

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 VARIANCE REDUCED DISTRIBUTED NONCONVEX OPTIMIZATION USING MATRIX STEPSIZES

Anonymous authors

Paper under double-blind review

ABSTRACT

Matrix-step-size gradient descent algorithms have demonstrated superior performance in solving non-convex optimization problems compared to their scalar step-size counterparts. The **det-CGD** algorithm, as introduced by Li et al. (2024), leverages matrix stepsizes to perform compressed gradient descent for non-convex objectives and matrix-smooth problems in a federated manner. The authors establish the algorithm's convergence to a neighborhood of a weighted stationarity point under a convex condition for the symmetric and positive-definite matrix stepsize. In this paper, we propose two variance-reduced versions of the **det-CGD** algorithm, incorporating **MARINA** and **DASHA** methods. Notably, we establish theoretically and empirically, that **det-MARINA** and **det-DASHA** outperform **MARINA**, **DASHA** and the distributed **det-CGD** algorithms in terms of iteration and communication complexities.

1 INTRODUCTION

We focus on optimizing the finite sum non-convex objective

$$\min_{x \in \mathbb{R}^d} \left\{ f(x) := \frac{1}{n} \sum_{i=1}^n f_i(x) \right\}. \quad (1)$$

In this context, each function $f_i : \mathbb{R}^d \rightarrow \mathbb{R}$ is differentiable and bounded from below. This type of objective function finds extensive application in various practical machine learning algorithms, which increase not only in terms of the data size but also in the model size and overall complexity as well. As a result, most neural network architectures result in highly non-convex empirical losses, which need to be minimized. In addition, it becomes computationally infeasible to train these models on one device, often excessively large, and one needs to redistribute them amongst different devices/clients. This redistribution results in a high communication overhead, which often becomes the bottleneck in this framework.

In other words, we have the following setting. The data is partitioned into n clients, where the i -th client has access to the component function f_i and its derivatives. The clients are connected to each other through a central device, called the server. In this work, we are going to study iterative gradient descent-based algorithms that operate as follows. The clients compute the local gradients in parallel. Then they compress these gradients to reduce the communication cost and send them to the server in parallel. The server then aggregates these vectors and broadcasts the iterate update back to the clients. This meta-algorithm is called federated learning. We refer the readers to Konečný et al. (2016); McMahan et al. (2017); Kairouz et al. (2021) for a more thorough introduction.

1.1 CONTRIBUTIONS

In this paper, we introduce two novel federated learning algorithms named **det-MARINA** and **det-DASHA**. These algorithms extend a recent method called **det-CGD** (Li et al., 2024), which aims to solve problem (1) using matrix stepsized gradient descent. Under the matrix smoothness assumption, the authors demonstrate that the matrix stepsized version of the distributed compressed gradient descent (Khirirat et al., 2018) algorithm enhances communication complexity compared to its scalar counterpart. However, in their analysis, Li et al. (2024) show stationarity only within

054 a certain neighborhood due to stochastic compressors. The neighborhood influences the solution's
 055 accuracy, leading to a smaller step size and, consequently, convergence when aiming for a specified
 056 accuracy. Our algorithms address this issue by adapting two variance reduction schemes, namely,
 057 **MARINA** (Gorbunov et al., 2021) and **DASHA** (Tyurin & Richtárik, 2024), incorporating variance
 058 reduction into matrix stepsizes. We establish theoretically and empirically, that both algorithms
 059 outperform their scalar alternatives, as well as the distributed **det-CGD** algorithms. In addition, we
 060 describe specific matrix stepsize choices, for which our algorithms beat **MARINA**, **DASHA** and
 061 distributed **det-CGD** both in theory and in practice. The various numerical evidence obtained from
 062 the extensive experiments further corroborates our findings.

064 2 BACKGROUND

066 For a given $\varepsilon > 0$, finding an approximately global optimum, that is x_ε such that $f(x_\varepsilon) - \min_x f(x) < \varepsilon$,
 067 is known to be NP-hard (Jain et al., 2017; Danilova et al., 2022). However, gradient descent based
 068 methods are still useful in this case. When these methods are applied to non-convex objectives,
 069 they treat the function f as locally convex and aim to converge to a local minimum. Despite this
 070 simplification, such methods have gained popularity in practice due to their superior performance
 071 compared to other approaches for non-convex optimization, such as convex relaxation-based methods
 072 (Tibshirani, 1996; Cai et al., 2010).

074 2.1 STOCHASTIC GRADIENT DESCENT

076 Arguably, one of the most prominent meta-methods for tackling non-convex optimization problems is
 077 stochastic gradient descent (**SGD**). The formulation of **SGD** is presented as the following iterative
 078 algorithm: $x^{k+1} = x^k - \gamma g^k$. Here, $g^k \in \mathbb{R}^d$ serves as a stochastic estimator of the gradient $\nabla f(x^k)$.
 079 **SGD** essentially mimics the classical gradient descent algorithm, and recovers it when $g^k = \nabla f(x^k)$.
 080 In this scenario, the method approximates the objective function f using a linear function and takes
 081 a step of size γ in the direction that maximally reduces this approximation. When the stepsize is
 082 sufficiently small, and the function f is suitably smooth, it can be demonstrated that the function
 083 value decreases, as discussed by Bubeck et al. (2015); Gower et al. (2019).

084 However, computing the full gradient can often be computationally expensive. In such cases,
 085 stochastic approximations of the gradient come into play. Stochastic estimators of the gradient can
 086 be employed for various purposes, leading to the development of different methods. These include
 087 stochastic batch gradient descent (Nemirovski et al., 2009; Johnson & Zhang, 2013; Defazio et al.,
 088 2014), randomized coordinate descent (Nesterov, 2012; Wright, 2015), and compressed gradient
 089 descent (Alistarh et al., 2017; Khirirat et al., 2018; Mishchenko et al., 2019). The latter, compressed
 090 gradient descent, holds particular relevance to this paper, and we will delve into a more detailed
 091 discussion of it in subsequent sections.

092 2.2 SECOND ORDER METHODS

093 The stochastic gradient descent is considered as a first-order method as it uses only the first order
 094 derivative information. Although being immensely popular, the first order methods are not always
 095 optimal. Not surprisingly, using higher order derivatives in deciding update direction can yield to
 096 faster algorithms. A simple instance of such algorithms is the Newton Star algorithm (Islamov et al.,
 097 2021):

$$098 \quad x^{k+1} = x^k - (\nabla^2 f(x^*))^{-1} \nabla f(x^k), \quad (\text{NS})$$

100 where x^* is the minimum point of the objective function. The authors establish that under specific
 101 conditions, the algorithm's convergence to the unique solution x^* in the convex scenario occurs at a
 102 local quadratic rate. Nonetheless, its practicality is limited since we do not have prior knowledge of
 103 the Hessian matrix at the optimal point. Despite being proposed recently, the Newton-Star algorithm
 104 gives a deeper insight on the generic Newton method (Gragg & Tapia, 1974; Miel, 1980; Yamamoto,
 105 1987):

$$106 \quad x^{k+1} = x^k - \gamma (\nabla^2 f(x^k))^{-1} \nabla f(x^k). \quad (\text{NM})$$

107 Here, the unknown Hessian of the Newton-Star algorithm, is estimated progressively along the
 108 iterations. The latter causes elevated computational costs, as the inverting a large square matrix is

108 expensive. As an alternative, quasi-Newton methods replace the inverse of the Hessian at the iterate
 109 with a computationally cheaper estimate (Broyden, 1965; Dennis & Moré, 1977; Al-Baali & Khalfan,
 110 2007; Al-Baali et al., 2014).

112 **2.3 FIXED MATRIX STEPSIZES**

114 The **det-CGD** algorithm falls into this framework of the second order methods as well. Proposed
 115 by Li et al. (2024)¹, the algorithm suggests using a uniform “upper bound” on the inverse Hessian
 116 matrix. Assuming matrix smoothness of the objective (Safaryan et al., 2021), they replace the scalar
 117 stepsize with a positive definite matrix \mathbf{D} . The algorithm is given as follows:

$$x^{k+1} = x^k - \mathbf{D}\mathbf{S}^k \nabla f(x^k). \quad (\text{det-CGD})$$

120 **Matrix \mathbf{D} .** Here, \mathbf{D} plays the role of the stepsize. Essentially, it uniformly lower bounds the
 121 inverse Hessian. The standard **SGD** is a particular case of this method, as the scalar stepsize γ can
 122 be seen as a matrix $\gamma \mathbf{I}_d$, where \mathbf{I}_d is the d -dimensional identity matrix. An advantage of using a
 123 matrix stepsize is more evident if we take the perspective of the second order methods. Indeed, the
 124 scalar stepsize $\gamma \mathbf{I}_d$ uniformly estimates the largest eigenvalue of the Hessian matrix, while \mathbf{D} can
 125 capture the Hessian more accurately. The authors show both theoretical and empirical improvement
 126 that comes with matrix stepsizes.

128 **Matrix \mathbf{S}^k .** We assume that \mathbf{S}^k is a positive semi-definite, stochastic sketch matrix. Furthermore,
 129 it is unbiased: $\mathbb{E}[\mathbf{S}^k] = \mathbf{I}_d$. We notice that **det-CGD** can be seen as a matrix stepsize instance of
 130 **SGD**, with $g^k = \mathbf{S}^k \nabla f(x^k)$. The sketch matrix can be seen as a linear compressing operator, hence
 131 the name of the algorithm: Compressed Gradient Descent (**CGD**) (Alistarh et al., 2017; Khirirat
 132 et al., 2018). A commonly used example of such a compressor is the Rand- τ compressor. This
 133 compressor randomly selects τ entries from its input and scales them using a scalar multiplier to
 134 ensure an unbiased estimation. By adopting this approach, instead of using all d coordinates of the
 135 gradient, only a subset of size τ is communicated. Formally, Rand- τ is defined as $\mathbf{S} = \frac{d}{\tau} \sum_{j=1}^{\tau} e_{i_j} e_{i_j}^{\top}$,
 136 where e_{i_j} denotes the i_j -th standard basis vector in \mathbb{R}^d . For a more comprehensive understanding of
 137 compression techniques, we refer to Safaryan et al. (2022b).

138 **2.4 THE NEIGHBORHOOD OF THE DISTRIBUTED DET-CGD**

140 The distributed version of **det-CGD** follows the standard federated learning paradigm (McMahan
 141 et al., 2017). The pseudocode of the method, as well as the convergence result of Li et al. (2024), can
 142 be found in Appendix I. Informally, their convergence result can be written as

$$\min_{k=1,\dots,K} \mathbb{E} \left[\left\| \nabla f(x^k) \right\|_{\mathbf{D}}^2 \right] \leq \mathcal{O} \left(\frac{(1+\alpha)^K}{K} \right) + \mathcal{O}(\alpha),$$

146 where $\alpha > 0$ is a constant that can be controlled. The crucial insight from this result is that the
 147 error bound does not diminish as the number of iterations increases. In fact, by controlling α and
 148 considering a large K , it is impossible to make the second term smaller than ε . This implies that
 149 the algorithm converges to a certain neighborhood surrounding the (local) optimum. Ultimately, the
 150 model we obtain suffers from lower accuracy and performance due to the inaccuracies introduced by
 151 this neighborhood. This phenomenon is a common occurrence in **SGD** and is primarily attributable to
 152 the variance associated with the stochastic gradient estimator. In the case of **det-CGD** the stochasticity
 153 comes from the sketch \mathbf{S}^k .

154 **2.5 VARIANCE REDUCTION**

156 To eliminate this neighborhood, various techniques for reducing variance are employed. One of
 157 the simplest techniques applicable to **CGD** is gradient shifting. By replacing $\mathbf{S}^k \nabla f(x^k)$ with
 158 $\mathbf{S}^k (\nabla f(x^k) - \nabla f(x^*)) + \nabla f(x^*)$, the neighborhood effect is removed from the general **CGD**.

160 ¹In the original paper, the algorithm is referred to as **det-CGD**, as there is a variant of the same algorithm
 161 named **det-CGD2**. Since we are going to use only the first one and our framework is applicable to both, we will
 remove the number in the end for the sake of brevity.

162 This algorithm is an instance of a more commonly known method called **SGD_{*}** (Gower et al.,
 163 2020). However, since the exact optimum x^* is typically unknown, this technique encounters similar
 164 challenges as the Newton-Star algorithm mentioned earlier. Fortunately, akin to quasi-Newton
 165 methods, one can employ methods that iteratively learn the optimal shift (Shulgin & Richtárik, 2022).
 166 A line of research focuses on variance reduction for **CGD** based algorithms on this insight.

167 To eliminate the neighborhood in the distributed version of **CGD**, denoted as **det-CGD1**, we apply a
 168 technique called **MARINA** (Gorbunov et al., 2021). **MARINA** cleverly combines the general shifting
 169 (Shulgin & Richtárik, 2022) technique with loopless variance reduction techniques (Qian et al., 2021).
 170 This approach introduces an alternative gradient estimator specifically designed for the federated
 171 learning setting. Thanks to its structure, it allows to establish an upper bound on the stationarity error
 172 that diminishes significantly with a large number of iterations. In this paper, we construct the analog
 173 of the this algorithm called **det-MARINA**, using matrix stepsizes and sketch gradient compressors.
 174 For this new method, we prove a convergence guarantee similar to the results of Li et al. (2024)
 175 without a neighborhood term.

176 Furthermore, we also propose **det-DASHA**, which is the extension of **DASHA** in the matrix stepsize
 177 setting. The latter was proposed by Tyurin & Richtárik (2024) and it combines **MARINA** with
 178 momentum variance reduction techniques (Cutkosky & Orabona, 2019). **DASHA** offers better
 179 practicality compared to **MARINA**, as it always sends compressed gradients and does not need to
 180 synchronize among all the nodes.

182 2.6 ORGANIZATION OF THE PAPER

184 The rest of the paper is organized as follows. Section 3 discusses the general mathematical framework.
 185 Section 4 and Section 5 present the **det-MARINA** and **det-DASHA** algorithms, respectively. We show
 186 the superior theoretical performance of our algorithms compared to the relevant existing algorithms,
 187 that is **MARINA**, **DASHA** and **det-CGD** in Section 6. The experimental results validating our
 188 theoretical findings are presented in Section 7, with additional details and setups available in the
 189 Appendix.

190 3 MATHEMATICAL FRAMEWORK

192 In this section we present the assumptions that we further require in the analysis.

194 **Assumption 3.1.** (Lower Boundedness) There exists $f^* \in \mathbb{R}$ such that, $f(x) \geq f^*$ for all $x \in \mathbb{R}^d$.

196 This is a standard assumption in optimization, as otherwise the problem of minimizing the objective
 197 would not be correct mathematically. We then introduce a matrix version of Lipschitz continuity for
 198 the gradient.

199 **Definition 3.2.** Matrix Smoothness Assume that $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is a continuously differentiable
 200 function and matrix $\mathbf{L} \in \mathbb{S}_{++}^d$. We say the gradient of f is \mathbf{L} -Lipschitz if for all $x, y \in \mathbb{R}^d$

$$201 \quad \|\nabla f(x) - \nabla f(y)\|_{\mathbf{L}^{-1}} \leq \|x - y\|_{\mathbf{L}}. \quad (2)$$

203 **Assumption 3.3.** Each function f_i is \mathbf{L}_i -gradient Lipschitz, while f is \mathbf{L} -gradient Lipschitz.

204 In fact, the second half of the assumption is a consequence of the first one. Below, we formalize this
 205 claim.

207 **Lemma 3.4.** If f_i is \mathbf{L}_i -gradient Lipschitz for every $i = 1, \dots, n$, then function f has \mathbf{L} -Lipschitz
 208 gradient with $\mathbf{L} \in \mathbb{S}_{++}^d$ satisfying

$$209 \quad \frac{1}{n} \sum_{i=1}^n \lambda_{\max}(\mathbf{L}^{-1}) \cdot \lambda_{\max}(\mathbf{L}_i) \cdot \lambda_{\max}(\mathbf{L}_i \mathbf{L}^{-1}) = 1.$$

212 **Remark 3.5.** In the scalar case, where $\mathbf{L} = L \mathbf{I}_d$, $\mathbf{L}_i = L_i \mathbf{I}_d$, the relation becomes $L^2 = \frac{1}{n} \sum_{i=1}^n L_i^2$.
 213 This corresponds to the statement in Assumption 1.2 in (Gorbunov et al., 2021).

