-
end procedures such as placement, routing, and timing closure. These stages have a profound impact
on the circuits final area, timing, and power characteristics, often leading to substantial discrepan-
cies between synthesized and implemented results. Hence, exploring backend-aware optimization
strategies for arithmetic circuits constitutes an essential avenue for future research.

7 Acknowledgements

We would like to thank all the anonymous reviewers for their insightful comments. The numerical
calculations in this paper have been done on the supercomputing system in the Supercomputing
Center of the University of Science and Technology of China. This work was supported by the
National Key R&D Program of China under contract 2022ZD0119801, and the National Natural
Science Foundation of China grants U23A20388, 62021001, and 624B1011. We would like to
thank our lab-mate, Zhaojie Tu, for his valuable technical support.

References

[1] Reza Hashemian. A new multiplier using wallace structure and carry select adder with pipelin-
ing. In ISCAS 02 Conference Proceedings, 2002.

[2] Fayez Elguibaly. A fast parallel multiplier-accumulator using the modified booth algorithm.
IEEFE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 47(9):
902-908, 2000.

[3] Dongsheng Zuo, Yikang Ouyang, and Yuzhe Ma. Rl-mul: Multiplier design optimization with
deep reinforcement learning. In 2023 60th ACM/IEEE Design Automation Conference (DAC),
pages 1-6. IEEE, 2023.

[4] B. Holdsworth. Digital logic design, 2nd ed. 1987. ISBN 0408015667.

[5] Biplab Das, Avijit Kumar Paul, and Debashis De. An unconventional arithmetic logic unit
design and computing in actin quantum cellular automata. Microsystem Technologies, pages
1-14, 2019.

[6] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient processing of deep
neural networks. Springer, 2020.

[7] Zhihai Wang, Jie Wang, Xilin Xia, Dongsheng Zuo, Lei Chen, Yuzhe Ma, Jianye Hao, Mingx-
uan Yuan, and Feng Wu. Computing circuits optimization via model-based circuit genetic
evolution. In The Thirteenth International Conference on Learning Representations, 2025.

[8] Rajarshi Roy, Jonathan Raiman, Neel Kant, Ilyas Elkin, Robert Kirby, Michael Siu, Stuart
Oberman, Saad Godil, and Bryan Catanzaro. Prefixrl: Optimization of parallel prefix circuits
using deep reinforcement learning. In 2021 58th ACM/IEEE Design Automation Conference
(DAC), pages 853—-858. IEEE, 2021.

[9] Yao Lai, Jinxin Liu, David Z Pan, and Ping Luo. Scalable and effective arithmetic tree genera-
tion for adder and multiplier designs. arXiv preprint arXiv:2405.06758, 2024.

[10] Dongsheng Zuo, Jiadong Zhu, Chenglin Li, and Yuzhe Ma. Ufo-mac: A unified framework
for optimization of high-performance multipliers and multiply-accumulators. arXiv preprint
arXiv:2408.06935, 2024.

[11] Chenhao Xue, Yi Ren, Jinwei Zhou, Kezhi Li, Chen Zhang, Yibo Lin, Lining Zhang, Qiang

Xu, and Guangyu Sun. Domac: Differentiable optimization for high-speed multipliers and
multiply-accumulators. arXiv preprint arXiv:2503.23943, 2025.

10

[12] Florent de Dinechin and Martin Kumm. Application-specific arithmetic. Cham: Springer
International Publishing, 2024.

[13] Chichyang Chen. High-order taylor series approximation for efficient computation of elemen-
tary functions. IET Computers & Digital Techniques, 9(6):328-335, 2015.

[14] Davide De Caro, Ettore Napoli, Darjn Esposito, Gerardo Castellano, Nicola Petra, and Anto-
nio GM Strollo. Minimizing coefficients wordlength for piecewise-polynomial hardware func-
tion evaluation with exact or faithful rounding. IEEE Transactions on Circuits and Systems I:
Regular Papers, 64(5):1187-1200, 2017.

[15] Zhihai Wang, Jie Wang, Dongsheng Zuo, Ji Yunjie, Xilin Xia, Yuzhe Ma, Jianye Hao, Mingx-
uan Yuan, Yongdong Zhang, and Feng Wu. A hierarchical adaptive multi-task reinforcement
learning framework for multiplier circuit design. In Forty-first International Conference on
Machine Learning, 2024.

[16] Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. Composition-based
multi-relational graph convolutional networks. arXiv preprint arXiv:1911.03082, 2019.

[17] Guoquan Dai, Xizhao Wang, Xiaoying Zou, Chao Liu, and Si Cen. Mrgat: multi-relational
graph attention network for knowledge graph completion. Neural Networks, 154:234-245,
2022.

[18] Meiqi Chen, Yuan Zhang, Xiaoyu Kou, Yuntao Li, and Yan Zhang. r-gat: Relational graph
attention network for multi-relational graphs. arXiv preprint arXiv:2109.05922, 2021.

[19] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks. In The semantic
web: 15th international conference, ESWC 2018, Heraklion, Crete, Greece, June 3-7, 2018,
proceedings 15, pages 593-607. Springer, 2018.

[20] Weihua Xiao, Weikang Qian, and Weiqiang Liu. Gomil: Global optimization of multiplier
by integer linear programming. In 2021 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 374-379. IEEE, 2021.

[21] Dongsheng Zuo, Jiadong Zhu, Yikang Ouyang, and Yuzhe Ma. Rl-mul 2.0: Multiplier design
optimization with parallel deep reinforcement learning and space reduction. ACM Transactions
on Design Automation of Electronic Systems, 2024.

[22] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search.
arXiv preprint arXiv:1806.09055, 2018.

[23] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target
task and hardware. arXiv preprint arXiv:1812.00332, 2018.

[24] Felix Petersen, Christian Borgelt, Hilde Kuehne, and Oliver Deussen. Deep differentiable logic
gate networks. Advances in Neural Information Processing Systems, 35:2006-2018, 2022.

[25] Zhihai Wang, Jie Wang, Qingyue Yang, Yinqi Bai, Xing Li, Lei Chen, Jianye Hao, Mingxuan
Yuan, Bin Li, Yongdong Zhang, et al. Towards next-generation logic synthesis: A scalable
neural circuit generation framework. Advances in Neural Information Processing Systems, 37:
99202-99231, 2024.

[26] Peng Xu, Wenqi Shao, Mengzhao Chen, Shitao Tang, Kaipeng Zhang, Peng Gao, Fengwei
An, Yu Qiao, and Ping Luo. Besa: Pruning large language models with blockwise parameter-
efficient sparsity allocation. arXiv preprint arXiv:2402.16880, 2024.

[27] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in
neural information processing systems, 34:28877-28888, 2021.

[28] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

11

[29] Tutu Ajayi and David Blaauw. Openroad: Toward a self-driving, open-source digital layout im-
plementation tool chain. In Proceedings of Government Microcircuit Applications and Critical
Technology Conference, 2019.

[30] Clifford Wolf, Johann Glaser, and Johannes Kepler. Yosys-a free verilog synthesis suite. In
Proceedings of the 2 1st Austrian Workshop on Microelectronics (Austrochip), volume 97, 2013.

