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Abstract

Generative Flow Networks (GFlowNets) are a class of generative models that sample objects
in proportion to a specified reward function through a learned policy. They can be trained
either on-policy or off-policy, needing a balance between exploration and exploitation for fast
convergence to a target distribution. While exploration strategies for discrete GFlowNets
have been studied, exploration in the continuous case remains to be investigated, despite
the potential for novel exploration algorithms due to the local connectedness of continuous
domains. Here, we introduce Adapted Metadynamics, a variant of metadynamics that can
be applied to arbitrary black-box reward functions on continuous domains. We use Adapted
Metadynamics as an exploration strategy for continuous GFlowNets. We show several
continuous domains where the resulting algorithm, MetaGFN, accelerates convergence to
the target distribution and discovers more distant reward modes than previous off-policy
exploration strategies used for training GFlowNets.

1 Introduction

Generative Flow Networks (GFlowNets) are a type of generative model that samples from a discrete space X
by sequentially constructing objects via a sequence of actions taken from a learned policy PF (Bengio et al.,
2021a). The policy PF (s, s′) specifies the probability of transitioning from some intermediate state s to some
other state s′. The policy is parameterised and trained so that, at convergence, the probability of eventually
sampling an object x ∈ X is proportional to a specified reward function R(x).

GFlowNets offer advantages over more traditional sampling methods, such as Markov chain Monte Carlo
(MCMC), by learning an amortised sampler, capable of single-shot generation of samples from the desired
distribution. Since GFlowNets learn a parametric policy, they can generalise across states, resulting in higher
performance across various tasks (Bengio et al., 2021a; Malkin et al., 2022; Zhang et al., 2022; Jain et al.,
2022; Deleu et al., 2022; Jain et al., 2023; Hu et al., 2023; Zhang et al., 2023; Shen et al., 2023b). Applications
explored so far include conditioned molecular generation (Shen et al., 2023b), maximum likelihood estimation
in discrete latent variable models (Hu et al., 2023), structure learning of Bayesian networks (Deleu et al.,
2022), scheduling computational operations (Zhang et al., 2023), and discovering reticular materials for
carbon capture (Cipcigan et al., 2023).

Although originally conceived for discrete state spaces, GFlowNets have been extended to more general state
spaces, such as entirely continuous spaces, or spaces that are hybrid discrete-continuous (Lahlou et al., 2023).
In the continuous setting, given the current state, the policy specifies a continuous probability distribution
over subsequent states, and the probability density over states x ∈ X sampled with the policy is proportional
to a reward density function r(x). The continuous domain opens up more applications for GFlowNets, such
as molecular conformation sampling (Volokhova et al., 2023) and continuous control problems (Luo et al.,
2024).
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GFlowNets are trained similar to reinforcement learning agents. Trajectories of states are generated either
on-policy or off-policy, with the terminating state x ∈ X providing a reward signal to inform a gradient
step on the policy parameters. GFlowNets therefore suffer from the same training pitfalls as reinforcement
learning. One such issue is slow temporal credit assignment, which has thus far been addressed by designing
more effective loss functions, such as detailed balance (Bengio et al., 2021b), trajectory balance (Malkin et al.,
2022) and sub-trajectory balance (Madan et al., 2022). This latter approach has recently been extended by
providing an energy function inductive bias at the early stages of training (Pan et al., 2023).

In addition to the choice of loss function, GFlowNet training also depends on the exploration strategy used
to collect samples. Sampling purely on-policy learning is usually inefficient, as it can quickly become trapped
in a local optimum and fail to discover novel, high-reward objects. More successful strategies, therefore, rely
on a degree of off-policy exploration. For the discrete setting, numerous exploration strategies have been
proposed, including ϵ-noisy with a uniform random policy, tempering, Generative Augmented Flow Networks
(GAFN) (Pan et al., 2022), Thompson sampling (Rector-Brooks et al., 2023), and Local Search GFlowNets
(Kim et al., 2024). Although these approaches can be generalised to the continuous domain, there is limited
literature benchmarking their effectiveness in this setting.

Sampling in the continuous setting is a common occurrence in various domains such as molecular modelling
(Hawkins, 2017; Yang et al., 2019) and Bayesian inference (Shahriari et al., 2016). The local connectedness of
a continuous domain allows for novel exploration strategies that are not directly applicable in the discrete
setting. Sendera et al. (2024) compared several exploration strategies in the context of diffusion samplers and
proposed alternating between on-policy sampling and backward sampling from a fixed set of MCMC samples
when training continuous GFlowNets. These samples were selected prior to training, thereby inducing a fixed
pre-training cost but keeping the cost of each training trajectory constant. The authors showed effective
exploration, even in high-dimensional problems. However, their MCMC approach requires access to cheap
gradients of the reward landscape, which may not always be readily available (Rengarajan et al., 2022). In
addition, there are some settings, such as in molecular conformation sampling, where MCMC approaches are
known to require significantly longer timescales to overcome energy barriers than methods based on molecular
dynamics (MD) simulations (Abrams and Bussi, 2014), thereby making the pre-training cost prohibitively
expensive.

We introduce MetaGFN, a new exploration algorithm for continuous GFlowNets inspired by metadynamics,
an enhanced sampling method widely used in molecular modeling (Laio and Parrinello, 2002). Unlike
MCMC-based approaches, MetaGFN operates in a general black-box setting: it queries only reward values
from an oracle and does not require reward gradients. As in standard metadynamics, MetaGFN converges
rapidly when a low-dimensional representation of the reward function, specified through a so-called collective
variable (CV) basis, is known. This makes it particularly effective for small molecular systems, where such
CVs are well established and typically low dimensional (Fiorin et al., 2013). Moreover, MetaGFN requires no
pretraining and adds only a small, constant overhead per training trajectory, which becomes negligible when
the cost of evaluating the policy or reward is non-trivial, which is the case if either of these is implemented
via a deep learning model.

The main contributions of this work are:

• Introducing MetaGFN, an algorithm that adapts metadynamics to black box rewards and continuous
GFlowNets;

• Proving that the Adapted Metadynamics formulation underlying MetaGFN is consistent and reduces
to standard metadynamics in the appropriate limit;

• Showing empirically that MetaGFN outperforms existing GFlowNets exploration strategies in various
continuous environments, including alanine dipeptide conformation sampling.

The rest of the paper is as follows. In Section 2 we review the theory of discrete and continuous GFlowNets,
as well as metadynamics and collective variables. In Section 3, we present the Adapted Metadynamics
and MetaGFN algorithms. In Section 4, we evaluate MetaGFN against other approaches, showing that
MetaGFN generally outperforms existing exploration strategies in various continuous environments. We
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finish with limitations and conclusions in Sections 5 and 6. Code for MetaGFN is available at https:
//github.com/dominicp6/metad_contgfn.git.

2 Preliminaries

2.1 Discrete GFlowNets

In a GFlowNet, the network refers to a directed acyclic graph (DAG), denoted G = (S,A). Nodes represent
states s ∈ S, and edges represent actions s→ s′ ∈ A denoting one-way transitions between states. The DAG
has two distinguishable states: a unique source state s0, which has no incoming edges, and a unique sink
state ⊥, that has no outgoing edges.

The set of states X ⊂ S that are directly connected to the sink state are known as terminating states.
GFlowNets learn forward transition probabilities, known as a forward policy PF (s′|s), along the edges of the
DAG so that the resulting marginal distribution over the terminal states complete trajectories (the terminal
distribution) , denoted as P⊥(x), is proportional to a given reward function R : X → R. GFlowNets also
introduce additional learnable objects, such as a backward policy PB(s|s′), which is a distribution over the
parents of any state of the DAG, to create losses that train the forward policy. Objective functions for
GFlowNets include flow matching (FM), detailed balance (DB), trajectory balance (TB) and subtrajectory
balance (STB) (Bengio et al., 2021a;b; Malkin et al., 2022; Madan et al., 2022). During training, the
parameters of the flow objects are updated with stochastic gradients of the objective function applied to
batches of trajectories. These trajectory batches can be obtained either directly from the current forward
policy or from an alternative algorithm that encourages exploration. These approaches are known as on-policy
and off-policy training respectively.

2.2 Continuous GFlowNets

Continuous GFlowNets extend the generative problem to continuous spaces (Lahlou et al., 2023), where the
quantity analogous to the DAG is a measurable pointed graph (MPG) (Nummelin, 1984). MPGs can model
continuous spaces (e.g., Euclidean space, spheres, tori), as well as hybrid spaces, with a mix of discrete and
continuous components, as often encountered in robotics, finance, and biology (Bortolussi and Policriti, 2008;
Swiler et al., 2012; Neunert et al., 2020).
Definition 2.1 (Measurable pointed graph (MPG)). Let (S̄, T ) be a topological space, where S̄ is the state
space, T is the set of open subsets of S̄, and Σ is the Borel σ-algebra associated with the topology of S̄.
Within this space, we identify the source state s0 ∈ S̄ and sink state ⊥∈ S̄, both distinct and isolated from
the rest of the space. In this space, we define a reference transition kernel κ : S̄ × Σ → [0,+∞) and a
backward reference transition kernel κb : S̄ × Σ→ [0,+∞). The support of κ(s, ·) are all open sets accessible
from s. The support of κb(s, ·) are all open sets from which s is accessible. Additionally, these objects must
be well-behaved in the following sense:

(i) Continuity: For all B ∈ Σ, the mapping s 7→ κ(s, B) is continuous.

(ii) No way back from the source: The backward reference kernel has zero support at the source state,
that is, for all B ∈ Σ, κb(s0, B) = 0.

(iii) No way forward from the sink: When at the sink, applying the forward kernel keeps you there, that
is, κ(⊥, ·) = δ⊥(·), where δ⊥ is the Dirac measure of the sink state.

(iv) A fully-explorable space: The number of steps required to possibly reach any measurable B ∈ Σ
from the source state, and to guarantee to reach the sink state, with the forward reference kernel is
bounded.

The set of objects (S̄, T ,Σ, s0,⊥, κ, κb) then defines an MPG.

Note that the support of κ(s, ·) and κb(s, ·) are analogous to the child and parent sets of a state s in a DAG.

3

https://github.com/dominicp6/metad_contgfn.git
https://github.com/dominicp6/metad_contgfn.git


Published in Transactions on Machine Learning Research (09/2025)

The set of terminating states X are the states that can transition to the sink, given by X =
{s ∈ S : κ(s, {⊥}) > 0}, where S := S̄ \ {s0}. Trajectories τ are sequences of states that run from source
to sink, τ = (s0, . . . , sn,⊥). The forward Markov kernel PF : S̄ ×Σ→ [0,∞) and backward Markov kernel
PB : S̄ × Σ→ [0,∞) have the same support as κ(s, ·) and κb(s, ·) respectively. As Markov kernels, PF (s, ·)
and PB(s, ·) define probability distributions over next states and must therefore satisfy the normalisation
condition: for all s ∈ S̄, we have

∫
S̄ PF (s,ds′) =

∫
S̄ PB(s,ds′) = 1. A flow F is a tuple F = (f, PF ), where

f : Σ→ [0,∞) is a flow measure, satisfying f({⊥}) = f(s0) = Z, where Z is the total flow.