215 Nevertheless, the matrix \mathbf{L} found according to Lemma 3.4 is only an estimate. In principle, there
 might exist a better $\mathbf{L}_f \preceq \mathbf{L}$ such that f has \mathbf{L}_f -Lipschitz gradient.

216 More generally, this condition can be interpreted as follows. The gradient of f naturally belongs
 217 to the dual space of \mathbb{R}^d , as it is defined as a linear functional on \mathbb{R}^d . In the scalar case, ℓ_2 -norm is
 218 self-dual, thus (2) reduces to the standard Lipschitz continuity of the gradient. However, with the
 219 matrix smoothness assumption, we are using the \mathbf{L} -norm for the iterates, which naturally induces the
 220 \mathbf{L}^{-1} -matrix norm for the gradients in the dual space. This insight, which is originally presented by
 221 Nemirovski & Yudin (1983), plays a key role in our analysis. See Appendix F for a more thorough
 222 discussion on the properties of Assumption 3.3, as well as its connection to matrix smoothness
 223 (Safaryan et al., 2021).

225 4 MARINA-BASED VARIANCE REDUCTION

227 In this section, we present **det-MARINA** with its convergence result. We construct a sequence
 228 of vectors g^k which are stochastic estimators of $\nabla f(x^k)$. At each iteration, the server samples a
 229 Bernoulli random variable (coin flip) c_k and broadcasts it in parallel to the clients, along with the
 230 current gradient estimate g^k . Each client, then, does a **det-CGD**-type update with the stepsize \mathbf{D} and
 231 a gradient estimate g^k . The next gradient estimate g^{k+1} is then computed. With a low probability,
 232 that is when $c_k = 1$, we take the g^{k+1} to be the full gradient $\nabla f(x^{k+1})$. Otherwise, we update it
 233 using the compressed gradient differences at each client. See Algorithm 1 for the pseudocode of
 234 **det-MARINA**.

235 Algorithm 1 **det-MARINA**

```

236 1: Input: starting point  $x^0$ , stepsize matrix  $\mathbf{D}$ , probability  $p \in (0, 1]$ , number of iterations  $K$ 
237 2: Initialize  $g^0 = \nabla f(x^0)$ 
238 3: for  $k = 0, 1, \dots, K - 1$  do
239 4:   Sample  $c_k \sim \text{Be}(p)$ 
240 5:   Broadcast  $g^k$  to all workers
241 6:   for  $i = 1, 2, \dots$  in parallel do
242 7:      $x^{k+1} = x^k - \mathbf{D} \cdot g^k$ 
243 8:     if  $c_k = 1$  then
244 9:        $g_i^{k+1} = \nabla f_i(x^{k+1})$ 
245 10:    else
246 11:       $g_i^{k+1} = g^k + \mathbf{S}_i^k (\nabla f_i(x^{k+1}) - \nabla f_i(x^k))$ 
247 12:    end if
248 13:   end for
249 14:    $g^{k+1} = \frac{1}{n} \sum_{i=1}^n g_i^{k+1}$ 
250 15: end for
251 16: Return:  $\tilde{x}^K$  uniformly sampled from  $\{x^k\}_{k=0}^{K-1}$ 

```

252 4.1 CONVERGENCE GUARANTEES

253 In the following theorem, we formulate one of the main results of this paper, which guarantees the
 254 convergence of Algorithm 1 under the above-mentioned assumptions.

255 **Theorem 4.1.** *Assume that Assumptions 3.1 and 3.3 hold, and the following condition on stepsize
 256 matrix $\mathbf{D} \in \mathbb{S}_{++}^d$ holds,*

$$257 \mathbf{D}^{-1} \succeq \left(\frac{(1-p) \cdot R(\mathbf{D}, \mathcal{S})}{np} + 1 \right) \mathbf{L}, \quad (3)$$

258 where $R(\mathbf{D}, \mathcal{S}) := \frac{1}{n} \sum_{i=1}^n \lambda_{\max}(\mathbf{L}_i) \lambda_{\max}(\mathbf{L}^{-\frac{1}{2}} \mathbf{L}_i \mathbf{L}^{-\frac{1}{2}}) \times \lambda_{\max}(\mathbb{E}[\mathbf{S}_i^k \mathbf{D} \mathbf{S}_i^k] - \mathbf{D})$. Then, after
 259 K iterations of **det-MARINA**, we have

$$260 \mathbb{E} \left[\left\| \nabla f(\tilde{x}^K) \right\|_{\frac{\mathbf{D}}{\det(\mathbf{D})^{1/d}}}^2 \right] \leq \frac{2(f(x^0) - f^*)}{\det(\mathbf{D})^{1/d} \cdot K}. \quad (4)$$

261 Here, \tilde{x}^K is chosen uniformly randomly from the first K iterates of the algorithm.

262 **Remark 4.2.** The criterion $\|\cdot\|_{\mathbf{D}/\det(\mathbf{D})^{1/d}}^2$ is the same as that used in Li et al. (2024), known as determinant
 263 normalization. The weight matrix of the matrix norm has determinant 1 after normalization,
 264 which makes it comparable to the standard Euclidean norm.

270 *Remark 4.3.* We notice that the right-hand side of the algorithm vanishes with the number of iterations,
 271 thus solving the neighborhood issue of the distributed **det-CGD**. Therefore, **det-MARINA** is indeed
 272 the variance reduced version of **det-CGD** in the distributed setting and has better convergence
 273 guarantees.

274 *Remark 4.4.* Theorem 4.1 implies the following iteration complexity for the algorithm. In order to
 275 get an ε^2 stationarity error², the algorithm requires K iterations, with

$$277 \quad K \geq \frac{2(f(x^0) - f^*)}{\det(\mathbf{D})^{1/d} \cdot \varepsilon^2}.$$

279 *Remark 4.5.* In the case where no compression is applied, that is we have $\mathbf{S}_i^k = \mathbf{I}_d$, condition (3)
 280 reduces to $\mathbf{D} \preceq \mathbf{L}^{-1}$. The latter is due to $\mathbb{E}[\mathbf{S}_i^k \mathbf{D} \mathbf{S}_i^k] = \mathbf{D}$, which results in $R(\mathbf{D}, \mathcal{S}) = 0$. This is
 281 expected, since in the deterministic case **det-MARINA** reduces to **GD** with matrix stepsize.
 282

283 The convergence condition and rate of matrix stepsize **GD** can be found in (Li et al., 2024). Below
 284 we do a sanity check to verify that the convergence condition for scalar **MARINA** can be obtained.

285 *Remark 4.6.* Let us consider the scalar case. In this case, we have $\mathbf{L}_i = L_i \mathbf{I}_d$, $\mathbf{L} = L \mathbf{I}_d$, $\mathbf{D} = \gamma \mathbf{I}_d$
 286 and $\omega = \lambda_{\max}(\mathbb{E}[(\mathbf{S}_i^k)^\top \mathbf{S}_i^k]) - 1$. Then, condition (3) reduces to
 287

$$288 \quad \gamma \leq \left[L \left(1 + \sqrt{\frac{(1-p)\omega}{pn}} \right) \right]^{-1}.$$

292 The latter coincides with the stepsize condition of the convergence result of scalar **MARINA**.
 293

294 4.2 OPTIMIZING THE MATRIX STEPSIZE

296 As previously noted in Remark 4.2, the norm on the left-hand side of (4) is comparable to the standard
 297 Euclidean norm. To optimize the matrix stepsize, our focus will be directed toward the right-hand
 298 side of (4). We notice that it decreases in terms of the determinant of the stepsize matrix. Therefore,
 299 one needs to solve the following optimization problem to find the optimal stepsize:

$$300 \quad \begin{aligned} & \text{minimize} && \log \det(\mathbf{D}^{-1}) \\ 301 & \text{subject to} && \mathbf{D} \text{ satisfying (3).} \end{aligned}$$

303 The solution of this constrained minimization problem on \mathbb{S}_{++}^d is not explicit. In theory, one may
 304 show that the constraint (3) is convex and attempt to solve the problem numerically. However, as
 305 stressed by Li et al. (2024), the similar stepsize condition for **det-CGD** is not easily computed using
 306 solvers like CVXPY (Diamond & Boyd, 2016). Instead, we may relax the problem to certain linear
 307 subspaces of \mathbb{S}_{++}^d . In particular, we fix a matrix $\mathbf{W} \in \mathbb{S}_{++}^d$, and define $\mathbf{D} := \gamma \mathbf{W}$. Then, the
 308 condition on the matrix \mathbf{D} becomes a condition for the scalar γ , which is given in the following
 309 corollary.

310 **Corollary 4.7.** Let $\mathbf{W} \in \mathbb{S}_{++}^d$, defining $\mathbf{D} := \gamma \cdot \mathbf{W}$, where $\gamma \in \mathbb{R}_+$. then the condition in (3)
 311 reduces to the following condition on γ

$$312 \quad \gamma \leq \frac{2\lambda_{\mathbf{W}}}{1 + \sqrt{1 + 4\alpha\beta \cdot \Lambda_{\mathbf{W}, \mathcal{S}} \lambda_{\mathbf{W}}}}, \quad (5)$$

315 where

$$316 \quad \begin{aligned} \Lambda_{\mathbf{W}, \mathcal{S}} &:= \lambda_{\max}(\mathbb{E}[\mathbf{S}_i^k \mathbf{W} \mathbf{S}_i^k] - \mathbf{W}), \\ 317 \lambda_{\mathbf{W}} &:= \lambda_{\max}^{-1}(\mathbf{W}^{\frac{1}{2}} \mathbf{L} \mathbf{W}^{\frac{1}{2}}), \quad \alpha := \frac{1-p}{np}, \\ 318 \beta &:= \frac{1}{n} \sum_{i=1}^n \lambda_{\max}(\mathbf{L}_i) \cdot \lambda_{\max}(\mathbf{L}^{-1} \mathbf{L}_i). \end{aligned}$$

323 ²We say a (possibly random) vector $x \in \mathbb{R}^d$ is an ε -stationary point of a possibly non-convex function
 324 $f : \mathbb{R}^d \mapsto \mathbb{R}$, if $\mathbb{E}[\|\nabla f(x)\|^2] \leq \varepsilon^2$. The expectation is over the randomness of the algorithm

This means that for every fixed \mathbf{W} , we can find the optimal scaling coefficient γ . In section Section 6, we will use this corollary to prove that a suboptimal matrix step size, determined in this efficient way, is already better than the optimal scalar step size.

Further Extension. A variant of **det-CGD** was also proposed by Li et al. (2024). This algorithm, has the same structure as **det-CGD** with the sketch and stepsize interchanged. It was shown, that this algorithm has explicit stepsize condition in the single node setting. In Appendix J, we propose the variance reduced extension of the this algorithm following the **MARINA** scheme.

5 DASHA-BASED VARIANCE REDUCTION

In this section, we present our second algorithm based on **DASHA**. The latter utilizes a different type of variance reduction based on momentum. Compared to **MARINA**, **DASHA** makes simpler optimization steps and does not require periodic synchronization with all the nodes.

Algorithm 2 **det-DASHA**

```

1: Input: starting point  $x^0 \in \mathbb{R}^d$ , stepsize matrix  $\mathbf{D} \in \mathbb{S}_{++}^d$ , momentum  $a \in (0, 1]$ , number of
2: iterations  $K$ 
3: Initialize  $g_i^0, h_i^0 \in \mathbb{R}^d$  on the nodes and  $g^0 = \frac{1}{n} \sum_{i=1}^n g_i^0$  on the server
4: for  $k = 0, 1, \dots, K-1$  do
5:    $x^{k+1} = x^k - \mathbf{D} \cdot g^k$ 
6:   Broadcast  $x^{k+1}$  to all nodes
7:   for  $i = 1, 2, \dots, n$  in parallel do
8:      $h_i^{k+1} = \nabla f_i(x^{k+1})$ 
9:      $m_i^{k+1} = \mathbf{S}_i^k (h_i^{k+1} - h_i^k - a(g_i^k - h_i^k))$ 
10:     $g_i^{k+1} = g_i^k + m_i^{k+1}$ 
11:   end for
12:    $g^{k+1} = g^k + \frac{1}{n} \sum_{i=1}^n m_i^{k+1}$ 
13: end for
14: Return:  $\tilde{x}^K$  uniformly sampled from  $\{x^k\}_{k=0}^{K-1}$ 

```

5.1 THEORETICAL GUARANTEES

Theorem 5.1. Suppose that Assumptions 3.1 and 3.3 hold. Let us initialize $g_i^0 = h_i^0 = \nabla f_i(x^0)$ for all $i \in [n]$ in Algorithm 2, and define $\omega_{\mathbf{D}} := \lambda_{\max}(\mathbf{D}^{-1}) \cdot \Lambda_{\mathbf{D}, \mathcal{S}}$. If $a = \frac{1}{2\omega_{\mathbf{D}} + 1}$, and the following condition on stepsize $\mathbf{D} \in \mathbb{S}_{++}^d$ is satisfied

$$\mathbf{D}^{-1} \succeq \mathbf{L} - \frac{4\lambda_{\max}(\mathbf{D})\omega_{\mathbf{D}}(4\omega_{\mathbf{D}} + 1)}{n^2} \sum_{i=1}^n \lambda_{\max}(\mathbf{L}_i) \mathbf{L}_i,$$

then the following inequality holds for the iterates of Algorithm 2

$$\mathbb{E} \left[\left\| \nabla f(\tilde{x}^K) \right\|_{\mathbf{D}/(\det(\mathbf{D}))^{1/d}}^2 \right] \leq \frac{2(f(x^0) - f^*)}{\det(\mathbf{D})^{1/d} \cdot K}.$$

Here \tilde{x}^K is chosen uniformly randomly from the first K iterates of the algorithm.

Remark 5.2. The term $\Lambda_{\mathbf{D}, \mathcal{S}}$ can be viewed as the matrix version of $\gamma \cdot \omega$, where ω is associated with the sketch, and γ is the scalar stepsize. On the other hand, the $\omega_{\mathbf{D}}$ is the extension of ω in matrix norm. Similar to Remark 4.6, plugging in scalar arguments in the algorithm, we recover the result from Tyurin & Richtárik (2024).

Following the same scheme as in Section 4, we choose $\mathbf{D} = \gamma_{\mathbf{W}} \cdot \mathbf{W}$, where $\mathbf{W} \in \mathbb{S}_{++}^d$. Thus, for a fixed \mathbf{W} , we relax the problem of finding the optimal stepsize to the problem of finding the optimal scaling factor $\gamma_{\mathbf{W}} > 0$.

