
High-Performance Arithmetic Circuit Optimization via Differentiable Architecture Search

Xilin Xia¹ * Jie Wang¹ † Wanbo Zhang¹ Zihai Wang¹
Mingxuan Yuan² Jianye Hao^{2,3} Feng Wu¹

¹ MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition,
University of Science and Technology of China

² Noahs Ark Lab, Huawei Technologies

³ College of Intelligence and Computing, Tianjin University

Abstract

Arithmetic circuit optimization remains a fundamental challenge in modern integrated circuit design. Recent advances have cast this problem within the Learning to Optimize (L2O) paradigm, where intelligent agents autonomously explore high-performance design spaces with encouraging results. However, existing approaches predominantly target coarse-grained architectural configurations, while the crucial interconnect optimization stage is often relegated to oversimplified proxy models or a heuristic approach. This disconnect undermines design quality, leading to suboptimal solutions in the circuit topology search space. To bridge this gap, we present ARITH-DAS, a Differentiable Architecture Search framework for Arithmetic circuits. To the best of our knowledge, ARITH-DAS is the first to formulate interconnect optimization within arithmetic circuits as a differentiable edge prediction problem over a multi-relational directed acyclic graph, enabling fine-grained, proxy-free optimization at the interconnection level. We evaluate ARITH-DAS on a suite of representative arithmetic circuits, including multipliers and multiply-accumulate units. Experiments show substantial improvements over state-of-the-art L2O and conventional methods, achieving up to **27.05%** gain in hypervolume of area-delay Pareto frontiers, a standard metric for evaluating multi-objective optimization performance. Moreover, integrating our optimized arithmetic units into large-scale AI accelerators yields up to **6.59%** delay reduction, demonstrating both scalability and real-world applicability.

1 Introduction

Arithmetic circuits, including multipliers and multiply-accumulate units, constitute the computational foundation of modern hardware platforms such as CPUs, GPUs, AI accelerators, and digital signal processors [1–3]. These circuits perform essential arithmetic operations that dominate the computational workload across a broad range of compute-intensive applications [4–6]. In deep neural networks, for example, multiplication operations account for over 99% of total computation [7]. As machine learning and high-performance computing systems continue to grow in scale and complexity, optimizing arithmetic circuits for both latency and area efficiency has become a critical challenge for enabling scalable and effective AI hardware systems.

Arithmetic circuit optimization poses a fundamental NP-hard challenge in discrete combinatorial optimization. The discrete design space scales exponentially with the bit width, reaching a complexity of $O(2^{4N^2})$ as detailed in Appendix B. Recent studies have reformulated arithmetic circuit

*This work was done when Xilin Xia was an intern at Huawei Noahs Ark Lab.

†Correspondence author. Email: <jiewangx@ustc.edu.cn>

The code is available at <https://github.com/MIRALab-USTC/Arith-DAS.git>

optimization as a Learning to Optimize (L2O) problem [3, 7–9], wherein learning-based agents are employed to explore efficient design strategies for performance improvement. These approaches typically initialize from expert-crafted designs, iteratively refine local structures, and leverage performance improvements between successive designs as reward signals to guide the optimization process, achieving promising results.

However, despite the notable successes, existing L2O approaches remain predominantly confined to coarse-grained architectural optimization, which primarily focuses on basic component allocation at each bit position. Fine-grained interconnect routing is still governed by heuristic rules that overlook the complex structural constraints of the design space, thereby compromising circuit quality. Recent efforts [10, 11] have attempted to model the interconnection in the arithmetic circuits through permutation matrix generation, leveraging mixed-integer programming (MIP) and differentiable optimization to enhance interconnect assignment. However, these methods are fundamentally constrained by oversimplified proxy formulations, which fail to faithfully reflect complex post-synthesis physical metrics. As circuit complexity increases, the misalignment between proxy and actual performance escalates, causing the optimization to converge prematurely to inferior design solutions.

To address these challenges, we present **ARITH-DAS**, a differentiable architecture search framework that directly targets the interconnection design space in arithmetic circuits. In contrast to prior work focused on coarse architectural component allocation, **ARITH-DAS** formulates fine-grained interconnection optimization as an edge prediction task over a multi-relational directed acyclic graph, capturing signal-level structural semantics. It employs multi-relational graph neural networks with attention mechanisms to model connection probabilities across relation types, and adopts a proxy-free objective aligned with post-synthesis metrics to ensure fidelity. **ARITH-DAS** further integrates with high-level allocation optimizers, enabling unified, multi-granularity circuit optimization.

We conduct systematic evaluations on a suite of representative arithmetic circuits, including multipliers and multiply-accumulate (MAC) units. Experimental results show that our method consistently achieves Pareto dominance over state-of-the-art approaches in area and delay, with hypervolume improvements of up to **27.05%**. Furthermore, when integrating the optimized circuits into large-scale AI computing systems, our approach delivers up to **6.59%** latency reduction compared to the state-of-the-art baseline designs, demonstrating its scalability and practical engineering applicability.

Contributions of this paper are summarized as follows: **(1)** We identify key limitations in existing arithmetic circuit optimization approaches and reveal the critical role of the interconnection design space in determining post-synthesis performance. **(2)** To the best of our knowledge, **ARITH-DAS** is the first to formulate the fine-grained interconnect synthesis of arithmetic circuits as a differentiable architecture search problem. **(3)** We propose a novel differentiable architecture search framework tailored for arithmetic circuits, which combines multi-relational graph neural networks with Graphomer-style attention mechanisms. The entire framework is trained in a proxy-free manner, directly aligning with post-synthesis performance metrics. **(4)** Extensive experimental results across representative circuits demonstrate that our method achieves state-of-the-art post-synthesis performance, while maintaining strong applicability to real-world design flows.

2 Preliminary: Arithmetic Circuit Optimization

Arithmetic circuits are typically composed of three main components: the **Partial Product Generator (PPG)**, the **Compressor Tree (CT)**, and the **Carry Propagate Adder (CPA)**. As shown in Figure 1, PPG encodes the inputs into a matrix of partial products based on the arithmetic operations, using schemes such as AND-gate encoding, Booth encoding, or more complicated methods [12–14]. Then the compressor tree reduces this matrix to two rows through parallel compression, and finally the CPA adds them to produce the final output. The compressor tree dominates both area and delay of the entire arithmetic circuit, making it the primary target for arithmetic circuit optimization [3, 7, 15]. The optimization of compressor trees typically involves three key steps:

Compressor Allocation This step determines the number and types of compressors used at each column of the compressor tree. The allocation must satisfy basic constraints such as input/output balance and convergence to two or fewer final rows. It forms the architectural backbone of the compression process and directly influences both the area and delay of the overall circuit.

Compressor Stage Assignment Given a valid compressor allocation, the stage assignment step specifies the execution order of each compressor, subject to data dependency and topological con-

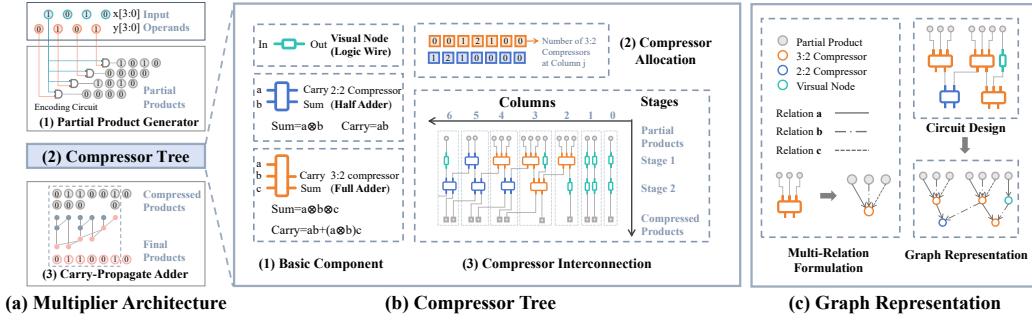


Figure 1: An illustration of a 4-bit multiplier with AND-gate based PPG.

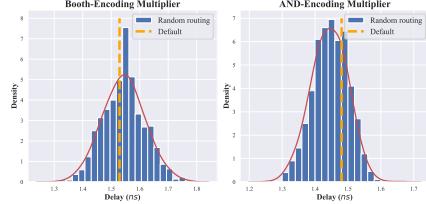


Figure 2: Delay distribution of 1000 randomly interconnected 16-bit multipliers using Wallace Tree compression with both AND and Booth partial product encoding PPG.

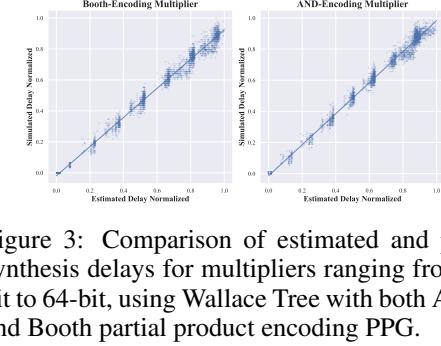


Figure 3: Comparison of estimated and post-synthesis delays for multipliers ranging from 4-bit to 64-bit, using Wallace Tree with both AND and Booth partial product encoding PPG.

straints. This process enforces legal signal propagation through the stages but does not yet define the exact ordering of partial product summation within each column. The resulting assignment determines the temporal alignment of computation without resolving interconnect details.

Compressor Interconnection With allocation and stage assignment fixed, the final step involves establishing the logical interconnection between compressors, determining how outputs are routed to inputs across stages. This step has been largely overlooked in existing learning-to-optimize (L2O) frameworks, which typically assume simplistic sequential interconnection. Unlike allocation and stage assignment, which operate on regularized representations, interconnect optimization requires reasoning over graph-structured data and exposes a vast and irregular search space, making it both critical and challenging to optimize effectively.

3 Motivation Challenge: Interconnection Optimization

Existing arithmetic circuit optimization frameworks predominantly focus on allocation-level design using regularized structural representations, whereas interconnections between compressors are typically handled through simplistic sequential wiring schemes. However, recent studies reveal that interconnects constitute a critical and nontrivial design space [10, 11], with considerable impact on post-synthesis delay. In essence, existing approaches exhibit three fundamental limitations: (1) the neglect of interconnect-level optimization; (2) dependence on oversimplified heuristics and proxy delay models; (3) the absence of a unified framework for jointly optimizing coarse-grained allocation and fine-grained interconnect design. We elaborate on these limitations in the following discussion.

Design Space of Interconnection The interconnection of compressors plays a critical role in determining the critical path of the compression tree. We illustrate this often-overlooked design space through a randomized experiment. Specifically, we perform random interconnection assignments on 16-bit multipliers using both AND-gate and Booth PPG schemes with fixed compressor allocation, and evaluate the post-synthesis delay of these randomly generated designs. The results are compared against the sequential interconnection strategy adopted by the recent state-of-the-art L2O method MUTE [7]. We present the post-synthesis delay distribution of the randomly routed designs in Figure 2, revealing that with a fixed compressor tree allocation, there exists a substantial timing optimization space of up to over 10%. Notably, the sequential wiring scheme does not exhibit a clear advantage over these randomized interconnection designs.

Misaligned Proxy Objective Existing interconnect optimization methods leverage mixed-integer programming (MIP) [10] or differentiable approaches [11], both relying on oversimplified proxy

delay models. However, due to the complex and nonlinear nature of post-synthesis delays, which are closely coupled with the technology library and EDA toolchain, such proxy objectives often fail to reflect the true performance characteristics and lead to suboptimal routing solutions. To illustrate this, we conduct randomized interconnect experiments on 4- to 64-bit multipliers with both AND and Booth PPG. For each bit-width, 50 random interconnected designs are evaluated using the proxy delay model in UFO-MAC [10] as well as the actual post-synthesis delay. As shown in Figure 3, the discrepancy between proxy and actual delay metric increases with bit-width, underscoring the growing inaccuracy of proxy-driven optimization in large-scale designs.

To address these challenges and fully exploit the vast yet underexplored design space of compressor interconnections, we propose ARITH-DAS, a proxy-free differentiable architecture search framework based on graph neural networks. ARITH-DAS optimizes complex compressor-to-compressor routing by enabling accurate and efficient interconnect prediction aligned with post-synthesis metrics. It can be seamlessly integrated with any allocation optimization algorithm, forming a unified and extensible framework for circuit-level design optimization.

4 Methodology

We begin with an overview of our proposed ARITH-DAS in Section 4.1. Next, we propose our architecture search formulation in Section 4.2, including detailed multi-relational graph representation in Section 4.2.1 and differentiable relaxation in Section 4.2.2. Finally, Section 4.3 provides a detailed description of the core components of our framework, along with the training procedure aligned with post-synthesis performance metrics.

4.1 Overview of Our Framework

As illustrated in Figure 4, our ARITH-DAS framework consists of three principal components. To thoroughly explore the design space of arithmetic circuits, we first construct a coarse-grained compressor allocation using an adaptable circuit evolutionary strategy. This initial configuration is then expanded into a multi-relational directed acyclic graph (DAG), which defines a rich and expressive interconnect search space. A multi-relational graph neural network is employed to encode both topological and semantic relationships among architectural components, while a graph attention mechanism estimates the probabilistic significance of candidate connections. Finally, the entire framework is trained end-to-end via a PPO-inspired algorithm, enabling proxy-free optimization directly guided by post-synthesis performance metrics.

4.2 Architecture Search Formulation for Arithmetic Circuit

4.2.1 Graph Representation for Compressor Tree

Combinational logic circuits can be naturally represented as directed acyclic graphs (DAGs), exhibiting structural equivalence between the circuit and its graph-based abstraction. In our representation, partial products and compressors are modeled as nodes, and logical dependencies are modeled as directed edges, as illustrated in Figure 1(c). To address the inherent complexity of fine-grained interconnect modeling, we employ a principled graph construction strategy, detailed below.