[31] Nangate Inc. "Open Cell Library v2008 10 SP1". http://www.nangate.com/
openlibrary/, 2008.

[32] Wilson Snyder, Paul Wasson, Duane Galbi, and et al. Verilator. URL https://github.com/
verilator/verilator.

[33] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesen-
sky, Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia,
Will Constable, Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong,
Michael Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch,
Michael Lazos, Mario Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, CK Luk, Bert Ma-
her, Yunjie Pan, Christian Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi,
Helen Suk, Michael Suo, Phil Tillet, Eikan Wang, Xiaodong Wang, William Wen, Shunting
Zhang, Xu Zhao, Keren Zhou, Richard Zou, Ajit Mathews, Gregory Chanan, Peng Wu, and
Soumith Chintala. PyTorch 2: Faster Machine Learning Through Dynamic Python Bytecode
Transformation and Graph Compilation. In 29th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems, Volume 2 (ASPLOS ’24).
ACM, April 2024. doi: 10.1145/3620665.3640366. URL https://pytorch.org/assets/
pytorch2-2.pdf.

[34] Matthias Fey and Jan Eric Lenssen. Fast Graph Representation Learning with PyTorch Geo-
metric, May 2019. URL https://github.com/pyg-team/pytorch geometric.

[35] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[36] Christopher S Wallace. A suggestion for a fast multiplier. IEEE Transactions on electronic
Computers, (1):14-17, 1964.

[37] Alessio Ishizaka and Philippe Nemery. Multi-criteria decision analysis: methods and software.
John Wiley & Sons, 2013.

[38] Andreia P Guerreiro, Carlos M Fonseca, and Luis Paquete. The hypervolume indicator: Com-
putational problems and algorithms. ACM Computing Surveys (CSUR), 54(6):1-42, 2021.

[39] Aman Arora, Andrew Boutros, Seyed Alireza Damghani, Karan Mathur, Vedant Mohanty,
Tanmay Anand, Mohamed A Elgammal, Kenneth B Kent, Vaughn Betz, and Lizy K John.
Koios 2.0: Open-source deep learning benchmarks for fpga architecture and cad research.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 42(11):
3895-3909, 2023.

[40] Luigi Dadda. Some schemes for fast serial input multipliers. In /983 IEEE 6th Symposium on
Computer Arithmetic (ARITH), pages 52-59. IEEE, 1983.

[41] Niichi Itoh, Yasumasa Tsukamoto, Takeshi Shibagaki, Koji Nii, Hidehiro Takata, and Hi-
roshi Makino. A 32/spl times/24-bit multiplier-accumulator with advanced rectangular styled
wallace-tree structure. In 2005 IEEE International Symposium on Circuits and Systems (IS-
CAS), pages 73-76. IEEE, 2005.

[42] Vojin G. Oklobdzija, David Villeger, and Simon S. Liu. A method for speed optimized partial
product reduction and generation of fast parallel multipliers using an algorithmic approach.
IEEE Transactions on computers, 45(3):294-306, 1996.

[43] Andrew Beaumont-Smith and C-C Lim. Parallel prefix adder design. In Proceedings 15th
IEEE Symposium on Computer Arithmetic. ARITH-15 2001, pages 218-225. IEEE, 2001.

12

http://www.nangate.com/openlibrary/
http://www.nangate.com/openlibrary/
https://github.com/verilator/verilator
https://github.com/verilator/verilator
https://pytorch.org/assets/pytorch2-2.pdf
https://pytorch.org/assets/pytorch2-2.pdf
https://github.com/pyg-team/pytorch_geometric

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Jack Sklansky. Conditional-sum addition logic. IRE Transactions on Electronic computers,
(2):226-231, 1960.

Brent and Kung. A regular layout for parallel adders. IEEE transactions on Computers, 100
(3):260-264, 1982.

Jianhua Liu, Shuo Zhou, Haikun Zhu, and Chung-Kuan Cheng. An algorithmic approach for
generic parallel adders. In ICCAD-2003. International Conference on Computer Aided Design
(IEEE Cat. No. 03CH37486), pages 734—740. IEEE, 2003.

Subhendu Roy, Mihir Choudhury, Ruchir Puri, and David Z Pan. Towards optimal
performance-area trade-off in adders by synthesis of parallel prefix structures. In Proceedings
of the 50th Annual Design Automation Conference, pages 1-8, 2013.

Jialin Song, Rajarshi Roy, Jonathan Raiman, Robert Kirby, Neel Kant, Saad Godil, and Bryan
Catanzaro. Multi-objective reinforcement learning with adaptive pareto reset for prefix adder
design. In Workshop on ML for Systems at NeurIPS, 2022.

Yao Lai, Jinxin Liu, David Z. Pan, and Ping Luo. Scalable and effective arithmetic tree gen-
eration for adder and multiplier designs. In The Thirty-eighth Annual Conference on Neu-
ral Information Processing Systems, 2024. URL https://openreview.net/forum?id=
5pnhGedGYd.

Zijie Geng, Jie Wang, Ziyan Liu, Siyuan Xu, Zhentao Tang, Shixiong Kai, Mingxuan Yuan,
Jianye HAO, and Feng Wu. LaMPlace: Learning to optimize cross-stage metrics in macro
placement. In The Thirteenth International Conference on Learning Representations, 2025.
URL https://openreview.net/forum?id=YLIsIzC74].

Yi-Chen Lu, Sai Surya Kiran Pentapati, Lingjun Zhu, Kambiz Samadi, and Sung Kyu Lim.
Tp-gnn: A graph neural network framework for tier partitioning in monolithic 3d ics. In 2020
57th ACM/IEEE Design Automation Conference (DAC), pages 1-6. IEEE, 2020.

Donggyu Kim, Minjae Kim, Junseok Hur, Jakang Lee, Jinoh Cho, and Seokhyeong Kang.
Ta3d: Timing-aware 3d ic partitioning and placement by optimizing the critical path. In Pro-
ceedings of the 2024 ACM/IEEE International Symposium on Machine Learning for CAD,
pages 1-7, 2024.

Zhihai Wang, Zijie Geng, Zhaojie Tu, Jie Wang, Yuxi Qian, Zhexuan Xu, Ziyan Liu, Siyuan
Xu, Zhentao Tang, Shixiong Kai, Mingxuan Yuan, Jianye Hao, Bin Li, and Feng Wu. Bench-
marking end-to-end performance of Al-based chip placement algorithms. In The Thirty-

ninth Annual Conference on Neural Information Processing Systems Datasets and Benchmarks
Track, 2025.

Felix Petersen, Hilde Kuehne, Christian Borgelt, Julian Welzel, and Stefano Ermon. Convolu-
tional differentiable logic gate networks. Advances in Neural Information Processing Systems,
37:121185-121203, 2024.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neu-
ral message passing for quantum chemistry. In International conference on machine learning,
pages 1263-1272. Pmir, 2017.

Zhengyang Zhou, Qihe Huang, Binwu Wang, Jianpeng Hou, Kuo Yang, Yuxuan Liang,
Yu Zheng, and Yang Wang. Coms2t: A complementary spatiotemporal learning system for
data-adaptive model evolution. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2025.