378 **Corollary 5.3.** For a fixed $\mathbf{W} \in \mathbb{S}_{++}^d$, the optimal scaling factor $\gamma_{\mathbf{W}} \in \mathbb{R}_+$ is given by
 379

$$380 \quad \gamma_{\mathbf{W}} = \frac{2\lambda_{\mathbf{W}}}{1 + \sqrt{1 + 16C_{\mathbf{W}}\lambda_{\min}(\mathbf{L}) \cdot \lambda_{\mathbf{W}}}},$$

382 where $C_{\mathbf{W}} := \lambda_{\max}(\mathbf{W}) \cdot \omega_{\mathbf{W}} (4\omega_{\mathbf{W}} + 1)/n$ and $\lambda_{\mathbf{W}}$ is defined in Corollary 4.7.
 383

384 We observe that the structure of the optimal scaling factor for obtained above is similar to the one
 385 obtained in Corollary 4.7.
 386

387 **The availability of \mathbf{L} :** For both algorithms, in order to determine the matrix stepsize, the knowledge
 388 of \mathbf{L} is needed, if \mathbf{L} is known, better complexities are guaranteed. When \mathbf{L} is unknown, a closed-form
 389 solution can be obtained for generalized linear models. In more general cases, \mathbf{L}_i can be treated
 390 as hyperparameters and estimated using first-order information via a gradient-based method (Wang
 391 et al., 2022). One can think of this as some type of preprocessing step, after which the matrices are
 392 learnt.
 393

394 6 COMPLEXITIES OF THE ALGORITHMS

395 6.1 DET-MARINA

396 The following corollary formulates the iteration complexity for **det-MARINA** for $\mathbf{W} = \mathbf{L}^{-1}$.
 397

398 **Corollary 6.1.** If we take $\mathbf{W} = \mathbf{L}^{-1}$, then the condition (5) on γ is given by
 399

$$400 \quad \gamma \leq 2 \left(1 + \sqrt{1 + 4\alpha\beta \cdot \Lambda_{\mathbf{L}^{-1}, \mathcal{S}}} \right)^{-1}. \quad (6)$$

401 In order to obtain an ε -stationary point, that is, to satisfy $\mathbb{E} \left[\left\| \nabla f(\tilde{x}^K) \right\|_0^2 \frac{D}{\det(D)^{1/d}} \right] \leq \varepsilon^2$, we require
 402
 403
$$404 \quad K \geq \mathcal{O} \left(\frac{\Delta_0 \cdot \det(\mathbf{L})^{1/d}}{\varepsilon^2} \cdot \left(1 + \sqrt{1 + 4\alpha\beta \cdot \Lambda_{\mathbf{L}^{-1}, \mathcal{S}}} \right) \right),$$

405 where $\Delta_0 := f(x^0) - f(x^*)$. Moreover, this iteration complexity is always better than the one of
 406 **MARINA**.
 407

408 The proof can be found in the Appendix. In fact, we can show that in cases where we fix $\mathbf{W} = \mathbf{I}_d$ and
 409 $\mathbf{W} = \text{diag}^{-1}(\mathbf{L})$, the same conclusion also holds, relevant details can be found in Appendix G.3.
 410 This essentially means that **det-MARINA** always has a “larger” stepsize compared to **MARINA**, even
 411 if the stepsize is suboptimal for the sake of efficiency, which leads to a better iteration complexity.
 412 In addition, since we are using the same compressor for those two algorithms, the communication
 413 complexity of **det-MARINA** is also provably better than that of **MARINA**.
 414

415 In order to compute the communication complexity, we borrow the concept of expected density from
 416 Gorbunov et al. (2021).
 417

418 **Definition 6.2.** For a given sketch matrix $\mathbf{S} \in \mathbb{S}_+^d$, the expected density is defined as
 419

$$420 \quad \zeta_{\mathbf{S}} = \sup_{x \in \mathbb{R}^d} \mathbb{E}[\| \mathbf{S}x \|_0],$$

421 where $\|x\|_0$ denotes the number of non-zero components of $x \in \mathbb{R}^d$.
 422

423 In particular, we have $\zeta_{\text{Rand}-\tau} = \tau$. Below, we state the communication complexity of **det-MARINA**
 424 with $\mathbf{W} = \mathbf{L}^{-1}$ and the Rand- τ compressor.
 425

426 **Corollary 6.3.** Assume that we are using sketch $\mathbf{S} \sim \mathcal{S}$ with expected density $\zeta_{\mathbf{S}}$. Suppose also we
 427 are running **det-MARINA** with probability p and we use the optimal stepsize matrix with respect to
 428 $\mathbf{W} = \mathbf{L}^{-1}$. Then the overall communication complexity of the algorithm is given by $\mathcal{O}((Kp + 1)d +$
 429 $(1 - p)K\zeta_{\mathbf{S}})$. Specifically, if we pick $p = \zeta_{\mathbf{S}}/d$, then the communication complexity is given by
 430

$$431 \quad \mathcal{O} \left(d + \frac{\Delta_0 \det(\mathbf{L})^{1/d}}{\varepsilon^2} \left(\zeta_{\mathbf{S}} + \sqrt{\frac{\beta}{n} \Lambda_{\mathbf{L}^{-1}, \mathcal{S}} \zeta_{\mathbf{S}} (d - \zeta_{\mathbf{S}})} \right) \right).$$

Notice that in case where no compression is applied, the communication complexity reduces to $\mathcal{O}(d\Delta_0 \cdot \det(\mathbf{L})^{1/d}/\varepsilon^2)$. The latter coincides with the rate of matrix stepsize GD (see (Li et al., 2024)). Therefore, the dependence on ε is not possible to improve further since **GD** is optimal among first order methods (Carmon et al., 2020).

Figure 1: Comparison of **DCGD** with optimal stepsize, **det-CGD** with matrix stepsize \mathbf{D}_3^* , **MARINA** with optimal stepsize, **DASHA** with optimal scalar stepsize, **det-MARINA** with optimal stepsize \mathbf{D}_{L-1}^* and **det-DASHA** with optimal stepsize \mathbf{D}_{L-1}^{**} . Throughout the experiment, we use Rand- τ sketch with $\tau = 60$. The $G_{K,D}$ in the y-axis is defined in (51), which is the average squared matrix norm of the gradients.

6.2 DET-DASHA

The difference of compression mechanisms, does not allow us to have a direct comparison of the complexities of these algorithms. In particular, **det-MARINA** compresses the gradient difference with some probability p , while **det-DASHA** compresses the gradient difference with momentum in each iteration.

Corollary 6.4. *If we pick $\mathbf{D} = \gamma_{\mathbf{L}^{-1}} \cdot \mathbf{L}^{-1}$, then in order to reach an ε^2 stationary point, **det-DASHA** needs K iterations with*

$$K \geq \frac{f(x^0) - f^*}{\det(\mathbf{L})^{-1/d} \varepsilon^2} \left(1 + \sqrt{1 + 16C_{\mathbf{L}^{-1}} \lambda_{\min}(\mathbf{L})} \right).$$

The following corollary compares the complexities of **DASHA** and **det-DASHA**. For the sake of brevity, we defer the complexities and other details to the proof of this corollary.

Corollary 6.5. *Suppose that the conditions in Theorem 5.1 hold, then compared to **DASHA**, **det-DASHA** with $\mathbf{W} = \mathbf{L}^{-1}$ always has a **better** iteration complexity, therefore, communication complexity as well.*

The following corollary suggests that the communication complexity of **det-DASHA** is better than that of **det-MARINA**,

Corollary 6.6. *The iteration complexity of **det-MARINA** with $p = 1/(\omega_{\mathbf{L}^{-1}} + 1)$ and **det-DASHA** with momentum $1/(2\omega_{\mathbf{L}^{-1}} + 1)$ is the same, therefore the communication complexity of **det-DASHA** is better than the communication complexity of **det-MARINA**.*

The resulting rates and communication complexities are summarized in Table 1 and Table 2, which provide a compact comparison of the considered methods under their respective assumptions.

7 EXPERIMENTS

We refer the readers to the appendix for more technical details of the experiments. Figure 1 shows that the performance in terms of communication complexity of **det-DASHA** and **det-MARINA** is better than their scalar counterpart **DASHA** and **MARINA** respectively. This validates the efficiency of using a matrix stepsize over a scalar stepsize. Further, **det-DASHA** and **det-MARINA** have better communication complexity in this case, compared to **det-CGD**. This demonstrates the effectiveness of applying variance reduction. Finally, as expected, **det-DASHA** has better communication complexity than **det-MARINA**.

486 REFERENCES
487

488 Mehiddin Al-Baali and H Khalfan. An overview of some practical quasi-Newton methods for
489 unconstrained optimization. *Sultan Qaboos University Journal for Science [SQUJS]*, 12(2):
490 199–209, 2007.

491 Mehiddin Al-Baali, Emilio Spedicato, and Francesca Maggioni. Broyden’s quasi-Newton methods
492 for a nonlinear system of equations and unconstrained optimization: a review and open problems.
493 *Optimization Methods and Software*, 29(5):937–954, 2014.

494

495 Foivos Alimisis, Peter Davies, and Dan Alistarh. Communication-efficient distributed optimization
496 with quantized preconditioners. In *International Conference on Machine Learning*, pp. 196–206.
497 PMLR, 2021.

498

499 Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Communication-
500 efficient SGD via gradient quantization and encoding. *Advances in Neural Information Processing
Systems*, 30, 2017.

501

502 Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. In
503 *Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing*, pp. 1200–
504 1205, 2017.

505

506 Rajendra Bhatia. *Positive definite matrices*. Princeton University Press, 2009.

507

508 Charles G Broyden. A class of methods for solving nonlinear simultaneous equations. *Mathematics
of Computation*, 19(92):577–593, 1965.

509

510 Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. *Foundations and Trends®
in Machine Learning*, 8(3-4):231–357, 2015.

511

512 Jian-Feng Cai, Emmanuel J Candès, and Zuowei Shen. A singular value thresholding algorithm for
513 matrix completion. *SIAM Journal on Optimization*, 20(4):1956–1982, 2010.

514

515 Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
516 points i. *Mathematical Programming*, 184(1-2):71–120, 2020.

517

518 Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines. *ACM
Transactions on Intelligent Systems and Technology (TIST)*, 2(3):1–27, 2011.

519

520 Sélim Chraibi, Ahmed Khaled, Dmitry Kovalev, Peter Richtárik, Adil Salim, and Martin Takáč.
521 Distributed fixed point methods with compressed iterates. *arXiv preprint arXiv:1912.09925*, 2019.

522

523 Rixon Crane and Fred Roosta. Dingo: Distributed Newton-type method for gradient-norm optimiza-
524 tion. *Advances in Neural Information Processing Systems*, 32, 2019.

525

526 Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex SGD.
527 *Advances in Neural Information Processing Systems*, 32, 2019.

528

529 Marina Danilova, Pavel Dvurechensky, Alexander Gasnikov, Eduard Gorbunov, Sergey Guminov,
530 Dmitry Kamzolov, and Innokentiy Shibaev. Recent theoretical advances in non-convex optimiza-
531 tion. In *High-Dimensional Optimization and Probability: With a View Towards Data Science*, pp.
532 79–163. Springer, 2022.

533

534 Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient method
535 with support for non-strongly convex composite objectives. *Advances in Neural Information
Processing Systems*, 27, 2014.

536

537 John E Dennis, Jr and Jorge J Moré. Quasi-Newton methods, motivation and theory. *SIAM Review*,
538 19(1):46–89, 1977.

539 Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for convex
optimization. *The Journal of Machine Learning Research*, 17(1):2909–2913, 2016.

540 Canh T Dinh, Nguyen H Tran, Tuan Dung Nguyen, Wei Bao, Albert Y Zomaya, and Bing B Zhou.
 541 Federated learning with proximal stochastic variance reduced gradient algorithms. In *Proceedings*
 542 *of the 49th International Conference on Parallel Processing*, pp. 1–11, 2020.

543

544 Darina Dvinskikh, Aleksandr Ogaltssov, Alexander Gasnikov, Pavel Dvurechensky, Alexander Tyurin,
 545 and Vladimir Spokoiny. Adaptive gradient descent for convex and non-convex stochastic optimiza-
 546 *arXiv preprint arXiv:1911.08380*, 2019.

547 Eduard Gorbunov, Konstantin P Burlachenko, Zhize Li, and Peter Richtárik. MARINA: Faster non-
 548 convex distributed learning with compression. In *International Conference on Machine Learning*,
 549 pp. 3788–3798. PMLR, 2021.

550

551 Robert M Gower, Mark Schmidt, Francis Bach, and Peter Richtárik. Variance-reduced methods for
 552 machine learning. *Proceedings of the IEEE*, 108(11):1968–1983, 2020.

553

554 Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and Peter
 555 Richtárik. SGD: General analysis and improved rates. In *International Conference on Machine*
 556 *Learning*, pp. 5200–5209. PMLR, 2019.

557

558 William B Gragg and Richard A Tapia. Optimal error bounds for the Newton–Kantorovich theorem.
 559 *SIAM Journal on Numerical Analysis*, 11(1):10–13, 1974.

560

561 SV Guminov, Yu E Nesterov, PE Dvurechensky, and AV Gasnikov. Accelerated primal-dual gradient
 562 descent with linesearch for convex, nonconvex, and nonsmooth optimization problems. In *Doklady*
 563 *Mathematics*, volume 99, pp. 125–128. Springer, 2019.

564

565 Filip Hanzely and Peter Richtárik. Federated learning of a mixture of global and local models. *arXiv*
 566 *preprint arXiv:2002.05516*, 2020.

567

568 Samuel Horváth, Chen-Yu Ho, Ludovit Horvath, Atal Narayan Sahu, Marco Canini, and Peter
 569 Richtárik. Natural compression for distributed deep learning. In *Mathematical and Scientific*
 570 *Machine Learning*, pp. 129–141. PMLR, 2022.

571

572 Samuel Horváth, Dmitry Kovalev, Konstantin Mishchenko, Peter Richtárik, and Sebastian Stich.
 573 Stochastic distributed learning with gradient quantization and double-variance reduction. *Opti-*
 574 *mization Methods and Software*, 38(1):91–106, 2023.

575

576 Rustem Islamov, Xun Qian, and Peter Richtárik. Distributed second order methods with fast rates and
 577 compressed communication. In *International Conference on Machine Learning*, pp. 4617–4628.
 578 PMLR, 2021.

579

580 Sashank J Reddi, Suvrit Sra, Barnabas Poczos, and Alexander J Smola. Proximal stochastic methods
 581 for nonsmooth nonconvex finite-sum optimization. *Advances in Neural Information Processing*
 582 *Systems*, 29, 2016.

583

584 Prateek Jain, Purushottam Kar, et al. Non-convex optimization for machine learning. *Foundations*
 585 *and Trends® in Machine Learning*, 10(3-4):142–363, 2017.

586

587 Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
 588 reduction. *Advances in neural information processing systems*, 26, 2013.

589

590 Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Benni, Arjun Nitin
 591 Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
 592 vances and open problems in federated learning. *Foundations and Trends® in Machine Learning*,
 593 14(1–2):1–210, 2021.

594

595 Ahmed Khaled and Peter Richtárik. Better theory for SGD in the nonconvex world. *Transactions on*
 596 *Machine Learning Research*, 2023.

597

598 Prashant Khanduri, Pranay Sharma, Swatantra Kafle, Saikiran Bulusu, Ketan Rajawat, and Pramod K
 599 Varshney. Distributed stochastic non-convex optimization: Momentum-based variance reduction.
 600 *arXiv preprint arXiv:2005.00224*, 2020.

594 Sarit Khirirat, Hamid Reza Feyzmahdavian, and Mikael Johansson. Distributed learning with
 595 compressed gradients. *arXiv preprint arXiv:1806.06573*, 2018.
 596

597 Jakub Konečný, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
 598 Dave Bacon. Federated learning: Strategies for improving communication efficiency. *arXiv*
 599 *preprint arXiv:1610.05492*, 8, 2016.

600 Dmitry Kovalev, Samuel Horváth, and Peter Richtárik. Don't jump through hoops and remove those
 601 loops: SVRG and Katyusha are better without the outer loop. In *Algorithmic Learning Theory*, pp.
 602 451–467. PMLR, 2020.
 603

604 Hanmin Li, Avetik Karagulyan, and Peter Richtárik. Det-CGD: Compressed gradient descent
 605 with matrix stepsizes for non-convex optimization. In *International Conference on Learning*
 606 *Representations*, 2024.

607 Junyi Li, Feihu Huang, and Heng Huang. Local stochastic bilevel optimization with momentum-based
 608 variance reduction. *arXiv preprint arXiv:2205.01608*, 2022.
 609

610 Zhize Li, Dmitry Kovalev, Xun Qian, and Peter Richtárik. Acceleration for compressed gradient
 611 descent in distributed and federated optimization. *arXiv preprint arXiv:2002.11364*, 2020.

612 Zhize Li, Hongyan Bao, Xiangliang Zhang, and Peter Richtárik. PAGE: A simple and optimal
 613 probabilistic gradient estimator for nonconvex optimization. In *International Conference on*
 614 *Machine Learning*, pp. 6286–6295. PMLR, 2021.
 615

616 Deyi Liu, Lam M Nguyen, and Quoc Tran-Dinh. An optimal hybrid variance-reduced algorithm for
 617 stochastic composite nonconvex optimization. *arXiv preprint arXiv:2008.09055*, 2020.

618 Julien Mairal. Incremental majorization-minimization optimization with application to large-scale
 619 machine learning. *SIAM Journal on Optimization*, 25(2):829–855, 2015.
 620

621 Artavazd Maranjyan, Mher Safaryan, and Peter Richtárik. GradSkip: Communication-accelerated
 622 local gradient methods with better computational complexity. *arXiv preprint arXiv:2210.16402*,
 623 2022.

624 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 625 Communication-efficient learning of deep networks from decentralized data. In *Artificial Intelli-*
 626 *gence and Statistics*, pp. 1273–1282. PMLR, 2017.
 627

628 George J Miel. Majorizing sequences and error bounds for iterative methods. *Mathematics of*
 629 *Computation*, 34(149):185–202, 1980.