(1) Topology Ordering via Stage Assignment To preserve acyclicity, a fundamental constraint of combinational logic, we assign each compressor to a specific stage and allow interconnections only between stages of increasing order. This stage-wise ordering induces a valid acyclic circuit topology and establishes explicit dataflow dependencies.

(2) Virtual Nodes for Cross-Stage Connections To address mismatches in input and output port counts that necessitate signal bypassing, we introduce virtual nodes, which serve as auxiliary 1:1 compressor-like entities that propagate signals across stages. This mechanism enforces stage-wise connectivity while preserving topological consistency and simplifying graph construction.

(3) Multi-Relational Graph for Asymmetric Input Semantics While addition is logically commutative, the compressor input ports are physically asymmetric. To capture this asymmetry, we represent the compressor tree as a multi-relational graph [16–18], where each edge type corresponds to a specific input port of the target node. This formulation enables the model to distinguish structurally similar yet semantically distinct connections.

More formally, we define the compressor tree as a multi-relational directed acyclic graph [19], denoted by the tuple $(\mathcal{V}, \mathcal{E}, \mathcal{R})$. Here, $\mathcal{V} = \{v_1, v_2, \dots\}$ is the set of nodes, each representing a circuit

element. $\mathcal{R} = \{r_1, r_2, \dots\}$ is the set of relation types, where each $r \in \mathcal{R}$ corresponds to a semantically distinct input port. The edge set $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{R} \times \mathcal{V}$ consists of typed directed edges, where each edge $(v_i, r, v_j) \in \mathcal{E}$ indicates that node v_i connects to input port r of node v_j . The graph can also be encoded as a three-dimensional binary tensor $\mathcal{G} \in \{0, 1\}^{|\mathcal{R}| \times |\mathcal{V}| \times |\mathcal{V}|}$, where $\mathcal{G}_{r,i,j} = 1$ if and only if $(v_i, r, v_j) \in \mathcal{E}$. Following previous works [3, 7, 15, 20, 21], we represent the allocation of a compressor tree by a matrix $\mathbf{s} \in \mathbb{N}^{T \times N}$, where T is the number of compressor types and N is the input bit width of the compressor tree. Each entry $\mathbf{s}_{t,n}$ denotes the number of compressors of type t assigned to column n . We denote the set of valid designs by \mathbb{G} and the set of valid structures by \mathbb{S} . The detailed design constraints are provided in Appendix C.3.2. Finally, our goal is to maximize a composite objective function:

$$\max_{\mathcal{G} \in \mathbb{G}} R(\mathcal{G}) = -w_1 \cdot \text{area}(\mathcal{G}) - w_2 \cdot \text{delay}(\mathcal{G}), \quad (1)$$

where the objective function $R : \mathbb{G} \rightarrow \mathbb{R}$ is the weighted linear combination of post-synthesis area and delay metrics following prior works [3, 7, 9, 15].

4.2.2 Differentiable Reformulation for Discrete Search Space

Problem (1) constitutes a large-scale combinatorial optimization challenge, involving highly irregular graph structures and complex design constraints. To address this, we draw inspiration from differentiable architecture search [22–26], which offers a scalable and efficient alternative. By relaxing discrete structural decisions into continuous probability distributions, these methods enable joint optimization over a vast design space within a single forward pass, thereby significantly enhancing search efficiency and scalability.

Specifically, we replace the hard edge assignments in the compressor tree graph $\mathcal{G} \in \mathbb{G}$ with soft, learnable probability distributions over candidate source nodes. Each potential connection is parameterized by a real-valued score and passed through a softmax function, yielding a continuous relaxation $\tilde{\mathcal{G}} \in [0, 1]^{|\mathcal{R}| \times |\mathcal{V}| \times |\mathcal{V}|}$, where $\tilde{\mathcal{G}}_{r,i,j}$ denotes the probability of establishing an edge from node v_i , conditioned on edge type r and target node v_j , with normalization $\sum_i \tilde{\mathcal{G}}_{r,i,j} = 1$ for each (r, j) pair. This target-centric formulation arises from the structural constraints and multi-relational graph design, which are inherently defined from the perspective of the receiving node. By modeling connection probabilities in this manner, each input port selects its optimal driver from valid candidates, enabling fine-grained, port-specific connectivity through softmax-based selection. This relaxation implicitly defines a distribution $\pi : \mathbb{G} \rightarrow [0, 1]$ over the graph search space, with corresponding parameter space Π . Following previous works [22, 23], the objective is relaxed to

$$\max_{\pi \in \Pi} \mathbb{E}_{\mathcal{G} \sim \pi} [R(\mathcal{G})] = \max_{\mathbf{s} \in \mathbb{S}} \max_{\pi(\cdot | \mathbf{s}) \in \Pi_{\mathbf{s}}} \mathbb{E}_{\mathcal{G} \sim \pi(\cdot | \mathbf{s})} [R(\mathcal{G})], \quad (2)$$

where $\Pi_{\mathbf{s}} \subset \Pi$ denotes the set of graph distributions associated with a given allocation \mathbf{s} . This naturally forms a two-stage optimization framework where we first determine the allocation of the compressor tree, and next we optimize the corresponding interconnection.

4.3 ARITH-DAS : Differentiable Architecture Search for Arithmetic Circuit

In this section, we present ARITH-DAS, a novel differentiable architecture search framework tailored to arithmetic circuit optimization. By encoding structural information via a multi-relational graph neural network and modeling interconnect prediction through graph attention, it enables end-to-end, gradient-based optimization directly guided by post-synthesis performance metrics.

4.3.1 Adaptable Allocation Search via Circuit Evolution

The compressor allocation $\mathbf{s} \in \mathbb{S}$ specifies the number of compressors across columns, shaping the coarse-grained structure and reduction stages of the compression tree. This aspect has been extensively studied [3, 7, 9, 10, 15, 20], with methods ranging from reinforcement learning to mixed-integer programming for optimizing compressor configurations under fixed encoding schemes.

To ensure simplicity, extensibility, and structural diversity, we adopt the evolution-based method introduced in [7]. Specifically, we maintain a population of candidate architectures in an elite pool, each representing a compressor allocation matrix across all columns. New candidates are generated through two key mechanisms: (1) *local perturbation*, where a small number of compressors are randomly added, removed, or shifted across columns, and (2) *substructure crossover*, where two parent architectures exchange subregions of their compressor allocation matrices.

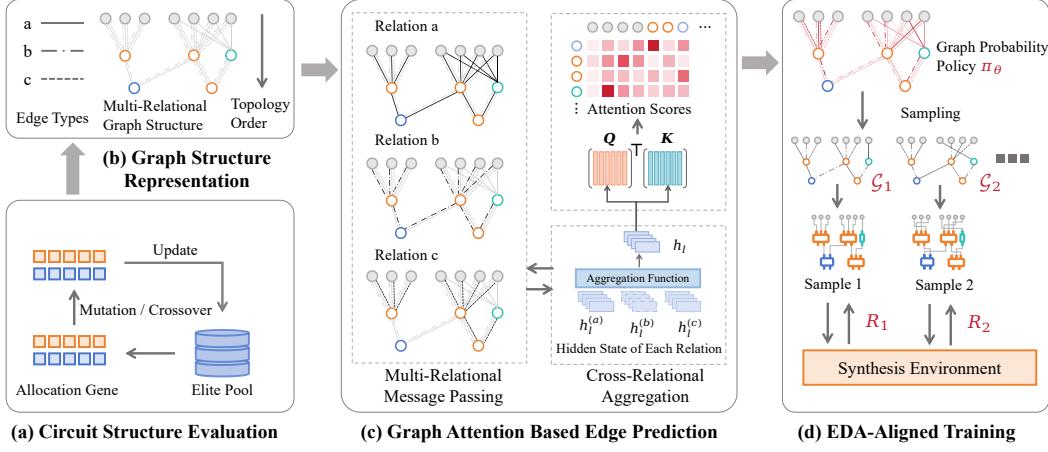


Figure 4: Overview of our proposed ARITH-DAS framework.

This evolutionary process promotes exploration of diverse architectural patterns while preserving high-performing solutions across generations. Crucially, it operates independently of the interconnect structure, enabling seamless integration with the differentiable wiring search described in the next stage. Once a compressor allocation configuration is sampled, we construct the corresponding multi-relational graph and optimize its interconnects accordingly.

4.3.2 Multi-Relational Graph Attention Based Link Prediction

Multi-Relational Graph Encoder Given a compressor allocation $s \in \mathbb{S}$, our objective is to determine its optimal interconnect configuration. To this end, we leverage a multi-relational graph neural network to encode the underlying circuit topology and model the propagation of physical information through the circuit. Each edge type captures a distinct semantic relation, such as a specific input port of a compressor, and is processed independently during message passing, enabling the network to learn asymmetric and relation-specific connection patterns. Concretely, we adopt a multi-relational message passing scheme. At layer l , the hidden state of node v_i under relation r is updated by:

$$h_{i,r}^{l+1} = \sum_{j \in \mathcal{N}_r(i) \cup \{i\}} \frac{1}{\sqrt{|\mathcal{N}_r(i)|} \cdot \sqrt{|\mathcal{N}_r(j)|}} \phi_r^l(h_i^l, h_j^l), \quad r \in \mathcal{R}, \quad (3)$$

where $\mathcal{N}_r(i) = \{v_j \in \mathcal{V} \mid (v_i, r, v_j) \in \mathcal{E} \text{ or } (v_j, r, v_i) \in \mathcal{E}\}$ denotes the set of nodes bidirectionally connected to v_i under relation r , and ϕ_r^l is a relation-specific message function at layer l , augmented with self-loops and reverse edges to support comprehensive message flow, while directional semantics are embedded in node features. To integrate information across all relations, we concatenate the relation-specific representations and apply a shared aggregation function γ^l :

$$h_i^{l+1} = \gamma^l (\text{Concat}_{r \in \mathcal{R}}(h_{i,r}^{l+1})). \quad (4)$$

Graph Attention Based Edge Prediction The final node embedding h_i encodes the structural context of vertex v_i . To predict interconnect probabilities, we employ a Graphomer-style attention mechanism [27], wherein each target node and its candidate source nodes are projected into relation-specific query and key spaces, respectively. Let $\mathcal{O} = \{\text{sum}, \text{carry}\}$ denote the set of output port types. Given a target node v_j and a port pair $(o, r) \in \mathcal{O} \times \mathcal{R}$, the attention score from a candidate source node v_i is computed as:

$$\alpha_{i,j}^{o,r} = \frac{\exp \left\{ (W_Q^r h_j)^\top (W_K^o h_i) \right\} \cdot \mathcal{M}_{i,j}^{o,r}}{\sum_{i' \in [\mathcal{V}]} \exp \left\{ (W_Q^r h_j)^\top (W_K^o h_{i'}) \right\} \cdot \mathcal{M}_{i',j}^{o,r}}, \quad (5)$$

where W_Q^r and W_K^o are linear projections specific to the input and output port types, respectively. The binary mask $\mathcal{M}_{i,j}^{o,r} \in \{0, 1\}$ imposes structural constraints by limiting the softmax normalization to valid source-target-port combinations, as detailed in Appendix C.3.2. This formulation conforms to the probabilistic semantics of our relaxation: for each target node and input port type, it defines a distribution over valid source nodes. The target node acts as the query and the source node as the key, ensuring consistency between the attention logits and relaxed edge selection probabilities.

4.3.3 Post-Synthesis Alignment via Proxy-Free PPO-Like Training

Given a fixed compressor allocation \mathbf{s} , the attention scores $\alpha_{i,j}^{o,r}$ define a structured distribution over interconnect candidates. A valid discrete realization is obtained via sequential sampling along a legal topological order, with the legality mask $\mathcal{M}_{i,j}^{o,r}$ dynamically updated to ensure acyclicity, stage consistency, and port compatibility. This process yields a deterministic graph sample $\mathcal{G} \sim \pi_\theta(\cdot \mid \mathbf{s})$, where the probability is factorized as $\pi_\theta(\mathcal{G} \mid \mathbf{s}) = \prod_{r,i,j,o} \mathcal{G}_{r,i,j} \cdot \alpha_{i,j}^{o,r}$, fully parameterized by the learnable attention logits $\alpha_{i,j}^{o,r}$. To optimize the interconnect structure with respect to post-synthesis performance metrics, we employ a proxy-free, PPO-like training paradigm [28]. Specifically, we treat π_θ as a stochastic policy over the graph space and maximize the expected objective defined by post-synthesis metrics R :

$$\max_{\theta} J(\theta \mid \mathbf{s}) = \max_{\theta} \mathbb{E}_{\mathcal{G} \sim \pi_\theta(\cdot \mid \mathbf{s})} [R(\mathcal{G})] = \max_{\theta} \mathbb{E}_{\mathcal{G} \sim \pi_{\bar{\theta}}(\cdot \mid \mathbf{s})} \left[\frac{\pi_\theta(\mathcal{G} \mid \mathbf{s})}{\pi_{\bar{\theta}}(\mathcal{G} \mid \mathbf{s})} R(\mathcal{G}) \right], \quad (6)$$

where $\pi_{\bar{\theta}}$ is a fixed reference policy used for importance sampling. To enforce conservative updates and prevent large deviations from the reference policy, we optimize the clipped surrogate objective:

$$\hat{J}(\theta \mid \mathbf{s}) = \frac{1}{M} \sum_{m=1}^M \min(\rho_m R(\mathcal{G}_m), \text{clip}(\rho_m, 1 - \epsilon, 1 + \epsilon) R(\mathcal{G}_m)), \quad (7)$$

where $\rho_m = \frac{\pi_\theta(\mathcal{G}_m \mid \mathbf{s})}{\pi_{\bar{\theta}}(\mathcal{G}_m \mid \mathbf{s})}$ is the likelihood ratio between the current and reference policies, and $\mathcal{G}_m \sim \pi_{\bar{\theta}}(\cdot \mid \mathbf{s})$ are i.i.d. sampled graphs. The hyperparameter ϵ controls the trust region for updates. Additionally, we introduce a regularization term to promote structural discreteness and enforce port-level sparsity constraints of the output ports [11]. The overall loss is defined as:

$$L(\theta \mid \mathbf{s}) = \underbrace{\sum_{i,j \in [|\mathcal{V}|], o \in \mathcal{O}, r \in \mathcal{R}} [\alpha_{i,j}^{o,r} \cdot (1 - \alpha_{i,j}^{o,r})]^2}_{\text{Discretization penalty}} + \underbrace{\sum_{i \in [|\mathcal{V}|], o \in \mathcal{O}} \left(1 - \sum_{j \in [|\mathcal{V}|], r \in \mathcal{R}} \mathcal{M}_{r,i,j} \cdot \alpha_{i,j}^{o,r} \right)^2}_{\text{Output-port exclusivity constraint}}. \quad (8)$$

The first term penalizes probabilities that lie in the ambiguous region $(0, 1)$, thus promoting discrete-like selection. The second term enforces that each output port selects exactly one target input (i.e., normalized to 1). Finally, the complete training objective combines the PPO-style reward maximization with the regularization:

$$\max_{\theta} \mathcal{L}(\theta) = \mathbb{E}_{\mathbf{s} \sim \mathcal{S}} \left[\hat{J}(\theta \mid \mathbf{s}) - \eta L(\theta \mid \mathbf{s}) \right], \quad (9)$$

where $\eta > 0$ controls the trade-off between reward fidelity and structural regularity. A theorem-guided discussion is detailed in Appendix C.3.6.