The reward measure is a positive and finite measure R over the terminating states X . The density of R is
denoted as r(x), for x ∈ X . A flow F is said to satisfy the reward matching conditions if

R(dx) = f(dx)PF (x, {⊥}).

If a flow satisfies the reward matching conditions and trajectories are generated by recursively sampling the
Markov kernel PF starting at s0, the resulting measure over the terminating states, P⊥(B), is proportional
to the reward: P⊥(B) = R(B)

R(X ) for any B in the σ-algebra of terminating states (Lahlou et al., 2023).

Objective functions for discrete GFlowNets generalise to continuous GFlowNets. However, in the continuous
case, the forward policy p̂F : S × S̄ → [0,∞), backward policy p̂B : S × S̄ → [0,∞) and parameterised
flow f̂ : S → [0,∞) parameterise the PF , PB transition kernels and flow measure f on an MPG. Discrete
GFlowNets parameterise log transition probabilities and flows on a DAG. In this work, we consider DB, TB
and STB losses. For a complete trajectory τ , the TB loss can be written as

LTB(τ) =
(

log Zθ

∏n
t=0 p̂F (st, st+1; θ)

r(sn)
∏n−1
t=0 p̂B(st+1, st; θ)

)2

,

where Zθ ∈ R is the parameterised total flow (see Appendix A for the DB and STB loss functions).

Black-box continuous GFNs. Later in this work, we introduce an exploration algorithm designed for
training continuous GFNs in the black-box setting; where we do not have access to the internals of the function
parameterisation of r(x), hence a closed form expression for ∇r(x) is unavailable. Thus, if gradients of r(x)
are needed, they must typically be computed via finite differences, requiring O(d) evaluations of r(x), where
d = dim(X ). Computing ∇r(x) can then easily become a computational bottleneck. For instance, in drug
discovery, r(x) may quantify the binding affinity of a molecular conformer x to a given target protein, and
each evaluation of r(x) might require costly molecular dynamics simulations of the protein system (e.g., via
alchemical free-energy perturbation (Mey et al., 2020)).

2.3 Exploration strategies for GFlowNets

GFlowNets can reliably learn using off-policy trajectories, a key advantage over hierarchical variational
models (Malkin et al., 2023). For optimal training, it is common to use a replay buffer and alternate between
on-policy and off-policy (exploration) batches (Shen et al., 2023a). In the discrete case, proposed techniques to
encourage exploration include ϵ-noisy exploration, tempering, and the incorporation of intermediate rewards
(Bengio et al., 2021a; Pan et al., 2022). Exploration strategies for continuous GFlowNets are less well studied
in the literature, but several methods designed for discrete GFlowNets can be adapted (Sendera et al., 2024).
In this work, we consider the following.

Local Search GFlowNets (Kim et al., 2024): Explores by backtracking and resampling on-policy trajectories.
Reconstructed trajectories with a higher reward than the original are used for training, thus encouraging the
learning of high-reward modes.

Thompson sampling. (Rector-Brooks et al., 2023): Explores high-uncertainty regions using an ensemble of
policy heads with a shared torso. A random head generates the on-policy trajectory, and the loss is computed
by averaging contributions over heads, where each head is independently included with probability p.

Noisy exploration: Explores by increasing policy uncertainty. A small constant is added to the policy
variance which is gradually reduced to zero over the course of training.
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Nested sampling (Lemos et al., 2023): A Markov-Chain Monte Carlo (MCMC) algorithm is used to sample
from the reward distribution. A collection of these samples are stored in a replay buffer prior to training.
Then, during training, off-policy trajectories are generated by backward sampling from these states using the
current backward policy.

2.4 Metadynamics and collective Variables

Molecular dynamics (MD) simulates that dynamics of molecules using Langevin dynamics (LD) (Pavliotis,
2014), a stochastic differential equation that models the motion of particles under friction and random
noise. LD trajectories ergodically sample the Gibbs measure of the molecule, ρβ(x) ∝ e−βV (x), where x ∈ X
represents atomic positions, V (x) is the molecular potential, and β is the thermodynamic beta.1 However,
when V (x) contains multiple, deep local minima, as is common in biomolecules, then LD becomes inefficient,
as it tends to get trapped in these minima, slowing the exploration of the full state space.

Metadynamics overcomes this by progressively modifying the potential landscape to discourage visits to
already explored regions (Laio and Parrinello, 2002)2. It achieves this by regularly depositing repulsive
Gaussian biases, centered at the current state of the evolving LD trajectory. This modifies the potential to
Vtotal(x, t) = V (x) + Vbias(x, t), where Vbias(x, t) is the cumulative bias at time t. Intuitively, metadynamics
thus progressively transforms the landscape into a more level surface, in which the system can diffuse more
freely, thereby accelerating exploration (Figure 1). In the limit t → ∞, the dynamics approximates free
diffusion and uniformly samples the domain of V (x).

Since biases are typically specified on a numerical grid, this gives rise to a memory cost that grows exponentially
with dimension. Therefore, biases are typically applied along low-dimensional coordinates known as collective
variables (CVs). A collective variable z(x) : X → Z is any mapping from the original (high-dimension) state
space X to a lower-dimensional space Z. For potential V (x) and collective variables z, metadynamics is guar-
anteed to eventually uniformly sample the domain of the marginal potential V (z′) :=

∫
X δ(z′ − z(x))V (x)dx.

In molecular contexts, ideal CV choices correspond to the physical reaction coordinates that underly rare event
transitions (e.g., backbone dihedrals, interatomic distances) (Laio and Gervasio, 2008; De Vivo et al., 2016).
In more general settings, ideal CVs should resolve rare events dynamics on V (x), simplfy the landscape (re-
taining its essential features, e.g. barriers and basins), and minimise the dimensionality of this representation.
For simple systems, CVs can be derived from known symmetries or macroscopic order parameters that
describe state changes. However, if the choice of CVs is not obvious, then they can learnt through data-driven
methods such as Time-Lagged Independent Component Analysis (TICA) (Molgedey and Schuster, 1994),
manifold learning algorithms, neural network autoencoders or variational methods (Mardt et al., 2018; Bonati
et al., 2021; Ramaswamy et al., 2021). For an in-depth review on these CV-learning approaches, see Sidky
et al. (2020). Metadynamics has seen numerous extensions (Bussi and Laio, 2020). In the next section, we
adapt the original metadynamics algorithm to the continuous black-box setting. We will assume suitable CVs
are given, but the theory we present is agnostic to their form–be it analytical expressions, neural networks, or
non-parametric tabular mappings.

3 MetaGFN: Adapted Metadynamics for GFlowNets

Metadynamics has two properties that make it well-suited as an exploration strategy. Firstly, it eventually
uniformly samples the domain, ensuring exploration of all local minima. In contrast, techniques such as
Local Search GFlowNets, Thompson sampling, and noisy exploration rely on localised strategies that do
not have global exploration guarantees and, as such, are prone to mode locking (Section 4). Secondly, since
metadynamics gradually diffuses from the starting configuration, it allows for incremental exploration, which
may result in more stable training than global approaches like nested sampling.

To apply metadynamics to GFlowNets, we must first translate the reward density into a potential energy
function. We assume that X is a manifold and that the reward density r(x) is bounded and L1 integrable

1We review Langevin dynamics in Appendix B.
2Note that the ‘meta’ in metadynamics stems from chemistry concepts, and is unrealed to meta-learning in computer science.

The motivation for the name is that metadynamics accelerates transitions between minima (metastable states) of V(x).
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Latest Sample

Total Potential
Original Potential

Figure 1: Illustration of metadynamics in a multi-well potential at three different snapshots in time. Regular
deposition of a bias leads to a total potential that gradually flattens, encouraging exploration. Red arrows
illustrate the general effect of the bias potential on the particle dynamics at that snapshot.

over X with at most finitely many discontinuities. Thus, the target density over the terminal states,
ρ(x) := r(x)/

∫
X r(x′) dx′, can be expressed as a Gibbs distribution: ρ(x) = exp(−β′V (x))/

∫
X r(x′) dx′,

where we identify V (x) = − 1
β′ ln r(x), for some constant β′ > 0. This formulation ensures that high-reward

areas correspond to low-potential-energy minima. For simplicity, we set β′ equal to thermodynamic beta.3

However, similar to nested sampling, metadynamics has the drawback of requiring access to not only the
potential, but also its gradients, which are not directly available in a black-box GFlowNet setting (Section 2.2).
We now address this challenge by introducing two algorithms: Adapted Metadynamics (AM) for exploring the
potential energy landscape to find high-reward states (Section 3.1) and MetaGFN for guiding the GFN to
learn from these states and eventually sample all modes of the reward density (Section 3.2).

3.1 Adapted Metadynamics

Metadynamics requires the gradient of the total potential, where −∇Vtotal(x, t) = −∇(V (x) + Vbias(x, t)).
Using the above assumptions, we have ∇V (x) = −∇r(x)/(β′r(x)). However, r(x) is often a computationally
expensive black-box function, and its gradient, ∇r(x), is unknown. While finite differences can estimate
∇r(x) for smooth, low-dimensional reward distributions, this approach is impractical in high-dimensional
spaces. Below, we explain how to adapt metadynamics to this black-box setting and avoid finite difference
gradient estimates by storing a dynamically-updated kernel density estimate (KDE) of the potential. We call
the modified metadynamics algorithm Adapted Metadynamics (AM) (Algorithm 1).

Let xt denote the metadynamics sample at time t and z(x) = (z1(x), . . . , zd(x)) be a given set of collective
variables, where each zi is a one-dimensional coordinate, and z ∈ Z is d-dimensional. Let zi,t := zi(xt) denote
the corresponding ith CV coordinate at time t and assume that the Jacobian ∇xz is well defined for all x.
We store a discretisation of the KDE potential and bias potentials in CV space Z. Since these are stored in
memory, gradient computations are cheap and require no further evaluations of r(x).

Let V̂ (z, t) represent the KDE of the marginal potential at time t. To compute V̂ (z, t), we maintain two
separate KDEs: N̂(z, t) for visited states (line 8) and R̂(z, t) for cumulative rewards (line 9). We update
these KDEs on-the-fly at the same time the bias potential is updated, which occurs every integer n steps
of Langevin dynamics (line 7). If Z is isomorphic to Euclidean space, we use Gaussian kernels with kernel
width σ = (σ1, . . . , σk) ∈ Rk, matching the width of the Gaussian bias (line 11)4. This is a reasonable as
both are set by the variability length scale of V (x). Finally, the KDE potential V̂ (z, t) is then calculated as
V̂ (z, t) = − 1

β log
(

R̂(z,t)
N̂(z,t)+ϵ + ϵ

)
, for a fixed constant ϵ > 0 (line 10). We found empirically that ϵ ensured

numerical stability by preventing division by zero and bounding V̂ from above. Defining V̂ through the ratio
3Making this choice means that the single parameter β uniquely controls the (unbiased) transition rates between minima of

the potential - from the Kramer formula - transition rate ∝ 1
β

exp(β∆V ), where ∆V ∝ 1
β′ = 1

β
.