630 Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning
 631 with compressed gradient differences. *arXiv preprint arXiv:1901.09269*, 2019.
 632

633 Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, and Peter Richtarik. ProxSkip: Yes!
 634 Local gradient steps provably lead to communication acceleration! Finally! In Kamalika Chaudhuri,
 635 Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of*
 636 *the 39th International Conference on Machine Learning*, volume 162 of *Proceedings of Machine*
 637 *Learning Research*, pp. 15750–15769. PMLR, 17–23 Jul 2022.

638 Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic
 639 approximation approach to stochastic programming. *SIAM Journal on Optimization*, 19(4):1574–
 640 1609, 2009.
 641

642 Arkadi Semenovič Nemirovski and David Borisovich Yudin. Problem complexity and method
 643 efficiency in optimization. *Wiley-Interscience*, ISSN 0277-2698, 1983.

644 Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. *SIAM*
 645 *Journal on Optimization*, 22(2):341–362, 2012.
 646

647 Jie Peng, Zhaoxian Wu, Qing Ling, and Tianyi Chen. Byzantine-robust variance-reduced federated
 learning over distributed non-iid data. *Information Sciences*, 616:367–391, 2022.

648 Xun Qian, Zheng Qu, and Peter Richtárik. L-SVRG and L-Katyusha with arbitrary sampling. *The*
 649 *Journal of Machine Learning Research*, 22(1):4991–5039, 2021.
 650

651 Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-coordinate descent
 652 methods for minimizing a composite function. *Mathematical Programming*, 144(1-2):1–38, 2014.
 653

654 Mher Safaryan, Filip Hanzely, and Peter Richtárik. Smoothness matrices beat smoothness constants:
 655 Better communication compression techniques for distributed optimization. *Advances in Neural*
 656 *Information Processing Systems*, 34:25688–25702, 2021.
 657

658 Mher Safaryan, Rustem Islamov, Xun Qian, and Peter Richtarik. FedNL: Making Newton-type
 659 methods applicable to federated learning. In *International Conference on Machine Learning*, pp.
 18959–19010. PMLR, 2022a.
 660

661 Mher Safaryan, Egor Shulgin, and Peter Richtárik. Uncertainty principle for communication compres-
 662 sion in distributed and federated learning and the search for an optimal compressor. *Information*
 663 *and Inference: A Journal of the IMA*, 11(2):557–580, 2022b.
 664

665 Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
 666 average gradient. *Mathematical Programming*, 162:83–112, 2017.
 667

668 Egor Shulgin and Peter Richtárik. Shifted compression framework: Generalizations and improve-
 669 ments. In *Uncertainty in Artificial Intelligence*, pp. 1813–1823. PMLR, 2022.
 670

671 Robert Tibshirani. Regression shrinkage and selection via the LASSO. *Journal of the Royal Statistical*
 672 *Society Series B: Statistical Methodology*, 58(1):267–288, 1996.
 673

674 Quoc Tran-Dinh, Nhan H Pham, Dzung T Phan, and Lam M Nguyen. A hybrid stochastic optimization
 675 framework for composite nonconvex optimization. *Mathematical Programming*, 191(2):1005–
 676 1071, 2022.
 677

678 Alexander Tyurin and Peter Richtárik. DASHA: Distributed nonconvex optimization with commu-
 679 nication compression and optimal oracle complexity. In *International Conference on Learning*
 680 *Representations*, 2024.
 681

682 Bokun Wang, Mher Safaryan, and Peter Richtárik. Theoretically better and numerically faster
 683 distributed optimization with smoothness-aware quantization techniques. *Advances in Neural*
 684 *Information Processing Systems*, 35:9841–9852, 2022.
 685

686 Shusen Wang, Fred Roosta, Peng Xu, and Michael W Mahoney. Giant: Globally improved approxi-
 687 mate Newton method for distributed optimization. *Advances in Neural Information Processing*
 688 *Systems*, 31, 2018.
 689

690 Stephen J Wright. Coordinate descent algorithms. *Mathematical programming*, 151(1):3–34, 2015.
 691

692 Tetsuro Yamamoto. A convergence theorem for Newton-like methods in banach spaces. *Numerische*
 693 *Mathematik*, 51:545–557, 1987.
 694

695 Jiaqi Zhang, Keyou You, and Tamer Başar. Achieving globally superlinear convergence for distributed
 696 optimization with adaptive Newton method. In *2020 59th IEEE Conference on Decision and*
 697 *Control (CDC)*, pp. 2329–2334. IEEE, 2020a.
 698

699 Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv
 700 Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? *Advances in Neural*
 701 *Information Processing Systems*, 33:15383–15393, 2020b.
 702

698 A LLM USAGE

700 A language model was employed exclusively for grammar and word-choice refinement at the sentence
 701 level. It was not used for content generation, analysis, or any part of the research process.

702
 703 Table 1: Assumptions and convergence rates. Abbreviations: Sm = smoothness, Interp = interpolation
 704 condition, Unb = unbiasedness, MatSm = matrix smoothness. ζ = expected transmitted coordinates.

Method	Assumptions	Rate
DCGD	Sm+Interp+Unb	$\mathcal{O}\left(\frac{L\Delta^0}{K}\right)$
det-CGD	MatSm+Interp+Unb	$\mathcal{O}\left(\frac{\det(\mathbf{L})^{1/d}\Delta^0}{K}\right)$
MARINA	Sm+Unb	$\mathcal{O}\left(\frac{L\Delta^0\left(1+\sqrt{\frac{(1-p)\omega}{pn}}\right)}{K}\right)$
DASHA	Sm+Unb	$\mathcal{O}\left(\frac{L\Delta^0\left(1+\frac{\omega}{\sqrt{n}}\right)}{K}\right)$
det-MARINA	MatSm+Unb	$\mathcal{O}\left(\frac{\det(\mathbf{L})^{1/d}\Delta^0\left(1+\sqrt{1+4\alpha\beta\Lambda_{\mathbf{L}^{-1},S}}\right)}{K}\right)$
det-DASHA	MatSm+Unb	$\mathcal{O}\left(\frac{\det(\mathbf{L})^{1/d}\Delta^0\left(1+\sqrt{1+16C_{\mathbf{L}^{-1}}\lambda_{\min}(\mathbf{L})}\right)}{K}\right)$

B NOTATIONS

724
 725 The standard Euclidean norm on \mathbb{R}^d is defined as $\|\cdot\|$. We use \mathbb{S}_{++}^d (resp. \mathbb{S}_+^d) to denote the positive
 726 definite (resp. semi-definite) cone of dimension d . \mathbb{S}^d is used to denote all symmetric matrices of
 727 dimension d . We use the notation \mathbf{I}_d to denote the identity matrix of size $d \times d$, and \mathbf{O}_d to denote
 728 the zero matrix of size $d \times d$. Given $\mathbf{Q} \in \mathbb{S}_{++}^d$ and $x \in \mathbb{R}^d$, $\|x\|_{\mathbf{Q}} := \sqrt{x^\top \mathbf{Q} x} = \sqrt{\langle x, \mathbf{Q} x \rangle}$,
 729 where $\langle \cdot, \cdot \rangle$ is the standard Euclidean inner product on \mathbb{R}^d . For a matrix $\mathbf{A} \in \mathbb{S}^d$, we use $\lambda_{\max}(\mathbf{A})$
 730 (resp. $\lambda_{\min}(\mathbf{A})$) to denote the largest (resp. smallest) eigenvalue of the matrix \mathbf{A} . For a function
 731 $f : \mathbb{R}^d \mapsto \mathbb{R}$, its gradient and its Hessian at a point $x \in \mathbb{R}^d$ are respectively denoted as $\nabla f(x)$ and
 732 $\nabla^2 f(x)$. For the sketch matrices \mathbf{S}_i^k used in the algorithm, we use the superscript k to denote the
 733 iteration and subscript i to denote the client, the matrix \mathbf{S}_i^k is thus sampled for client i in the k -th
 734 iteration from the same distribution \mathcal{S} . For any matrix $\mathbf{A} \in \mathbb{S}^d$, we use the notation $\text{diag}(\mathbf{A}) \in \mathbb{S}^d$ to
 735 denote the diagonal of matrix \mathbf{A} .

C SUMMARY OF COMPLEXITIES

739 We present two compact tables to summarize the differences among the considered methods. Table 1
 740 shows assumptions and convergence rates, while Table 2 lists communication complexities. The tables
 741 clarify the distinctions among **CGD**, **det-CGD**, **MARINA**, **DASHA**, **det-MARINA**, and **det-DASHA**.

D ADDITIONAL PRIOR WORK

745 **Non-convex Optimization.** Numerous effective convex optimization techniques have been adapted
 746 for application in non-convex scenarios. Here's a selection of these techniques, although it's not an
 747 exhaustive list: adaptivity (Dvinskikh et al., 2019; Zhang et al., 2020b), variance reduction (J Reddi
 748 et al., 2016; Li et al., 2021), and acceleration (Guminov et al., 2019). Of particular relevance to our
 749 work is the paper by Khaled & Richtárik (2023), which introduces a unified approach for analyzing
 750 stochastic gradient descent for non-convex objectives. A comprehensive overview of non-convex
 751 optimization can be found in (Jain et al., 2017; Danilova et al., 2022).

752 **Matrix Stepsizes.** An illustrative example of a matrix stepsized method is Newton's method, which
 753 has been a long-standing favorite in the optimization community (Gragg & Tapia, 1974; Miel, 1980;
 754 Yamamoto, 1987). However, the computational complexity involved in computing the stepsize as the
 755 inverse of the Hessian of the current iteration is substantial. An important direction of research that

Table 2: Communication complexities (same abbreviations as Table 1).

Method	Assumptions	Communication Complexities
DCGD	Sm+Interp+Unb	$\mathcal{O}\left(\frac{\zeta L \Delta^0}{\epsilon^2}\right)$
det-CGD	MatSm+Interp+Unb	$\mathcal{O}\left(\frac{\zeta \det(\mathbf{L})^{1/d} \Delta^0}{\epsilon^2}\right)$
MARINA	Sm+Unb	$\mathcal{O}\left(\frac{d + \zeta L \Delta^0 \left(1 + \sqrt{\frac{(1-p)\omega}{pn}}\right)}{\epsilon^2}\right)$
DASHA	Sm+Unb	$\mathcal{O}\left(\frac{\zeta L \Delta^0 \left(1 + \frac{\omega}{\sqrt{n}}\right)}{\epsilon^2}\right)$
det-MARINA	MatSm+Unb	$\mathcal{O}\left(\frac{d + \zeta \det(\mathbf{L})^{1/d} \Delta^0 \left(1 + \sqrt{\frac{\beta \Lambda_{\mathbf{L}-1,S} (d-\zeta)}{\zeta}}\right)}{\epsilon^2}\right)$
det-DASHA	MatSm+Unb	$\mathcal{O}\left(\frac{\zeta \det(\mathbf{L})^{1/d} \Delta^0 \left(1 + \sqrt{\frac{1+16C_{\mathbf{L}-1} \lambda_{\min}(\mathbf{L})}{\epsilon^2}}\right)}{\epsilon^2}\right)$

is relevant to our work, studies distributed second order methods. Here is a non-exhaustive list of papers in this area: (Wang et al., 2018; Crane & Roosta, 2019; Zhang et al., 2020a; Islamov et al., 2021; Alimisis et al., 2021; Safaryan et al., 2022a).

Distributed CGD. The Distributed Compressed Gradient Descent (DCGD) algorithm, initially proposed by Khirirat et al. (2018), has seen improvements in various aspects, as documented in works such as (Li et al., 2020; Horváth et al., 2022). Its variance reduced version with gradients shifts was studied by Shulgin & Richtárik (2022) in the (strongly) convex setting. Additionally, there exists a substantial body of literature on other federated learning algorithms employing unbiased compressors (Alistarh et al., 2017; Mishchenko et al., 2019; Gorbunov et al., 2021; Mishchenko et al., 2022; Marjanian et al., 2022; Horváth et al., 2023).

Variance Reduction. Variance reduction techniques have gained significant attention in the context of stochastic batch gradient descent that is prevalent in machine learning. Numerous algorithms have been developed in this regard, including well-known ones like **SVRG** (Johnson & Zhang, 2013), **SAG** (Schmidt et al., 2017), **SDCA** (Richtárik & Takáč, 2014), **SAGA** (Defazio et al., 2014), **MISO** (Mairal, 2015), and **Katyusha** (Allen-Zhu, 2017). An overview of more advanced methods can be found in (Gower et al., 2020). Notably, **SVRG** and **Katyusha** have been extended with loopless variants, namely **L-SVRG** and **L-Katyusha** (Kovalev et al., 2020; Qian et al., 2021). These loopless versions streamline the algorithms by eliminating the outer loop and introducing a biased coin-flip mechanism at each step. This simplification eases both the algorithms' structure and their analyses, while preserving their worst-case complexity bounds. **L-SVRG**, in particular, offers the advantage of setting the exit probability from the outer loop independently of the condition number, thus, enhancing both robustness and practical efficiency.

This technique of coin flipping allows to obtain variance reduction for the **CGD** algorithm. A relevant example is the **DIANA** algorithm proposed by Mishchenko et al. (2019). Its convergence was proved both in the convex and non-convex cases. Later, **MARINA** (Gorbunov et al., 2021) obtained the optimal convergence rate, improving in communication complexity compared to all previous first order methods. Finally, there is a line of work developing variance reduction in the federated setting using other methods and techniques (Chraibi et al., 2019; Hanzely & Richtárik, 2020; Dinh et al., 2020; Peng et al., 2022).

Another method to obtain variance reduction is based on momentum. It was initially studied by Cutkosky & Orabona (2019), where they propose the **STORM** algorithm, which is a stochastic gradient descent algorithm with a momentum term for non-convex objectives. They obtain station-

810 arity guarantees using adaptive stepsizes with optimal convergence rates. However, they require
 811 the variance of the stochastic gradient to be bounded by a constant, which is impractical. Using
 812 momentum for variance reduction has since been widely studied (Liu et al., 2020; Khanduri et al.,
 813 2020; Tran-Dinh et al., 2022; Li et al., 2022).

815 E BASIC FACTS

817 **Fact E.1.** For two matrices $\mathbf{A}, \mathbf{B} \in \mathbb{S}_+^d$, denote the i -th largest eigenvalues of \mathbf{A}, \mathbf{B} as $\lambda_i(\mathbf{A}), \lambda_i(\mathbf{B})$.
 818 If $\mathbf{A} \succeq \mathbf{B}$, then $\lambda_i(\mathbf{A}) \geq \lambda_i(\mathbf{B})$.

820 *Proof.* According to the Courant-Fischer theorem, we have

$$822 \quad \lambda_i(\mathbf{B}) = \max_{S: \dim S=i} \min_{x \in S \setminus \{0\}} \frac{x^\top \mathbf{B} x}{x^\top x}.$$

825 Let S_{\max}^i be a subspace of dimension i where the maximum is attained,

$$826 \quad \lambda_i(\mathbf{B}) = \min_{x \in S_{\max}^i \setminus \{0\}} \frac{x^\top \mathbf{B} x}{x^\top x} \leq \min_{x \in S_{\max}^i \setminus \{0\}} \frac{x^\top \mathbf{A} x}{x^\top x} \leq \max_{S: \dim S=i} \min_{x \in S \setminus \{0\}} \frac{x^\top \mathbf{A} x}{x^\top x} = \lambda_i(\mathbf{A}).$$

□

830 **Fact E.2.** Given a matrix $\mathbf{M} \in \mathbb{S}_{++}^d$, a vector $c \in \mathbb{R}^d$, and a random vector $x \in \mathbb{R}^d$ such that
 831 $\mathbb{E}[\|x\|] \leq +\infty$, we have $\mathbb{E}[\|x - \mathbb{E}[x]\|_{\mathbf{M}}^2] = \mathbb{E}[\|x - c\|_{\mathbf{M}}^2] - \|\mathbb{E}[x] - c\|_{\mathbf{M}}^2$.