5 Experiments

We begin by describing the experimental setup, baseline methods, and evaluation metrics in Section 5.1. The experiments are designed to pursue three primary objectives: **(1)** Evaluate the effectiveness of ARITH-DAS in optimizing computing multipliers and MAC units across a broad range of input bit-widths (Section 5.2); **(2)** Assess the generalization ability of ARITH-DAS -optimized multipliers when scaled to large macro designs representative of real-world AI accelerators (Section 5.3); **(3)** Perform ablation studies to quantify the contributions of individual components within ARITH-DAS and elucidate the rationale behind its design (Section 5.4).

5.1 Experiment Setup

Experimental Setup Our framework leverages OpenROAD [29] for physical implementation. Logic synthesis is performed using Yosys [30] with the Nangate45 technology library [31], while static timing analysis (STA) is conducted through OpenSTA [29]. Functional verification employs Verilator [32] for cycle-accurate simulation. The machine learning pipeline is implemented in PyTorch [33] and PyTorch Geometric [34], optimized via the Adam algorithm [35]. We evaluate our methodology across eight distinct multiplier architectures, encompassing 8-bit, 16-bit, 32-bit, and 64-bit implementations employing both AND gate-based and Booth encoding-based techniques. More experiment configurations are provided in Appendix C.

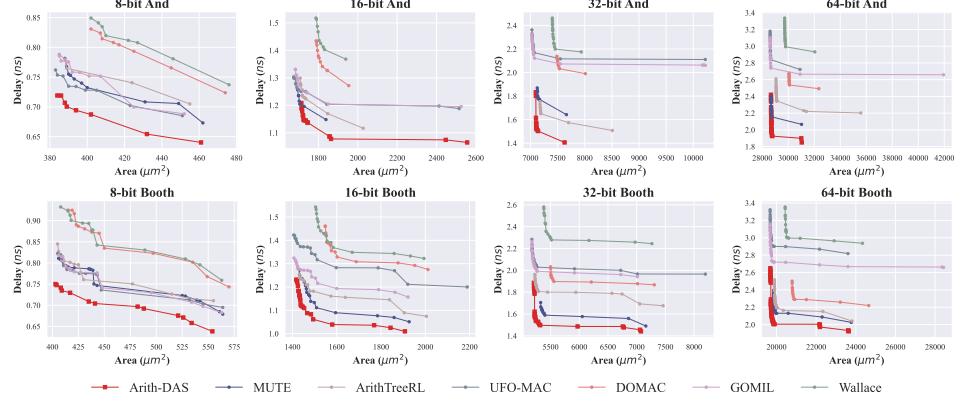


Figure 6: Pareto frontiers of our ARITH-DAS and baselines on eight multiplier design tasks.

Comparative Baselines We evaluate our methodology against six representative approaches spanning classical heuristic designs to contemporary learning-to-optimize (L2O) paradigms: **(1) Wallace** [36]: A foundational heuristic compression technique; **(2) UFO-MAC** [10] and **(3) GOMIL** [20]: A solution framework based on integer programming; **(4) DOMAC** [9]: A differentiable interconnection optimization framework; **(5) ArithTreeRL** [9]: A leading deep reinforcement learning (RL) architecture; **(6) MUTE** [7]: The current state-of-the-art hybrid RL-Evolutionary framework. Extended comparative analyses including implementation specifics and hyperparameter configurations are provided in Appendix C.4.

Evaluation Metrics Arithmetic circuit optimization constitutes a canonical multi-objective optimization problem. We employ two established evaluation protocols from multi-objective optimization theory: **(1) Pareto Frontier Analysis:** Following established methodologies [3, 7–11, 15], we simulate diverse design preferences through parametric target delay configurations. This enables comprehensive synthesis of corresponding solutions and visualization of their Pareto frontiers [37]. **(2) Hypervolume (HV) Metric:** We conduct comparative analysis of solution quality through hypervolume measurements [38] across different Pareto frontiers, quantifying their multi-objective characteristics. More details are provided in Appendix C.3.8.

5.2 Main Evaluation

We highlight the superiority of ARITH-DAS through a comparative analysis with six competitive baselines on eight multiplier design problems across a wide range of input sizes. The results in Figure 6 demonstrate that multipliers optimized by ARITH-DAS consistently and significantly outperform designs optimized by all baselines across all eight multiplier design tasks. Moreover, we present the hypervolume (HV) of the Pareto points discovered by ARITH-DAS in Table 1. The results demonstrate that ARITH-DAS achieves a substantial improvement over the previous SOTA, improving the hypervolume by up to 27.05%. Overall, these results demonstrate the strong ability of ARITH-DAS to optimize multipliers, leading to significant reductions in both area and delay. More results, including evaluation on multiply-accumulators (MACs) and visualization of results, are provided in Appendix D.

5.3 Generalization to Large-Scale Computing Circuit

To assess the generalization capability of the optimized computing units, we integrate those produced by ARITH-DAS and baseline methods into six representative AI accelerator circuits from the Kois 2.0 benchmark [39]. In addition, we deploy and evaluate these units within a typical processing element (PE) array architecture, which is widely used in applications, following previous works [7, 15, 21]. As shown in Figure 5 and Figure 7, circuits incorporating ARITH-DAS-optimized units consistently outperform these baseline counterparts across multiple metrics. These

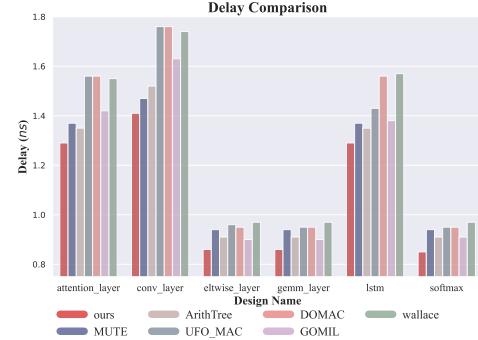


Figure 5: Delay of practical AI chips with our ARITH-DAS and baselines integrated.

Table 1: Hypervolume (HV.) of multiplier design.

Mult. (AND)	8 bit		16 bit		32 bit		64 bit	
Method	HV. \uparrow	Impr. (%)	HV. \uparrow	Impr. (%)	HV. \uparrow	Impr. (%)	HV. \uparrow	Impr. (%)
Wallace	3.43	NA	107.53	NA	793.19	NA	4,796.14	NA
GOMIL	11.56	237.25	265.17	146.60	1,216.48	53.36	8,784.55	83.16
UFO-MAC	12.83	274.08	269.18	150.32	1,076.70	35.74	7,932.19	65.39
DOMAC	4.60	34.29	177.52	65.09	1,267.22	59.76	9,941.63	107.28
ArithTreeRL	9.61	180.29	315.19	193.11	2,779.56	250.43	14,237.63	196.86
MUTE	11.67	240.30	310.89	189.11	2,470.47	211.46	16,656.60	247.29
ARITH-DAS (Ours)	16.30	375.32	361.84	236.49	3,247.06	309.37	19,563.48	307.90

Mult. (Booth)	8 bit		16 bit		32 bit		64 bit	
Method	HV. \uparrow	Impr. (%)	HV. \uparrow	Impr. (%)	HV. \uparrow	Impr. (%)	HV. \uparrow	Impr. (%)
Wallace	14.92	NA	130.88	NA	878.23	NA	3,146.58	NA
GOMIL	31.50	111.16	274.09	109.43	1,852.58	110.95	5,842.81	85.69
UFO-MAC	31.50	111.18	211.36	61.49	1,754.11	99.73	4,408.90	40.12
DOMAC	15.54	4.17	152.25	16.33	1,875.59	113.57	8,440.55	168.25
ArithTreeRL	29.94	100.72	311.13	137.88	2,455.28	179.57	10,728.16	240.95
MUTE	30.61	105.15	346.68	164.89	2,961.62	237.23	11,034.68	250.69
ARITH-DAS (Ours)	39.94	167.70	389.63	197.71	3,305.51	276.38	12,212.89	288.13

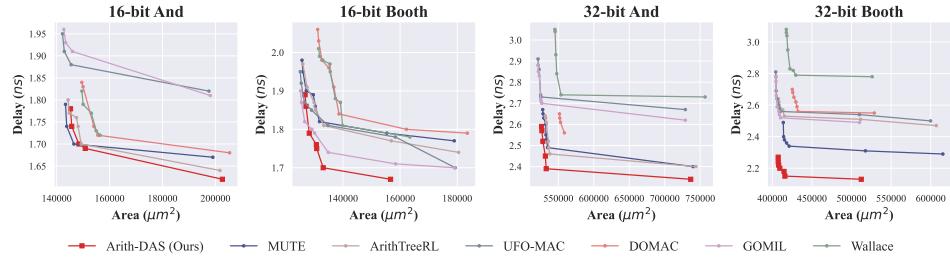


Figure 7: Pareto front of PE arrays integrated with designs generated by ARITH-DAS and baselines.

results demonstrate the strong generalization ability of ARITH-DAS in large-scale, computation-intensive circuits, underscoring its potential to enhance the performance of real-world AI chips.

5.4 Ablation Study

We conducted a carefully designed ablation study targeting the multiplier design task. As has been noted, our method is composed of the following key modules: **(1)** the Circuit Genetic Evolution (CGE) module, **(2)** the Multi-Relational Graph Encoder (MRG) module, and **(3)** the PPO-style training module (PPO). To assess the individual contribution of each module within ARITH-DAS, we conduct a comprehensive component-wise analysis focused on the optimization of multiplier architectures. Specifically, we design three ablation experiments by removing each module, respectively, to quantify its impact on overall performance: **(1) w/o CGE** where circuit genetic evolution is replaced with a simulated annealing approach; **(2) w/o MRG** where the multi-relational graph encoder is replaced by a heterogeneous-node graph with uniform edge types; **(3) w/o PPO** where the PPO-style loss is replaced by the proxy delay model introduced in previous work [11]. As shown in Table 2, all three modules are critical to the overall performance. Removing the CGE module impairs structural exploration and reduces architectural diversity, underscoring the role of genetic search in design space navigation. Removing the MRG module weakens relational reasoning, confirming the necessity of modeling edge semantics for accurate connectivity inference. Substituting the PPO-based optimization with a proxy delay model degrades performance, highlighting the benefit of end-to-end training aligned with post-synthesis metrics.

6 Conclusion and Limitations

In this work, we propose ARITH-DAS, a differentiable architecture search framework for arithmetic circuit optimization. Experiments on representative arithmetic units show that ARITH-DAS consistently outperforms state-of-the-art baselines in area-delay trade-offs. When deployed in large-

Table 2: Ablation study

Mult. (AND)	16 bit		32 bit		
	Method	HV. \uparrow	Impr. (%)	HV. \uparrow	Impr. (%)
Wallace		107.53	NA	793.19	NA
ARITH-DAS (Ours)		361.84	236.49	3,247.06	309.37
w/o CGE		326.58	203.71	2,427.64	206.06
w/o MRG		313.57	191.61	2,499.68	215.14
w/o PPO		326.49	203.63	3,007.14	279.12

scale AI accelerators, it achieves notable timing improvements, demonstrating strong scalability and practical value. These results underscore the effectiveness of ARITH-DAS and offer new directions for optimizing high-performance computing systems.

However, there still remain several limitations. Consistent with prior studies, our current experimental setup remains confined to the post-synthesis stage, which does not account for the intricate backend procedures such as placement, routing, and timing closure. These stages have a profound impact on the circuits final area, timing, and power characteristics, often leading to substantial discrepancies between synthesized and implemented results. Hence, exploring backend-aware optimization strategies for arithmetic circuits constitutes an essential avenue for future research.