4If Z is isomorphic to a d-torus, we use von Mises distributions.
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Algorithm 1: Adapted Metadynamics
Input : Manifold environment of terminating states X with reward density r : X → R. Initial state

(xt,pt) ∈ X × Txt
(X ). Collective variables z = (z1, . . . , zd).

Parameters : Gaussian width σ = (σ1, . . . , σd) ∈ Rd. Gaussian height w > 0. Stride n ∈ Z+. LD
parameters: γ, β. Timestep ∆t.

1 N̂ ← 0
2 R̂← 0
3 V̂ (z)← 0
4 Vbias(z)← 0
5 every timestep ∆t:
6 zt ← z(xt)
7 every n timesteps n∆t:
8 N̂ ← N̂ + exp

(
− 1

2
∑d
i=1

(zi−zi,t)2

σ2
i

)
9 R̂← R̂+ r(xt) · exp

(
− 1

2
∑d
i=1

(zi−zi,t)2

σ2
i

)
10 V̂ ← − 1

β log
(
R̂/(N̂ + ϵ) + ϵ

)
11 Vbias(z)← Vbias(z) + n ·∆t · w · exp

(
− 1

2
∑d
i=1

(zi−zi,t)2

σ2
i

)
12 compute forces:
13 F ← −

(
∇zV̂ (z)|z=zt

+∇zVbias(z)|z=zt

)
· ∇xz|x=xt

14 propagate xt,pt by ∆t using Langevin dynamics with computed force F (Alg. 3, Appendix B).

R̂/N̂ ensures that it rapidly and smoothly adjusts whenever new modes are discovered. Furthermore, we
prove that V̂ eventually discovers all reward modes in the CV space. More precisely,
Theorem 3.1. If the collective variable z(x) is analytic with a bounded domain, then

lim
ϵ→0

lim
σ→0

lim
t→∞

V̂ (z, t) = V, (1)

where V = V (z′) :=
∫

X δ(z′ − z(x))V (x)dx is the ground truth free-energy surface in CV space.

The proof is in Appendix C.

Note that the algorithm can be extended to a batch of trajectories, where each metadynamics trajectory
evolves independently, but with a shared V̂ and Vbias which receive updates from every trajectory in the
batch. We found empirically that this accelerates exploration and reduces stochastic gradient noise during
training and this is the version we use in our experiments (Section 4).

3.2 MetaGFN

Each Adapted Metadynamics sample xi ∈ X is an off-policy terminal state sample. To train a GFlowNet,
complete trajectories are required. We generate these by backward sampling from the terminal state, giving
a trajectory τ = (s0, s1, . . . , sn = xi), where each state si−1 is sampled from the current backward policy
distribution p̂B(si−1|si; θ), for i from n to 1. This approach means that the generated trajectory τ has
reasonable credit according to the loss function, thus providing a useful learning signal. However, since this
requires a backward policy, this is compatible with DB, TB, and STB losses, but not FM loss. Given the
superior credit assignment of the former losses, this is not a limitation (Madan et al., 2022).

In addition, we use a replay buffer. Due to the theoretical guarantee that AM will eventually sample all
collective variable space (Theorem 3.1), AM samples are ideal candidates for storing in a replay buffer. When
storing these trajectories in the replay buffer, there are two obvious choices: (1) Store the entire trajectory the
first time it is generated, (2) Store only the AM sample and regenerate trajectories using the current backward
policy when retrieving from the replay buffer. We investigated both options in preliminary experiments
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(Appendix D.2). Option 2 was found to be uniformly superior and it is the version we use in our main
experiments (Section 4). We call the overall training algorithm MetaGFN, with pseudocode presented in
Algorithm 2, below.

Algorithm 2: MetaGFN
Input : Forward policy PF . Backwards policy PB . Loss function L.
Parameters : How often to run Adapted Metadynamics batches, freqMD. How often to run replay buffer

batches, freqRB. Batch size, b. Stride, n ∈ Z+. Time step, ∆t > 0
1 for each episode do:
2 if episode number is divisible by freqMD:
3 Run Adapted Metadynamics (batch size b) for time n∆t, obtain samples {x1, . . . ,xb}
4 Push {x1, . . . ,xb} to the replay buffer
5 Backward sample from {x1, . . . ,xb} using current PB to obtain trajectories {τ1, . . . , τb}
6 elif episode number is divisible by freqRB:
7 Random sample {x1, . . . ,xb} from the replay buffer
8 Backward sample from {x1, . . . ,xb} using current PB to obtain trajectories {τ1, . . . , τb}
9 else:

10 Generate trajectories {τ1, . . . , τb} on-policy
11 Compute loss l =

∑b
i=1 L(τi, PF , PB)

12 Take gradient step on loss l

4 Experiments

We compare MetaGFN with Thompson sampling, noisy, Local Search GFlowNets and nested sampling
(Section 2.3). We run experiments in five continuous environments, summarised below. For each exploration
strategy, we use a replay buffer and alternate between exploration and replay buffer batches. For MetaGFN,
we use freqRB = 2, freqMD = 10. The forward and backward kernels are Gaussian/von Mises mixture
distributions, with distribution parameters specified at each state by an MLP. In all environments, the
additional computational expense of running Adapted Metadynamics was negligible (<5%) compared to the
training time of the models. Full experimental details are in Appendix D.

Line environment: A one-dimensional environment with state space S = R × {t ∈ N, 1 ≤ t ≤ 3}, where
t indexes the position of a state in a trajectory. The source state is s0 = (0, 0). The terminal states are
therefore X = R× {3} ∼= R. The collective variable is the identity, i.e. z = x. The reward density, plotted in
Figure 2, consists of an asymmetric bimodal peak near the origin and an additional distant lone peak. It is
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given by the Gaussian mixture distribution:

r(x) =


N (−2.0, 1.0) +N (−2.0, 0.4)+
N (2.0, 0.6) +N (20.0, 0.1); −5 ≤ x ≤ 23

0; otherwise,
(2)

where N (µ, σ2) is a Gaussian density with mean µ and variance σ2.

Alanine dipeptide environment: One application of continuous GFlowNets is molecular conformation
sampling (Volokhova et al., 2023). Here, we train a GFlowNet to sample conformational states of alanine
dipeptide (AD), a small biomolecule of 23 atoms that plays a key role in modelling the dynamics of proteins
(Hermans, 2011). The metastable states of AD are distinguished in a 2D CV space defined by the backbone
dihedral angles ϕ and ψ. The resulting free energy surface V (ϕ, ψ) in explicit water, obtained after extensive
sampling with long molecular dynamics simulations, is shown in Figure 3. The metastable states, in increasing
energy, are P||, αR, C5, α′, αL, and αD. The state space is S = T2 × {t ∈ N, 1 ≤ t ≤ 3}, with source state
s0 = P|| = (−1.2, 2.68). Terminal states are X = T2 × {3} ∼= T2. The reward function is the Boltzmann
weight, r(ϕ, ψ) = 1

Z exp(−βV (ϕ, ψ)), where Z is the normalisation constant.

Grid environments: We consider (hyper)grids in d = 2, 3 and 4 dimensions. The state space is S =
[−15, 15]d ×{t ∈ N, 1 ≤ t ≤ 3}. The k-dimensional (hyper)grid consists of 2k modes, located at the corners of
the (hyper)cube [−10, 10]d. The (hyper)grid is centered on the origin with an edge width of 20. The reward
modes are Gaussians with variance σ2 = 2 (Figure 4). We use trajectory lengths of 3, 5, and 6 for dimensions
2, 3, and 4 respectively. The collective variable is the identity, i.e. z = x. The source state is the origin and
terminal states are in X ∼= Rk.

4.1 Results

In each environment, we run experiments with three different loss functions: Detailed Balance (DB), Trajectory
Balance (TB) and Subtrajectory Balance (STB). We evaluated performance by computing the L1 error
between the known reward distribution and the empirical on-policy distribution during training resulting
from 104 independent samples. The results, averaged over 10 repeats, are shown in Figure 5. In 12 of 15
experiments, MetaGFN outperformed all other exploration strategies. We give further analysis below.

Line Environment: Among losses, TB shows the lowest variance and, for all losses, MetaGFN always converges
to the lowest error5. Indeed, MetaGFN is the only method that consistently samples the distant reward
peak at x = 20 (Appendix D.2). Although other strategies occasionally sampled the distant peak, MetaGFN
alone converges because it continuously samples this peak, even if the forward policy starts to lock onto the
central modes, thus ensuring that the replay buffer is always populated with diverse samples. The slight
increase in the loss of MetaGFN around batch number 5× 103 occurs as the on-policy distribution widens
when Adapted Metadynamics first discovers the distant peak. Appendix D.2 provides further analysis of
Adapted Metadynamics in this environment and compares different MetaGFN variants, with and without
noise, and with and without trajectory regeneration. We confirm that the variant of MetaGFN presented in
Figure 5 (no added noise, always regenerate trajectories) is the most robust.

Alanine Dipeptide Environment: For each loss, MetaGFN generally converges to a lower error than all other
exploration strategies. However, for TB loss, the average L1 error is marginally higher than on-policy training,
but this conceals the fact that the best-case error is smaller. To better understand this result, we examined
the best and worst training runs (as measured by L1 error) for TB on-policy and TB MetaGFN, shown in
Figure 6. Note that, unlike on-policy, the best MetaGFN run learns to sample the rare αL mode. In the worst
case, MetaGFN fails to converge (although this is rare; only one of 10 runs failed). In Table 1, we quantify
how often the different AD modes were sampled over the different repeats (a mode is considered sampled
if the on-policy distribution has a mode within the correct basin of attraction). TB loss with MetaGFN is
the only combination that consistently samples the majority of modes. The only mode not sampled by any
method is αD, which has a natural abundance approximately 10 times less frequent than αL.

5We do not show results for nested sampling on the line environment as the implementation used did not support one-
dimensional environments, see Appendix D.
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Figure 5: The L1 difference between on-policy and reward distribution during training for different loss
functions and exploration strategies. The mean is plotted with standard error over 10 repeats. DB - Detailed
Balance loss, TB - Trajectory Balance loss, STB - Subtrajectory Balance loss.

Table 1: Number of correct samples of AD modes in trained GFlowNets over 10 independent repeats for DB,
STB, and TB loss functions. OP - On-policy and MD - MetaGFN. The αD mode wasn’t sampled in any
model due to its low natural frequency.