Haoyang Liu, Jie Wang, Zijie Geng, Xijun Li, Yuxuan Zong, Fangzhou Zhu, Jianye HAO, and
Feng Wu. Apollo-MILP: An alternating prediction-correction neural solving framework for
mixed-integer linear programming. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=mFYOtPDWKS.

13

https://openreview.net/forum?id=5pnhGedG98
https://openreview.net/forum?id=5pnhGedG98
https://openreview.net/forum?id=YLIsIzC74j
https://openreview.net/forum?id=mFY0tPDWK8

[59] Chang Wu, Zhiyuan Liu, Wen Shu, Liang Wang, Yanchen Luo, Wenqiang Lei, Yatao Bian,
Junfeng Fang, and Xiang Wang. 3d-gsrd: 3d molecular graph auto-encoder with selective
re-mask decoding, 2025. URL https://arxiv.org/abs/2510.16780.

[60] Ruiyang Lin, Yongyi Guo, and Kyra Gan. Optimal adjustment sets for nonparametric esti-
mation of weighted controlled direct effect, 2025. URL https://arxiv.org/abs/2506.
09871,

[61] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

[62] Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[63] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

[64] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional net-
works for semi-supervised learning. In Proceedings of the AAAI conference on artificial intel-
ligence, volume 32, 2018.

[65] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical impli-
cations. arXiv preprint arXiv:2006.05205, 2020.

[66] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Het-
erogeneous graph attention network. In The world wide web conference, pages 20222032,
2019.

[67] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer.
In Proceedings of the web conference 2020, pages 2704-2710, 2020.

[68] Victor-Alexandru Darvariu, Stephen Hailes, and Mirco Musolesi. Graph reinforcement learn-
ing for combinatorial optimization: A survey and unifying perspective. arXiv preprint
arXiv:2404.06492, 2024.

[69] The OpenROAD Project. Opensta: Open-source static timing analysis tool. https://github.
com/The-0OpenROAD-Project/0OpenSTA. Accessed: 2025-04-30.

[70] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In International conference on machine learning, pages 1889—
1897. PMLR, 2015.

[71] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural sam-
plers using variational divergence minimization. Advances in neural information processing
systems, 29, 2016.

[72] Friedrich Liese and Igor Vajda. On divergences and informations in statistics and information
theory. IEEE Transactions on Information Theory, 52(10):4394—-4412, 2006.

[73] Syed Mumtaz Ali and Samuel D Silvey. A general class of coefficients of divergence of one
distribution from another. Journal of the Royal Statistical Society: Series B (Methodological),
28(1):131-142, 1966.

[74] Wikipedia contributors. f-divergence — Wikipedia, The Free Encyclopedia, 2024. URL
https://en.wikipedia.org/wiki/F-divergence. [Online; accessed 8-May-2025].

[75] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL https://www.
gurobi.com.

14

https://arxiv.org/abs/2510.16780
https://arxiv.org/abs/2506.09871
https://arxiv.org/abs/2506.09871
https://github.com/The-OpenROAD-Project/OpenSTA
https://github.com/The-OpenROAD-Project/OpenSTA
https://en.wikipedia.org/wiki/F-divergence
https://www.gurobi.com
https://www.gurobi.com

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction are well aligned with the
actual contributions of the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section B.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

15

Justification: All theoretical results are proved in detail in Appendix 36, and detailed
complexity analysis are provided in Appendix B.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-

rems.

The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a

short proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be comple-

mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide the implementation details and hyperparameters in Appendix [O.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

16

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We provide our main codes at https://github.com/dakfjalka/
Arith-DA5.g1tT.
Guidelines:
» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide a detailed experimental settings in Section Bl and Appendix O.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer:

Justification: Error bars are not reported because it would be too computationally expen-
sive.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

17

https://github.com/dakfjalka/Arith-DAS.git
https://github.com/dakfjalka/Arith-DAS.git
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

 Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the hardware specification in Appendix 1l and runtime compar-
ison in Appendix D73.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have reviewed and conformed with the Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discussed the broader impacts in Section B.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

18

https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We provide licenses in Appendix B
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

19

paperswithcode.com/datasets

13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

20

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLN)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A Related Work

A.1 Computer arithmetic

Computational circuits such as adders and multipliers serve as foundational components in modern
computing systems, enabling high-performance parallel operations through advanced architectures
such as compression trees and prefix trees. The optimization methodologies for these circuits pre-
dominantly fall into three categories: (1) Manual Design: This approach relies on domain-specific
knowledge to refine conventional architectures, demanding considerable engineering resources. No-
table implementations include partial product reduction techniques using compression tree [36, &0—
47], and optimized parallel addition through prefix tree [43-45]. (2) Traditional Algorithmic
Approaches ([I1, 20, 46, @7]): These methods employ mathematical programming and heuristic
search to generate circuit architectures. However, their dependence on proxy metrics (e.g., size,
depth) frequently introduces substantial deviations from physical implementation outcomes. (3)
Learning-Based Approaches [B3, 8, 15, 1, 48, 49]: Emerging techniques integrate synthesis pro-
cesses with reinforcement learning frameworks, directly targeting post-synthesis metrics to mitigate
the fidelity loss inherent in proxy-based optimization. RL-MUL [Z1] first proposed a reinforcement
learning framework for multiplier optimization, and HAVE [I5] later extended it into a hierarchical
multi-task RL framework. Recent work, DOMAC [[1], introduced a differentiable interconnec-
tion optimization algorithm based on an estimated proxy delay model, offering a new perspective
for arithmetic circuit optimization. In this work, we similarly focus on optimizing interconnection
within arithmetic circuits using post-synthesis metrics.

A.2 Machine learning for chip design

As semiconductor processes advance into the nanoscale era, integrated circuit complexity grows
exponentially, creating computational complexity bottlenecks for traditional EDA tools in PPA op-
timization. Machine learning-based design automation methodologies, particularly Graph Neural
Networks (GNNs), have emerged as a novel paradigm to address these challenges. The canonical
chip design workflow encompasses critical stages including logic synthesis, floorplanning, clock
tree synthesis, and routing. The netlist, serving as an intermediate representation compiled from
hardware description languages (HDLs), inherently embodies a graph-based data structure that en-
capsulates gate-level circuit components and their directed interconnect dependencies. This intrinsic
graph topology makes GNNs particularly effective for extracting topological features, as evidenced
by several pioneering studies, such as LaMPlace[50], TP-GNN[&1], and TA3D[52]. There is a pub-
licly available benchmark for Al solutions in backend layout and routing [53].