7 Acknowledgements

We would like to thank all the anonymous reviewers for their insightful comments. The numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Center of the University of Science and Technology of China. This work was supported by the National Key R&D Program of China under contract 2022ZD0119801, and the National Natural Science Foundation of China grants U23A20388, 62021001, and 624B1011. We would like to thank our lab-mate, Zhaojie Tu, for his valuable technical support.

References

- [1] Reza Hashemian. A new multiplier using wallace structure and carry select adder with pipelining. In *ISCAS 02 Conference Proceedings*, 2002.
- [2] Fayez Elguibaly. A fast parallel multiplier-accumulator using the modified booth algorithm. *IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing*, 47(9): 902–908, 2000.
- [3] Dongsheng Zuo, Yikang Ouyang, and Yuzhe Ma. Rl-mul: Multiplier design optimization with deep reinforcement learning. In *2023 60th ACM/IEEE Design Automation Conference (DAC)*, pages 1–6. IEEE, 2023.
- [4] B. Holdsworth. *Digital logic design*, 2nd ed. 1987. ISBN 0408015667.
- [5] Biplab Das, Avijit Kumar Paul, and Debasish De. An unconventional arithmetic logic unit design and computing in actin quantum cellular automata. *Microsystem Technologies*, pages 1–14, 2019.
- [6] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. *Efficient processing of deep neural networks*. Springer, 2020.
- [7] Zhihai Wang, Jie Wang, Xilin Xia, Dongsheng Zuo, Lei Chen, Yuzhe Ma, Jianye Hao, Mingxuan Yuan, and Feng Wu. Computing circuits optimization via model-based circuit genetic evolution. In *The Thirteenth International Conference on Learning Representations*, 2025.
- [8] Rajarshi Roy, Jonathan Raiman, Neel Kant, Ilyas Elkin, Robert Kirby, Michael Siu, Stuart Oberman, Saad Godil, and Bryan Catanzaro. Prefixrl: Optimization of parallel prefix circuits using deep reinforcement learning. In *2021 58th ACM/IEEE Design Automation Conference (DAC)*, pages 853–858. IEEE, 2021.
- [9] Yao Lai, Jinxin Liu, David Z Pan, and Ping Luo. Scalable and effective arithmetic tree generation for adder and multiplier designs. *arXiv preprint arXiv:2405.06758*, 2024.
- [10] Dongsheng Zuo, Jiadong Zhu, Chenglin Li, and Yuzhe Ma. Ufo-mac: A unified framework for optimization of high-performance multipliers and multiply-accumulators. *arXiv preprint arXiv:2408.06935*, 2024.
- [11] Chenhao Xue, Yi Ren, Jinwei Zhou, Kezhi Li, Chen Zhang, Yibo Lin, Lining Zhang, Qiang Xu, and Guangyu Sun. Domac: Differentiable optimization for high-speed multipliers and multiply-accumulators. *arXiv preprint arXiv:2503.23943*, 2025.

[12] Florent de Dinechin and Martin Kumm. Application-specific arithmetic. *Cham: Springer International Publishing*, 2024.

[13] Chichyang Chen. High-order taylor series approximation for efficient computation of elementary functions. *IET Computers & Digital Techniques*, 9(6):328–335, 2015.

[14] Davide De Caro, Ettore Napoli, Darjn Esposito, Gerardo Castellano, Nicola Petra, and Antonio GM Strollo. Minimizing coefficients wordlength for piecewise-polynomial hardware function evaluation with exact or faithful rounding. *IEEE Transactions on Circuits and Systems I: Regular Papers*, 64(5):1187–1200, 2017.

[15] Zhihai Wang, Jie Wang, Dongsheng Zuo, Ji Yunjie, Xilin Xia, Yuzhe Ma, Jianye Hao, Mingxuan Yuan, Yongdong Zhang, and Feng Wu. A hierarchical adaptive multi-task reinforcement learning framework for multiplier circuit design. In *Forty-first International Conference on Machine Learning*, 2024.

[16] Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. Composition-based multi-relational graph convolutional networks. *arXiv preprint arXiv:1911.03082*, 2019.

[17] Guoquan Dai, Xizhao Wang, Xiaoying Zou, Chao Liu, and Si Cen. Mrgat: multi-relational graph attention network for knowledge graph completion. *Neural Networks*, 154:234–245, 2022.

[18] Meiqi Chen, Yuan Zhang, Xiaoyu Kou, Yuntao Li, and Yan Zhang. r-gat: Relational graph attention network for multi-relational graphs. *arXiv preprint arXiv:2109.05922*, 2021.

[19] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max Welling. Modeling relational data with graph convolutional networks. In *The semantic web: 15th international conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, proceedings 15*, pages 593–607. Springer, 2018.

[20] Weihua Xiao, Weikang Qian, and Weiqiang Liu. Gomil: Global optimization of multiplier by integer linear programming. In *2021 Design, Automation & Test in Europe Conference & Exhibition (DATE)*, pages 374–379. IEEE, 2021.

[21] Dongsheng Zuo, Jiadong Zhu, Yikang Ouyang, and Yuzhe Ma. Rl-mul 2.0: Multiplier design optimization with parallel deep reinforcement learning and space reduction. *ACM Transactions on Design Automation of Electronic Systems*, 2024.

[22] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. *arXiv preprint arXiv:1806.09055*, 2018.

[23] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task and hardware. *arXiv preprint arXiv:1812.00332*, 2018.

[24] Felix Petersen, Christian Borgelt, Hilde Kuehne, and Oliver Deussen. Deep differentiable logic gate networks. *Advances in Neural Information Processing Systems*, 35:2006–2018, 2022.

[25] Zhihai Wang, Jie Wang, Qingyue Yang, Yinqi Bai, Xing Li, Lei Chen, Jianye Hao, Mingxuan Yuan, Bin Li, Yongdong Zhang, et al. Towards next-generation logic synthesis: A scalable neural circuit generation framework. *Advances in Neural Information Processing Systems*, 37: 99202–99231, 2024.

[26] Peng Xu, Wenqi Shao, Mengzhao Chen, Shitao Tang, Kaipeng Zhang, Peng Gao, Fengwei An, Yu Qiao, and Ping Luo. Besa: Pruning large language models with blockwise parameter-efficient sparsity allocation. *arXiv preprint arXiv:2402.16880*, 2024.

[27] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-Yan Liu. Do transformers really perform badly for graph representation? *Advances in neural information processing systems*, 34:28877–28888, 2021.

[28] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

[29] Tutu Ajayi and David Blaauw. Openroad: Toward a self-driving, open-source digital layout implementation tool chain. In *Proceedings of Government Microcircuit Applications and Critical Technology Conference*, 2019.

[30] Clifford Wolf, Johann Glaser, and Johannes Kepler. Yosys-a free verilog synthesis suite. In *Proceedings of the 21st Austrian Workshop on Microelectronics (Austrochip)*, volume 97, 2013.

[31] Nangate Inc. "Open Cell Library v2008 10 SP1". <http://www.nangate.com/openlibrary/>, 2008.

[32] Wilson Snyder, Paul Wasson, Duane Galbi, and et al. Verilator. URL <https://github.com/verilator/verilator>.

[33] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky, Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Choudria, Will Constable, Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos, Mario Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, CK Luk, Bert Maher, Yunjie Pan, Christian Puhrsche, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Michael Suo, Phil Tillet, Eikan Wang, Xiaodong Wang, William Wen, Shunting Zhang, Xu Zhao, Keren Zhou, Richard Zou, Ajit Mathews, Gregory Chanan, Peng Wu, and Soumith Chintala. PyTorch 2: Faster Machine Learning Through Dynamic Python Bytecode Transformation and Graph Compilation. In *29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2 (ASPLOS '24)*. ACM, April 2024. doi: 10.1145/3620665.3640366. URL <https://pytorch.org/assets/pytorch2-2.pdf>.

[34] Matthias Fey and Jan Eric Lenssen. Fast Graph Representation Learning with PyTorch Geometric, May 2019. URL https://github.com/pyg-team/pytorch_geometric.

[35] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*, 2014.

[36] Christopher S Wallace. A suggestion for a fast multiplier. *IEEE Transactions on electronic Computers*, (1):14–17, 1964.

[37] Alessio Ishizaka and Philippe Nemery. *Multi-criteria decision analysis: methods and software*. John Wiley & Sons, 2013.

[38] Andreia P Guerreiro, Carlos M Fonseca, and Luís Paquete. The hypervolume indicator: Computational problems and algorithms. *ACM Computing Surveys (CSUR)*, 54(6):1–42, 2021.

[39] Aman Arora, Andrew Boutros, Seyed Alireza Damghani, Karan Mathur, Vedant Mohanty, Tanmay Anand, Mohamed A Elgammal, Kenneth B Kent, Vaughn Betz, and Lizy K John. Koios 2.0: Open-source deep learning benchmarks for fpga architecture and cad research. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, 42(11):3895–3909, 2023.

[40] Luigi Dadda. Some schemes for fast serial input multipliers. In *1983 IEEE 6th Symposium on Computer Arithmetic (ARITH)*, pages 52–59. IEEE, 1983.

[41] Niichi Itoh, Yasumasa Tsukamoto, Takeshi Shibagaki, Koji Nii, Hidehiro Takata, and Hiroshi Makino. A 32/spl times/24-bit multiplier-accumulator with advanced rectangular styled wallace-tree structure. In *2005 IEEE International Symposium on Circuits and Systems (ISCAS)*, pages 73–76. IEEE, 2005.

[42] Vojin G. Oklobdzija, David Villeger, and Simon S. Liu. A method for speed optimized partial product reduction and generation of fast parallel multipliers using an algorithmic approach. *IEEE Transactions on computers*, 45(3):294–306, 1996.

[43] Andrew Beaumont-Smith and C-C Lim. Parallel prefix adder design. In *Proceedings 15th IEEE Symposium on Computer Arithmetic. ARITH-15 2001*, pages 218–225. IEEE, 2001.

[44] Jack Sklansky. Conditional-sum addition logic. *IRE Transactions on Electronic computers*, (2):226–231, 1960.

[45] Brent and Kung. A regular layout for parallel adders. *IEEE transactions on Computers*, 100(3):260–264, 1982.

[46] Jianhua Liu, Shuo Zhou, Haikun Zhu, and Chung-Kuan Cheng. An algorithmic approach for generic parallel adders. In *ICCAD-2003. International Conference on Computer Aided Design (IEEE Cat. No. 03CH37486)*, pages 734–740. IEEE, 2003.

[47] Subhendu Roy, Mihir Choudhury, Ruchir Puri, and David Z Pan. Towards optimal performance-area trade-off in adders by synthesis of parallel prefix structures. In *Proceedings of the 50th Annual Design Automation Conference*, pages 1–8, 2013.

[48] Jialin Song, Rajarshi Roy, Jonathan Raiman, Robert Kirby, Neel Kant, Saad Godil, and Bryan Catanzaro. Multi-objective reinforcement learning with adaptive pareto reset for prefix adder design. In *Workshop on ML for Systems at NeurIPS*, 2022.

[49] Yao Lai, Jinxin Liu, David Z. Pan, and Ping Luo. Scalable and effective arithmetic tree generation for adder and multiplier designs. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=5phGedG98>.

[50] Zijie Geng, Jie Wang, Ziyan Liu, Siyuan Xu, Zhentao Tang, Shixiong Kai, Mingxuan Yuan, Jianye HAO, and Feng Wu. LaMPPlace: Learning to optimize cross-stage metrics in macro placement. In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=YLIsIzC74j>.

[51] Yi-Chen Lu, Sai Surya Kiran Pentapati, Lingjun Zhu, Kambiz Samadi, and Sung Kyu Lim. Tp-gnn: A graph neural network framework for tier partitioning in monolithic 3d ics. In *2020 57th ACM/IEEE Design Automation Conference (DAC)*, pages 1–6. IEEE, 2020.

[52] Donggyu Kim, Minjae Kim, Junseok Hur, Jakang Lee, Jinoh Cho, and Seokhyeong Kang. Ta3d: Timing-aware 3d ic partitioning and placement by optimizing the critical path. In *Proceedings of the 2024 ACM/IEEE International Symposium on Machine Learning for CAD*, pages 1–7, 2024.

[53] Zhihai Wang, Zijie Geng, Zhaojie Tu, Jie Wang, Yuxi Qian, Zhexuan Xu, Ziyan Liu, Siyuan Xu, Zhentao Tang, Shixiong Kai, Mingxuan Yuan, Jianye Hao, Bin Li, and Feng Wu. Benchmarking end-to-end performance of AI-based chip placement algorithms. In *The Thirty-ninth Annual Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2025.

[54] Felix Petersen, Hilde Kuehne, Christian Borgelt, Julian Welzel, and Stefano Ermon. Convolutional differentiable logic gate networks. *Advances in Neural Information Processing Systems*, 37:121185–121203, 2024.

[55] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. *arXiv preprint arXiv:1609.02907*, 2016.

[56] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message passing for quantum chemistry. In *International conference on machine learning*, pages 1263–1272. Pmlr, 2017.

[57] Zhengyang Zhou, Qihe Huang, Binwu Wang, Jianpeng Hou, Kuo Yang, Yuxuan Liang, Yu Zheng, and Yang Wang. Coms2t: A complementary spatiotemporal learning system for data-adaptive model evolution. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2025.

[58] Haoyang Liu, Jie Wang, Zijie Geng, Xijun Li, Yuxuan Zong, Fangzhou Zhu, Jianye HAO, and Feng Wu. Apollo-MILP: An alternating prediction-correction neural solving framework for mixed-integer linear programming. In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=mFYotPDWk8>.