DB STB TB
OP MD OP MD OP MD

P|| 1 7 6 5 10 8
αR 6 9 7 10 10 9
C5 2 7 5 6 10 8
α′ 6 9 5 10 5 9
αL 0 1 1 0 0 8
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Best On-policyWorst On-policy Worst MetaGFN Best MetaGFN

Figure 6: Learned on-policy distribution for TB on-policy and TB MetaGFN training runs. The colour bar
shows the probability density. Red histograms show the marginal distribution along the angular coordinates.
Black curves show the marginal distributions of the ground truth. In the best case, MetaGFN is able to learn
the αL mode. In the worst case, MetaGFN fails to converge. On-policy training, although more consistent,
fails to learn to sample from the αL mode.

Grid Environments: MetaGFN achieves the lowest error in 7 of 9 experiments, although note that the
performance of all methods generally decreases with increasing dimension. This is unsurprising, since the
exploration task becomes more difficult. For MetaGFN, this is also an expected outcome of the curse
of dimensionality of the replay buffer grid; in high-dimensional spaces metadynamics samples encounter
high-reward modes less frequently, leading to a replay buffer with less sample diversity. This is a known
limitation of metadynamics (Laio and Parrinello, 2002). Nested Sampling outperforms MetaGFN in one case
(Grid 3D, DB loss) but populating the replay buffer with nested samples from the terminal distribution relies
on costly MCMC-based pretraining. The cost of this pretraining scales exponentially with dimension and
requires reward gradients, unlike MetaGFN. The generally favourable performance of MetaGFN could be due
to the method discovering an overall larger diversity of off-policy samples, that are refreshed and updated
during training, in contrast to the static samples when using Nested Sampling approach.

5 Limitations

For metadynamics to be an effective sampler, the CVs must be low-dimensional and have bounded support.
If they are not low-dimensional, then the memory cost of storing the CVs on the bias grid is too prohibitive,
growing exponentially with dimension. If they have unbounded support, then exploration is not guaranteed
to converge. Additionally, either these CVs should be known analytically (as in our experiments) or learnt
from data (Sidky et al., 2020). Alternatively, CVs could be adaptively learnt by parameterising z(x; θ)
by a neural network and updating its parameters by back-propagating through the GFlowNet loss during
training. The metadynamics algorithm could also be replaced with a variant with smoother convergence
properties or slightly better dimension scaling, such as well-tempered metadynamics (Barducci et al., 2008),
reconnaissance metadynamics (Tribello et al., 2010), or on-the-fly probability-enhanced sampling (OPES)
(Invernizzi, 2021). The bias potential could also be defined parametrically, lowering memory overhead. We
leave these as extensions for future work.

6 Conclusions

While exploration strategies for discrete Generative Flow Networks (GFlowNets) have been widely studied,
methodologies for continuous GFlowNets remain largely unexplored. To bridge this gap, we demonstrated
how metadynamics, a well-established enhanced sampling technique in molecular dynamics, can be adapted
as an effective exploration strategy for continuous GFlowNets.

In molecular dynamics, atomic forces are derived from the gradient of the potential, whereas continuous
GFlowNets address problems where the reward function is a black box, making gradients generally inaccessible.

11



Published in Transactions on Machine Learning Research (09/2025)

We showed that this challenge can be overcome by dynamically updating a kernel density estimate of the
reward function, proving that this approach ensures proper exploration in the appropriate limit. Our
empirical results highlight that MetaGFN provides a computationally efficient way to discover new modes in
environments where prior knowledge of collective variables is available.

More broadly, this work advocates for leveraging techniques from molecular modeling to advance machine
learning. Looking ahead, we anticipate that this cross-disciplinary perspective will open new directions,
enabling further applications of enhanced sampling methods in generative modeling and reinforcement
learning.

12



Published in Transactions on Machine Learning Research (09/2025)

References
Cameron Abrams and Giovanni Bussi. Enhanced Sampling in Molecular Dynamics Using Metadynamics,

Replica-Exchange, and Temperature-Acceleration. Entropy, 16(1):163–199, January 2014. ISSN 1099-
4300. doi: 10.3390/e16010163. URL https://www.mdpi.com/1099-4300/16/1/163. Number: 1 Publisher:
Multidisciplinary Digital Publishing Institute.

Alessandro Barducci, Giovanni Bussi, and Michele Parrinello. Well-Tempered Metadynamics: A Smoothly
Converging and Tunable Free-Energy Method. Physical Review Letters, 100(2):020603, January 2008.
ISSN 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.100.020603. URL https://link.aps.org/doi/10.
1103/PhysRevLett.100.020603.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Y. Bengio. Flow Network based
Generative Models for Non-Iterative Diverse Candidate Generation. ArXiv, June 2021a.

Yoshua Bengio, T. Deleu, J. E. Hu, Salem Lahlou, Mo Tiwari, and Emmanuel Bengio. GFlowNet Foundations.
ArXiv, November 2021b.

Luigi Bonati, GiovanniMaria Piccini, and Michele Parrinello. Deep learning the slow modes for rare events
sampling. Proceedings of the National Academy of Sciences, 118(44):e2113533118, November 2021. doi: 10.
1073/pnas.2113533118. URL https://www.pnas.org/doi/full/10.1073/pnas.2113533118. Publisher:
Proceedings of the National Academy of Sciences.

Massimiliano Bonomi, Giovanni Bussi, Carlo Camilloni, Gareth A. Tribello, Pavel Banáš, Alessandro
Barducci, Mattia Bernetti, Peter G. Bolhuis, Sandro Bottaro, Davide Branduardi, Riccardo Capelli, Paolo
Carloni, Michele Ceriotti, Andrea Cesari, Haochuan Chen, Wei Chen, Francesco Colizzi, Sandip De,
Marco De La Pierre, Davide Donadio, Viktor Drobot, Bernd Ensing, Andrew L. Ferguson, Marta Filizola,
James S. Fraser, Haohao Fu, Piero Gasparotto, Francesco Luigi Gervasio, Federico Giberti, Alejandro
Gil-Ley, Toni Giorgino, Gabriella T. Heller, Glen M. Hocky, Marcella Iannuzzi, Michele Invernizzi, Kim E.
Jelfs, Alexander Jussupow, Evgeny Kirilin, Alessandro Laio, Vittorio Limongelli, Kresten Lindorff-Larsen,
Thomas Löhr, Fabrizio Marinelli, Layla Martin-Samos, Matteo Masetti, Ralf Meyer, Angelos Michaelides,
Carla Molteni, Tetsuya Morishita, Marco Nava, and The PLUMED consortium. Promoting transparency
and reproducibility in enhanced molecular simulations. Nature Methods, 16(8):670–673, August 2019. ISSN
1548-7091. doi: 10.1038/s41592-019-0506-8.

Luca Bortolussi and Alberto Policriti. Hybrid Systems and Biology. In Marco Bernardo, Pierpaolo Degano,
and Gianluigi Zavattaro, editors, Formal Methods for Computational Systems Biology, pages 424–448,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-68894-5.

Giovanni Bussi and Alessandro Laio. Using metadynamics to explore complex free-energy landscapes. Nature
Reviews Physics, 2:200–212, March 2020. doi: 10.1038/s42254-020-0153-0. URL https://ui.adsabs.
harvard.edu/abs/2020NatRP...2..200B. ADS Bibcode: 2020NatRP...2..200B.

Flaviu Cipcigan, Jonathan Booth, Rodrigo Neumann Barros Ferreira, Carine Ribeiro dos Santos, and Mathias
Steiner. Discovery of Novel Reticular Materials for Carbon Dioxide Capture using GFlowNets, October
2023. URL http://arxiv.org/abs/2310.07671. arXiv:2310.07671 [cond-mat].

Marco De Vivo, Matteo Masetti, Giovanni Bottegoni, and Andrea Cavalli. Role of Molecular Dynamics and
Related Methods in Drug Discovery. Journal of Medicinal Chemistry, 59(9):4035–4061, May 2016. ISSN 0022-
2623. doi: 10.1021/acs.jmedchem.5b01684. URL https://doi.org/10.1021/acs.jmedchem.5b01684.
Publisher: American Chemical Society.

Tristan Deleu, António Góis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan Bauer, and
Yoshua Bengio. Bayesian Structure Learning with Generative Flow Networks, June 2022. URL http:
//arxiv.org/abs/2202.13903. arXiv:2202.13903 [cs, stat].

Peter Eastman, Jason Swails, John D. Chodera, Robert T. McGibbon, Yutong Zhao, Kyle A. Beauchamp,
Lee-Ping Wang, Andrew C. Simmonett, Matthew P. Harrigan, Chaya D. Stern, Rafal P. Wiewiora,

13

https://www.mdpi.com/1099-4300/16/1/163
https://link.aps.org/doi/10.1103/PhysRevLett.100.020603
https://link.aps.org/doi/10.1103/PhysRevLett.100.020603
https://www.pnas.org/doi/full/10.1073/pnas.2113533118
https://ui.adsabs.harvard.edu/abs/2020NatRP...2..200B
https://ui.adsabs.harvard.edu/abs/2020NatRP...2..200B
http://arxiv.org/abs/2310.07671
https://doi.org/10.1021/acs.jmedchem.5b01684
http://arxiv.org/abs/2202.13903
http://arxiv.org/abs/2202.13903


Published in Transactions on Machine Learning Research (09/2025)

Bernard R. Brooks, and Vijay S. Pande. OpenMM 7: Rapid development of high performance algorithms
for molecular dynamics. PLoS computational biology, 13(7):e1005659, July 2017. ISSN 1553-7358. doi:
10.1371/journal.pcbi.1005659.

Giacomo Fiorin, Michael L. Klein, and Jérôme Hénin. Using collective variables to drive molecular dynamics
simulations. Molecular Physics, 111(22-23):3345–3362, December 2013. ISSN 0026-8976. doi: 10.1080/
00268976.2013.813594. URL https://doi.org/10.1080/00268976.2013.813594. Publisher: Taylor &
Francis _eprint: https://doi.org/10.1080/00268976.2013.813594.

Paul C. D. Hawkins. Conformation Generation: The State of the Art. Journal of Chemical Information
and Modeling, 57(8):1747–1756, August 2017. ISSN 1549-9596. doi: 10.1021/acs.jcim.7b00221. URL
https://doi.org/10.1021/acs.jcim.7b00221. Publisher: American Chemical Society.

Jan Hermans. The amino acid dipeptide: Small but still influential after 50 years. Proceedings of the
National Academy of Sciences, 108(8):3095–3096, February 2011. doi: 10.1073/pnas.1019470108. URL
https://www.pnas.org/doi/full/10.1073/pnas.1019470108. Publisher: Proceedings of the National
Academy of Sciences.

Edward J. Hu, Nikolay Malkin, Moksh Jain, Katie Everett, Alexandros Graikos, and Yoshua Bengio.
GFlowNet-EM for learning compositional latent variable models, June 2023. URL http://arxiv.org/
abs/2302.06576. arXiv:2302.06576 [cs, stat].

Michele Invernizzi. OPES: On-the-fly Probability Enhanced Sampling Method. Il Nuovo Cimento C, 44
(405):1–4, September 2021. ISSN 03905551, 03905551. doi: 10.1393/ncc/i2021-21112-8. URL http:
//arxiv.org/abs/2101.06991. arXiv:2101.06991 [physics].

Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure F. P. Dossou,
Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, Lena Simine, Payel Das,
and Yoshua Bengio. Biological Sequence Design with GFlowNets. In Proceedings of the 39th International
Conference on Machine Learning, pages 9786–9801. PMLR, June 2022. URL https://proceedings.mlr.
press/v162/jain22a.html. ISSN: 2640-3498.

Moksh Jain, Sharath Chandra Raparthy, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Yoshua Bengio,
Santiago Miret, and Emmanuel Bengio. Multi-Objective GFlowNets, July 2023. URL http://arxiv.org/
abs/2210.12765. arXiv:2210.12765 [cs, stat].

William L. Jorgensen, Jayaraman Chandrasekhar, Jeffry D. Madura, Roger W. Impey, and Michael L. Klein.
Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2):
926–935, July 1983. ISSN 0021-9606. doi: 10.1063/1.445869. URL https://doi.org/10.1063/1.445869.

Minsu Kim, Taeyoung Yun, Emmanuel Bengio, Dinghuai Zhang, Yoshua Bengio, Sungsoo Ahn, and Jinkyoo
Park. Local Search GFlowNets, March 2024. URL http://arxiv.org/abs/2310.02710. arXiv:2310.02710
[cs, stat].

Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex Hernández-García,
Léna Néhale Ezzine, Yoshua Bengio, and Nikolay Malkin. A theory of continuous generative flow networks.
Proceedings of the 40th International Conference on Machine Learning, 2023. doi: 10.48550/ARXIV.2301.
12594. URL https://arxiv.org/abs/2301.12594. Publisher: arXiv Version Number: 2.

Alessandro Laio and Francesco L. Gervasio. Metadynamics: a method to simulate rare events and reconstruct
the free energy in biophysics, chemistry and material science. Reports on Progress in Physics, 71(12):
126601, November 2008. ISSN 0034-4885. doi: 10.1088/0034-4885/71/12/126601. URL https://dx.doi.
org/10.1088/0034-4885/71/12/126601.

Alessandro Laio and Michele Parrinello. Escaping free-energy minima. Proceedings of the National Academy
of Sciences, 99(20):12562–12566, October 2002. doi: 10.1073/pnas.202427399. URL https://www.pnas.
org/doi/full/10.1073/pnas.202427399. Publisher: Proceedings of the National Academy of Sciences.

14

https://doi.org/10.1080/00268976.2013.813594
https://doi.org/10.1021/acs.jcim.7b00221
https://www.pnas.org/doi/full/10.1073/pnas.1019470108
http://arxiv.org/abs/2302.06576
http://arxiv.org/abs/2302.06576
http://arxiv.org/abs/2101.06991
http://arxiv.org/abs/2101.06991
https://proceedings.mlr.press/v162/jain22a.html
https://proceedings.mlr.press/v162/jain22a.html
http://arxiv.org/abs/2210.12765
http://arxiv.org/abs/2210.12765
https://doi.org/10.1063/1.445869
http://arxiv.org/abs/2310.02710
https://arxiv.org/abs/2301.12594
https://dx.doi.org/10.1088/0034-4885/71/12/126601
https://dx.doi.org/10.1088/0034-4885/71/12/126601
https://www.pnas.org/doi/full/10.1073/pnas.202427399
https://www.pnas.org/doi/full/10.1073/pnas.202427399


Published in Transactions on Machine Learning Research (09/2025)

Pablo Lemos, Nikolay Malkin, Will Handley, Yoshua Bengio, Yashar Hezaveh, and Laurence Perreault-
Levasseur. Improving Gradient-guided Nested Sampling for Posterior Inference, December 2023. URL
http://arxiv.org/abs/2312.03911. arXiv:2312.03911 [cs, stat].

Shuang Luo, Yinchuan Li, Shunyu Liu, Xu Zhang, Yunfeng Shao, and Chao Wu. Multi-agent Contin-
uous Control with Generative Flow Networks. Neural Networks, 174:106243, June 2024. ISSN 0893-
6080. doi: 10.1016/j.neunet.2024.106243. URL https://www.sciencedirect.com/science/article/
pii/S0893608024001679.

Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, Andrei Nica,
Tom Bosc, Yoshua Bengio, and Nikolay Malkin. Learning GFlowNets from partial episodes for improved
convergence and stability. Proceedings of the 40th International Conference on Machine Learning, 2022.
doi: 10.48550/ARXIV.2209.12782. URL https://arxiv.org/abs/2209.12782. Version Number: 3.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Y. Bengio. Trajectory Balance: Improved
Credit Assignment in GFlowNets. ArXiv, January 2022.

Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward Hu, Katie Everett, Dinghuai Zhang, and Yoshua
Bengio. GFlowNets and variational inference, March 2023. URL http://arxiv.org/abs/2210.00580.
arXiv:2210.00580 [cs, stat].

Andreas Mardt, Luca Pasquali, Hao Wu, and Frank Noé. VAMPnets for deep learning of molecular kinetics.
Nature Communications, 9(1):5, January 2018. ISSN 2041-1723. doi: 10.1038/s41467-017-02388-1. URL
https://www.nature.com/articles/s41467-017-02388-1. Publisher: Nature Publishing Group.

Antonia S. J. S. Mey, Bryce K. Allen, Hannah E. Bruce Macdonald, John D. Chodera, David F. Hahn,
Maximilian Kuhn, Julien Michel, David L. Mobley, Levi N. Naden, Samarjeet Prasad, Andrea Rizzi, Jenke
Scheen, Michael R. Shirts, Gary Tresadern, and Huafeng Xu. Best Practices for Alchemical Free Energy
Calculations. Living journal of computational molecular science, 2(1):18378, 2020. ISSN 2575-6524. doi:
10.33011/livecoms.2.1.18378. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8388617/.

L. Molgedey and H. G. Schuster. Separation of a mixture of independent signals using time delayed correlations.
Physical Review Letters, 72(23):3634–3637, June 1994. ISSN 0031-9007. doi: 10.1103/PhysRevLett.72.3634.
URL https://link.aps.org/doi/10.1103/PhysRevLett.72.3634.

Michael Neunert, Abbas Abdolmaleki, Markus Wulfmeier, Thomas Lampe, Tobias Springenberg, Roland
Hafner, Francesco Romano, Jonas Buchli, Nicolas Heess, and Martin Riedmiller. Continuous-Discrete
Reinforcement Learning for Hybrid Control in Robotics. In Proceedings of the Conference on Robot Learning,
pages 735–751. PMLR, May 2020. URL https://proceedings.mlr.press/v100/neunert20a.html. ISSN:
2640-3498.

Esa Nummelin. General Irreducible Markov Chains and Non-Negative Operators. Cam-
bridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1984. ISBN
978-0-521-60494-9. doi: 10.1017/CBO9780511526237. URL https://www.cambridge.
org/core/books/general-irreducible-markov-chains-and-nonnegative-operators/
0557D49C011AA90B761FC854D5C14983.

Ling Pan, Dinghuai Zhang, Aaron Courville, Longbo Huang, and Yoshua Bengio. Generative Augmented
Flow Networks, October 2022. URL http://arxiv.org/abs/2210.03308. arXiv:2210.03308 [cs].

Ling Pan, Nikolay Malkin, Dinghuai Zhang, and Yoshua Bengio. Better Training of GFlowNets with Local
Credit and Incomplete Trajectories. In Proceedings of the 40th International Conference on Machine
Learning, pages 26878–26890. PMLR, July 2023. URL https://proceedings.mlr.press/v202/pan23c.
html. ISSN: 2640-3498.

Grigorios A. Pavliotis. Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck
and Langevin Equations, volume 60 of Texts in Applied Mathematics. Springer, New York, NY, 2014.
ISBN 978-1-4939-1322-0. doi: 10.1007/978-1-4939-1323-7. URL https://link.springer.com/10.1007/
978-1-4939-1323-7.

15

http://arxiv.org/abs/2312.03911
https://www.sciencedirect.com/science/article/pii/S0893608024001679
https://www.sciencedirect.com/science/article/pii/S0893608024001679
https://arxiv.org/abs/2209.12782
http://arxiv.org/abs/2210.00580
https://www.nature.com/articles/s41467-017-02388-1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8388617/
https://link.aps.org/doi/10.1103/PhysRevLett.72.3634
https://proceedings.mlr.press/v100/neunert20a.html
https://www.cambridge.org/core/books/general-irreducible-markov-chains-and-nonnegative-operators/0557D49C011AA90B761FC854D5C14983
https://www.cambridge.org/core/books/general-irreducible-markov-chains-and-nonnegative-operators/0557D49C011AA90B761FC854D5C14983
https://www.cambridge.org/core/books/general-irreducible-markov-chains-and-nonnegative-operators/0557D49C011AA90B761FC854D5C14983
http://arxiv.org/abs/2210.03308
https://proceedings.mlr.press/v202/pan23c.html
https://proceedings.mlr.press/v202/pan23c.html
https://link.springer.com/10.1007/978-1-4939-1323-7
https://link.springer.com/10.1007/978-1-4939-1323-7


Published in Transactions on Machine Learning Research (09/2025)

Venkata K. Ramaswamy, Samuel C. Musson, Chris G. Willcocks, and Matteo T. Degiacomi. Deep Learning
Protein Conformational Space with Convolutions and Latent Interpolations. Physical Review X, 11(1):
011052, March 2021. doi: 10.1103/PhysRevX.11.011052. URL https://link.aps.org/doi/10.1103/
PhysRevX.11.011052. Publisher: American Physical Society.

Jarrid Rector-Brooks, Kanika Madan, Moksh Jain, Maksym Korablyov, Cheng-Hao Liu, Sarath Chandar,
Nikolay Malkin, and Yoshua Bengio. Thompson sampling for improved exploration in GFlowNets, June
2023. URL http://arxiv.org/abs/2306.17693. arXiv:2306.17693 [cs].

Desik Rengarajan, Gargi Vaidya, Akshay Sarvesh, Dileep Kalathil, and Srinivas Shakkottai. Reinforcement
Learning with Sparse Rewards using Guidance from Offline Demonstration, February 2022. URL http:
//arxiv.org/abs/2202.04628. arXiv:2202.04628.

Romelia Salomon-Ferrer, David A. Case, and Ross C. Walker. An overview of the Amber biomolecular
simulation package. WIREs Computational Molecular Science, 3(2):198–210, 2013. ISSN 1759-0884. doi:
10.1002/wcms.1121. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1121. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1121.

Marcin Sendera, Minsu Kim, Sarthak Mittal, Pablo Lemos, Luca Scimeca, Jarrid Rector-Brooks, Alexandre
Adam, Yoshua Bengio, and Nikolay Malkin. Improved off-policy training of diffusion samplers, May 2024.
URL http://arxiv.org/abs/2402.05098. arXiv:2402.05098 [cs, stat].