834 *Proof.*

$$836 \quad \begin{aligned} & \mathbb{E}[\|x - c\|_{\mathbf{M}}^2] - \|\mathbb{E}[x] - c\|_{\mathbf{M}}^2 \\ &= \mathbb{E}[x^\top \mathbf{M} x] - 2\mathbb{E}[x]^\top \mathbf{M} c + c^\top \mathbf{M} c - \mathbb{E}[x]^\top \mathbf{M} \mathbb{E}[x] + 2\mathbb{E}[x]^\top \mathbf{M} c - c^\top \mathbf{M} c \\ &= \mathbb{E}[x^\top \mathbf{M} x] - \mathbb{E}[x]^\top \mathbf{M} \mathbb{E}[x] \\ &= \mathbb{E}[x^\top \mathbf{M} x] - 2 \cdot \mathbb{E}[x]^\top \mathbf{M} \mathbb{E}[x] + \mathbb{E}[x]^\top \mathbf{M} \mathbb{E}[x] \\ &= \mathbb{E}[\|x - \mathbb{E}[x]\|_{\mathbf{M}}^2]. \end{aligned}$$

□

845 **Fact E.3.** The mapping $(\mathbf{A}, \mathbf{B}, \mathbf{X}) \mapsto \mathbf{A} - \mathbf{X} \mathbf{B}^{-1} \mathbf{X}$ is jointly concave on $\mathbb{S}_+^d \times \mathbb{S}_{++}^d \times \mathbb{S}^d$. It is
 846 also monotone increasing in variables \mathbf{A} and \mathbf{B} .

848 *Proof.* We refer the reader to Corollary 1.5.3 of Bhatia (2009) for the proof. □

850 **Fact E.4.** Suppose $\mathbf{L}_i \in \mathbb{S}_{++}^d$, for $i = 1, \dots, n$. Then, for every matrix $\mathbf{X} \in \mathbb{S}_{++}^d$, the following
 851 mapping

$$853 \quad f(\mathbf{X}, \mathbf{L}_1, \dots, \mathbf{L}_n) = \frac{1}{n} \sum_{i=1}^n \lambda_{\max}(\mathbf{L}_i) \cdot \lambda_{\max}(\mathbf{L}_i \mathbf{X}^{-1}) \cdot \lambda_{\max}(\mathbf{X}^{-1}),$$

855 is monotone decreasing in \mathbf{X} .

857 *Proof.* Fact E.3 suggests the mapping $\mathbf{X} \mapsto \mathbf{X}^{-1}$ is monotone decreasing which means that if
 858 we have two matrices $\mathbf{X}_1, \mathbf{X}_2 \in \mathbb{S}_{++}^d$ such that $\mathbf{X}_1 \succeq \mathbf{X}_2$, then $\mathbf{X}_1^{-1} \preceq \mathbf{X}_2^{-1}$. This leads to
 859 $0 < \lambda_{\max}(\mathbf{X}_1^{-1}) \leq \lambda_{\max}(\mathbf{X}_2^{-1})$ due to Fact E.1. Since $\lambda_{\max}(\mathbf{L}_i \mathbf{X}^{-1}) = \lambda_{\max}(\mathbf{L}_i^{1/2} \mathbf{X}^{-1} \mathbf{L}_i^{1/2}) =$
 860 $\lambda_{\max}(\mathbf{X}^{-1} \mathbf{L}_i)$, and since the mapping $\mathbf{X} \mapsto \mathbf{L}_i^{1/2} \mathbf{X}^{-1} \mathbf{L}_i^{1/2}$ is monotone decreasing for every
 861 $i \in [n]$, we obtain $0 < \lambda_{\max}(\mathbf{L}_i \mathbf{X}_1^{-1}) \leq \lambda_{\max}(\mathbf{L}_i \mathbf{X}_2^{-1})$. Notice that $\lambda_{\max}(\mathbf{L}_i) > 0$, which
 862 indicates $f(\mathbf{X}_1, \mathbf{L}_1, \dots, \mathbf{L}_n) \leq f(\mathbf{X}_2, \mathbf{L}_1, \dots, \mathbf{L}_n)$. As a result, f is monotone decreasing in
 863 \mathbf{X} . □

864 **Fact E.5.** For any two matrices $\mathbf{A}, \mathbf{B} \in \mathbb{S}_{++}^d$, we have $\lambda_{\max}(\mathbf{AB}) \leq \lambda_{\max}(\mathbf{A}) \cdot \lambda_{\max}(\mathbf{B})$.
 865

866 *Proof.* Using the Courant-Fischer theorem, we can write
 867

$$\begin{aligned} 868 \quad \lambda_{\max}(\mathbf{AB}) &= \min_{S: \dim S=d} \max_{x \in S \setminus \{0\}} \frac{x^\top \mathbf{AB} x}{x^\top x} = \max_{x \in \mathbb{R}^d \setminus \{0\}} \frac{x^\top \mathbf{AB} x}{x^\top x} \\ 869 \quad &\leq \max_{x \in \mathbb{R}^d \setminus \{0\}} \frac{x^\top \mathbf{Ax}}{x^\top x} \cdot \max_{x \in \mathbb{R}^d \setminus \{0\}} \frac{x^\top \mathbf{B} x}{x^\top x} \\ 870 \quad &= \lambda_{\max}(\mathbf{A}) \cdot \lambda_{\max}(\mathbf{B}). \\ 871 \quad & \\ 872 \quad & \\ 873 \quad & \end{aligned}$$

□

876 F PROPERTIES OF MATRIX SMOOTHNESS 877

878 F.1 THE MATRIX LIPSCHITZ-CONTINUOUS GRADIENT 879

880 In this section, we describe the properties of matrix smoothness, matrix gradient Lipschitzness, and
 881 their relationships. The following lemma describes a sufficient condition for the matrix Lipschitz-
 882 continuity of the gradient.

883 **Lemma F.1.** Given twice continuously differentiable function $f : \mathbb{R}^d \mapsto \mathbb{R}$ with uniformly bounded
 884 Hessian $\nabla^2 f(x) \preceq \mathbf{L}$, where $\mathbf{L} \in \mathbb{S}_{++}^d$. Then f satisfies Definition 3.2 (Matrix Lipschitz Gradient)
 885 with the matrix \mathbf{L} .
 886

887 The following lemma is a variant of Lemma 3.4, which characterizes the smoothness matrix of the
 888 objective function f , given the smoothness matrices of the component functions f_i .

889 **Lemma F.2.** Assume that f_i has \mathbf{L}_i -Lipschitz continuous gradient for every $i \in [n]$, then function f
 890 has \mathbf{L} -Lipschitz gradient with $\mathbf{L} \in \mathbb{S}_{++}^d$ satisfying
 891

$$892 \quad \mathbf{L} \cdot \lambda_{\min}(\mathbf{L}) = \frac{1}{n} \sum_{i=1}^n \lambda_{\max}(\mathbf{L}_i) \cdot \mathbf{L}_i. \quad (7) \\ 893 \\ 894$$

895 F.2 QUADRATICS 896

897 **Lemma F.3.** Consider the quadratic function $f(x) = \frac{1}{2}x^\top \mathbf{A}x + b^\top x + c$, where $\mathbf{A} \in \mathbb{S}_{++}^d$, $b \in$
 898 \mathbb{R}^d , $c \in \mathbb{R}$. Then f has \mathbf{A} matrix Lipschitz gradient.
 899

900 For a more general setting, consider the following f :

$$901 \quad f(x) = \sum_{i=1}^s \phi_i(\mathbf{M}_i x), \\ 902 \\ 903$$

904 where $\mathbf{M}_i \in \mathbb{R}^{q_i \times d}$. Here $f : \mathbb{R}^d \mapsto \mathbb{R}$ is the sum of functions $\phi_i : \mathbb{R}^{q_i} \mapsto \mathbb{R}$. We have the following
 905 lemma regarding the matrix gradient Lipschitzness of f .
 906

907 **Lemma F.4.** Assume that functions f and $\{\phi_i\}_{i=1}^s$ are defined above. If each function ϕ_i satisfies
 908 Assumption 3.3 (Matrix Lipschitz Gradient) with \mathbf{L}_i . Then function f has \mathbf{L} -Lipschitz gradient, if
 909 $\sum_{i=1}^s \lambda_{\max}(\mathbf{L}_i^{\frac{1}{2}} \mathbf{M}_i \mathbf{L}^{-1} \mathbf{M}_i^\top \mathbf{L}_i^{\frac{1}{2}}) = 1$.
 910

911 Note that Lemma F.4 is a generalization of the previous case of quadratics, if we pick $s = 1$,
 912 $\mathbf{M}_i = \mathbf{A}^{\frac{1}{2}}$ and $\phi_1(x) = x^\top \mathbf{I}_d x$, the condition becomes $\mathbf{L} = \mathbf{A}$, which recovers Lemma F.3. In
 913 Lemma F.4, we only intend to give a way of finding a matrix $\mathbf{L} \in \mathbb{S}_{++}^d$, so that f has \mathbf{L} -Lipschitz
 914 gradient. This does not mean, however, the \mathbf{L} here is optimal.
 915

916 F.3 RELATION TO MATRIX SMOOTHNESS 917

Let us recall the definition of matrix smoothness.

918 **Definition F.5.** (L -smoothness) Assume that $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is a continuously differentiable function
 919 and matrix $\mathbf{L} \in \mathbb{S}_{++}^d$. We say that f is \mathbf{L} -smooth if for all $x, y \in \mathbb{R}^d$
 920

$$921 \quad f(y) \leq f(x) + \langle \nabla f(x), x - y \rangle + \frac{1}{2} \|x - y\|_{\mathbf{L}}^2. \quad (8)$$

923 We provide a lemma that offers an equivalent formulation for stating the \mathbf{L} -matrix smoothness of a
 924 function f .
 925

926 **Lemma F.6.** *Let function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be continuously differentiable. Then the following statements
 927 are equivalent: (i) f is \mathbf{L} -matrix smooth. (ii) $\langle \nabla f(x) - \nabla f(y), x - y \rangle \leq \|x - y\|_{\mathbf{L}}^2$ for all $x, y \in$
 928 \mathbb{R}^d .*

929 The two lemmas formulated below illustrate the relationship between matrix smoothness of f and
 930 matrix gradient Lipschitzness of f .
 931

932 **Lemma F.7.** *Assume $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is a continuously differentiable function, and its gradient is
 933 \mathbf{L} -Lipschitz continuous with $\mathbf{L} \in \mathbb{S}_{++}^d$. Then function f is \mathbf{L} -matrix smooth.*

934 **Lemma F.8.** *Assume $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is a continuously differentiable function. Assume also that f is
 935 convex and \mathbf{L} -matrix smooth. Then ∇f is \mathbf{L} -Lipschitz continuous.*

937 The next proposition shows that standard Lipschitzness of the gradient of a function is an immediate
 938 consequence of matrix Lipschitzness.

939 **Lemma F.9.** *Assume that the gradient of f is \mathbf{L} -Lipschitz continuous. Then ∇f is also \mathbf{L} -Lipschitz
 940 with $L = \lambda_{\max}(\mathbf{L})$.*

942 F.4 PROOF OF LEMMA 3.4

943 For any $x, y \in \mathbb{R}^d$,

$$944 \quad \|\nabla f(x) - \nabla f(y)\|_{\mathbf{L}^{-1}}^2 = \left\| \frac{1}{n} \sum_{i=1}^n (\nabla f_i(x) - \nabla f_i(y)) \right\|_{\mathbf{L}^{-1}}^2 \leq \frac{1}{n} \sum_{i=1}^n \|\nabla f_i(x) - \nabla f_i(y)\|_{\mathbf{L}^{-1}}^2,$$

945 where the last inequality follows from convexity. Rewriting \mathbf{L}^{-1} as $\mathbf{L}_i^{-1/2} \mathbf{L}_i^{1/2} \mathbf{L}^{-1} \mathbf{L}_i^{1/2} \mathbf{L}_i^{-1/2}$,
 946

$$947 \quad \begin{aligned} & \|\nabla f(x) - \nabla f(y)\|_{\mathbf{L}^{-1}}^2 \\ &= \frac{1}{n} \sum_{i=1}^n \left(\mathbf{L}_i^{-\frac{1}{2}} (\nabla f_i(x) - \nabla f_i(y)) \right)^\top \mathbf{L}_i^{\frac{1}{2}} \mathbf{L}^{-1} \mathbf{L}_i^{\frac{1}{2}} \left(\mathbf{L}_i^{-\frac{1}{2}} (\nabla f_i(x) - \nabla f_i(y)) \right) \\ &\leq \frac{1}{n} \sum_{i=1}^n \lambda_{\max} \left(\mathbf{L}_i^{\frac{1}{2}} \mathbf{L}^{-1} \mathbf{L}_i^{\frac{1}{2}} \right) \left\| \mathbf{L}_i^{-\frac{1}{2}} (\nabla f_i(x) - \nabla f_i(y)) \right\|^2 \\ &= \frac{1}{n} \sum_{i=1}^n \lambda_{\max} \left(\mathbf{L}_i^{\frac{1}{2}} \mathbf{L}^{-1} \mathbf{L}_i^{\frac{1}{2}} \right) \|\nabla f_i(x) - \nabla f_i(y)\|_{\mathbf{L}_i^{-1}}^2 \leq \frac{1}{n} \sum_{i=1}^n \lambda_{\max} \left(\mathbf{L}_i^{\frac{1}{2}} \mathbf{L}^{-1} \mathbf{L}_i^{\frac{1}{2}} \right) \|x - y\|_{\mathbf{L}_i}^2, \end{aligned}$$

948 where the last inequality follows from Lipschitzness of the gradient of f_i . Rewriting \mathbf{L}_i^{-1} as
 949 $\mathbf{L}^{-1/2} \mathbf{L}^{1/2} \mathbf{L}_i^{-1} \mathbf{L}^{1/2} \mathbf{L}^{-1/2}$, we obtain
 950

$$951 \quad \begin{aligned} & \|\nabla f(x) - \nabla f(y)\|_{\mathbf{L}^{-1}}^2 \\ &= \frac{1}{n} \sum_{i=1}^n \lambda_{\max} \left(\mathbf{L}_i^{\frac{1}{2}} \mathbf{L}^{-1} \mathbf{L}_i^{\frac{1}{2}} \right) \cdot \left[(\mathbf{L}^{\frac{1}{2}}(x - y))^\top \mathbf{L}^{-\frac{1}{2}} \mathbf{L}_i \mathbf{L}^{-\frac{1}{2}} (\mathbf{L}^{\frac{1}{2}}(x - y)) \right] \\ &\leq \frac{1}{n} \sum_{i=1}^n \lambda_{\max} \left(\mathbf{L}_i^{\frac{1}{2}} \mathbf{L}^{-1} \mathbf{L}_i^{\frac{1}{2}} \right) \cdot \lambda_{\max} \left(\mathbf{L}^{-\frac{1}{2}} \mathbf{L}_i \mathbf{L}^{-\frac{1}{2}} \right) \left\| \mathbf{L}^{\frac{1}{2}}(x - y) \right\|^2 \\ &\stackrel{\text{Fact E.5}}{\leq} \left(\frac{1}{n} \sum_{i=1}^n \lambda_{\max}(\mathbf{L}^{-1}) \cdot \lambda_{\max}(\mathbf{L}_i) \cdot \lambda_{\max}(\mathbf{L}_i \mathbf{L}^{-1}) \right) \cdot \|x - y\|_{\mathbf{L}}^2 = \|x - y\|_{\mathbf{L}}^2. \end{aligned}$$

972 F.5 PROOF OF LEMMA F.1
973974 For any $x, y \in \mathbb{R}^d$, we have
975

$$\begin{aligned}
 976 \quad & \|\nabla f(x) - \nabla f(y)\|_{\mathbf{L}^{-1}}^2 \\
 977 \quad &= \left\| \int_0^1 \nabla^2 f(\theta x + (1-\theta)y)(x-y) d\theta \right\|_{\mathbf{L}^{-1}}^2 \\
 978 \quad &= (x-y)^\top \left(\int_0^1 \nabla^2 f(\theta x + (1-\theta)y) d\theta \right)^\top \mathbf{L}^{-1} \left(\int_0^1 \nabla^2 f(\theta x + (1-\theta)y) d\theta \right) (x-y).
 \end{aligned}$$

980 Define $\mathbf{F} := \int_0^1 \nabla^2 f(\theta x + (1-\theta)y) d\theta$, notice that \mathbf{F} is a symmetric matrix. Then.
981

982
$$\|\nabla f(x) - \nabla f(y)\|_{\mathbf{L}^{-1}}^2 = (x-y)^\top \mathbf{F}^\top \mathbf{L}^{-1} \mathbf{F} (x-y).$$