[59] Chang Wu, Zhiyuan Liu, Wen Shu, Liang Wang, Yanchen Luo, Wenqiang Lei, Yatao Bian, Junfeng Fang, and Xiang Wang. 3d-gsrd: 3d molecular graph auto-encoder with selective re-mask decoding, 2025. URL <https://arxiv.org/abs/2510.16780>.

[60] Ruiyang Lin, Yongyi Guo, and Kyra Gan. Optimal adjustment sets for nonparametric estimation of weighted controlled direct effect, 2025. URL <https://arxiv.org/abs/2506.09871>.

[61] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. *Advances in neural information processing systems*, 30, 2017.

[62] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph attention networks. *arXiv preprint arXiv:1710.10903*, 2017.

[63] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? *arXiv preprint arXiv:1810.00826*, 2018.

[64] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for semi-supervised learning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 32, 2018.

[65] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications. *arXiv preprint arXiv:2006.05205*, 2020.

[66] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Heterogeneous graph attention network. In *The world wide web conference*, pages 2022–2032, 2019.

[67] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In *Proceedings of the web conference 2020*, pages 2704–2710, 2020.

[68] Victor-Alexandru Darvariu, Stephen Hailes, and Mirco Musolesi. Graph reinforcement learning for combinatorial optimization: A survey and unifying perspective. *arXiv preprint arXiv:2404.06492*, 2024.

[69] The OpenROAD Project. Opensta: Open-source static timing analysis tool. <https://github.com/The-OpenROAD-Project/OpenSTA>. Accessed: 2025-04-30.

[70] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy optimization. In *International conference on machine learning*, pages 1889–1897. PMLR, 2015.

[71] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers using variational divergence minimization. *Advances in neural information processing systems*, 29, 2016.

[72] Friedrich Liese and Igor Vajda. On divergences and informations in statistics and information theory. *IEEE Transactions on Information Theory*, 52(10):4394–4412, 2006.

[73] Syed Mumtaz Ali and Samuel D Silvey. A general class of coefficients of divergence of one distribution from another. *Journal of the Royal Statistical Society: Series B (Methodological)*, 28(1):131–142, 1966.

[74] Wikipedia contributors. f-divergence — Wikipedia, The Free Encyclopedia, 2024. URL <https://en.wikipedia.org/wiki/F-divergence>. [Online; accessed 8-May-2025].

[75] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL <https://www.gurobi.com>.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [\[Yes\]](#)

Justification: The claims made in the abstract and introduction are well aligned with the actual contributions of the paper.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [\[Yes\]](#)

Justification: Limitations are discussed in Section 6.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [\[Yes\]](#)

Justification: All theoretical results are proved in detail in Appendix C.3.6, and detailed complexity analysis are provided in Appendix B.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [\[Yes\]](#)

Justification: We provide the implementation details and hyperparameters in Appendix C.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [\[Yes\]](#)

Justification: We provide our main codes at <https://github.com/dakfjalka/Arith-DAS.git>.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so No is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [\[Yes\]](#)

Justification: We provide a detailed experimental settings in Section 5.1 and Appendix C.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [\[No\]](#)

Justification: Error bars are not reported because it would be too computationally expensive.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).

- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [\[Yes\]](#)

Justification: We provide the hardware specification in Appendix C.1 and runtime comparison in Appendix D.3.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: [\[Yes\]](#)

Justification: We have reviewed and conformed with the Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [\[Yes\]](#)

Justification: We discussed the broader impacts in Section 6.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.

- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We provide licenses in Appendix E

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.

- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important, original, or non-standard components.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.

A Related Work

A.1 Computer arithmetic

Computational circuits such as adders and multipliers serve as foundational components in modern computing systems, enabling high-performance parallel operations through advanced architectures such as compression trees and prefix trees. The optimization methodologies for these circuits predominantly fall into three categories: (1) **Manual Design**: This approach relies on domain-specific knowledge to refine conventional architectures, demanding considerable engineering resources. Notable implementations include partial product reduction techniques using compression tree [36, 40–42], and optimized parallel addition through prefix tree [43–45]. (2) **Traditional Algorithmic Approaches** ([10, 20, 46, 47]): These methods employ mathematical programming and heuristic search to generate circuit architectures. However, their dependence on proxy metrics (e.g., size, depth) frequently introduces substantial deviations from physical implementation outcomes. (3) **Learning-Based Approaches** [3, 8, 15, 21, 48, 49]: Emerging techniques integrate synthesis processes with reinforcement learning frameworks, directly targeting post-synthesis metrics to mitigate the fidelity loss inherent in proxy-based optimization. RL-MUL [21] first proposed a reinforcement learning framework for multiplier optimization, and HAVE [15] later extended it into a hierarchical multi-task RL framework. Recent work, DOMAC [11], introduced a differentiable interconnection optimization algorithm based on an estimated proxy delay model, offering a new perspective for arithmetic circuit optimization. In this work, we similarly focus on optimizing interconnection within arithmetic circuits using post-synthesis metrics.

A.2 Machine learning for chip design

As semiconductor processes advance into the nanoscale era, integrated circuit complexity grows exponentially, creating computational complexity bottlenecks for traditional EDA tools in PPA optimization. Machine learning-based design automation methodologies, particularly Graph Neural Networks (GNNs), have emerged as a novel paradigm to address these challenges. The canonical chip design workflow encompasses critical stages including logic synthesis, floorplanning, clock tree synthesis, and routing. The netlist, serving as an intermediate representation compiled from hardware description languages (HDLs), inherently embodies a graph-based data structure that encapsulates gate-level circuit components and their directed interconnect dependencies. This intrinsic graph topology makes GNNs particularly effective for extracting topological features, as evidenced by several pioneering studies, such as LaMPPlace[50], TP-GNN[51], and TA3D[52]. There is a publicly available benchmark for AI solutions in backend layout and routing [53].

A.3 Differentiable architecture search

Recently, differentiable architecture search has been getting a lot of attention in a variety of areas. In the domain of neural architecture search (NAS), DARTS[22] pioneered a gradient-based approach by relaxing discrete architectures into continuous spaces, enabling efficient optimization through gradient descent. Building upon this, ProxylessNAS [23] directly searches for neural network architectures on the target tasks and hardware, addressing the high computational cost of traditional NAS and the large memory consumption of differentiable NAS. In the domain of logic gate network architecture search, Petersen et al. [24] resolves the non-differentiability issue of logic gate networks via real-valued logic and continuous relaxation, enabling them to be trained using gradient descent. Further extending this direction, Petersen et al. [54] presents Convolutional Differentiable Logic Gate Networks, which enhance Differentiable Logic Gate Networks through deep logic gate tree convolutions, logical OR pooling, and residual initialization. In the domain of hardware optimization, Wang et al. [25] proposed a neural circuit generation framework using differentiable architecture search and reinforcement learning, enabling precise synthesis of circuits with large-scale nodes while outperforming traditional logic synthesis tools.

A.4 Graph Neural Networks

GNNs learn on graphs via iterative neighborhood aggregation [55, 56], and are applied broadly in graph-related problems [57–60]. Canonical architectures, GCN (spectral/spatial convolution) [55], GraphSAGE (inductive sampling) [61], GAT (attention over neighbors) [62], and GIN (WL-

strengthened expressivity) [63], define the fields expressivity-scalability trade-offs. Depth is limited by over-smoothing and over-squashing, motivating residual/skip connections, normalization, and multi-scale propagation [64, 65]. Beyond homogeneous graphs, multi-relational/heterogeneous GNNs parameterize typed edges and meta-relations: R-GCN [19] and CompGCN [16] perform relation-specific propagation, while HAN/HGT incorporate relation-aware attention for web-scale heterogeneity [66, 67]. In parallel, graph Transformers (e.g., Graphomer) inject structural biases into global attention to capture long-range dependencies [27]. There is also a recent survey of reinforcement learning on graphs [68].

B Design Space Complexity Analysis

In this section, we analyze the complexity of the design space of the compressor tree allocation and the compressor interconnection. Previous works [3, 9] have shown the $O(2^{N^2})$ complexity for compressor tree allocation design, where N is the input bitwidth of the arithmetic circuit. Here, we provide a complexity analysis of the interconnection space.

Without loss of generality, let's take the AND PPG multiplier as an example. First, the number of partial products of the AND PPG multiplier with an input bit-width of N is exactly N^2 . Next, a 3:2 compressor compresses one partial product while a 2:2 compressor doesn't compress. Therefore, at least $O(N^2)$ 3:2 compressors are needed to compress the $O(N^2)$ partial products into compressed products with complexity of $O(N)$. Finally, the complexity of the shape of a 3-relational directed graph representation of the compressor tree is at least $\sim 3 \times N^2$, which indicates an $O(2^{3N^2})$ search space. Note that, since the stage assignment determines the topological order of nodes and constrains compression to occur within each stage, interconnection happens only locally. As a result, connections are established only locally, and the complexity of the interconnection space is linear rather than quadratic with compressor number.

Overall, the design space complexity of a compressor tree, considering both its allocation and interconnection, exhibits an extraordinary growth rate of $O(2^{4N^2})$.

C Implementation Details

C.1 Hardware Specification

All experiments are executed on a computational platform with an Intel Xeon Gold 6246R CPU (3.60 GHz) and NVIDIA RTX 3090 GPU.

C.2 Synthesis Tool Setup

We use Yosys [30] for logic synthesis and OpenSTA [69] for STA simulation in conjunction with Nangate45 open cell library [31], which is widely used in the semiconductor industry and related research. Synthesis script and SDC constraints are provided at Listing 1 and Listing 2.

All RTL designs generated by our method and baselines are functionally verified with Verilator [32]. We randomly generate 10000 input samples, and perform a bit-wise comparison between the Verilator evaluated result and the ground truth calculated by C++ codes.

Listing 1: SDC Constraints

```

1 set_driving_cell BUF_X1
2 set_load 10.0 [all_outputs]
```

Listing 2: Synthesis Script

```

1 read -sv {verilog_path}
2 synth -top {top_name}
3 dfflibmap -liberty {liberty_path}
4 abc -D {target_delay} -constr {constr_path} -liberty {liberty_path}
5 write_verilog {netlist_path}

```

C.3 Implementation Details of Our ARITH-DAS

C.3.1 Further Discussion on Multi-Relational Graph Formulation

In the main paper, we formulate the connection as a multi-relational directed acyclic graph $(\mathcal{V}, \mathcal{E}, \mathcal{R})$ and corresponding adjacent tensor $\mathcal{G} \in \{0, 1\}^{|\mathcal{R}| \times |\mathcal{V}| \times |\mathcal{V}|}$. More implementation-specific details are provided in this section.

Vertex Set Vertex set is defined as $\mathcal{V} = \{v_1, v_2, \dots\}$, where a vertex v_i corresponds to one of the following four basic components: **(1)** 3:2 compressor, which is a full adder, **(2)** 2:2 compressor, which is a half adder, **(3)** initial partial product, which is the output of PPG and **(4)** visual node, which is a wire. For the sake of implementation convenience, we also define output nodes as virtual nodes within our graph representation. This unification allows for a consistent treatment of all nodes during message passing and connectivity inference. Each node belongs to a specific column and is assigned to a specific stage during stage assignment [3]. The column number and the stage number of nodes topologically specify their interconnection order, i.e., from lower column to higher column, and from lower stage to higher stage. This approach leverages the homogeneity among nodes to significantly reduce technical complexity.

Relational Set Relational set is defined as $\mathcal{R} = \{r_1, r_2, \dots\}$, where each relation type r_i represents an input port type. In this work we use 3:2 compressors and 2:2 compressors, and therefore $\mathcal{R} = \{a, b, cin\}$. For 2:2 compressors, only input ports $\{a, cin\}$ are available. For visual nodes, only $\{a\}$ is available. For PP nodes, no relation is available since they do not have input ports. The relational types are specified according to the input port types, rather than the output port types, mainly due to the fact that the input ports are logically indistinguishable, while the output ports are connected to different columns. Accordingly, we aim for each node to learn the semantics of its output connections through training.

Edge Set and adjacent tensor Typed directed edge set is defined as $\mathcal{E} \subset \mathcal{V} \times \mathcal{R} \times \mathcal{V}$, where each edge (v_i, r, v_j) represents a directed logical wire from output port of v_i connected to the r -th type input port of v_j . Since edges are type-specific, we construct a separate graph for each edge type, referred to as a graph channel. Specifically, the value of $\mathcal{G} \in \{0, 1\}^{|\mathcal{R}| \times |\mathcal{V}| \times |\mathcal{V}|}$ is defined as

$$\mathcal{G}_{r,i,j} = \begin{cases} 0 & (v_i, r, v_j) \notin \mathcal{E}, \\ 1 & (v_i, r, v_j) \in \mathcal{E}. \end{cases} \quad (10)$$

C.3.2 Architectural Design Constraints

In this section, we provide the detailed complex architectural constraints on the proposed multi-relational graph formulation. For node $v_i \in \mathcal{V}$, let $\text{Col}(v_i)$ denote the column index of v_i , $\text{Stage}(v_i)$ denote the stage index of v_i , and $\text{Type}(v_i)$ denote the type of v_i . A legal design should satisfy the following constraints.

Vertex types and relation types constraints For any $(v_i, r, v_j) \in \mathcal{E}$, there should be $\text{Type}(v_j) \neq \text{pp}$ and:

$$r \in \begin{cases} \{a, b, cin\} & \text{Type}(v_j) = 3:2 \text{ compressor}, \\ \{a, cin\} & \text{Type}(v_j) = 2:2 \text{ compressor}, \\ \{a\} & \text{Type}(v_j) = \text{visual node}. \end{cases} \quad (11)$$

Vertex typological constraints For any $(v_i, r, v_j) \in \mathcal{E}$, there should be $\text{Stage}(v_j) = \text{Stage}(v_i) + 1$, $\text{Col}(v_j) = \text{Col}(v_i)$ for sum wires of v_i and $\text{Col}(v_j) = \text{Col}(v_i) + 1$ for carry wires of v_i .