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando De Freitas. Taking the Human
Out of the Loop: A Review of Bayesian Optimization. Proceedings of the IEEE, 104(1):148–175, January
2016. ISSN 0018-9219, 1558-2256. doi: 10.1109/JPROC.2015.2494218. URL https://ieeexplore.ieee.
org/document/7352306/.

Max W. Shen, Emmanuel Bengio, Ehsan Hajiramezanali, Andreas Loukas, Kyunghyun Cho, and Tom-
maso Biancalani. Towards Understanding and Improving GFlowNet Training. Proceedings of the
40th International Conference on Machine Learning, 2023a. doi: 10.48550/ARXIV.2305.07170. URL
https://arxiv.org/abs/2305.07170. Publisher: arXiv Version Number: 1.

Tony Shen, Mohit Pandey, Jason Smith, Artem Cherkasov, and Martin Ester. TacoGFN: Target Conditioned
GFlowNet for Structure-Based Drug Design, December 2023b. URL http://arxiv.org/abs/2310.03223.
arXiv:2310.03223 [cs].

Hythem Sidky, Wei Chen, and Andrew L. Ferguson. Machine learning for collective variable discovery and
enhanced sampling in biomolecular simulation. Molecular Physics, 118(5), March 2020. ISSN 0026-8976.
doi: 10.1080/00268976.2020.1737742. URL https://www.osti.gov/pages/biblio/1651117. Institution:
Argonne National Laboratory (ANL), Argonne, IL (United States) Publisher: Taylor & Francis.

Laura Painton Swiler, Patricia Diane Hough, Peter Qian, Xu Xu, Curtis B. Storlie, and Herbert K. H.
Lee. Surrogate models for mixed discrete-continuous variables. Technical Report SAND2012-0491, Sandia
National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), August 2012. URL
https://www.osti.gov/biblio/1055621.

Gareth A. Tribello, Michele Ceriotti, and Michele Parrinello. A self-learning algorithm for biased molec-
ular dynamics. Proceedings of the National Academy of Sciences, 107(41):17509–17514, October 2010.
doi: 10.1073/pnas.1011511107. URL https://www.pnas.org/doi/10.1073/pnas.1011511107. Publisher:
Proceedings of the National Academy of Sciences.

Alexandra Volokhova, Michał Koziarski, Alex Hernández-García, Cheng-Hao Liu, Santiago Miret, Pablo
Lemos, Luca Thiede, Zichao Yan, Alán Aspuru-Guzik, and Yoshua Bengio. Towards equilibrium molecular
conformation generation with GFlowNets, October 2023. URL http://arxiv.org/abs/2310.14782.
arXiv:2310.14782 [cs].

Yi Isaac Yang, Qiang Shao, Jun Zhang, Lijiang Yang, and Yi Qin Gao. Enhanced sampling in molecular
dynamics. The Journal of Chemical Physics, 151(7):070902, August 2019. ISSN 0021-9606. doi: 10.1063/1.
5109531. URL https://doi.org/10.1063/1.5109531.

16

https://link.aps.org/doi/10.1103/PhysRevX.11.011052
https://link.aps.org/doi/10.1103/PhysRevX.11.011052
http://arxiv.org/abs/2306.17693
http://arxiv.org/abs/2202.04628
http://arxiv.org/abs/2202.04628
https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1121
http://arxiv.org/abs/2402.05098
https://ieeexplore.ieee.org/document/7352306/
https://ieeexplore.ieee.org/document/7352306/
https://arxiv.org/abs/2305.07170
http://arxiv.org/abs/2310.03223
https://www.osti.gov/pages/biblio/1651117
https://www.osti.gov/biblio/1055621
https://www.pnas.org/doi/10.1073/pnas.1011511107
http://arxiv.org/abs/2310.14782
https://doi.org/10.1063/1.5109531


Published in Transactions on Machine Learning Research (09/2025)

David W. Zhang, Corrado Rainone, Markus Peschl, and Roberto Bondesan. Robust Scheduling with
GFlowNets, February 2023. URL http://arxiv.org/abs/2302.05446. arXiv:2302.05446 [cs].

Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron Courville, and Yoshua Bengio.
Generative Flow Networks for Discrete Probabilistic Modeling. In Proceedings of the 39th International
Conference on Machine Learning, pages 26412–26428. PMLR, June 2022. URL https://proceedings.
mlr.press/v162/zhang22v.html. ISSN: 2640-3498.

A Loss functions

For a complete trajectory τ , the detailed balanced loss (DB) is

LDB(τ) =
n−1∑
t=0

(
log f̂(st; θ)p̂F (st, st+1; θ)

f̂(st+1; θ)p̂B(st+1, st; θ)

)2

,

where f̂(st+1; θ) is replaced with r(sn) if sn is terminal.

The subtrajectory balance loss (STB) is

LSTB(τ) =
∑

0≤i<j≤n λ
j−1LTB(τi:j)∑

0≤i<j≤n λ
j−i ,

LSTB(τi:j) :=
(

log f̂(si; θ)
∏j−1
t=i p̂F (st+1|st; θ)

f̂(sj ; θ)
∏j
t=i+1 p̂B(st−1|st; θ)

)2

,

where f̂(sj ; θ) is replaced with r(sj) if sj is terminal. In the above, λ < 0 is a hyperparameter. The limit
λ→ 0+ leads to average detailed balance. The λ→∞ limit gives the trajectory balance objective. We use
λ = 0.9 in our experiments.

B Langevin dynamics

Langevin dynamics (LD), is defined through the Stochastic Differential Equation (SDE):

dx = M−1pdt (3)
dp = f(x)dt− γpdt+

√
2γβ−1M1/2dw. (4)

In the above, x,p ∈ RD are vectors of instantaneous position and momenta respectively, f : RD → RD is a
force function, w(t) is a vector of D independent Wiener processes, M ∈ RD × RD is a constant diagonal
mass matrix, and γ, β > 0 are constant scalars which can be interpreted as a friction coefficient and inverse
temperature respectively. In conventional Langevin dynamics, the force function is given by the gradient
of the potential energy function, f(x) = −∇V (x), where V : RD → R and the dynamics are ergodic with
respect to the Gibbs-Boltzmann density

ρβ(x,p) ∝ e−βH(x,p),

where H(x,p) = pTM−1p/2 + V (x) is the Hamiltonian. Since the Hamiltonian is separable in position and
momenta terms, the marginal Gibbs-Boltzmann density is position space is simply ρβ(x) ∝ e−βV (x), often
referred to as the Gibbs density.

We present the Euler-Maruyama numerican scheme for integrating equations 3 below. This is called in line
14 of Adapted Metadynamics (Algorithm 1).
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Algorithm 3: Euler-Maruyama Langevin Dynamics Step
Input : Current state (xt,pt). Force f.
Parameters : Friction coefficient γ. Thermodynamic beta β. Timestep ∆t.
Output : State (xt+∆t,pt+∆t) at the next timestep.

1 Sample a random vector R, with the same dimension as xt, where each element is an independent sample
from a standard normal.

2 xt+∆t = xt + pt∆t
3 pt+∆t = pt + f∆t− γpt∆t+

√
2γ∆t/β ·R

4 return (xt+∆t,pt+∆t)

C Proofs

Lemma C.1. Let (fn(x)) and (gn(x)) be sequences of real functions where limn→∞ fn(x) = ∞,
limn→∞ gn(x) =∞ and limn→∞

fn(x)
gn(x) = h(x). Then, for all ϵ > 0, we have limn→∞

fn(x)
gn(x)+ϵ = h(x).

Proof.

lim
n→∞

fn(x)
gn(x) + ϵ

= lim
n→∞

fn(x)
gn(x)

1
1 + ϵ/gn(x)

and the right-hand side is the product of two functions whose limit exists so, by the product rule of limits

lim
n→∞

fn(x)
gn(x) lim

n→∞

1
1 + ϵ/gn(x) = h(x) · 1 = h(x),

so done.

Lemma C.2. Let (Xi) be a sequence of continuous random variables that take values on a bounded domain
D ⊂ Rd that asymptotically approaches the uniform random variable U on D, i.e. Xi → U uniformly.
Further, suppose

h(x) :=
∑∞
i=1 f(xi)g(x, xi)∑∞

i=1 g(x, xi)

exists, where xi ∈ D is a sample from Xi and f(x) and g(x, x′) are analytic functions on D and D × D
respectively. Then,

h(x) =
∑∞
i=1 f(ui)g(x, ui)∑∞

i=1 g(x, ui)
,

where the ui are samples from U . We make no assumption of independence of samples.

Proof. Fix a probability space (Ω,F , P ) on which (Xi) and U are defined. Recall that a continuous random
variable X that takes values on D ⊂ Rd is a measurable function X : Ω → D where (D,B) is a measure
space and B is the Borel σ-algebra on D. Let ω ⊂ Ω denote an arbitrary element of the sample space. The
requirement that Xi → U uniformly can be written formally as:

∀ϵ > 0,∃N(ϵ) s.t. ∀i > N(ϵ),∀ω ⊂ Ω, |Xi(ω)− U(ω)| < ϵ.

We prove the Lemma by showing that equality holds for all possible sequences of outcomes ω1, ω2, . . . . That
is, we prove: ∑∞

i=1 f(Xi(ωi))g(x,Xi(ωi))∑∞
i=1 g(x,Xi(ωi))

=
∑∞
i=1 f(U(ωi))g(x, U(ωi)))∑∞

i=1 g(x, U(ωi)))
. (5)

Since these are ratios of infinite series, to prove their equality it is sufficient to show that the numerator of
the LHS is asymptotically equivalent to the numerator of the RHS and that the denominator of the LHS is
asymptotically equivalent to the denominator of the RHS. Recall that two sequences of real functions (an)
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and (bn) are asymptotically equivalent if limn→∞
an(x)
bn(x) = c where c is a constant. First, we prove that this

holds with
an :=

n∑
i=1

f(Xi(ωi))g(x,Xi(ωi)) (6)

and
bn :=

n∑
i=1

f(U(ωi))g(x, U(ωi))). (7)

We write
an
bn

=
∑N(ϵ)
i=1 f(Xi(ωi))g(x,Xi(ωi)) +

∑n
i=N(ϵ)+1 f(Xi(ωi))g(x,Xi(ωi))∑N(ϵ)

i=1 f(U(ωi))g(x, U(ωi))) +
∑n
i=N(ϵ)+1 f(U(ωi))g(x, U(ωi)))

.

Dividing by
∑n
i=N(ϵ)+1 f(U(ωi))g(x, U(ωi))) and taking the limit n→∞ we have

lim
n→∞

an
bn

= lim
n→∞

∑n
i=N(ϵ)+1 f(Xi(ωi))g(x,Xi(ωi))∑n
i=N(ϵ)+1 f(U(ωi))g(x, U(ωi)))

.