A.3 Differentiable architecture search

Recently, differentiable architecture search has been getting a lot of attention in a variety of areas. In
the domain of neural architecture search (NAS), DARTS[ZZ] pioneered a gradient-based approach
by relaxing discrete architectures into continuous spaces, enabling efficient optimization through
gradient descent. Building upon this, ProxylessNAS [23] directly searches for neural network archi-
tectures on the target tasks and hardware, addressing the high computational cost of traditional NAS
and the large memory consumption of differentiable NAS. In the domain of logic gate network archi-
tecture search, Petersen et al. [24] resolves the non-differentiability issue of logic gate networks via
real-valued logic and continuous relaxation, enabling them to be trained using gradient descent. Fur-
ther extending this direction, Petersen et al. [54] presents Convolutional Differentiable Logic Gate
Networks, which enhance Differentiable Logic Gate Networks through deep logic gate tree convolu-
tions, logical OR pooling, and residual initialization. In the domain of hardware optimization, Wang
et al. [29] proposed a neural circuit generation framework using differentiable architecture search
and reinforcement learning, enabling precise synthesis of circuits with large-scale nodes while out-
performing traditional logic synthesis tools.

A.4 Graph Neural Networks
GNNs learn on graphs via iterative neighborhood aggregation [53, 56], and are applied broadly

in graph-related problems [57-60]. Canonical architectures, GCN (spectral/spatial convolution)
[55], GraphSAGE (inductive sampling) [61], GAT (attention over neighbors) [62], and GIN (WL-

22

strengthened expressivity) [b63], define the fields expressivity-scalability trade-offs. Depth is lim-
ited by over-smoothing and over-squashing, motivating residual/skip connections, normalization,
and multi-scale propagation [64, b5]. Beyond homogeneous graphs, multi-relational/heterogeneous
GNNs parameterize typed edges and meta-relations: R-GCN [[Y] and CompGCN [I6] perform
relation-specific propagation, while HAN/HGT incorporate relation-aware attention for web-scale
heterogeneity [b6, 67]. In parallel, graph Transformers (e.g., Graphormer) inject structural biases
into global attention to capture long-range dependencies [274]. There is also a recent survey of rein-
forcement learning on graphs [bS].

B Design Space Complexity Analysis

In this section, we analyze the complexity of the design space of the compressor tree allocation

and the compressor interconnection. Previous works [B, U] have shown the O (2" 2) complexity for
compressor tree allocation design, where NV is the input bitwidth of the arithmetic circuit. Here, we
provide a complexity analysis of the interconnection space.

Without loss of generality, let’s take the AND PPG multiplier as an example. First, the number of
partial products of the AND PPG multiplier with an input bit-width of IV is exactly N2. Next, a 3:2
compressor compresses one partial product while a 2:2 compressor doesn’t compress. Therefore, at
least O(N?) 3:2 compressors are needed to compress the O(N?) partial products into compressed
products with complexity of O(N). Finally, the complexity of the shape of a 3-relational directed
graph representation of the compressor tree is at least ~ 3 x N2, which indicates an O (23N 2)
search space. Note that, since the stage assignment determines the topological order of nodes and
constrains compression to occur within each stage, interconnection happens only locally. As a result,
connections are established only locally, and the complexity of the interconnection space is linear
rather than quadratic with compressor number.

Overall, the design space complexity of a compressor tree, considering both its allocation and inter-
. ey e . 2
connection, exhibits an extraordinary growth rate of O(24V").

C Implementation Details

C.1 Hardware Specification

All experiments are executed on a computational platform with an Intel Xeon Gold 6246R CPU
(3.60 GHz) and NVIDIA RTX 3090 GPU.

C.2 Synthesis Tool Setup

We use Yosys [B0] for logic synthesis and OpenSTA [AY] for STA simulation in conjunction with
Nangate45 open cell library [31], which is widely used in the semiconductor industry and related
research. Synthesis script and SDC constraints are provided at Listing [and Listing O

All RTL designs generated by our method and baselines are functionally verified with Verilator [37].
We randomly generate 10000 input samples, and perform a bit-wise comparison between the Verila-
tor evaluated result and the ground truth calculated by C++ codes.

Listing 1: SDC Constraints

set_driving_cell BUF_X1
set_load 10.0 [all_outputs]

23

(O N N

Listing 2: Synthesis Script

read -sv {verilog_path}

synth -top {top_namel}

dfflibmap -liberty {liberty_path}

abc -D {target_delay} -constr {constr_path} -liberty {liberty_path}
write_verilog {mnetlist_path}

C.3 Implementation Details of Our ARITH-DAS
C.3.1 Further Discussion on Multi-Relational Graph Formulation

In the main paper, we formulate the connection as a multi-relational directed acyclic graph (V, £, R)

and corresponding adjacent tensor G € {0, 1}‘73' *IVIxIVI More implementation-specific details are
provided in this section.

Vertex Set Vertex set is defined as V = {vy,va,...}, where a vertex v; corresponds to one of
the following four basic components: (1) 3:2 compressor, which is a full adder, (2) 2:2 compressor,
which is a half adder, (3) initial partial product, which is the output of PPG and (4) visual node,
which is a wire. For the sake of implementation convenience, we also define output nodes as virtual
nodes within our graph representation. This unification allows for a consistent treatment of all nodes
during message passing and connectivity inference. Each node belongs to a specific column and is
assigned to a specific stage during stage assignment [3]. The column number and the stage number
of nodes topologically specify their interconnection order, i.e., from lower column to higher column,
and from lower stage to higher stage. This approach leverages the homogeneity among nodes to
significantly reduce technical complexity.

Relational Set Relational set is defined as R = {ry,9,. ..}, where each relation type r; repre-
sents an input port type. In this work we use 3:2 compressors and 2:2 compressors, and therefore
R = {a,b,cin}. For 2:2 compressors, only input ports {a,cin} are available. For visual nodes,
only {a} is available. For PP nodes, no relation is available since they do not have input ports. The
relational types are specified according to the input port types, rather than the output port types,
mainly due to the fact that the input ports are logically indistinguishable, while the output ports are
connected to different columns. Accordingly, we aim for each node to learn the semantics of its
output connections through training.

Edge Set and adjacent tensor Typed directed edge set is defined as £ C V x R x V, where each
edge (v;, 7, v;) represents a directed logical wire from output port of v; connected to the r-th type
input port of v;. Since edges are type-specific, we construct a separate graph for each edge type,

referred to as a graph channel. Specifically, the value of G € {0, 1}RI*XVIXVI is defined as

0 (v) €,
Grig = {1 (v, v5) € E. (19)

C.3.2 Architectural Design Constraints

In this section, we provide the detailed complex architectural constraints on the proposed multi-
relational graph formulation. For node v; € V, let Col(v;) denote the column index of v;, Stage(v;)
denote the stage index of v;, and Type(v;) denote the type of v;. A legal design should satisfy the
following constraints.

Vertex types and relation types constraints For any (v;,r,v;) € &, there should be Type(v;) #
pp and:

{a,b,cin} Type(v;) = 3:2 compressor,
r € ¢ {a,cin} Type(v;) = 2:2 compressor, (11)
{a} Type(v;) = visual node.

24

Vertex typological constrains For any (v;,7,v;) € &, there should be Stage(v;) = Stage(v;) +
1, Col(v;) = Col(v;) for sum wires of v; and Col(v;) = Col(v;) + 1 for carry wires of v;.