Port exclusivity constraints Denote the output node of the graph as the primary out (PO), and the input node of the graph as the primary in (PI). PO and PI nodes are specified according to the compressor allocation and stage assignment, which remain unchanged during the optimization process. Denote the set of primary in and primary out nodes as PI and PO , respectively. In our settings, for any node $v \in PI$, $\text{Type}(v) = pp$; for any node $v \in PO$, $\text{Type}(v) = \text{visual node}$. Each output port of non-PO nodes should be connected only to one node, i.e., for any node v_i ,

$$\sum_{r \in \mathcal{R}, j \in \text{Sum}[i]} \mathcal{G}_{r,i,j} = \begin{cases} 0 & v_i \in PO \\ 1 & v_i \notin PO \end{cases}, \quad \sum_{r \in \mathcal{R}, j \in \text{Carry}[i]} \mathcal{G}_{r,i,j} = \begin{cases} 0 & v_i \in PO \\ 1 & v_i \notin PO \end{cases} \quad (12)$$

where $\text{Sum}[i] = \{j \mid \text{Col}(v_j) = \text{Col}(v_i), \text{Stage}(v_j) = \text{Stage}(v_i) + 1\}$ is the set of nodes to which the sum out of node v_i is legal, and $\text{Carry}[i] = \{j \mid \text{Col}(v_j) = \text{Col}(v_i) + 1, \text{Stage}(v_j) = \text{Stage}(v_i) + 1\}$ is the set of nodes to which the carry out of node v_i is legal.

Similarly, the input port of a non-PI node should only receive a logical connection from one other node, i.e., for any node $v_j \in \mathcal{V}$ and relation $r \in \mathcal{R}$,

$$\sum_{i \in [|\mathcal{V}|]} \mathcal{G}_{r,i,j} = \begin{cases} 0 & v_j \in PI \text{ or } r \notin \text{Input}[j], \\ 1 & \text{else.} \end{cases} \quad (13)$$

where $\text{Input}[j] \subseteq \mathcal{R}$ denotes the input types of node v_j .

Legalization Mask The legalization mask $\mathcal{M} \in \{0, 1\}^{|\mathcal{R}| \times |\mathcal{V}| \times |\mathcal{V}|}$ indicates whether a connection is legal. The value of $\mathcal{M}_{r,i,j}$ is:

$$\mathcal{M}_{r,i,j} = \begin{cases} 1 & \begin{array}{l} r \in \text{Input}[j] \text{ and } \text{Stage}[v_j] = \text{Stage}[v_i] + 1 \\ \text{and } \left(\text{Col}[v_j] = \text{Col}[v_i] + 1 \text{ or } \text{Col}[v_j] = \text{Col}[v_i] \right) \end{array} \\ 0 & \text{else.} \end{cases}, \quad (14)$$

C.3.3 Multi-Relational Message Passing

To simulate the propagation of circuit information across different types of connections, we adopt a multi-relational message passing mechanism. Message passing occurs over all possible connection types, and each node aggregates incoming messages by merging hidden features from all relation-specific channels. It should be noted that the adjacency matrix used for message passing of relation $r \in \mathcal{R}$ is exactly the r -th channel of legalization mask \mathcal{M} . The aggregated representation is then passed through a shared single-layer MLP to produce the updated node state. It is worth noting that we do not explicitly fit any physical signal characteristics; instead, the entire process is trained in an end-to-end manner. Ablation studies confirm the necessity of this design choice.

C.3.4 Graphformer-Style Attention Score Calculation

To improve runtime efficiency in such a large and sparse graph space, we compute attention scores and maintain validity masks in a localized manner. A caching mechanism is employed, whereby computations are only triggered upon cache misses, thus reducing unnecessary overhead.

C.3.5 Regulized Sampling

Directly sampling from the raw probability distribution often leads to invalid structures. To address this, we adopt a regularized sampling strategy. Specifically, guided by the topological order provided by the stage assignment, we sample input ports for each node's output in sequence based on the connection probabilities. During sampling, a mask fill operation is applied to the attention scores prior to normalization to eliminate invalid connections. After each sampling step, the corresponding connection masks are dynamically updated to maintain structural legality, and probability logits are maintained for network updating. More specifically, when edge $(v_i, r, v_j) \in \mathcal{R}$ is sampled with $\mathcal{M}_{r,i,j} = 1$, we record corresponding $\alpha_{i,j}^{o,r}$ value and let $\mathcal{M}_{r,i',j'} = 0$ for all $i', j' \in [|\mathcal{V}|]$ and $\mathcal{M}_{r',i',j} = 0$ for all $i' \in [|\mathcal{V}|], r' \in \mathcal{R}$.

C.3.6 Detailed Derivation and Discussion of the Loss Function

We first provide the detailed derivation of (6) as below. When given compressor tree allocation \mathbf{s} ,

$$\begin{aligned}
J(\theta \mid \mathbf{s}) &= \mathbb{E}_{\mathcal{G} \sim \pi_\theta(\cdot \mid \mathbf{s})} [R(\mathcal{G})] \\
&= \sum_{\mathcal{G} \in \mathbb{G}_s} \pi_\theta(\mathcal{G} \mid \mathbf{s}) R(\mathcal{G}) \\
&= \sum_{\mathcal{G} \in \mathbb{G}_s} \pi_{\bar{\theta}}(\mathcal{G} \mid \mathbf{s}) \frac{\pi_\theta(\mathcal{G} \mid \mathbf{s})}{\pi_{\bar{\theta}}(\mathcal{G} \mid \mathbf{s})} R(\mathcal{G}) \\
&= \mathbb{E}_{\mathcal{G} \sim \pi_{\bar{\theta}}(\cdot \mid \mathbf{s})} \left[\frac{\pi_\theta(\mathcal{G} \mid \mathbf{s})}{\pi_{\bar{\theta}}(\mathcal{G} \mid \mathbf{s})} R(\mathcal{G}) \right]. \tag{15}
\end{aligned}$$

Consequently, the unbiased statistical estimator of $J(\theta \mid \mathbf{s})$ is given by

$$\tilde{J}(\theta \mid \mathbf{s}) = \frac{1}{M} \sum_{m=1}^M \frac{\pi_\theta(\mathcal{G}_m \mid \mathbf{s})}{\pi_{\bar{\theta}}(\mathcal{G}_m \mid \mathbf{s})} R(\mathcal{G}_m), \tag{16}$$

where \mathcal{G}_m i.i.d. $\sim \pi_{\bar{\theta}}(\cdot \mid \mathbf{s})$. In PPO, the `clip` operation is typically introduced to ensure that the distributional shift between the sampling policy $\pi_{\bar{\theta}}$ and the updated policy π_θ does not become too large, which could otherwise lead to distorted surrogate objectives due to mismatched trajectory distributions [70].

However, in our setting, the problem can be reformulated as a single-step multi-armed bandit scenario rather than a sequential Markov Decision Process. Therefore, trajectory mismatch is not an issue. Nonetheless, the clipping mechanism remains crucial for reducing variance during policy updates. We formalize this intuition in the following proposition. First, we introduce Pearson χ^2 divergence, which is widely used in machine learning [71, 72].

Definition 1 (Pearson χ^2 Divergence[73, 74]). *For two distribution p and q , Pearson χ^2 Divergence is defined as*

$$\chi^2(p \parallel q) = \mathbb{E}_{x \sim q} \left[\frac{p(x)}{q(x)} - 1 \right]^2. \tag{17}$$

Then, we have the following proposition.

Proposition 1. *Assume that the objective function R is bounded: $\max_{\mathcal{G} \in \mathbb{G}} |R(\mathcal{G})| \leq R_m$. Then the variance of estimator of $J(\theta \mid \mathbf{s})$ defined in (16) is bounded by χ^2 divergence:*

$$\text{Var}_{\pi_{\bar{\theta}}}(\tilde{J}(\theta \mid \mathbf{s})) \leq \frac{1}{M} \left[R_m^2 \left(1 + \chi^2 \left(\pi_\theta(\cdot \mid \mathbf{s}) \parallel \pi_{\bar{\theta}}(\cdot \mid \mathbf{s}) \right) \right) - J^2(\theta) \right]. \tag{18}$$

Proof. Let $\rho_\theta(\mathcal{G} \mid \mathbf{s}) = \frac{\pi_\theta(\mathcal{G}_m \mid \mathbf{s})}{\pi_{\bar{\theta}}(\mathcal{G}_m \mid \mathbf{s})}$. Since samples \mathcal{G}_m are i.i.d., then

$$\begin{aligned}
\text{Var}_{\pi_{\bar{\theta}}(\cdot \mid \mathbf{s})}(\tilde{J}(\theta \mid \mathbf{s})) &= \text{Var}_{\pi_{\bar{\theta}}(\cdot \mid \mathbf{s})} \left[\frac{1}{M} \sum_{m=1}^M \left[\frac{\pi_\theta(\mathcal{G}_m \mid \mathbf{s})}{\pi_{\bar{\theta}}(\mathcal{G}_m \mid \mathbf{s})} R(\mathcal{G}_m) \right] \right] \\
&= \frac{1}{M} \text{Var}_{\mathcal{G} \sim \pi_{\bar{\theta}}(\cdot \mid \mathbf{s})} [\rho_\theta(\mathcal{G} \mid \mathbf{s}) R(\mathcal{G})]. \tag{19}
\end{aligned}$$

Here, we have

$$\begin{aligned}
&\text{Var}_{\mathcal{G} \sim \pi_{\bar{\theta}}(\cdot \mid \mathbf{s})} [\rho_\theta(\mathcal{G} \mid \mathbf{s}) R(\mathcal{G})] \\
&= \mathbb{E}_{\mathcal{G} \sim \pi_{\bar{\theta}}(\cdot \mid \mathbf{s})} [(\rho_\theta(\mathcal{G} \mid \mathbf{s}) R(\mathcal{G}))^2] - \mathbb{E}_{\mathcal{G} \sim \pi_{\bar{\theta}}(\cdot \mid \mathbf{s})} [\rho_\theta(\mathcal{G} \mid \mathbf{s}) R(\mathcal{G})]^2 \\
&= \mathbb{E}_{\mathcal{G} \sim \pi_{\bar{\theta}}(\cdot \mid \mathbf{s})} [(\rho_\theta(\mathcal{G} \mid \mathbf{s}) R(\mathcal{G}))^2] - J^2(\theta), \tag{20}
\end{aligned}$$

and

$$\begin{aligned}
\mathbb{E}_{\mathcal{G} \sim \pi_{\bar{\theta}}(\cdot \mid \mathbf{s})} [(\rho_\theta(\mathcal{G} \mid \mathbf{s}) R(\mathcal{G}))^2] &\leq \mathbb{E}_{\mathcal{G} \sim \pi_{\bar{\theta}}(\cdot \mid \mathbf{s})} [\rho_\theta^2(\mathcal{G} \mid \mathbf{s}) R_m^2] \\
&= R_m^2 \mathbb{E}_{\mathcal{G} \sim \pi_{\bar{\theta}}(\cdot \mid \mathbf{s})} [\rho_\theta^2(\mathcal{G} \mid \mathbf{s})]. \tag{21}
\end{aligned}$$

Notice that

$$\begin{aligned}
\chi^2\left(\pi_\theta(\cdot | \mathbf{s}) \middle\| \pi_{\bar{\theta}}(\cdot | \mathbf{s})\right) &= \sum_{\mathcal{G} \in \mathbb{G}} \left(\frac{\pi_\theta(\mathcal{G} | \mathbf{s})}{\pi_{\bar{\theta}}(\mathcal{G} | \mathbf{s})} - 1 \right)^2 \pi_{\bar{\theta}}(\mathcal{G}) \\
&= \sum_{\mathcal{G} \in \mathbb{G}} \left(1 + \frac{\pi_\theta^2(\mathcal{G} | \mathbf{s})}{\pi_{\bar{\theta}}^2(\mathcal{G} | \mathbf{s})} - 2 \frac{\pi_\theta(\mathcal{G} | \mathbf{s})}{\pi_{\bar{\theta}}(\mathcal{G} | \mathbf{s})} \right) \pi_{\bar{\theta}}(\mathcal{G} | \mathbf{s}) \\
&= \sum_{\mathcal{G} \in \mathbb{G}} \pi_{\bar{\theta}}(\mathcal{G} | \mathbf{s}) - 2 \sum_{\mathcal{G} \in \mathbb{G}} \pi_\theta(\mathcal{G} | \mathbf{s}) + \sum_{\mathcal{G} \in \mathbb{G}} (\rho_\theta^2(\mathcal{G} | \mathbf{s}) \pi_{\bar{\theta}}(\mathcal{G} | \mathbf{s})) \\
&= \mathbb{E}_{\mathcal{G} \sim \pi_{\bar{\theta}}(\cdot | \mathbf{s})} [\rho_\theta^2(\mathcal{G} | \mathbf{s})] - 1.
\end{aligned} \tag{22}$$

Consequently, we have

$$\text{Var}_{\pi_{\bar{\theta}}(\cdot | \mathbf{s})}(\tilde{J}(\theta | \mathbf{s})) \leq \frac{R_m^2}{M} \left(1 + \chi^2\left(\pi_\theta(\cdot | \mathbf{s}) \middle\| \pi_{\bar{\theta}}(\cdot | \mathbf{s})\right) \right) - \frac{J^2(\theta | \mathbf{s})}{M}. \tag{23}$$

□

Proposition 1 indicates that the total variance is bounded by the χ^2 divergence between policy $\pi_\theta(\cdot | \mathbf{s})$ and $\pi_{\bar{\theta}}(\cdot | \mathbf{s})$. Therefore, clipping the probability ratio reduces the variance of the policy gradient, thus enhancing training stability. This is especially necessary in discrete structural settings, where large updates can easily destabilize learning.