983 Since \mathbf{L} is an uniform upper bound of the Hessian, we have $\mathbf{F} \preceq \mathbf{L}$. which turns out to be equivalent
984 to $\mathbf{F}\mathbf{L}^{-1}\mathbf{F} \preceq \mathbf{L}$, as
985

$$\begin{aligned}
 986 \quad \mathbf{F}\mathbf{L}^{-1}\mathbf{F} \preceq \mathbf{L} &\iff \mathbf{L}^{-\frac{1}{2}} \mathbf{F} \mathbf{L} \mathbf{F} \mathbf{L}^{-\frac{1}{2}} \preceq \mathbf{I}_d \\
 987 \quad &\iff \mathbf{L}^{-\frac{1}{2}} \mathbf{F} \mathbf{L}^{-\frac{1}{2}} \cdot \mathbf{L}^{-\frac{1}{2}} \mathbf{F} \mathbf{L}^{-\frac{1}{2}} \preceq \mathbf{I}_d \\
 988 \quad &\iff \mathbf{L}^{-\frac{1}{2}} \mathbf{F} \mathbf{L}^{-\frac{1}{2}} \preceq \mathbf{I}_d \\
 989 \quad &\iff \mathbf{F} \preceq \mathbf{L}.
 \end{aligned}$$

990 Thus,
991

992
$$\|\nabla f(x) - \nabla f(y)\|_{\mathbf{L}^{-1}}^2 \leq (x-y)^\top \mathbf{L} (x-y) = \|x-y\|_{\mathbf{L}}^2.$$

993 F.6 PROOF OF LEMMA F.2
994995 Suppose \mathbf{L} is a symmetric positive definite matrix satisfying (7). Let us now show that the function
996 ∇f is \mathbf{L} -Lipschitz continuous. Picking any two points $x, y \in \mathbb{R}^d$, we have:
997

998
$$\|\nabla f(x) - \nabla f(y)\|_{\mathbf{L}^{-1}}^2 = \left\| \frac{1}{n} \sum_{i=1}^n (\nabla f_i(x) - \nabla f_i(y)) \right\|_{\mathbf{L}^{-1}}^2 \leq \frac{1}{n} \sum_{i=1}^n \|\nabla f_i(x) - \nabla f_i(y)\|_{\mathbf{L}^{-1}}^2.$$

1000 Rewriting \mathbf{L}^{-1} as $\mathbf{L}_i^{-\frac{1}{2}} \mathbf{L}_i^{\frac{1}{2}} \mathbf{L}^{-1} \mathbf{L}_i^{\frac{1}{2}} \mathbf{L}_i^{-\frac{1}{2}}$,
1001

$$\begin{aligned}
 1002 \quad & \|\nabla f(x) - \nabla f(y)\|_{\mathbf{L}^{-1}}^2 \leq \frac{1}{n} \sum_{i=1}^n (\nabla f_i(x) - \nabla f_i(y))^\top \mathbf{L}_i^{-\frac{1}{2}} \mathbf{L}_i^{\frac{1}{2}} \mathbf{L}^{-1} \mathbf{L}_i^{\frac{1}{2}} \mathbf{L}_i^{-\frac{1}{2}} (\nabla f_i(x) - \nabla f_i(y)) \\
 1003 \quad & \leq \frac{1}{n} \sum_{i=1}^n \lambda_{\max}(\mathbf{L}_i) \cdot \lambda_{\max}(\mathbf{L}^{-1}) \cdot \|\nabla f_i(x) - \nabla f_i(y)\|_{\mathbf{L}_i^{-1}}^2 \\
 1004 \quad & \leq \frac{1}{n} \sum_{i=1}^n \lambda_{\max}(\mathbf{L}_i) \cdot \lambda_{\max}(\mathbf{L}^{-1}) \cdot \|x-y\|_{\mathbf{L}_i}^2 \\
 1005 \quad & = \|x-y\|_{\lambda_{\max}(\mathbf{L}^{-1}) \cdot \frac{1}{n} \sum_{i=1}^n \lambda_{\max}(\mathbf{L}_i) \cdot \mathbf{L}_i}^2 \stackrel{(7)}{=} \|x-y\|_{\mathbf{L}}^2.
 \end{aligned}$$

1006 F.7 PROOF OF LEMMA F.3
10071008 According to Definition 3.2, \mathbf{L} must satisfy:
1009

1010
$$\sqrt{(x-y)^\top \mathbf{A} \mathbf{L}^{-1} \mathbf{A} (x-y)} \leq \sqrt{(x-y)^\top \mathbf{L} (x-y)},$$

1011 for any $x, y \in \mathbb{R}^d$, which is $\mathbf{A} \mathbf{L}^{-1} \mathbf{A} \preceq \mathbf{L}$. Since $\mathbf{A} \in \mathbb{S}_{++}^d$, we further simplify the condition to
1012 $\mathbf{A} \preceq \mathbf{L}$. Therefore, the “best” $\mathbf{L} \in \mathbb{S}_{++}^d$ that satisfies (2) is $\mathbf{L} = \mathbf{A}$.
1013

1026 F.8 PROOF OF LEMMA F.4
 1027

1028 For any $x, y \in \mathbb{R}^d$, we have
 1029

$$\begin{aligned}
 1030 \|\nabla f(x) - \nabla f(y)\|_{\mathbf{L}^{-1}} &= \left\| \sum_{i=1}^s \mathbf{M}_i^\top \nabla \phi_i(\mathbf{M}_i x) - \sum_{i=1}^s \mathbf{M}_i^\top \nabla \phi_i(\mathbf{M}_i y) \right\|_{\mathbf{L}^{-1}} \\
 1031 &= s \cdot \left\| \frac{1}{s} \sum_{i=1}^s \mathbf{M}_i^\top (\nabla \phi_i(\mathbf{M}_i x) - \nabla \phi_i(\mathbf{M}_i y)) \right\|_{\mathbf{L}^{-1}} \\
 1032 &= s \cdot \frac{1}{s} \sum_{i=1}^s \|\mathbf{M}_i^\top (\nabla \phi_i(\mathbf{M}_i x) - \nabla \phi_i(\mathbf{M}_i y))\|_{\mathbf{L}^{-1}}, \\
 1033 \\
 1034 \\
 1035 \\
 1036 \\
 1037 \\
 1038
 \end{aligned}$$

1039 where the last inequality follows from the convexity. Thus,

$$\begin{aligned}
 1040 \|\nabla f(x) - \nabla f(y)\|_{\mathbf{L}^{-1}} & \\
 1041 &= \sum_{i=1}^s \sqrt{(\nabla \phi_i(\mathbf{M}_i x) - \nabla \phi_i(\mathbf{M}_i y))^\top \mathbf{M}_i \mathbf{L}^{-1} \mathbf{M}_i^\top (\nabla \phi_i(\mathbf{M}_i x) - \nabla \phi_i(\mathbf{M}_i y))} \\
 1042 &= \sum_{i=1}^s \sqrt{\mathbf{B}_i^\top \mathbf{L}_i^{\frac{1}{2}} \mathbf{M}_i \mathbf{L}^{-1} \mathbf{M}_i^\top \mathbf{L}_i^{\frac{1}{2}} \mathbf{B}_i} \\
 1043 &= \sum_{i=1}^s \sqrt{\lambda_{\max}(\mathbf{L}_i^{\frac{1}{2}} \mathbf{M}_i \mathbf{L}^{-1} \mathbf{M}_i^\top \mathbf{L}_i^{\frac{1}{2}})} \cdot \|\nabla \phi_i(\mathbf{M}_i x) - \nabla \phi_i(\mathbf{M}_i y)\|_{\mathbf{L}_i^{-1}}, \\
 1044 \\
 1045 \\
 1046 \\
 1047 \\
 1048 \\
 1049
 \end{aligned}$$

1050 where $\mathbf{B}_i := \mathbf{L}_i^{-\frac{1}{2}} (\nabla \phi_i(\mathbf{M}_i x) - \nabla \phi_i(\mathbf{M}_i y))$. Since ϕ_i is \mathbf{L}_i -Lipschitz, we have
 1051

$$\begin{aligned}
 1052 \|\nabla f(x) - \nabla f(y)\|_{\mathbf{L}^{-1}} & \\
 1053 &\leq \sum_{i=1}^s \sqrt{\lambda_{\max}(\mathbf{L}_i^{\frac{1}{2}} \mathbf{M}_i \mathbf{L}^{-1} \mathbf{M}_i^\top \mathbf{L}_i^{\frac{1}{2}})} \cdot \|\mathbf{M}_i(x - y)\|_{\mathbf{L}_i} \\
 1054 &= \sum_{i=1}^s \sqrt{\lambda_{\max}(\mathbf{L}_i^{\frac{1}{2}} \mathbf{M}_i \mathbf{L}^{-1} \mathbf{M}_i^\top \mathbf{L}_i^{\frac{1}{2}})} \cdot \sqrt{[\mathbf{L}^{\frac{1}{2}}(x - y)]^\top \mathbf{L}^{-\frac{1}{2}} \mathbf{M}_i^\top \mathbf{L}_i \mathbf{M}_i \mathbf{L}^{-\frac{1}{2}} [\mathbf{L}^{\frac{1}{2}}(x - y)]} \\
 1055 &\leq \sum_{i=1}^s \sqrt{\lambda_{\max}(\mathbf{L}_i^{\frac{1}{2}} \mathbf{M}_i \mathbf{L}^{-1} \mathbf{M}_i^\top \mathbf{L}_i^{\frac{1}{2}})} \cdot \lambda_{\max}(\mathbf{L}^{-\frac{1}{2}} \mathbf{M}_i^\top \mathbf{L}_i \mathbf{M}_i \mathbf{L}^{-\frac{1}{2}}) \cdot \|x - y\|_{\mathbf{L}} \\
 1056 &= \sum_{i=1}^s \lambda_{\max}(\mathbf{L}_i^{\frac{1}{2}} \mathbf{M}_i \mathbf{L}^{-1} \mathbf{M}_i^\top \mathbf{L}_i^{\frac{1}{2}}) \cdot \|x - y\|_{\mathbf{L}}, \\
 1057 \\
 1058 \\
 1059 \\
 1060 \\
 1061 \\
 1062 \\
 1063 \\
 1064
 \end{aligned}$$

1065 where the last identity is due to $\lambda_{\max}(\mathbf{L}_i^{\frac{1}{2}} \mathbf{M}_i \mathbf{L}^{-1} \mathbf{M}_i^\top \mathbf{L}_i^{\frac{1}{2}}) = \lambda_{\max}(\mathbf{L}^{-\frac{1}{2}} \mathbf{M}_i^\top \mathbf{L}_i \mathbf{M}_i \mathbf{L}^{-\frac{1}{2}})$. Since
 1066 $\sum_{i=1}^s \lambda_{\max}(\mathbf{L}_i^{\frac{1}{2}} \mathbf{M}_i \mathbf{L}^{-1} \mathbf{M}_i^\top \mathbf{L}_i^{\frac{1}{2}}) = 1$, we have $\|\nabla f(x) - \nabla f(y)\|_{\mathbf{L}^{-1}} \leq \|x - y\|_{\mathbf{L}}$.
 1067
 1068
 1069

1070 F.9 PROOF OF LEMMA F.6
 1071

1072 (i) \rightarrow (ii). If f is \mathbf{L} -matrix smooth. Then for all $x, y \in \mathbb{R}^d$, we have
 1073

$$\begin{aligned}
 1074 f(x) &\leq f(y) + \langle \nabla f(y), x - y \rangle + \frac{1}{2} \|x - y\|_{\mathbf{L}}^2, \\
 1075 f(y) &\leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2} \|x - y\|_{\mathbf{L}}^2. \\
 1076 \\
 1077
 \end{aligned}$$

1078 Summing up these two inequalities we get
 1079

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \leq \|x - y\|_{\mathbf{L}}^2.$$

1080 (ii) \rightarrow (i). Choose any $x, y \in \mathbb{R}^d$ and define $z = x + t(y - x)$, we have,
 1081

$$\begin{aligned} 1082 \quad f(y) &= f(x) + \int_0^1 \langle \nabla f(x + t(y - x)), y - x \rangle dt \\ 1083 &= f(x) + \int_0^1 \langle \nabla f(z), y - x \rangle dt \\ 1084 &= f(x) + \langle \nabla f(x), y - x \rangle + \int_0^1 \langle \nabla f(z) - \nabla f(x), y - x \rangle dt \\ 1085 &= f(x) + \langle \nabla f(x), y - x \rangle + \int_0^1 \langle \nabla f(z) - \nabla f(x), z - x \rangle \cdot \frac{1}{t} dt. \\ 1086 \end{aligned}$$

1092 For any $x, z \in \mathbb{R}^d$, we have

$$\langle \nabla f(z) - \nabla f(x), z - x \rangle \leq \|z - x\|_{\mathbf{L}}^2.$$

1093 As a result,

$$\begin{aligned} 1094 \quad f(y) &\leq f(x) + \langle \nabla f(x), y - x \rangle + \int_0^1 \|z - x\|_{\mathbf{L}}^2 \cdot \frac{1}{t} dt \\ 1095 &= f(x) + \langle \nabla f(x), y - x \rangle + \int_0^1 \|y - x\|_{\mathbf{L}}^2 \cdot t dt \\ 1096 &= f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2} \|y - x\|_{\mathbf{L}}^2. \\ 1097 \end{aligned}$$

1104 F.10 PROOF OF LEMMA F.7

1105 We start with picking any two points $x, y \in \mathbb{R}^d$. Using Cauchy-Schwarz inequality, we have

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \leq \|\nabla f(x) - \nabla f(y)\|_{\mathbf{L}^{-1}} \cdot \|x - y\|_{\mathbf{L}} \stackrel{(2)}{\leq} \|x - y\|_{\mathbf{L}}^2.$$

1106 According to Lemma F.6, this indicates that function f is \mathbf{L} -matrix smooth.

1111 F.11 PROOF OF LEMMA F.8

1112 By Lemma F.6, we have for any $x, y \in \mathbb{R}^d$,

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \leq \|x - y\|_{\mathbf{L}}^2. \quad (9)$$

1113 Now we pick any three points $x, y, z \in \mathbb{R}^d$. With the \mathbf{L} -smoothness of f , we have

$$f(x + z) \geq f(x) + \langle \nabla f(x), z \rangle + \frac{1}{2} \|z\|_{\mathbf{L}}^2. \quad (10)$$

1114 Using the convexity of f , we have

$$\langle \nabla f(y), x + z - y \rangle \leq f(x + z) - f(y). \quad (11)$$

1115 Combining (10) and (11), we obtain

$$\langle \nabla f(y), x + z - y \rangle \leq f(x) - f(y) + \langle \nabla f(x), z \rangle + \frac{1}{2} \|z\|_{\mathbf{L}}^2.$$

1116 Rearranging terms we get

$$\langle \nabla f(y) - \nabla f(x), z \rangle - \frac{1}{2} \|z\|_{\mathbf{L}}^2 \leq f(x) - f(y) - \langle \nabla f(y), x - y \rangle.$$

1117 The inequality holds for any z for fixed x and y , and the left hand side is maximized for z when
 1118 $z = \mathbf{L}^{-1}(\nabla f(y) - \nabla f(x))$. Plugging it in, we have

$$\frac{1}{2} \|\nabla f(x) - \nabla f(y)\|_{\mathbf{L}^{-1}}^2 \leq f(x) - f(y) - \langle \nabla f(y), x - y \rangle. \quad (12)$$

1134 By symmetry, we also have
 1135

$$1136 \quad \frac{1}{2} \|\nabla f(y) - \nabla f(x)\|_{\mathbf{L}^{-1}}^2 \leq f(y) - f(x) - \langle \nabla f(x), y - x \rangle.$$

1138 Adding (12) and its counterpart, we obtain
 1139

$$1140 \quad \|\nabla f(x) - \nabla f(y)\|_{\mathbf{L}^{-1}}^2 \leq \langle \nabla f(x) - \nabla f(y), x - y \rangle. \quad (13)$$

1141 Combing (13) and (9), it follows
 1142

$$1143 \quad \|\nabla f(x) - \nabla f(y)\|_{\mathbf{L}^{-1}}^2 \leq \|x - y\|_{\mathbf{L}}^2.$$

1145 F.12 PROOF OF LEMMA F.9

1147 Pick any two points $x, y \in \mathbb{R}^d$. With the matrix \mathbf{L} -Lipschitzness of the gradient of function f , we
 1148 have

$$1149 \quad \|\nabla f(x) - \nabla f(y)\|_{\mathbf{L}^{-1}}^2 \leq \|x - y\|_{\mathbf{L}}^2.$$