Port exclusivity constrains Denote the output node of the graph as the primary out (PO), and
the input node of the graph as the primary in (PI). PO and PI nodes are specified according to
the compressor allocation and stage assignment, which remain unchanged during the optimization
process. Denote the set of primary in and primary out nodes as PI and PO, respectively. In our
settings, for any node v € PI, Type(v) = pp; for any node v € PO, Type(v) = visual node. Each
output port of non-PO nodes should be connected only to one node, i.e., for any node v;,

0 v; € PO . 0 v, € PO
Z gr,i,j - {1 v; ¢ PO) Z gr,u] - {1 v ¢ PO (12)

r€R,j€Sumli] r€R,j€Carryli]

where Sum[i] = {j | Col(v;) = Col(v;), Stage(v;) = Stage(v;) + 1} is the set of nodes to
which the sum out of node v; is legal, and Carry[i] = {j | Col(v;) = Col(v;) + 1, Stage(v;) =
Stage(v;) + 1} is the set of nodes to which the carry out of node v; is legal.

Similarly, the input port of a non-PI node should only receive a logical connection from one other
node, i.e., for any node v; € V and relation r € R,

Z Gris = {O vj € PI orr ¢ Inputlj], (13)
]

) 1 else.
i€V

where Input[j] C R denotes the input types of node v;.

Legalization Mask The legalization mask M € {0, 1}/RI*IVIxV indicates whether a connec-
tion is legal. The value of M,.; ; is:

r€&lnput(j] and Stage[v;]=Stage[v;]+1
Mr,i,j = 1 and (Col[vj]:Col[vi]-f-l or Col[vj]:Col[vi]) ’ (14)

0 else.

C.3.3 Multi-Relational Message Passing

To simulate the propagation of circuit information across different types of connections, we adopt a
multi-relational message passing mechanism. Message passing occurs over all possible connection
types, and each node aggregates incoming messages by merging hidden features from all relation-
specific channels. It should be noted that the adjacency matrix used for message passing of relation
r € R is exactly the r-th channel of legalization mask M. The aggregated representation is then
passed through a shared single-layer MLP to produce the updated node state. It is worth noting that
we do not explicitly fit any physical signal characteristics; instead, the entire process is trained in an
end-to-end manner. Ablation studies confirm the necessity of this design choice.

C.3.4 Graphformer-Style Attention Score Calculation

To improve runtime efficiency in such a large and sparse graph space, we compute attention scores
and maintain validity masks in a localized manner. A caching mechanism is employed, whereby
computations are only triggered upon cache misses, thus reducing unnecessary overhead.

C.3.5 Regulized Sampling

Directly sampling from the raw probability distribution often leads to invalid structures. To address
this, we adopt a regularized sampling strategy. Specifically, guided by the topological order provided
by the stage assignment, we sample input ports for each node’s output in sequence based on the
connection probabilities. During sampling, a mask fill operation is applied to the attention scores
prior to normalization to eliminate invalid connections. After each sampling step, the corresponding
connection masks are dynamically updated to maintain structural legality, and probability logits are
maintained for network updating. More specifically, when edge (v;,7,v;) € R is sampled with
M,.;j = 1, we record corresponding a;”; value and let M,.;» j» = 0 for all &/, j* € [[V[] and
M, ;=0foralli’ € [|[V|],r' € R.

25

C.3.6 Detailed Derivation and Discussion of the Loss Function

We first provide the detailed derivation of (H) as below. When given compressor tree allocation s,
J(0|8) = Egrny(s) [R(G)]
= 3" m(G S)R(E)

GeGs
(G | s)
= > (G |8) S RO)
GeGs T (g s)
0(G|s)
=Eguny(s) { G Ts) } . (15)
Consequently, the unbiased statistical estimator of J(6 | s) is given by
~ 1 79(Gm | S)
JO|s)=— — = R(Gm), (16)
0s) =+ 1§gm|s)<)

where G, i.i.d. ~ m5(- | s). In PPO, the clip operation is typically introduced to ensure that
the distributional shift between the sampling policy 75 and the updated policy my does not become
too large, which could otherwise lead to distorted surrogate objectives due to mismatched trajectory
distributions [[Z(0].

However, in our setting, the problem can be reformulated as a single-step multi-armed bandit sce-
nario rather than a sequential Markov Decision Process. Therefore, trajectory mismatch is not an
issue. Nonetheless, the clipping mechanism remains crucial for reducing variance during policy
updates. We formalize this intuition in the following proposition. First, we introduce Pearson y?
divergence, which is widely used in machine learning [[Z1, [77].

Definition 1 (Pearson x? Divergence[lZ3, [74]). For two distribution p and q, Pearson x* Divergence
is defined as

2
X2 (pllg) = Eong [z(x) - 1} : (17)

Then, we have the following proposition.

Proposition 1. Assume that the objective function R is bounded: maxgeg |R(G)| < Ry,. Then the
variance of estimator of J(0 | s) defined in (I8) is bounded by x* divergence:

Var, (J(8] s)) < % [331(1 +x2 (m}(. | S)HW(. | s))) - J2(9)} . (18)

Proof. Let pg(G | s) = :;Eg:t; Since samples G,,, are i.i.d., then

M
Varﬂg(.‘s)(j(e |'s)) = Varq_(s) l[\ll Zl {:Zggz : Z; R(gm)H
= L Vargan, (i [0(G | RG)] (19)
Here, we have
Varg.r(.|s) [po(G | 8)R(G)]
= Egrns(s) [(P0(G | $)R(G))*] — Egr(is) [po(G | 8)R(G))?
= Egrry1s) [(po(G | 5)R(9))?] — J*(6), (20)
and
Egrs(ls) [(P6(G |)R(G))?] < Eguryis) [5(G | 8)RY,]
= Ry Egnyo) [5(G | 5)] - @

26

Notice that

GeG
(G s) me(G|s)
= 1+ -2 —2 5
> (w2(Gls) mls)) 019
=> (G ls) =2 m(G|s)+ > (3G |s)mp(G | s))
GeG GeG GeG
=Egen,(ls) [P5(G |8)] — 1. (22)
Consequently, we have
- R2 J2(6
Vary, (1s)(J(0]) < ﬁm(1 2 (m,(. | S)HW(. | s))) - % (23)

O

Proposition [indicates that the total variance is bounded by the x? divergence between policy my/(- |
s) and 7 (- | s). Therefore, clipping the probability ratio reduces the variance of the policy gradient,
thus enhancing training stability. This is especially necessary in discrete structural settings, where
large updates can easily destabilize learning.

C.3.7 Learning Setup

In the multi-relational graph encoder, we convert the directed graph into an undirected one and
add self-loops for a bidirectional information flow, which is widely used in graph-structured data
processing [[[9, 55]. The rationale behind this design lies in the fact that the directional information
is sound and completely contained in node features. The node features used for the graph neural
network initialization are provided in Table B. It is worth noting that all node features are intrinsic
to the node itself. For a fair comparison, the iterations of all experiments are set equal. We provide
the hyperparameters of the main evaluations and ablation experiments in Table 8.