C.3.7 Learning Setup

In the multi-relational graph encoder, we convert the directed graph into an undirected one and add self-loops for a bidirectional information flow, which is widely used in graph-structured data processing [19, 55]. The rationale behind this design lies in the fact that the directional information is sound and completely contained in node features. The node features used for the graph neural network initialization are provided in Table 3. It is worth noting that all node features are intrinsic to the node itself. For a fair comparison, the iterations of all experiments are set equal. We provide the hyperparameters of the main evaluations and ablation experiments in Table 4.

Table 3: Node Features

Feature Description	Size
Column number	1
Stage number	1
One-hot encoding for node types, including 3:2 compressor, 2:2 compressor, initial pp, visual node	4
Sequential ID for compressor with the same column, stage, and type	1

C.3.8 Evaluation Metrics

The design of efficient multipliers involves optimizing multiple competing goals, including area and speed. To assess performance, we employ two key measures. Initially, we graphically compare the estimated Pareto frontiers for area versus latency across our approach and existing techniques. Additionally, we evaluate the hypervolume metric for these frontiers. Further details on these criteria are provided below.

Multi-Objective Optimization Metrics

Generally, for a multi-objective maximization task with n targets, the goal is identifying the optimal solution collection called the Pareto set. In such problems, solution x is said to dominate y if x performs equally or better in every objective while surpassing y in at least one, i.e., $\forall i \in [1, n], f_i(x) \geq f_i(y) \wedge \exists i \in [1, n], f_i(x) > f_i(y)$. A Pareto-optimal point remains undominated, and all such points form the Pareto set. Hypervolume, depicted in Figure 8, quantifies set

Table 4: Hyperparameters

Hyperparameter	Value
Learning rate	1e-4
Iterations	5000
GNN layers	3
Hidden state dimensions	512
Query/key dimensions	64
Activation function	tanh
Optimizer	Adam [35]
Discretization penalty and output-port exclusivity constraint η	0.01
PPO trust region ϵ	0.2
Elite pool size	20

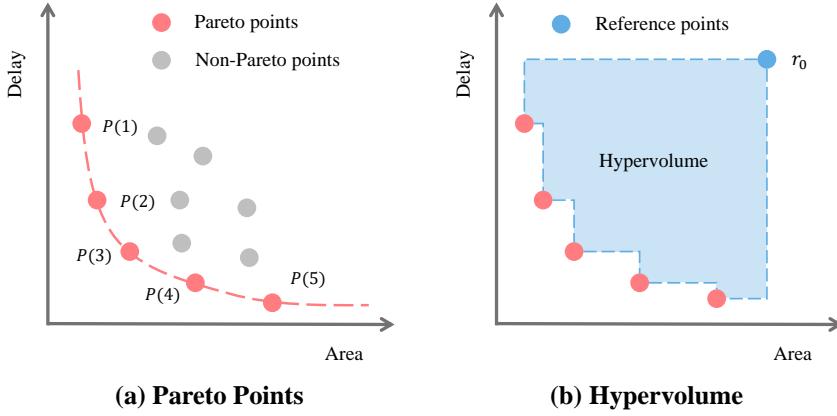


Figure 8: (a) An example for a Pareto optimal set with 2 objectives and 5 Pareto optimal solutions (Pareto points). (b) An example for hypervolume with a selected reference point r_0 . Integrated area $H(P, r_0)$ is the union of the rectangular areas where the reference point r_0 and the Pareto point $P(i)$ are diagonally opposite corners.

quality by measuring dominated space volume. Computing hypervolume requires selecting a reference point; with fixed references, larger hypervolumes indicate superior Pareto sets.

Definition 2 (Hypervolume metric). *Consider a set P representing an approximate Pareto frontier in an n -dimensional optimization space, consisting of N candidate points. Given a reference vector $r_0 \in R^m$, the hypervolume measure $\mathcal{H}(P, r_0)$ is formally expressed as:*

$$\mathcal{H}(P, r_0) = \int_{R^n} \mathbf{1}_{H(P, r_0)(z)} dz$$

where $H(P, r_0) = \{z \in Z | \exists 1 \leq i \leq |P| : r_0 \preceq z \preceq P(i)\}$. Here, $P(i)$ denotes the i -th entry in P , \preceq indicates Pareto dominance between vectors, and $\mathbf{1}_{H(P, r_0)}$ is an indicator function returning 1 when $z \in H(P, r_0)$ and 0 otherwise.

C.4 Implementation Details of Baselines

GOMIL[20] is a global optimization method that simultaneously considers the CT and CPA. The authors provide a C++ implementation. All coefficients related to the EDA toolchain and technology library are calibrated under the experimental setup. The resulting mixed integer programming (MIP) problem is solved using the Gurobi optimizer [75].

UFO-MAC[10] is a unified optimization CT and CPA framework considering compressor interconnections. The resulting integer programming problem is solved using the Gurobi optimizer [75].

DOMAC[11] is a recent differentiable compressor interconnection optimization algorithm, which optimizes a proxy delay model through routing permutation matrix relaxing.

ArithTreeRL[9] is a reinforcement learning method for CT optimization. The authors provide a Python implementation for AND PPG multipliers, which can be easily extended to MACs and Booth PPG multipliers.

MUTE[7] is the state-of-the-art (SOTA) hybrid RL-evolution CT optimization framework. The authors provide a Python implementation for multipliers and MACs.

D More Experiment Results

D.1 More Results of Main Evaluation

D.1.1 More Results of Multiplier Evaluation

In this section, we provide our evaluations on Multiplie architectures, rencompassing 8-bit, 16-bit, 32-bit, and 64-bit implementations employing both AND gate-based and Booth encoding-based techniques. The min delay and min area are provided in Table 5.

Table 5: Min area and min delay of multiplier design tasks

Mult.(AND)		8 bit				16 bit			
Method		Area (μm^2) \downarrow	Impr. (%) \uparrow	Delay (ns) \downarrow	Impr. (%) \uparrow	Area (μm^2) \downarrow	Impr. (%) \uparrow	Delay (ns) \downarrow	Impr. (%) \uparrow
Wallace		402	NA	0.74	NA	1,787	NA	1.37	NA
GOMIL		385	4.23	0.69	6.62	1,682	5.88	1.2	12.6
UFO-MAC		383	4.73	0.69	7.05	1,674	6.32	1.19	13.15
DOMAC		402	0.00	0.72	1.82	1,788	-0.06	1.27	7.05
ArithTreeRL		385	4.23	0.7	4.37	1,707	4.48	1.12	18.38
MUTE		388	3.48	0.67	8.7	1,694	5.2	1.15	16.08
ARITH-DAS (Ours)		384	4.48	0.64	13.15	1,713	4.14	1.06	22.15
Mult.(AND)		32 bit				64 bit			
Method		Area (μm^2) \downarrow	Impr. (%) \uparrow	Delay (ns) \downarrow	Impr. (%) \uparrow	Area (μm^2) \downarrow	Impr. (%) \uparrow	Delay (ns) \downarrow	Impr. (%) \uparrow
Wallace		7,402	NA	2.18	NA	29,721	NA	2.93	NA
GOMIL		7,029	5.04	2.06	5.21	28,602	3.77	2.66	9.33
UFO-MAC		7,027	5.07	2.11	2.96	28,600	3.77	2.72	7.17
DOMAC		7,489	-1.18	1.99	8.5	30,055	-1.12	2.49	15.01
ArithTreeRL		7,176	3.05	1.51	30.67	29,057	2.23	2.2	24.91
MUTE		7,125	3.74	1.64	24.49	28,677	3.51	2.07	29.56
ARITH-DAS (Ours)		7,099	4.09	1.41	35.35	28,669	3.54	1.85	36.94
Mult.(Booth)		8 bit				16 bit			
Method		Area (μm^2) \downarrow	Impr. (%) \uparrow	Delay (ns) \downarrow	Impr. (%) \uparrow	Area (μm^2) \downarrow	Impr. (%) \uparrow	Delay (ns) \downarrow	Impr. (%) \uparrow
Wallace		408	NA	0.76	NA	1,505	NA	1.32	NA
GOMIL		406	0.49	0.68	10.09	1,407	6.51	1.16	12.50
UFO-MAC		405	0.74	0.69	8.46	1,406	6.58	1.2	9.25
DOMAC		415	-1.72	0.74	2.07	1,548	-2.86	1.27	3.59
ArithTreeRL		405	0.74	0.71	6.36	1,425	5.32	1.07	18.73
MUTE		406	0.49	0.68	10.55	1,432	4.85	1.05	20.53
ARITH-DAS (Ours)		403	1.23	0.64	15.91	1,418	5.78	1.01	23.64
Mult.(Booth)		32 bit				64 bit			
Method		Area (μm^2) \downarrow	Impr. (%) \uparrow	Delay (ns) \downarrow	Impr. (%) \uparrow	Area (μm^2) \downarrow	Impr. (%) \uparrow	Delay (ns) \downarrow	Impr. (%) \uparrow
Wallace		5,383	NA	2.24	NA	20,435	NA	2.94	NA
GOMIL		5,176	3.85	1.94	13.51	19,677	3.71	2.66	9.46
UFO-MAC		5,175	3.86	1.97	12.42	19,675	3.72	2.82	4.04
DOMAC		5,500	-2.17	1.87	16.79	20,787	-1.72	2.22	24.41
ArithTreeRL		5,227	2.9	1.68	25.33	19,890	2.67	2.04	30.48
MUTE		5,328	1.02	1.49	33.6	19,856	2.83	2.03	31.01
ARITH-DAS (Ours)		5,210	3.21	1.44	35.78	19,690	3.65	1.92	34.53

D.1.2 More Results of MAC Evaluation

We provide our evaluations on MACs in this section. The visualization of the Pareto front is illustrated in Figure 9. The hypervolume is recorded in Table 6, and the min delay and min area are provided in Table 7.

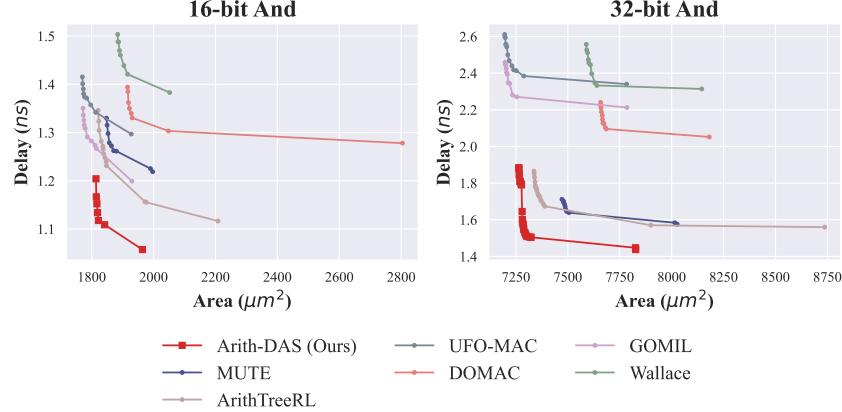


Figure 9: Pareto front of MAC designs.

Table 6: Hypervolume of MACs

MACs	16 bit		32 bit		
	Method	Hypervolume↑	Impr. (%)	Hypervolume↑	Impr. (%)
Wallace		103.17	NA	325.72	NA
GOMIL		301.78	192.51	575.14	76.57
UFO-MAC		205.20	98.89	385.01	18.20
DOMAC		173.67	68.33	579.01	77.76
ArithTreeRL		352.35	241.52	1,395.40	328.40
MUTE		265.24	157.08	1,274.29	291.22
ARITH-DAS (Ours)		433.18	319.87	1,684.68	417.21

D.1.3 More Results of Generalization Evaluation

We provide the Hypervolume of PE arrays in Table 8. The min delays and min areas are provided in Table 9. The area and delay of Koios benchmark [39] designs integrated with our ARITH-DAS and baselines are provided in Table 10.

D.2 Visualization of Results

To provide an intuitive understanding of the problem, we visualize representative examples of the circuit structure. Due to the large problem scale, we only present the complete results for 8-bit multipliers using AND and Booth encoding and 16-bit multipliers using AND encoding, as shown in Figure 11, Figure 10, and Figure 12. Additionally, for the 32-bit and 64-bit AND multiplier, we selectively visualize Columns 30-31 and 32-33 to highlight the structural patterns in deeper regions of the compression tree, as shown in Figure 13, Figure 14, Figure 15 and Figure 16.

In all figures:

- Green nodes represent virtual nodes, typically containing 1 input and 1 or 0 outputs.

Table 7: Min area and min delay of MAC designs

MAC	16 bit				32 bit				
	Method	Area (μm²) ↓	Impr. (%) ↑	Delay(ns) ↓	Impr. (%) ↑	Area (μm²) ↓	Impr. (%) ↑	Delay(ns) ↓	Impr. (%) ↑
Wallace		1,884	NA	1.38	NA	7,589	NA	2.31	NA
GOMIL		1,772	5.94	1.20	13.28	7,198	5.15	2.21	4.37
UFO-MAC		1,770	6.05	1.30	6.23	7,196	5.18	2.34	-1.14
DOMAC		1,916	-1.70	1.28	7.59	7,658	-0.91	2.05	11.31
ArithTreeRL		1,821	3.34	1.12	19.26	7,337	3.32	1.56	32.59
MUTE		1,848	1.91	1.22	11.87	7,472	1.54	1.58	31.91
ARITH-DAS (Ours)		1,814	3.72	1.06	23.54	7,264	4.28	1.44	37.87

Table 8: Hypervolume of PE arrays.