Since f and g are analytic and i > N(ϵ) for all terms in the sums we have, by Taylor expansion, f(Xi(ωi)) =
f(U(ωi)) +O(ϵ) and g(x,Xi(ωi)) = g(x, U(ωi)) +O(ϵ), hence

lim
n→∞

an
bn

= lim
n→∞

(
1 + nO(ϵ)∑n

i=N(ϵ)+1 f(U(ωi))g(x, U(ωi)))

)
= 1 + lim

n→∞

nO(ϵ)
O(n) = 1 +O(ϵ).

Finally, since ϵ can be made arbitrarily small by partitioning the sum at a N(ϵ) that is sufficiently large, we
conclude that limn→∞

an

bn
= 1, hence (an) and (bn) as defined in equation 6 and equation 7 are asymptotically

equivalent. By a similar argument, it can be shown that

cn :=
n∑
i=1

g(x,Xi(ωi))

and
dn :=

n∑
i=1

g(x, U(ωi)))

are also asymptotically equivalent. This proves equation 5.

Below, we present the proof of Theorem 3.1 that appears in the main text.

Proof. For concreteness, throughout this proof we assume that the kernel function is a Gaussian. We explain
at the appropriate stage in the proof, indicated by (*), how this assumption can be relaxed.

First we take the n → ∞ limit. Recall the notation from Section 3, i.e. assume collective variables
z(x) = (z1(x), . . . , zd(x)) where z : X → Z, and Z is d-dimensional. Since the log function is continuous, the
limit and log can be interchanged and we have

lim
n→∞

V̂ (z, tn) = − 1
β′ log

(
lim
n→∞

(
R̂(z, tn)

N̂(z, tn) + ϵ

)
+ ϵ

)
,

where, from Algorithm 1:

R̂(z, tn) =
n∑
i=1

r(xti) exp

− d∑
j=1

(zj − zj(xti))2

2σ2
j

, (8)
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N̂(z, tn) =
n∑
i=1

exp

− d∑
j=1

(zj − zj(xti))2

2σ2
j

. (9)

Since the domain is bounded, we know that for fixed z, both equation 8 and equation 9 have limit at infinity,
i.e. limn→∞ R̂(z, tn) =∞ and limn→∞ N̂(z, tn) =∞. Hence, by Lemma C.1, we have

lim
n→∞

R̂(z, tn)
N̂(z, tn) + ϵ

= lim
n→∞

R̂(z, tn)
N̂(z, tn)

,

provided the limit on the RHS exists. Next, we show that this limit exists by computing it explicitly. The
limit can be written

lim
n→∞

R̂(z, tn)
N̂(z, tn)

= lim
n→∞

∑n
i=1 r(xti) exp

(
−
∑d
j=1

(zj−zj(xti
))2

2σ2
j

)
∑n
i=1 exp

(
−
∑d
j=1

(zj−zj(xti
))2

2σ2
j

) .

Recall that metadynamics eventually leads to uniform sampling over the domain, independent of the potential.
Hence, since R and z(x) are analytic, by Lemma C.2 we may replace the metadynamics samples xti with
samples ui from a uniform distribution over X :

lim
n→∞

R̂(z, tn)
N̂(z, tn)

= lim
n→∞

∑n
i=1 r(ui) exp

(
−
∑d
j=1

(zj−zj(ui))2

2σ2
j

)
∑n
i=1 exp

(
−
∑d
j=1

(zj−zj(ui))2

2σ2
j

) .

In the limit, the ratio of sums with uniform sampling becomes a ratio of integrals:

lim
n→∞

R̂(z, tn)
N̂(z, tn)

=

∫
X r(x′) exp

(
−
∑d
j=1

(zj−zj(x′))2

2σ2
j

)
dx′∫

X exp
(
−
∑d
j=1

(zj−zj(x′))2

2σ2
j

)
dx′

.

The limit is therefore a (scaled) convolution of the reward function with a Gaussian in the collective variable
space with width vector σ. Taking the limit σj → 0 for all j ∈ {1, 2, . . . , d}, the Gaussian convergences to a
delta distribution in the collective variable space and we have

lim
σ→0

lim
n→∞

R̂(z, tn)
N̂(z, tn)

=
∫

X
r(x′)δ(z− z(x′))dx′.

(*) This step also holds for any kernel that becomes distributionally equivalent to a Dirac delta function in
the limit that its variance parameter goes to zero. In particular, it also holds for the von Mises distribution
that we use in our alanine dipeptide experiment in T2.

Finally, we take the limit ϵ→ 0 to obtain

lim
ϵ→0

lim
σ→0

lim
n→∞

V̂ (z, tn) = − 1
β′ lim

ϵ→0
log
(∫

X
r(x′)δ(z− z(x′))dx′ + ϵ

)
(10)

= − 1
β′

∫
X

log (r(x′)) δ(z− z(x′))dx′ (11)

=
∫

X
V (x′)δ(z− z(x′))dx′ := V (z), (12)

where we have used the definition V (x′) = − 1
β′ log(r(x′)) and in the last step we used the definition of

the marginal potential energy in the collective variable space. If z(x) is invertible, then the delta function
simplifies to a delta function in the original space and we obtain the original potential instead of the marginal
potential.
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D Experiment details

We detail the experimental setup. In Table 2 we summarise the common hyperparameters used in all
experiments. In Table 3 we summarise the experiment-specific values of the MetaGFN hyperparameters.

A detailed discussion of the setup follows in sections D.1 - D.4 below, after some general remarks.

Table 2: Common Hyperparameters for All Experiments

Parameter Value
General Training

Training Batches (B) 105

Optimizer Adam with gradient clipping
Learning Rate Schedule Linear decay from 10−3 to 0
logZθ Learning Rate (TB) Linear decay from 10−1 to 0
STB Loss λ 0.9
Min Log-Reward Clip −10
Thompson Sampling Heads 10
Thompson Sampling Bootstrap (p) 0.3

Replay Buffer
Capacity 104 trajectories
Storage Reward Threshold > 10−3

Sampling Strategy Biased (50% from top 30%, 50% from bottom 70%)
MetaGFN

freqRB 2
freqMD 10

Table 3: Experiment-Specific MetaGFN Hyperparameters

Hyperparameter Line Alanine Dipeptide Grid (2D/3D/4D)
∆t (MD time step) 0.05 0.01 0.35
n (MD steps) 2 2 3
β (Inverse temp.) 1 0.4009 1
γ (Langevin friction) 2 0.1 2
w (Hill width) 0.15 10−5 0.10
σ or κ (KDE bandwidth) σ = 0.1 κ = 10 σ = 2
ϵ (Reward threshold) 10−3 10−6 10−4

Grid Spacing 0.01 0.1 0.075/0.3/0.6

General remarks on setting hyperparameters

In practice, despite having a large number of parameters, the performance of MetaGFN is not highly sensitive
to the specific values. The most important hyperparameters are the KDE bandwidth σ and the bias height w.

Setting σ: Determined by the length-scale of variation of the problem, which is usually known or can be
estimated in practice; for the line environment we set σ = 0.1 (smallest variance peak was 0.1) and for the
grid environments σ = 2 (variance of peaks is 2). These ball-park values immediately gave the expected
metadynamics behaviour and did not require any further tuning.

Setting w: This controls the deposition rate of the Gaussian bias and is linked to freqMD, which determines
how often biases are applied. Simulations with w and freqMD such that w/freqMD = const show similar
behaviour. If w is too low, exploration slows, and if too high, metadynamics becomes unstable. Intermediate
w values yield sensible results. We set w by examining an on-policy training run and setting w such that
metadynamics explores new modes in a similar timescale to the time it takes the policy to learn to correctly
sample the previous mode. As such, it didn’t require extensive hyperparameter tuning. An alternative way
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to set w would be to schedule it to decrease overtime, as is done in well-tempered metadynamics Barducci
et al. (2008). We opted for standard metadynamics to avoid unnecessary complexity in our presentation.

Remarks on the computational overhead of MetaGFN

We compare the runtime for training 1000 batches in each environment using an on-policy GFN and MetaGFN
in Table 4. Overall, the computational overhead of MetaGFN is practically negligible (typically < 5%) and
often statistically insignificant.

We now reason why we expect the cost overhead to be negligible. Let d be the spatial dimension, B be
the buffer size and b be the batch size. The KDE + bias update is O(d) computational cost. The cost of
adding to the buffer is O(B) and sampling from the buffer is O(b). These costs also scale linearly with
the update frequency, which we kept constant throughout all environments (one metad update every 10
backpropagations). In terms of policy error, this frequency was, within statistical significance, just as good
as performing a metad update every 2 steps (Figure 8). Importantly, however, an ADAM update step is
also O(d) computational cost, since the input size of the first layer scales linearly with d. We have found
empirically that an ADAM update on a typical multi-layer perceptron (3 hidden layers, 512 hidden units per
layer) was more expensive than a metadynamics update, for the same dimension. Further, since ADAM and
metad both have cost O(d), this means that we expect MetaGFN to continue to have negligible computational
overhead, even in higher dimensions. This is supported by our empirical results in Table 4.

Compute resources: Experiments are performed in PyTorch on a desktop with 32Gb of RAM and a 12-core
2.60GHz i7-10750H CPU. For fairness of comparison in runtimes, we use a CPU since our metadynamics
update code has not yet been implemented efficiently for GPU architectures.

Table 4: Comparison of runtimes over 5 independent repeats of 1000 batches. The runtime is reported as
mean ± standard deviation in seconds. The final column shows the percentage overhead of MetaGFN or
notes if the difference is not statistically significant. All experiments were run using the hyperparameters in
Table 3.

Environment On-policy GFN (s) MetaGFN (s) Overhead / Difference
Line 46.5± 0.7 45.5± 0.8 Not statistically different
Alanine 130.5± 1.4 129.3± 2.7 Not statistically different
Grid 2D 73.4± 1.2 76.3± 0.8 +4%
Grid 3D 150.9± 1.3 156.1± 0.6 +3%
Grid 4D 283.8± 1.5 282.6± 1.6 Not statistically different

D.1 Common experimental parameters

Training parameters: For all environments we train for B = 105 batches use a learning rate with a linear
schedule, starting at 10−3 and finishing at 0. For the TB loss, we train the logZθ with a higher initial learning
rate of 10−1 (also linearly scheduled). For the STB loss, we use λ = 0.9, a value that has worked well in
the discrete setting (Madan et al., 2022). We use the Adam optimiser with gradient clipping. For all loss
functions, we clip the minimum log-reward signal at −10. This enables the model to learn despite regions of
near-zero reward between the modes of r(x).

Replay buffer: We use a replay buffer with capacity for 104 trajectories. Trajectories are stored in the replay
buffer only if the terminal state’s reward exceeds 10−3. When drawing a replay buffer batch, trajectories are
bias-sampled: 50% randomly drawn from the upper 30% of trajectories with the highest rewards, and the
remaining 50% randomly drawn from the lower 70%.