1151 This implies
 1152

$$1153 \quad (x - y)^\top \mathbf{L}(x - y) - (\nabla f(x) - \nabla f(y))^\top \mathbf{L}^{-1} (\nabla f(x) - \nabla f(y)) \geq 0.$$

1154 Define function $f(\mathbf{X}) := a^\top \mathbf{X} a - b^\top \mathbf{X}^{-1} b$ for $\mathbf{X} \in \mathbb{S}_{++}^d$, where $a, b \in \mathbb{R}^d$ are fixed vectors. Then
 1155 f is monotone increasing in \mathbf{X} . This can be shown in the following way, picking two matrices
 1156 $\mathbf{X}_1, \mathbf{X}_2 \in \mathbb{S}_{++}^d$, where $\mathbf{X}_1 \succeq \mathbf{X}_2$. We see that $-\mathbf{X}_1^{-1} \succeq -\mathbf{X}_2^{-1}$, since from Fact E.3 the map
 1157 $\mathbf{X} \mapsto -\mathbf{X}^{-1}$ is monotone increasing for $\mathbf{X} \in \mathbb{S}_{++}^d$. Thus,
 1158

$$1159 \quad f(\mathbf{X}_1) - f(\mathbf{X}_2) = (x - y)^\top (\mathbf{X}_1 - \mathbf{X}_2) (x - y) \\ 1160 \quad + (\nabla f(x) - \nabla f(y))^\top (-\mathbf{X}_1^{-1} - (-\mathbf{X}_2^{-1})) (\nabla f(x) - \nabla f(y)) \geq 0.$$

1162 As a result, $f(\lambda_{\max}(\mathbf{L}) \cdot \mathbf{I}_d) \geq f(\mathbf{L}) \geq 0$, due to the fact that $\lambda_{\max}(\mathbf{L}) \cdot \mathbf{I}_d \succeq \mathbf{L}$. It remains to
 1163 notice that
 1164

$$1165 \quad f(\lambda_{\max}(\mathbf{L}) \cdot \mathbf{I}_d) = \lambda_{\max}(\mathbf{L}) \|x - y\|^2 - \frac{1}{\lambda_{\max}(\mathbf{L})} \|\nabla f(x) - \nabla f(y)\|^2 \geq 0,$$

1167 which yields
 1168

$$1169 \quad \|\nabla f(x) - \nabla f(y)\|^2 \leq \lambda_{\max}^2(\mathbf{L}) \|x - y\|^2.$$

1171 G ANALYSIS OF DET-MARINA

1172 G.1 TECHNICAL LEMMAS

1175 We first state some technical lemmas essential for the proof.

1176 **Lemma G.1** (Descent lemma). *Assume function f is \mathbf{L} smooth, and $x^{k+1} = x^k - \mathbf{D} \cdot g^k$, where
 1177 $\mathbf{D} \in \mathbb{S}_{++}^d$. Then the iterates generated by Algorithm 1 satisfy:*

$$1179 \quad f(x^{k+1}) \leq f(x^k) - \frac{1}{2} \|\nabla f(x^k)\|_{\mathbf{D}}^2 + \frac{1}{2} \|g^k - \nabla f(x^k)\|_{\mathbf{D}}^2 - \frac{1}{2} \|x^{k+1} - x^k\|_{\mathbf{D}^{-1} - \mathbf{L}}^2.$$

1182 The following lemma is obtained for any sketch matrix $\mathbf{S} \in \mathbb{S}_+^d$ and any two positive definite matrices
 1183 \mathbf{D} and \mathbf{L} .

1184 **Lemma G.2** (Property of sketch matrix). *For any sketch matrix $\mathbf{S} \in \mathbb{S}_+^d$, a vector $t \in \mathbb{R}^d$, and
 1185 matrices $\mathbf{D}, \mathbf{L} \in \mathbb{S}_{++}^d$, we have*

$$1187 \quad \mathbb{E} \left[\| \mathbf{S}t - t \|_{\mathbf{D}}^2 \right] \leq \lambda_{\max} \left(\mathbf{L}^{\frac{1}{2}} (\mathbb{E}[\mathbf{S}\mathbf{D}\mathbf{S}^T] - \mathbf{D}) \mathbf{L}^{\frac{1}{2}} \right) \cdot \|t\|_{\mathbf{L}^{-1}}^2. \quad (14)$$

1188 G.2 PROOF OF THEOREM 4.1
1189

1190 According to Lemma G.1, we have

1191
1192
$$\mathbb{E}[f(x^{k+1})] \leq \mathbb{E}[f(x^k)] - \mathbb{E}\left[\frac{1}{2} \|\nabla f(x^k)\|_{\mathbf{D}}^2\right] \quad (15)$$

1193

1194
$$+ \mathbb{E}\left[\frac{1}{2} \|g^k - \nabla f(x^k)\|_{\mathbf{D}}^2\right] - \mathbb{E}\left[\frac{1}{2} \|x^{k+1} - x^k\|_{\mathbf{D}^{-1} - \mathbf{L}}^2\right]. \quad (16)$$

1195

1196 Notice that,

1197
1198
$$g^{k+1} = \begin{cases} \nabla f(x^{k+1}) & \text{with probability } p, \\ g^k + \frac{1}{n} \sum_{i=1}^n \mathbf{S}_i^k (\nabla f_i(x^{k+1}) - \nabla f_i(x^k)) & \text{with probability } 1-p. \end{cases}$$

1199

1200 As a result, from the tower property,

1201
$$\mathbb{E}\left[\|g^{k+1} - \nabla f(x^{k+1})\|_{\mathbf{D}}^2 \mid x^{k+1}, x^k\right]$$

1202
1203
$$= \mathbb{E}\left[\mathbb{E}\left[\|g^{k+1} - \nabla f(x^{k+1})\|_{\mathbf{D}}^2 \mid x^{k+1}, x^k, c_k\right]\right]$$

1204
1205
$$= (1-p) \cdot \mathbb{E}\left[\left\|g^k + \frac{1}{n} \sum_{i=1}^n \mathbf{S}_i^k (\nabla f_i(x^{k+1}) - \nabla f_i(x^k)) - \nabla f(x^{k+1})\right\|_{\mathbf{D}}^2 \mid x^{k+1}, x^k\right].$$

1206
1207

1208 Using Fact E.2, we have

1209
1210
$$\mathbb{E}\left[\|g^{k+1} - \nabla f(x^{k+1})\|_{\mathbf{D}}^2 \mid x^{k+1}, x^k\right]$$

1211
1212
$$= (1-p) \cdot \mathbb{E}\left[\left\|\frac{1}{n} \sum_{i=1}^n \mathbf{S}_i^k (\nabla f_i(x^{k+1}) - \nabla f_i(x^k)) - (\nabla f(x^{k+1}) - \nabla f(x^k))\right\|_{\mathbf{D}}^2 \mid x^{k+1}, x^k\right]$$

1213
1214
1215
$$+ (1-p) \cdot \|g^k - \nabla f(x^k)\|_{\mathbf{D}}^2$$

1216
1217
$$= (1-p) \cdot \mathbb{E}\left[\left\|\frac{1}{n} \sum_{i=1}^n (\mathbf{S}_i^k (\nabla f_i(x^{k+1}) - \nabla f_i(x^k)) - (\nabla f_i(x^{k+1}) - \nabla f_i(x^k)))\right\|_{\mathbf{D}}^2 \mid x^{k+1}, x^k\right]$$

1218
1219
1220
$$+ (1-p) \cdot \|g^k - \nabla f(x^k)\|_{\mathbf{D}}^2.$$

1221 Notice that the sketch matrix is unbiased, which implies

1222
1223
$$\mathbb{E}[\mathbf{S}_i^k (\nabla f_i(x^{k+1}) - \nabla f_i(x^k)) \mid x^{k+1}, x^k] = \nabla f_i(x^{k+1}) - \nabla f_i(x^k),$$

1224 Since any two distinct random vectors in the set $\{\mathbf{S}_i^k (\nabla f_i(x^{k+1}) - \nabla f_i(x^k))\}_{i=1}^n$ are independent
1225 from each other, if x^{k+1} and x^k are fixed, we have

1226
1227
$$\mathbb{E}\left[\|g^{k+1} - \nabla f(x^{k+1})\|_{\mathbf{D}}^2 \mid x^{k+1}, x^k\right]$$

1228
1229
$$= \frac{1-p}{n^2} \sum_{i=1}^n \mathbb{E}\left[\|\mathbf{S}_i^k (\nabla f_i(x^{k+1}) - \nabla f_i(x^k)) - (\nabla f_i(x^{k+1}) - \nabla f_i(x^k))\|_{\mathbf{D}}^2 \mid x^{k+1}, x^k\right]$$

1230
1231
$$+ (1-p) \cdot \|g^k - \nabla f(x^k)\|_{\mathbf{D}}^2. \quad (17)$$

1232

1233 Applying Lemma G.2, we obtain

1234
1235
$$\mathbb{E}\left[\|\mathbf{S}_i^k (\nabla f_i(x^{k+1}) - \nabla f_i(x^k)) - (\nabla f_i(x^{k+1}) - \nabla f_i(x^k))\|_{\mathbf{D}}^2 \mid x^{k+1}, x^k\right]$$

1236
1237
$$\leq \lambda_{\max} \left(\mathbf{L}_i^{\frac{1}{2}} (\mathbb{E}[\mathbf{S}_i^k \mathbf{D} \mathbf{S}_i^k] - \mathbf{D}) \mathbf{L}_i^{\frac{1}{2}} \right) \|\nabla f_i(x^{k+1}) - \nabla f_i(x^k)\|_{\mathbf{L}_i^{-1}}^2.$$

1238 Using the fact that f_i has \mathbf{L}_i -Lipschitz gradient, we have

1239
1240
$$\mathbb{E}\left[\|\mathbf{S}_i^k (\nabla f_i(x^{k+1}) - \nabla f_i(x^k)) - (\nabla f_i(x^{k+1}) - \nabla f_i(x^k))\|_{\mathbf{D}}^2 \mid x^{k+1}, x^k\right]$$

1241
$$\leq \lambda_{\max} \left(\mathbf{L}_i^{\frac{1}{2}} (\mathbb{E}[\mathbf{S}_i^k \mathbf{D} \mathbf{S}_i^k] - \mathbf{D}) \mathbf{L}_i^{\frac{1}{2}} \right) \|x^{k+1} - x^k\|_{\mathbf{L}_i}^2. \quad (18)$$

1242 Plugging (18) into (17), we deduce
 1243

$$\begin{aligned} 1244 \mathbb{E} & \left[\|g^{k+1} - \nabla f(x^{k+1})\|_{\mathbf{D}}^2 \mid x^{k+1}, x^k \right] \\ 1245 & \leq \frac{1-p}{n^2} \sum_{i=1}^n \lambda_{\max} \left(\mathbf{L}_i^{\frac{1}{2}} (\mathbb{E}[\mathbf{S}_i^k \mathbf{D} \mathbf{S}_i^k] - \mathbf{D}) \mathbf{L}_i^{\frac{1}{2}} \right) \|x^{k+1} - x^k\|_{\mathbf{L}_i}^2 + (1-p) \cdot \|g^k - \nabla f(x^k)\|_{\mathbf{D}}^2. \end{aligned}$$

1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 261

1296 As a result, (20) is always non-positive and we obtain
 1297

$$1298 \mathbb{E}[\Phi_{k+1}] \leq \mathbb{E}[\Phi_k] - \frac{1}{2} \mathbb{E} \left[\|\nabla f(x^k)\|_{\mathbf{D}}^2 \right].$$

1300 Unrolling this recurrence, we get
 1301

$$1302 \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \left[\|\nabla f(x^k)\|_{\mathbf{D}}^2 \right] \leq \frac{2(\mathbb{E}[\Phi_0] - \mathbb{E}[\Phi_K])}{K}. \quad (21)$$

1305 The left-hand side can be viewed as $\mathbb{E} \left[\|\nabla f(\tilde{x}^K)\|_{\mathbf{D}}^2 \right]$, where \tilde{x}^K is sampled uniformly from $\{x_k\}_{k=0}^{K-1}$.
 1306 Notice that $\Phi_K > 0$, we have
 1307

$$1308 \frac{2(\mathbb{E}[\Phi_0] - \mathbb{E}[\Phi_K])}{K} \leq \frac{2\Phi_0}{K} = \frac{2(f(x^0) - f^* + \frac{1}{2p} \|g^0 - \nabla f(x^0)\|_{\mathbf{D}}^2)}{K} = \frac{2(f(x^0) - f^*)}{K}.$$

1311 Plugging in the simplified result into (21), and performing determinant normalization, we obtain
 1312

$$1313 \mathbb{E} \left[\|\nabla f(\tilde{x}^K)\|_{\frac{\mathbf{D}}{\det(\mathbf{D})^{1/d}}}^2 \right] \leq \frac{2(f(x^0) - f^*)}{\det(\mathbf{D})^{1/d} K}. \quad (22)$$

1315 *Remark G.3.* We can achieve a slightly more refined stepsize condition than (3) for **det-MARINA**,
 1316 which is given as follows

$$1317 \mathbf{D} \succeq \left(\frac{(1-p) \cdot \tilde{R}(\mathbf{D}, \mathcal{S})}{np} + 1 \right) \mathbf{L}, \quad (23)$$

1319 where
 1320

$$1321 \tilde{R}(\mathbf{D}, \mathcal{S}) := \frac{1}{n} \sum_{i=1}^n \lambda_{\max} \left(\mathbf{L}_i^{\frac{1}{2}} (\mathbb{E}[\mathbf{S}_i^k \mathbf{D} \mathbf{S}_i^k] - \mathbf{D}) \mathbf{L}_i^{\frac{1}{2}} \right) \cdot \lambda_{\max} \left(\mathbf{L}_i^{-\frac{1}{2}} \mathbf{L}_i \mathbf{L}_i^{-\frac{1}{2}} \right).$$

1324 This is obtained if we do not use Fact E.5 to upper bound $\lambda_{\max} \left(\mathbf{L}_i^{\frac{1}{2}} (\mathbb{E}[\mathbf{S}_i^k \mathbf{D} \mathbf{S}_i^k] - \mathbf{D}) \mathbf{L}_i^{\frac{1}{2}} \right)$ by
 1325 the product of $\lambda_{\max}(\mathbf{L}_i)$ and $\lambda_{\max}(\mathbb{E}[\mathbf{S}_i^k \mathbf{D} \mathbf{S}_i^k] - \mathbf{D})$. However, (23) results in a condition that
 1326 is much harder to solve even if we assume $\mathbf{D} = \gamma \cdot \mathbf{W}$. So instead of using the more refined
 1327 condition (23), we turn to (3). Notice that both of the two conditions (23) and (3) reduce to the
 1328 stepsize condition for **MARINA** in the scalar setting.
 1329

1330 G.3 COMPARISON OF DIFFERENT STEPSIZES

1332 In Corollary 6.1, we focus on a special stepsize where we fix $\mathbf{W} = \mathbf{L}^{-1}$ and demonstrate that,
 1333 in this case, **det-MARINA** outperforms **MARINA** in terms of both iteration and communication
 1334 complexities. However, other choices for \mathbf{W} are also possible. Specifically, we consider the case
 1335 where $\mathbf{W} = \text{diag}^{-1}(\mathbf{L})$.
 1336

1337 G.3.1 THE DIAGONAL CASE

1339 We consider $\mathbf{W} = \text{diag}^{-1}(\mathbf{L})$.

1340 **Corollary G.4.** *If we take $\mathbf{W} = \text{diag}^{-1}(\mathbf{L})$ in Corollary 4.7, then the optimal stepsize satisfies*

$$1342 \mathbf{D}_{\text{diag}^{-1}(\mathbf{L})}^* = \frac{2}{1 + \sqrt{1 + 4\alpha\beta \cdot \Lambda_{\text{diag}^{-1}(\mathbf{L}), \mathcal{S}}}} \cdot \text{diag}^{-1}(\mathbf{L}). \quad (24)$$

1344 *This stepsize leads to better iteration complexity for **det-MARINA** compared to the scalar version of
 1345 **MARINA**.*

1347 Since the same sketch is used for **MARINA** and **det-MARINA**, the communication complexity is
 1348 improved as well. However, in general there is no clear relation between the iteration complexity of
 1349 $\mathbf{W} = \mathbf{L}^{-1}$ and $\mathbf{W} = \text{diag}^{-1}(\mathbf{L})$. This is also confirmed by one of our experiments, see Figure 6 to
 see the comparison of **det-MARINA** using those stepsizes.