Table 3: Node Features

Feature Description Size
Column number 1
Stage number 1

One-hot encoding for node types, including 3:2 compressor, 2:2 com- 4
pressor, initial pp, visual node
Sequential ID for compressor with the same column, stage, and type 1

C.3.8 Evaluation Metrics

The design of efficient multipliers involves optimizing multiple competing goals, including area and
speed. To assess performance, we employ two key measures. Initially, we graphically compare
the estimated Pareto frontiers for area versus latency across our approach and existing techniques.
Additionally, we evaluate the hypervolume metric for these frontiers. Further details on these criteria
are provided below.

Multi-Objective Optimization Metrics

Generally, for a multi-objective maximization task with n targets, the goal is identifying the op-
timal solution collection called the Pareto set. In such problems, solution x is said to domi-
nate y if x performs equally or better in every objective while surpassing y in at least one, i.e.,
Vi € [1,n], fi(x) > fi(y) AFi € [1,n], fi(x) > fi(y). A Pareto-optimal point remains undom-
inated, and all such points form the Pareto set. Hypervolume, depicted in Figure B, quantifies set

27

Table 4: Hyperparameters

Hyperparameter Value
Learning rate le-4
Iterations 5000
GNN layers 3
Hidden state dimensions 512
Query/key dimensions 64
Activation function tanh
Optimizer Adam [B5]
Discretization penalty and output-port exclusivity constraint 0.01
PPO trust region € 0.2
Elite pool size 20
1 Pareto points 1 Reference points
=z Non-Pareto points =z T
a a
P(1)
Hypervolume
P(2)
P(3)
5
P4) P(5)
Area Area
(a) Pareto Points (b) Hypervolume

Figure 8: (a) An example for a Pareto optimal set with 2 objectives and 5 Pareto optimal solutions
(Pareto points). (b) An example for hypervolume with a selected reference point ry. Integrated area
H(P,rg) is the union of the rectangular areas where the reference point ro and the Pareto point P (%)
are diagonally opposite corners.

quality by measuring dominated space volume. Computing hypervolume requires selecting a refer-
ence point; with fixed references, larger hypervolumes indicate superior Pareto sets.

Definition 2 (Hypervolume metric). Consider a set P representing an approximate Pareto frontier
in an n-dimensional optimization space, consisting of N candidate points. Given a reference vector
ro € R™, the hypervolume measure H (P, ro) is formally expressed as:

H(P,70) :/ LH(Pro)(2)d=

where H(P,rg) = {z € Z|31 < i < |P|: r9 = z = P(i)}. Here, P(i) denotes the i-th entry in
P, X indicates Pareto dominance between vectors, and 1y (p,y,) is an indicator function returning
1 when z € H(P,ry) and 0 otherwise.

C.4 Implementation Details of Baselines

GOMIL[20] is a global optimization method that simultaneously considers the CT and CPA. The
authors provide a C++ implementation. All coefficients related to the EDA toolchain and technology
library are calibrated under the experimental setup. The resulting mixed integer programming (MIP)
problem is solved using the Gurobi optimizer [[75].

UFO-MACII0] is a unified optimization CT and CPA framework considering compressor intercon-
nections. The resulting integer programming problem is solved using the Gurobi optimizer [[75].

28

DOMACIT] is a recent differentiable compressor interconnection optimization algorithm, which
optimizes a proxy delay model through routing permutation matrix relaxing.

ArithTreeRL[J] is a reinforcement learning method for CT optimization. The authors provide
a Python implementation for AND PPG multipliers, which can be easily extended to MACs and
Booth PPG multipliers.

MUTE][(] is the state-of-the-art (SOTA) hybrid RL-evolution CT optimization framework. The
authors provide a Python implementation for multipliers and MACs.

D More Experiment Results

D.1 More Results of Main Evaluation

D.1.1 More Results of Multiplier Evaluation
In this section, we provide our evaluations on Multiplie architectures, rencompassing 8-bit, 16-bit,

32-bit, and 64-bit implementations employing both AND gate-based and Booth encoding-based
techniques. The min delay and min area are provided in Table B.

Table 5: Min area and min delay of multiplier design tasks

Mult.(AND) 8 bit 16 bit
Method Area(um?) | Impr(%)1 Delay (ns)| Impr. (%)t Area(um?)| Impr(%)1 Delay (ns)| Impr(%)T
Wallace 402 NA 0.74 NA 1,787 NA 1.37 NA
GOMIL 385 423 0.69 6.62 1,682 5.88 1.2 12.6
UFO-MAC 383 4.73 0.69 7.05 1,674 6.32 1.19 13.15
DOMAC 402 0.00 0.72 1.82 1,788 -0.06 1.27 7.05
ArithTreeRL 385 423 0.7 437 1,707 4.48 1.12 18.38
MUTE 388 3.48 0.67 8.7 1,694 52 1.15 16.08
ARITH-DAS (Ours) 384 4.48 0.64 13.15 1,713 4.14 1.06 22.15
Mult.(AND) 32 bit 64 bit
Method Area (,qu) | Impr(%)T Delay(ns)| Impr.(%)T Area (;Lm2) J Impr(%)T Delay (ns)| Impr.(%)1
Wallace 7,402 NA 2.18 NA 29,721 NA 2.93 NA
GOMIL 7,029 5.04 2.06 521 28,602 3.77 2.66 9.33
UFO-MAC 7,027 5.07 2.11 2.96 28,600 3.77 2.72 717
DOMAC 7,489 -1.18 1.99 8.5 30,055 -1.12 2.49 15.01
ArithTreeRL 7,176 3.05 1.51 30.67 29,057 2.23 22 2491
MUTE 7,125 3.74 1.64 24.49 28,677 3.51 2.07 29.56
ARITH-DAS (Ours) 7,099 4.09 1.41 35.35 28,669 3.54 1.85 36.94
Mult.(Booth) 8 bit 16 bit
Method Area (;unQ) | Impr(%)T Delay(ns)| Impr.(%)T Area (;Lm2) J Impr(%)T Delay (ns)| Impr.(%)1
Wallace 408 NA 0.76 NA 1,505 NA 1.32 NA
GOMIL 406 0.49 0.68 10.09 1,407 6.51 1.16 12.50
UFO-MAC 405 0.74 0.69 8.46 1,406 6.58 12 9.25
DOMAC 415 -1.72 0.74 2.07 1,548 -2.86 1.27 3.59
ArithTreeRL 405 0.74 0.71 6.36 1,425 5.32 1.07 18.73
MUTE 406 0.49 0.68 10.55 1,432 4.85 1.05 20.53
ARITH-DAS (Ours) 403 1.23 0.64 15.91 1,418 5.78 1.01 23.64
Mult.(Booth) 32 bit 64 bit
Method Area (um?)| Impr(%)1 Delay (ns)] Impr(%)1 Area(um?)| Impr(%)t Delay(ns)| Impr(%)?1
Wallace 5,383 NA 2.24 NA 20,435 NA 2.94 NA
GOMIL 5,176 3.85 1.94 13.51 19,677 3.71 2.66 9.46
UFO-MAC 5,175 3.86 1.97 12.42 19,675 3.72 2.82 4.04
DOMAC 5,500 -2.17 1.87 16.79 20,787 -1.72 222 24.41
ArithTreeRL 5,227 29 1.68 25.33 19,890 2.67 2.04 30.48
MUTE 5,328 1.02 1.49 33.6 19,856 2.83 2.03 31.01
ARITH-DAS (Ours) 5,210 3.21 1.44 35.78 19,690 3.65 1.92 34.53

D.1.2 More Results of MAC Evaluation

We provide our evaluations on MACs in this section. The visualization of the Pareto front is illus-
trated in Figure B. The hypervolume is recorded in Table B, and the min delay and min area are
provided in Table .