Noisy exploration: An additional constant, σ̄, is added to the standard deviations of the Gaussian
distributions of the forward and backward policies. Specifically, the forward policy becomes p̂F (st, st−1; θ) =∑k
i=1 wiN (µi, (σi + σ̄)2), and similarly for the backward policy, where k is the number of Gaussians in the

mixture. We schedule the value of σ̄ so that it decreases during training according to an exponential-flat
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schedule:

σ̄ =
{
σ̄0
(
e−2je/(B/2) − e−2e) j < B/2

0 j ≥ B/2,
(13)

where j ∈ (1, . . . , B) is the batch number and σ̄0 = 2 is the initial noise, plotted in Figure 7. Note that, for
the alanine dipeptide environment, the policy is a mixture of bivariate von Mises distributions and the noise
σ̄ is added to the concentration parameter κ, where concentration is related to standard deviation through
σ = 1

κ2 .
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Figure 7: Exponential noise schedule.

Thompson sampling: We use 10 heads with the bootstrapping
probability parameter set to p = 0.3.

Local Search GFN: Local search samples trajectories using a
forward-backward reconstruction method. First, forward policy
samples actions to generate batch size b on-policy trajectories.
Then, the backward policy is used to re-sample the last K
steps of each trajectory. Finally, the forward policy is used to
reconstruct the last K steps, and trajectories in the batch with
higher rewards from reconstruction replace the originals. We use
K = 1 for the line environment, alanine dipeptide environment
and two-dimensional grid. We use K = 2 and K = 3 for the
three and four dimensional (hyper)grids, respectively.

Nested sampling: We use the Gradient Based Nested Sam-
pling (GBNS) (Lemos et al., 2023) with a publicly available im-
plementation: https://github.com/Pablo-Lemos/GGNS. For
each environment, GBNS generates samples from the reward distribution. During training, we alternate
between two types of backpropagation: one fully on-policy, and the other using backward-sampled trajectories
from the generated samples, guided by the current backward policy.

D.2 Line environment details

Parameterisation: The forward and backward policies are a mixture of three Gaussians. We parameterise
p̂F , p̂B and the flow f̂ through an MLP with 3 hidden layers, 256 hidden units per layer. We use the
GELU activation function and dropout probability 0.2 after each layer. This defines the torso of the MLP.
Connecting from this common torso, the MLP has three single-layer, fully-connected heads. The first two
heads have output dimension 9 and parameterise the 3 means (µ), standard deviations (σ) and weights (w)
of the mixture of Gaussians for the forward and backward policies respectively. The third head has output
dimension 1 and parameterises the flow function f̂ . The mean and standard deviation outputs are passed
through a sigmoid function and transformed so that they map to the ranges µ ∈ (−14, 14) and σ ∈ (0.1, 1).
The mixture weights are normalised with the softmax function. The exception to this parameterisation is
the backward transition to the source state which is fixed to be the Dirac delta distribution centred on the
source, i.e. p̂B(s0|s1; θ) = δs0 . For the TB loss, we treat logZθ as a separate learnable parameter. We use
batch size b = 64. It takes approximately 1 hour to train a continuous GFlowNet in this environment with
B = 105 batches.

MetaGFN: We use ∆t = 0.05, n = 2, β = 1, γ = 2, w = 0.15, σ = 0.1, ϵ = 10−3. The domain of Adapted
Metadynamics is restricted to [−5, 23] and reflection conditions are imposed at the boundary. The bias and
KDE potentials are stored on a uniform grid with grid spacing 0.01. Initial metadynamics samples are drawn
from a Gaussian distribution, mean 0 and variance 1, and initial momenta from a Gaussian distribution,
mean 0 and variance 0.5.

Evaluation: The L1 error between the known reward distribution, ρ(x) = r(x)/Z, and the empirical on-policy
distribution, denoted ρ̂(x), estimated by sampling 104 on-policy trajectories and computing the empirical
distribution over terminal states. Specifically, we compute error = 1

2
∫ 23

−5

∣∣∣ρ̂(x)− r(x)
Z

∣∣∣ dx, where the integral
is estimated by a discrete sum with grid spacing 0.01. Note that this error is normalised such that for all
valid probability distributions ρ̂(x), we have 0 ≤ error ≤ 1.
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Figure 8: Mean and standard deviation L1 loss after 105 training batches over 10 repeats in the line
environment. Blue line: changing freqRB while freqMD = 10. Red line: changing freqMD while freqRB = 2.

On-policy distributions: Figure 9 shows the forward policy and replay buffer distributions (with bias
sampling) after training for 105 iterations with TB loss. MetaGFN is the only method that can uniformly
populate the replay buffer and consistently learn all three peaks.

Adapted Metadynamics: Figure 10a shows the L1 error between the density implied by the KDE potential
and the true reward distribution during a typical training run. Figure 10b shows the resulting V̂ and Vbias at
the end of the training. By (1), Adapted Metadynamics has fully explored the central peaks. At (2), the
third peak is discovered, prompting rapid adjustment of the KDE potential. By 2.5× 104 iterations, a steady
state is reached and the algorithm is sampling the domain uniformly.

Sensitivity analysis of hyperparameters: We compare MetaGFN performance for various freqRB and
freqMD values, showing the mean and standard deviation of the final L1 error after 105 batches (Figure
8). Intuitively, we expect that if freqRB is set too large, then MetaGFN focuses predominantly on the
on-policy dynamics and may fail to learn to sample distant modes. By contrast, setting freqRB = 1 means
exclusively training on the replay buffer, without any on-policy training trajectories, which we would expect
to lead to slow convergence. Therefore, an intermediate value of freqRB should be optimal. We found that
setting freqRB = 2 (giving an equal weighting to both on-policy and replay buffer trajectories) showed the
lowest loss. By contrast, performance is not too sensitive to freqMD. freqMD should be set so that Adapted
Metadynamics explores the reward landscape in a comparable time it takes to train the GFN to convergence,
hence only the order of magnitude of freqMD is important. For concreteness, we choose freqMD = 10 but the
model performance is not too sensitive to this parameter.

Comparing MetaGFN variants: We consider three MetaGFN variants. The first variant, always backwards
sample, regenerates the entire trajectory using the current backward policy when pulling from the replay
buffer. The second variant, reuse initial backwards sample, generates the trajectory when first added to the
replay buffer and reuses the entire trajectory if subsequently sampled. The third variant, with noise, is to
always backwards sample with noisy exploration as per equation equation 13. We plot the L1 policy errors in
Figure 11. We observe that always backward sample is better than reuse initial backwards sample for all loss
functions. For DB and TB losses, there is no evidence for any benefit of adding noise, whereas noise improves
training for STB loss, performing very similarly to TB loss without noise.
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Figure 9: Forward policy and replay buffer distributions after training for 105 iterations with TB loss.
MetaGFN is the only method that can consistently learn all three peaks.

(a) (b)

Figure 10: (a) L1 error between ρ̂ = exp(−βV̂ (x))/Z and the reward distribution, r(x)/Z (b) kde potential,
bias potential, and positions of final samples after 2.5× 104 training iterations.
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Figure 11: Comparing MetaGFN variants with and without backward sampling in the line environment
.
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D.3 Alanine dipeptide environment details

0

0

C5

′

R

L

DP||

0

5

10

15

20

25

30

Fr
ee

 E
ne

rg
y 

(k
J m

ol
1 )

Figure 12: The potential KDE V̂
learnt using MetaGFN on the ala-
nine dipeptide environment, con-
centration κ = 10.

Computing the free energy surface: To obtain a ground-truth free
energy surface (FES) in ϕ-ψ space, we ran a 250ns NPT well-tempered
metadynamics MD simulation of alanine dipeptide at temperature 300K
(β = 0.4009), pressure 1bar with the TIP3P explicit water model (Jorgensen
et al., 1983). We used the PLUMMED plugin (Bonomi et al., 2019) for
OpenMM (Eastman et al., 2017) with the AMBER14 force field (Salomon-
Ferrer et al., 2013).

Parameterisation: The forward and backward policies are a mixture
of three bivariate von Mises distributions. We parameterise p̂F , p̂B and
f̂ through three heads of an MLP with 3 hidden layers with 512 hidden
units per layer, with GeLU activations and dropout probability 0.2. The
first two heads have output dimensions of 15, parameterising the 6 means,
6 concentrations, and 3 weights of the mixture of von Mises policy. The
third head has output dimension 1 and parameterises the flow function
f̂ . The means are mapped to the range (−π, π) through 2 arctan(·). Concentrations are parameterised in
log space and passed through a sigmoid to map to the range ln(κ) ∈ (0, 5). Mixture weights are normalised
with the softmax function. We use batch size b = 64. It takes approximately 10 hours to train a continuous
GFlowNet in this environment with B = 105 batches.

MetaGFN: We use freqRB = 2, freqMD = 10, ∆t = 0.01, n = 2, β = 0.4009, γ = 0.1, w = 10−5, κ = 10,
ϵ = 10−6. The bias and KDE potentials are stored on a uniform grid with grid spacing 0.1. Initial samples
are drawn from a Gaussian distribution, mean centred P||, variance σ2 = (0.1, 0.1), and initial momenta from
a Gaussian, mean µ = (0, 0), variance σ2 = (0.05, 0.05). In Figure 12 we show the resulting learnt KDE
potential with these parameters.

Evaluation: The L1 error of a histogram of on-policy samples, ρ̂(ϕ, ψ), is computed via a two-dimensional
generalisation of equation D.2; error = 1

2
∫ π

−π
∫ π

−π

∣∣∣ρ̂(ϕ, ψ)− r(ϕ,ψ)
Z

∣∣∣dϕdψ, estimated by a discrete sum with
grid spacing 0.1.

D.4 Grid environments details

Parameterisation: For the two-dimensional grid, we use a mixture of 4 Gaussians. For the three and four
dimensional (hyper)grids, we use a mixture of 2 Gaussians (but use longer trajectories, see Section 4). We
parameterise p̂F , p̂B and the flow f̂ through an MLP with 3 hidden layers, 512 hidden units per layer, GELU
activation function and dropout probability 0.2. The means and standard deviations are mapped to the range
µ ∈ (−15, 15) and σ ∈ (0.1, 7) through sigmoid functions. Mixture weights are normalised with the softmax
function. We use batch size b = 128. It takes approximately 10 hours to train a continuous GFlowNet in this
environment with B = 105 batches.

MetaGFN: We use freqRB = 2, freqMD = 10, ∆t = 0.35, n = 3, β = 1, γ = 2, w = 0.10, σ = 2, ϵ = 10−4.
The bias and KDE potentials are stored on a uniform grid with grid spacing 0.075/0.3/0.6 (2, 3, and 4
dimensions respectively). Initial samples are drawn from a Gaussian distribution, mean centred at the origin,
isotropic variance σ2 = 1. Momenta are initialised to zero.

Evaluation: The L1 error between the histogram of the terminal states of 104 on-policy samples and the
exact distribution is computed, e.g. for the 2D grid, error = 1

2
∫ 15

−15
∫ 15

−15

∣∣∣ρ̂(x, y)− r(x,y)
Z

∣∣∣ dxdy, estimated by
a discrete sum with grid spacing 0.075.
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