PE Array	16-bit AND		16-bit Booth		32-bit AND		32-bit Booth		
	Method	Hypervolume ↑	Impr.(%) ↑	Method	Hypervolume ↑	Impr. (%)↑	Method	Hypervolume ↑	Impr.(%) ↑
Wallace	13,023.58	NA		12,493.99	NA		64,431.31	NA	
GOMIL	3,774.34	-71.02		18,798.77	50.46		84,133.59	30.58	
UFO-MAC	5,393.81	-58.58		15,179.04	21.49		76,563.34	18.83	
DOMAC	12,865.94	-1.21		11,417.57	-8.62		100,289.37	55.65	
ArithTreeRL	15,767.41	21.07		14,934.67	19.53		133,033.11	106.47	
MUTE	16,160.54	24.09		14,330.01	14.70		129,010.95	100.23	
ARITH-DAS (Ours)	16,219.91	24.54		20,680.92	65.53		152,373.47	136.49	

Table 9: Min area and min delay of PE arrays

PE array	16-bit AND				16-bit Booth					
	Method	Area(μm^2) ↓	Impr.(%) ↑	Delay(ns) ↓	Impr. (%)↑	Method	Area(μm^2) ↓	Impr.(%) ↑	Delay(ns) ↓	Impr.(%)↑
Wallace	149,556	NA		1.72	NA	131,459	NA		1.78	NA
GOMIL	142,729	4.56		1.81	-5.23	125,126	4.82		1.7	4.49
UFO-MAC	142,218	4.91		1.82	-5.81	125,024	4.9		1.7	4.49
DOMAC	149,522	0.02		1.68	2.33	131,136	0.25		1.79	-0.56
ArithTreeRL	144,329	3.5		1.64	4.65	125,927	4.21		1.74	2.25
MUTE	143,359	4.14		1.67	2.91	125,637	4.43		1.77	0.56
ARITH-DAS (Ours)	145,249	2.88		1.62	5.81	126,710	3.61		1.67	6.18
PE array	32-bit AND				32-bit Booth					
	Method	Area(μm^2) ↓	Impr.(%) ↑	Delay(ns) ↓	Impr. (%)↑	Method	Area(μm^2) ↓	Impr.(%) ↑	Delay(ns) ↓	Impr.(%)↑
Wallace	545,126	NA		2.73	NA	417,650	NA		2.78	NA
GOMIL	521,445	4.34		2.62	4.03	404,456	3.16		2.49	10.43
UFO-MAC	521,309	4.37		2.67	2.2	404,354	3.18		2.5	10.07
DOMAC	551,526	-1.17		2.56	6.23	425,191	-1.81		2.55	8.27
ArithTreeRL	531,540	2.49		2.4	12.09	407,691	2.38		2.47	11.15
MUTE	527,948	3.15		2.4	12.09	413,836	0.91		2.29	17.63
ARITH-DAS (Ours)	526,348	3.44		2.34	14.29	407,384	2.46		2.13	23.38

- Blue nodes represent half-adder nodes, typically containing 2 inputs and 2 outputs.
- Orange nodes represent full-adder nodes, typically containing 3 inputs and 2 outputs.
- Gray nodes in the first row represent partial product nodes, typically containing 1 output. Gray nodes in the last row represent output nodes.

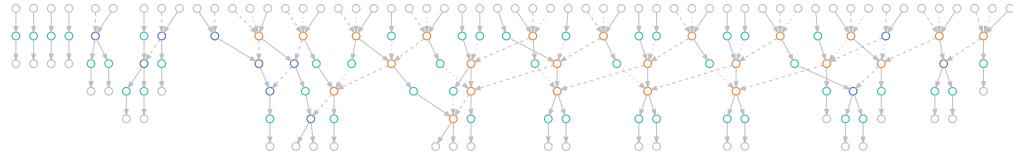


Figure 10: 8-bit Booth Multiplier

D.3 Runtime Comparison

This section compares the runtime of our method with baseline approaches under consistent experimental settings. Specifically, we run all post-synthesis driven algorithms for 5000 iterations. For programming-based methods, we report the objective gap with 1 hour runtime, which is defined by $(\text{Incumbent} - \text{BestBd})/\text{Incumbent} \times 100\%$ [75]. For the proxy-delay-model driven method, DOMAC [11], we evaluate it with 1000 iterations. Although our method does not outperform traditional solvers in terms of runtime, it offers a more flexible and generalizable optimization framework that is well-suited for large-scale and complex circuit design problems. The detailed runtime environment is provided in Appendix C.1 and Appendix C.2. The runtime results are summarized in Table 11.

E Licenses

We credit the following open-source project used in this paper. Our main codes are provided at <https://github.com/dakfjalka/Arith-DAS.git>.

Table 10: Area and Delay of Koios benchmark integrated with our ARITH-DAS and baselines.

Design	Method	Area(μm^2) \downarrow	Area Impr. (%) \uparrow	Delay(ns) \downarrow	Delay Impr. (%) \uparrow
attention_layer	Wallace	1.6590E+06	NA	1.55	NA
	GOMIL	1.6483E+06	0.64	1.42	8.39
	DOMAC	1.6579E+06	0.06	1.56	-0.65
	UFO-MAC	1.6481E+06	0.65	1.56	-0.65
	ArithTreeRL	1.6487E+06	0.62	1.35	12.9
	MUTE	1.6529E+06	0.37	1.37	11.61
ARITH-DAS (Ours)		1.6495E+06	0.57	1.29	16.77
Design	Method	Area(μm^2) \downarrow	Area Impr. (%) \uparrow	Delay(ns) \downarrow	Delay Impr. (%) \uparrow
conv_layer	Wallace	1.0407E+07	NA	1.74	NA
	GOMIL	1.0400E+07	0.07	1.63	6.32
	DOMAC	1.0404E+07	0.02	1.76	-1.15
	UFO-MAC	1.0400E+07	0.07	1.76	-1.15
	ArithTreeRL	1.0402E+07	0.04	1.52	12.64
	MUTE	1.0402E+07	0.05	1.47	15.52
ARITH-DAS (Ours)		1.0398E+07	0.08	1.41	18.97
Design	Method	Area(μm^2) \downarrow	Area Impr. (%) \uparrow	Delay(ns) \downarrow	Delay Impr. (%) \uparrow
eltwise_layer	Wallace	1.3207E+07	NA	0.97	NA
	GOMIL	1.3207E+07	0	0.9	7.22
	DOMAC	1.3153E+07	0.41	0.95	2.06
	UFO-MAC	1.3207E+07	0	0.96	1.03
	ArithTreeRL	1.3234E+07	-0.2	0.91	6.19
	MUTE	1.3234E+07	-0.2	0.94	3.09
ARITH-DAS (Ours)		1.3145E+07	0.47	0.86	11.34
Design	Method	Area(μm^2) \downarrow	Area Impr. (%) \uparrow	Delay(ns) \downarrow	Delay Impr. (%) \uparrow
gemm_layer	Wallace	2.1045E+06	NA	0.97	NA
	GOMIL	2.0977E+06	0.32	0.9	7.22
	DOMAC	2.1045E+06	0	0.95	2.06
	UFO-MAC	2.0968E+06	0.36	0.95	2.06
	ArithTreeRL	2.0977E+06	0.32	0.91	6.19
	MUTE	2.0986E+06	0.28	0.94	3.09
ARITH-DAS (Ours)		2.0984E+06	0.29	0.86	11.34
Design	Method	Area(μm^2) \downarrow	Area Impr. (%) \uparrow	Delay(ns) \downarrow	Delay Impr. (%) \uparrow
lstm	Wallace	7.5409E+06	NA	1.57	NA
	GOMIL	7.4785E+06	0.83	1.38	12.1
	DOMAC	7.5390E+06	0.03	1.56	0.64
	UFO-MAC	7.4775E+06	0.84	1.43	8.92
	ArithTreeRL	7.4885E+06	0.7	1.35	14.01
	MUTE	7.5078E+06	0.44	1.37	12.74
ARITH-DAS (Ours)		7.4927E+06	0.64	1.29	17.83
Design	Method	Area(μm^2) \downarrow	Area Impr. (%) \uparrow	Delay(ns) \downarrow	Delay Impr. (%) \uparrow
softmax	Wallace	1.2948E+05	NA	0.97	NA
	GOMIL	1.2921E+05	0.21	0.91	6.19
	DOMAC	1.2948E+05	0	0.95	2.06
	UFO-MAC	1.2917E+05	0.24	0.95	2.06
	ArithTreeRL	1.2921E+05	0.21	0.91	6.19
	MUTE	1.2924E+05	0.18	0.94	3.09
ARITH-DAS (Ours)		1.2924E+05	0.19	0.85	12.37

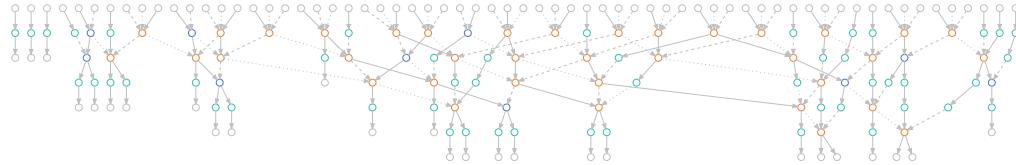


Figure 11: 8-bit AND Multiplier

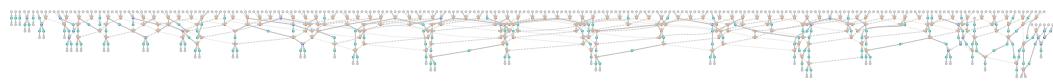


Figure 12: 16-bit AND Multiplier

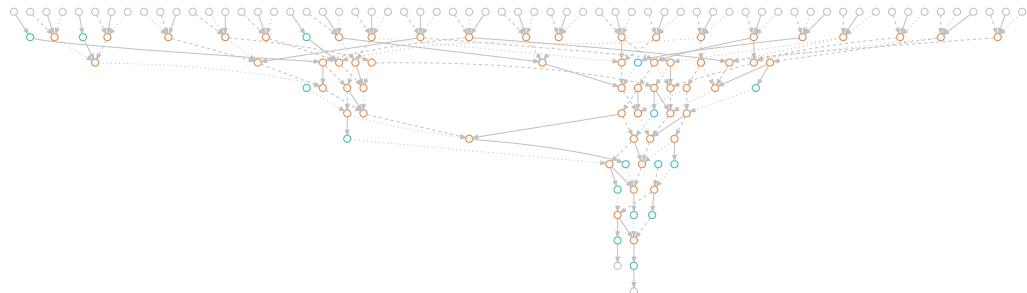


Figure 13: 32-bit AND Multiplier (Column 30 and Column 31)

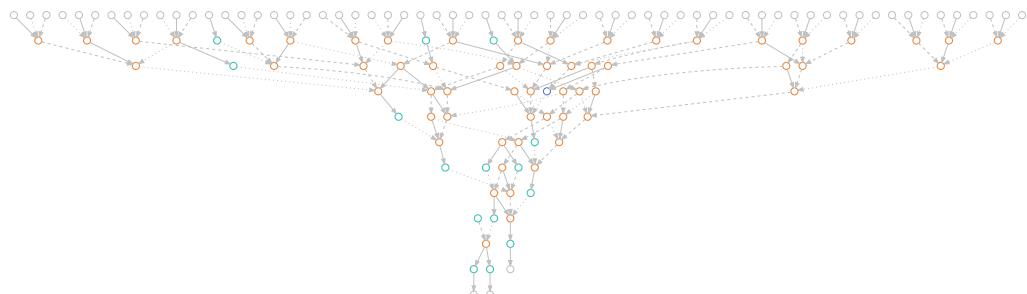


Figure 14: 32-bit AND Multiplier (Column 31 and Column 32)

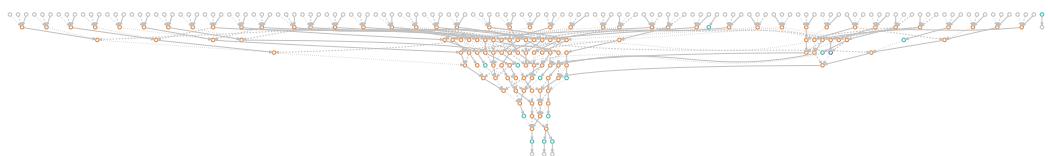


Figure 15: 64-bit AND Multiplier (Column 62 and Column 63)

Figure 16: 64-bit AND Multiplier (Column 63 and Column 64)

Table 11: Runtime Comparison

Method	8-bit AND Mult.	16-bit AND Mult.	32-bit AND Mult.
Wallace	NA	NA	NA
Programming based algorithms objective gap with 1 hour runtime (%)			
GOMIL	0% (solved in 0.51 sec.)	0.08%	0.59%
UFO-MAC	0% (solved in 2.46 sec.)	0% (solved in 70.35 sec.)	33.0%
Proxy-delay-model driven algorithms runtime for 1000 iterations (minute)			
DOMAC	1.50	5.46	19.42
Post-synthesis driven algorithms runtime for 5000 iterations (hour)			
ArithTreeRL	5.46	10.42	25.89
MUTE	9.37	12.60	50.83
ARITH-DAS (Ours)	6.40	13.06	38.73

1. OpenROAD [29]: BSD 3-Clause License
2. Yosys [30]: ISC License
3. OpenSTA [69]: GPL-3.0 License
4. Verilator [32]: LGPL-3.0 License
5. ArithTreeRL [9]: No License
6. GOMIL [20]: No License
7. VTR/Koios [39]: VTR License