29

16-bit And

15 26
24 k\

Delay (ns)
Delay (ns)

o

32-bit And

12 1.
\K
. 16 — .

1800 2000 2200 2400 2600 2800 7250 7500 7750 8000 8250 8500 8750
Area (umz) Area (/sz)
—=— Arith-DAS (Ours) ~ —— UFO-MAC GOMIL
—— MUTE DOMAC Wallace
ArithTreeRL
Figure 9: Pareto front of MAC designs.
Table 6: Hypervolumn of MACs
MACs 16 bit 32 bit
Method Hypervolumet Impr.(%) Hypervolumet Impr.(%)
Wallace 103.17 NA 325.72 NA
GOMIL 301.78 192.51 575.14 76.57
UFO-MAC 205.20 98.89 385.01 18.20
DOMAC 173.67 68.33 579.01 77.76
ArithTreeRL 352.35 241.52 1,395.40 328.40
MUTE 265.24 157.08 1,274.29 291.22
ARITH-DAS (Ours) 433.18 319.87 1,684.68 417.21

D.1.3 More Results of Generalization Evaluation

We provide the Hypervolume of PE arrays in Table B. The min delays and min areas are provided in
Table B. The area and delay of Koios benchmark [BY] designs integrated with our ARITH-DAS and

baselines are provided in Table [T

D.2 Visualization of Results

To provide an intuitive understanding of the problem, we visualize representative examples of the
circuit structure. Due to the large problem scale, we only present the complete results for 8-bit
multipliers using AND and Booth encoding and 16-bit multipliers using AND encoding, as shown
in Figure [, Figure [0, and Figure T. Additionally, for the 32-bit and 64-bit AND multiplier, we
selectively visualize Columns 30-31 and 32-33 to highlight the structural patterns in deeper regions

of the compression tree, as shown in Figure [3, Figure [4, Figure [3 and Figure [A.

In all figures:

* Green nodes represent virtual nodes, typically containing 1 input and 1 or O outputs.

Table 7: Min area and min delay of MAC designs

MAC 16 bit 32 bit
Method Area (;mz?) | Impr(%)1 Delay(ns)| Impr(%)7 Area(um?)] Impr(%)T Delay(ns)| Impr.(%)1
Wallace 1,884 NA 1.38 NA 7,589 NA 2.31 NA
GOMIL 1,772 5.94 1.20 13.28 7,198 5.15 221 4.37
UFO-MAC 1,770 6.05 1.30 6.23 7,196 5.18 2.34 -1.14
DOMAC 1,916 -1.70 1.28 7.59 7,658 -0.91 2.05 11.31
ArithTreeRL 1,821 334 1.12 19.26 7,337 3.32 1.56 32.59
MUTE 1,848 1.91 1.22 11.87 7472 1.54 1.58 31.91
ARITH-DAS (Ours) 1,814 3.72 1.06 23.54 7,264 428 1.44 37.87

30

Table 8: Hypervolume of PE arrays.

PE Array 16-bit AND 16-bit Booth 32-bit AND 32-bit Booth
Method Hypervolume 1 Impr.(%)1 Hypervolume t Impr. (%)t Hypervolume? Impr.(%)1 Hypervolume Impr.(%) T
Wallace 13,023.58 NA 12,493.99 NA 64,431.31 NA 57,036.10 NA
GOMIL 3,774.34 -71.02 18,798.77 50.46 84,133.59 30.58 120,763.99 111.73
UFO-MAC 5,393.81 -58.58 15,179.04 21.49 76,563.34 18.83 111,945.32 96.27
DOMAC 12,865.94 -1.21 11,417.57 -8.62 100,289.37 55.65 99,131.37 73.80
ArithTreeRL 15,767.41 21.07 14,934.67 19.53 133,033.11 106.47 116,160.12 103.66
MUTE 16,160.54 24.09 14,330.01 14.70 129,010.95 100.23 151,738.71 166.04
ARITH-DAS (Ours) 16,219.91 24.54 20,680.92 65.53 152,373.47 136.49 194,991.71 241.87

Table 9: Min area and min delay of PE arrays

PE array 16-bit AND 16-bit Booth
Method Area(;mzz) } Impr.(%)1 Delay(ns)] Impr. (%)T Area(;nn'z) } Impr(%)1 Delay(ns)] Impr.(%)71
Wallace 149,556 NA 1.72 NA 131,459 NA 1.78 NA
GOMIL 142,729 4.56 1.81 -5.23 125,126 4.82 1.7 449
UFO-MAC 142,218 4.91 1.82 -5.81 125,024 4.9 1.7 4.49
DOMAC 149,522 0.02 1.68 2.33 131,136 0.25 1.79 -0.56
ArithTreeRL 144,329 35 1.64 4.65 125,927 4.21 1.74 225
MUTE 143,359 4.14 1.67 291 125,637 443 1.77 0.56
ARITH-DAS (Ours) 145,249 2.88 1.62 5.81 126,710 3.61 1.67 6.18
PE array 32-bit AND 32-bit Booth
Method Area(um?) | Impr(%)1 Delay(ns)| Impr(%)1 Area(um?)| Impr(%)T Delay(ns)| Impr. (%)t
Wallace 545,126 NA 2.73 NA 417,650 NA 2.78 NA
GOMIL 521,445 434 2.62 4.03 404,456 3.16 2.49 10.43
UFO-MAC 521,309 4.37 2.67 22 404,354 3.18 2.5 10.07
DOMAC 551,526 -1.17 2.56 6.23 425,191 -1.81 2.55 8.27
ArithTreeRL 531,540 2.49 2.4 12.09 407,691 2.38 247 11.15
MUTE 527,948 3.15 24 12.09 413,836 091 2.29 17.63
ARITH-DAS (Ours) 526,348 3.44 2.34 14.29 407,384 2.46 2.13 23.38

* Blue nodes represent half-adder nodes, typically containing 2 inputs and 2 outputs.
* Orange nodes represent full-adder nodes, typically containing 3 inputs and 2 outputs.

* Gray nodes in the first row represent partial product nodes, typically containing 1 output.
Gray nodes in the last row represent output nodes.

Figure 10: 8-bit Booth Multiplier

D.3 Runtime Comparison

This section compares the runtime of our method with baseline approaches under consistent exper-
imental settings. Specifically, we run all post-synthesis driven algorithms for 5000 iterations. For
programming-based methods, we report the objective gap with 1 hour runtime, which is defined
by (Incumbent — BestBd) /Incumbent x 100% [[/3]. For the proxy-delay-model driven method, DO-
MAC [[T], we evaluate it with 1000 iterations. Although our method does not outperform traditional
solvers in terms of runtime, it offers a more flexible and generalizable optimization framework that is
well-suited for large-scale and complex circuit design problems. The detailed runtime environment
is provided in Appendix Ll and Appendix 2. The runtime results are summarized in Table [

E Licenses

We credit the following open-source project used in this paper. Our main codes are provided at
https://github.com/dakfjalka/Arith-DAS.git.

31

https://github.com/dakfjalka/Arith-DAS.git

Table 10: Area and Delay of Koios benchmark integrated with our ARITH-DAS and baselines.

Design Method Area(um?) | AreaImpr.(%)1 Delay(ns)| Delay Impr.(%) 1
Wallace 1.6590E+06 NA 1.55 NA
GOMIL 1.6483E+06 0.64 1.42 8.39
DOMAC 1.6579E+06 0.06 1.56 -0.65
attention_layer UFO-MAC 1.6481E+06 0.65 1.56 -0.65
ArithTreeRL 1.6487E+06 0.62 1.35 12.9
MUTE 1.6529E+06 0.37 1.37 11.61
ARITH-DAS (Ours) 1.6495E+06 0.57 1.29 16.77
Design Method Area(um?) | AreaImpr.(%)1 Delay(ns)| Delay Impr.(%) 1
Wallace 1.0407E+07 NA 1.74 NA
GOMIL 1.0400E+07 0.07 1.63 6.32
DOMAC 1.0404E+07 0.02 1.76 -1.15
conv_layer UFO-MAC 1.0400E+07 0.07 1.76 -1.15
ArithTreeRL 1.0402E+07 0.04 1.52 12.64
MUTE 1.0402E+07 0.05 1.47 15.52
ARITH-DAS (Ours) 1.0398E+07 0.08 1.41 18.97
Design Method Area(um?) | AreaImpr.(%)1 Delay(ns)| Delay Impr.(%)
Wallace 1.3207E+07 NA 0.97 NA
GOMIL 1.3207E+07 0 0.9 7.22
DOMAC 1.3153E+07 041 0.95 2.06
eltwise_layer UFO-MAC 1.3207E+07 0 0.96 1.03
ArithTreeRL 1.3234E+07 -0.2 091 6.19
MUTE 1.3234E+07 -0.2 0.94 3.09
ARITH-DAS (Ours) 1.3145E+07 0.47 0.86 11.34
Design Method Area(uym?) | AreaImpr.(%)1 Delay(ns)| Delay Impr.(%) 1
Wallace 2.1045E+06 NA 0.97 NA
GOMIL 2.0977E+06 0.32 0.9 7.22
DOMAC 2.1045E+06 0 0.95 2.06
gemm_layer UFO-MAC 2.0968E+06 0.36 0.95 2.06
ArithTreeRL 2.0977E+06 0.32 0.91 6.19
MUTE 2.0986E+06 0.28 0.94 3.09
ARITH-DAS (Ours) 2.0984E+06 0.29 0.86 11.34
Design Method Area(um?) | AreaImpr.(%)1 Delay(ns)| Delay Impr.(%)
Wallace 7.5409E+06 NA 1.57 NA
GOMIL 7.4785E+06 0.83 1.38 12.1
DOMAC 7.5390E+06 0.03 1.56 0.64
Istm UFO-MAC 7.4775E+06 0.84 1.43 8.92
ArithTreeRL 7.4885E+06 0.7 1.35 14.01
MUTE 7.5078E+06 0.44 1.37 12.74
ARITH-DAS (Ours) 7.4927E+06 0.64 1.29 17.83
Design Method Area(um?) | AreaImpr.(%)1 Delay(ns)] Delay Impr.(%) 1
Wallace 1.2948E+05 NA 0.97 NA
GOMIL 1.2921E+05 0.21 0.91 6.19
DOMAC 1.2948E+05 0 0.95 2.06
softmax UFO-MAC 1.2917E+05 0.24 0.95 2.06
ArithTreeRL 1.2921E+05 0.21 091 6.19
MUTE 1.2924E+05 0.18 0.94 3.09
ARITH-DAS (Ours) 1.2924E+05 0.19 0.85 12.37

]

Figure 11: 8-bit AND Multiplier

32

Figure 12: 16-bit AND Multiplier

Figure 13: 32-bit AND Multiplier (Column 30 and Column 31)

Figure 14: 32-bit AND Multiplier (Column 31 and Column 32)

Figure 15: 64-bit AND Multiplier (Column 62 and Column 63)

Figure 16: 64-bit AND Multiplier (Column 63 and Column 64)

33

Table 11: Runtime Comparison

Medthod 8-bit AND Mult. 16-bit AND Mult. 32-bit AND Mult.
Wallace NA NA NA
Programing based algorithms objective gap with 1 hour runtime (%)
GOMIL 0% (solved in 0.51 sec.) 0.08% 0.59%
UFO-MAC 0% (solved in 2.46 sec.) 0% (solved in 70.35 sec.) 33.0%
Proxy-delay-model driven algorithms runtime for 1000 iterations (minute)
DOMAC 1.50 5.46 19.42
Post-synthesis driven algorithms runtime for 5000 iterations (hour)
ArithTreeRL 5.46 10.42 25.89
MUTE 9.37 12.60 50.83
ARITH-DAS (Ours) 6.40 13.06 38.73
1. OpenROAD [Y]: BSD 3-Clause License
2. Yosys [BO]: ISC License
3. OpenSTA [AY9]: GPL-3.0 License
4. Verilator [B2]: LGPL-3.0 License
5. ArithTreeRL [9]: No License
6. GOMIL [20]: No License
7. VTR/Koios [3Y9]: VTR License

34

	Introduction
	Preliminary: Arithmetic Circuit Optimization
	Motivation Challenge: Interconnection Optimization
	Methodology
	Overview of Our Framework
	Architecture Search Formulation for Arithmetic Circuit
	Graph Representation for Compressor Tree
	Differentiable Reformulation for Discrete Search Space

	 Arith-DAS : Differentiable Architecture Search for Arithmetic Circuit
	Adaptable Allocation Search via Circuit Evolution
	Multi-Relational Graph Attention Based Link Prediction
	Post-Synthesis Alignment via Proxy-Free PPO-Like Training

	Experiments
	Experiment Setup
	Main Evaluation
	Generalization to Large-Scale Computing Circuit
	Ablation Study

	Conclusion and Limitations
	Acknowledgements
	Related Work
	Computer arithmetic
	Machine learning for chip design
	Differentiable architecture search
	Graph Neural Networks

	Design Space Complexity Analysis
	Implementation Details
	Hardware Specification
	Synthesis Tool Setup
	Implementation Details of Our Arith-DAS
	Further Discussion on Multi-Relational Graph Formulation
	Architectural Design Constraints
	Multi-Relational Message Passing
	Graphformer-Style Attention Score Calculation
	Regulized Sampling
	Detailed Derivation and Discussion of the Loss Function
	Learning Setup
	Evaluation Metrics

	Implementation Details of Baselines

	More Experiment Results
	More Results of Main Evaluation
	More Results of Multiplier Evaluation
	More Results of MAC Evaluation
	More Results of Generalization Evaluation

	Visualization of Results
	Runtime Comparison

	Licenses