1350 G.4 PROOF OF COROLLARY 4.7
13511352 We start with rewriting (3) as
1353

1354
$$\left(\frac{1-p}{np} \cdot R(\mathbf{D}, \mathcal{S}) + 1 \right) \mathbf{D}^{\frac{1}{2}} \mathbf{L} \mathbf{D}^{\frac{1}{2}} \preceq \mathbf{I}_d.$$

1355

1356 Notice that we have already defined
1357

1358
$$\alpha = \frac{1-p}{np}; \quad \beta = \frac{1}{n} \sum_{i=1}^n \lambda_{\max}(\mathbf{L}_i) \cdot \lambda_{\max}(\mathbf{L}^{-1} \mathbf{L}_i);$$

1359
1360
$$\Lambda_{\mathbf{W}, \mathcal{S}} = \lambda_{\max}(\mathbb{E}[\mathbf{S}_i^k \mathbf{W} \mathbf{S}_i^k] - \mathbf{W}); \quad \lambda_{\mathbf{W}} = \lambda_{\max}^{-1}(\mathbf{W}^{\frac{1}{2}} \mathbf{L} \mathbf{W}^{\frac{1}{2}}).$$

1361

1362 Plugging in the definition of $R(\mathbf{D}, \mathcal{S})$ and $\mathbf{D} = \gamma \mathbf{W}$, we obtain
1363

1364
$$\alpha \beta \Lambda_{\mathbf{W}, \mathcal{S}} \cdot \gamma^2 + \gamma - \lambda_{\mathbf{W}} \leq 0,$$

1365 which yields the upper bound on γ
1366

1367
$$\gamma \leq \frac{\sqrt{1 + 4\alpha\beta \cdot \Lambda_{\mathbf{W}, \mathcal{S}} \lambda_{\mathbf{W}}} - 1}{2\alpha\beta \cdot \Lambda_{\mathbf{W}, \mathcal{S}}}.$$

1368

1369 Since $\sqrt{1 + 4\alpha\beta \cdot \Lambda_{\mathbf{W}, \mathcal{S}} \lambda_{\mathbf{W}}} + 1 > 0$, we further simplify the result as
1370

1371
$$\gamma \leq \frac{2\lambda_{\mathbf{W}}}{1 + \sqrt{1 + 4\alpha\beta \cdot \Lambda_{\mathbf{W}, \mathcal{S}} \lambda_{\mathbf{W}}}}.$$

1372
1373

1374 G.5 PROOF OF COROLLARY 6.1
13751376 It is obvious that (6) directly follows from plugging $\mathbf{W} = \mathbf{L}^{-1}$ into (5). The iteration complexity of
1377 **MARINA**, according to Gorbunov et al. (2021), is

1378
$$K \geq K_1 = \mathcal{O} \left(\frac{\Delta_0 L}{\varepsilon^2} \left(1 + \sqrt{\frac{(1-p)\omega}{pn}} \right) \right). \quad (25)$$

1379
1380

1381 On the other hand,
1382

1383
$$\det(\mathbf{L})^{\frac{1}{d}} \leq \lambda_{\max}(\mathbf{L}) = L. \quad (26)$$

1384 In addition, using the inequality
1385

1386
$$\sqrt{1 + 4t} \leq 1 + 2\sqrt{t}, \quad (27)$$

1387 which holds for any $t \geq 0$, we obtain the following bound
1388

1389
$$\frac{(1 + \sqrt{1 + 4\alpha\beta \cdot \Lambda_{\mathbf{L}^{-1}, \mathcal{S}}})}{2} \leq 1 + \sqrt{\alpha\beta \cdot \Lambda_{\mathbf{L}^{-1}, \mathcal{S}}}.$$

1390 Next we prove that
1391

1392
$$1 + \sqrt{\alpha\beta \cdot \Lambda_{\mathbf{L}^{-1}, \mathcal{S}}} \leq 1 + \sqrt{\frac{(1-p)\omega}{pn}}, \quad (28)$$

1393

1394 which is equivalent to
1395

1396
$$\frac{1}{n} \sum_{i=1}^n \lambda_{\max}(\mathbf{L}_i) \lambda_{\max}(\mathbf{L}_i \mathbf{L}^{-1}) \cdot \lambda_{\max}(\mathbb{E}[\mathbf{S}_i^k \mathbf{L}^{-1} \mathbf{S}_i^k] - \mathbf{L}^{-1}) \leq \omega.$$

1397

1398 The left hand side can be upper bounded by,
1399

1400
$$\begin{aligned} & \frac{1}{n} \sum_{i=1}^n \lambda_{\max}(\mathbf{L}_i) \lambda_{\max}(\mathbf{L}^{-1} \mathbf{L}_i) \cdot \lambda_{\max}(\mathbf{L}^{-1}) \cdot \frac{\lambda_{\max}(\mathbb{E}[\mathbf{S}_i^k \mathbf{L}^{-1} \mathbf{S}_i^k] - \mathbf{L}^{-1})}{\lambda_{\max}(\mathbf{L}^{-1})} \\ & \leq \frac{\lambda_{\max}(\mathbb{E}[\mathbf{S}_i^k \mathbf{L}^{-1} \mathbf{S}_i^k] - \mathbf{L}^{-1})}{\lambda_{\max}(\mathbf{L}^{-1})}, \end{aligned}$$

1401
1402
1403

1404 where the inequality is a consequence of Lemma 3.4. We further bound the last term with
 1405

$$\begin{aligned} \frac{\lambda_{\max}(\mathbb{E}[\mathbf{S}_i^k \mathbf{L}^{-1} \mathbf{S}_i^k] - \mathbf{L}^{-1})}{\lambda_{\max}(\mathbf{L}^{-1})} &= \lambda_{\max}\left(\mathbb{E}\left[\mathbf{S}_i^k \cdot \frac{\mathbf{L}^{-1}}{\lambda_{\max}(\mathbf{L}^{-1})} \cdot \mathbf{S}_i^k\right] - \frac{\mathbf{L}^{-1}}{\lambda_{\max}(\mathbf{L}^{-1})}\right) \\ &\leq \lambda_{\max}(\mathbb{E}[\mathbf{S}_i^k \mathbf{S}_i^k] - \mathbf{I}_d) =: \omega. \end{aligned}$$

1410 Here, the last inequality is due to the monotonicity of the mapping $\mathbf{X} \mapsto \lambda_{\max}(\mathbb{E}[\mathbf{S}_i^k \mathbf{X} \mathbf{S}_i^k] - \mathbf{X})$
 1411 with $\mathbf{X} \in \mathbb{S}_{++}^d$, which can be shown as follows, let us pick any $\mathbf{X}_1, \mathbf{X}_2 \in \mathbb{S}_{++}^d$ and $\mathbf{X}_1 \preceq \mathbf{X}_2$,
 1412

$$(\mathbb{E}[\mathbf{S}_i^k \mathbf{X}_2 \mathbf{S}_i^k] - \mathbf{X}_2) - (\mathbb{E}[\mathbf{S}_i^k \mathbf{X}_1 \mathbf{S}_i^k] - \mathbf{X}_1) = \mathbb{E}[\mathbf{S}_i^k (\mathbf{X}_2 - \mathbf{X}_1) \mathbf{S}_i^k] - (\mathbf{X}_2 - \mathbf{X}_1) \succeq \mathbf{0}_d.$$

1413 The above inequality is due to the convexity of the mapping $\mathbf{S}_i^k \mapsto \mathbf{S}_i^k \mathbf{X} \mathbf{S}_i^k$. As a result, we have
 1414

$$\lambda_{\max}(\mathbb{E}[\mathbf{S}_i^k \mathbf{X}_2 \mathbf{S}_i^k] - \mathbf{X}_2) \geq \lambda_{\max}(\mathbb{E}[\mathbf{S}_i^k \mathbf{X}_1 \mathbf{S}_i^k] - \mathbf{X}_1),$$

1415 whenever $\mathbf{X}_2 \succeq \mathbf{X}_1$. Due to the fact that
 1416

$$\frac{\mathbf{L}^{-1}}{\lambda_{\max}(\mathbf{L}^{-1})} \preceq \mathbf{I}_d,$$

1417 we have
 1418

$$\lambda_{\max}\left(\mathbb{E}\left[\mathbf{S}_i^k \cdot \frac{\mathbf{L}^{-1}}{\lambda_{\max}(\mathbf{L}^{-1})} \cdot \mathbf{S}_i^k\right] - \frac{\mathbf{L}^{-1}}{\lambda_{\max}(\mathbf{L}^{-1})}\right) \leq \lambda_{\max}(\mathbb{E}[\mathbf{S}_i^k \cdot \mathbf{I}_d \cdot \mathbf{S}_i^k] - \mathbf{I}_d) = \omega.$$

1419 Combining (26) and (28), we have
 1420

$$\frac{\Delta_0 \det(\mathbf{L})^{\frac{1}{d}}}{\varepsilon^2} \cdot \left(1 + \sqrt{1 + 4\alpha\beta \cdot \Lambda_{\mathbf{L}^{-1}, \mathcal{S}}}\right) \leq \frac{\Delta_0 L}{\varepsilon^2} \left(1 + \sqrt{\frac{(1-p)\omega}{pn}}\right),$$

1421 which implies that the iteration complexity of **det-MARINA** is always better than that of **MARINA**.
 1422

1423 G.6 PROOF OF COROLLARY 6.3

1424 The number of bits sent in expectation is $\mathcal{O}(d + K(pd + (1-p)\zeta_{\mathcal{S}})) = \mathcal{O}((Kp+1)d + (1-p)K\zeta_{\mathcal{S}})$.
 1425 The special case where we choose $p = \zeta_{\mathcal{S}}/d$ indicates that $\alpha = \frac{1-p}{np} = \frac{1}{n} \left(\frac{d}{\zeta_{\mathcal{S}}} - 1\right)$. In order to
 1426 reach an error of ε^2 , we need
 1427

$$K = \mathcal{O}\left(\frac{\Delta_0 \cdot \det(\mathbf{L})^{\frac{1}{d}}}{\varepsilon^2} \cdot \left(1 + \sqrt{1 + \frac{4\beta}{n} \left(\frac{d}{\zeta_{\mathcal{S}}} - 1\right) \cdot \Lambda_{\mathbf{L}^{-1}, \mathcal{S}}}\right)\right).$$

1428 Applying once again (27), using the fact that $p = \zeta_{\mathcal{S}}/d$, the communication complexity in this case is
 1429 given by
 1430

$$\begin{aligned} &\mathcal{O}\left(d + \frac{\Delta_0 \cdot \det(\mathbf{L})^{\frac{1}{d}}}{\varepsilon^2} \cdot \left(1 + \sqrt{1 + \frac{4\beta}{n} \left(\frac{d}{\zeta_{\mathcal{S}}} - 1\right) \cdot \Lambda_{\mathbf{L}^{-1}, \mathcal{S}}}\right) \cdot (pd + (1-p)\zeta_{\mathcal{S}})\right) \\ &\leq \mathcal{O}\left(d + \frac{2\Delta_0 \cdot \det(\mathbf{L})^{\frac{1}{d}}}{\varepsilon^2} \cdot \left(1 + \sqrt{\frac{\beta}{n} \left(\frac{d}{\zeta_{\mathcal{S}}} - 1\right) \cdot \Lambda_{\mathbf{L}^{-1}, \mathcal{S}}}\right) \cdot (pd + (1-p)\zeta_{\mathcal{S}})\right) \\ &\leq \mathcal{O}\left(d + \frac{4\Delta_0 \cdot \det(\mathbf{L})^{\frac{1}{d}}}{\varepsilon^2} \cdot \left(\zeta_{\mathcal{S}} + \sqrt{\frac{\beta \cdot \Lambda_{\mathbf{L}^{-1}, \mathcal{S}}}{n} \cdot \zeta_{\mathcal{S}}(d - \zeta_{\mathcal{S}})}\right)\right). \end{aligned}$$

1431 Ignoring the coefficient, we have
 1432

$$\mathcal{O}\left(d + \frac{\Delta_0 \cdot \det(\mathbf{L})^{\frac{1}{d}}}{\varepsilon^2} \cdot \left(\zeta_{\mathcal{S}} + \sqrt{\frac{\beta \cdot \Lambda_{\mathbf{L}^{-1}, \mathcal{S}}}{n} \cdot \zeta_{\mathcal{S}}(d - \zeta_{\mathcal{S}})}\right)\right).$$

1458 G.7 PROOF OF COROLLARY G.4
1459

1460 Applying Corollary 4.7, notice that in this case $\lambda_{\text{diag}^{-1}(\mathbf{L})} = \lambda_{\max}^{-1} \left(\text{diag}^{-\frac{1}{2}}(\mathbf{L}) \mathbf{L} \text{diag}^{-\frac{1}{2}}(\mathbf{L}) \right) =$
1461 1, we obtain $\mathbf{D}_{\text{diag}^{-1}(\mathbf{L})}^*$. The iteration complexity is given by
1462

$$1463 \mathcal{O} \left(\frac{\det(\text{diag}(\mathbf{L}))^{\frac{1}{d}} \cdot \Delta_0}{\varepsilon^2} \cdot \left(\frac{1 + \sqrt{1 + 4\alpha\beta\Lambda_{\text{diag}^{-1}(\mathbf{L}),\mathcal{S}}}}{2} \right) \right).$$

1466 We now compare it to the iteration complexity of **MARINA**, which is given in (25). We know that
1467 each diagonal element \mathbf{L}_{jj} satisfies $\mathbf{L}_{jj} \leq \lambda_{\max}(\mathbf{L}) = L$ for $j = 1, \dots, d$. As a result,
1468

$$\det(\text{diag}(\mathbf{L}))^{\frac{1}{d}} \leq L. \quad (29)$$

1469 From (27), we deduce
1470

$$1471 \frac{1 + \sqrt{1 + 4\alpha\beta \cdot \Lambda_{\text{diag}^{-1}(\mathbf{L}),\mathcal{S}}}}{2} \leq 1 + \sqrt{\alpha\beta \cdot \Lambda_{\text{diag}^{-1}(\mathbf{L}),\mathcal{S}}}.$$

1473 Now, let us prove the below inequality
1474

$$1475 1 + \sqrt{\alpha\beta \cdot \Lambda_{\text{diag}^{-1}(\mathbf{L}),\mathcal{S}}} \leq 1 + \sqrt{\frac{(1-p)}{pn} \cdot \omega}, \quad (30)$$

1478 which is equivalent to $\beta \cdot \Lambda_{\text{diag}^{-1}(\mathbf{L}),\mathcal{S}} \leq \omega$. Plugging in the definition of β , ω and $\Lambda_{\text{diag}^{-1}(\mathbf{L}),\mathcal{S}}$ and
1479 using Lemma 3.4, we obtain,
1480

$$\lambda_{\max} \left(\mathbb{E} \left[\mathbf{S}_i^k \frac{\text{diag}^{-1}(\mathbf{L})}{\lambda_{\max}(\mathbf{L}^{-1})} \mathbf{S}_i^k - \frac{\text{diag}^{-1}(\mathbf{L})}{\lambda_{\max}(\mathbf{L}^{-1})} \right] \right) \leq \lambda_{\max} \left(\mathbb{E} [\mathbf{S}_i^k \mathbf{I}_d \mathbf{S}_i^k] - \mathbf{I}_d \right).$$

1482 It is enough to prove that $\frac{\text{diag}^{-1}(\mathbf{L})}{\lambda_{\max}(\mathbf{L}^{-1})} \preceq \mathbf{I}_d$, which can be further simplified as $\lambda_{\min}(\mathbf{L}) \leq$
1483 $\lambda_{\min}(\text{diag}(\mathbf{L}))$. This is always true for any $\mathbf{L} \in \mathbb{S}_{++}^d$. Combining (29) and (30) we conclude
1485 the proof.
1486

1487 G.8 PROOF OF LEMMA G.1
1488

1489 Let $\bar{x}^{k+1} := x^k - \mathbf{D} \cdot \nabla f(x^k)$. Since f has matrix \mathbf{L} -Lipschitz gradient, by Lemma F.7, f is also
1490 \mathbf{L} -smooth. By the \mathbf{L} -smoothness of f , we have
1491

$$1492 f(x^{k+1}) \\ 1493 \leq f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{1}{2} \langle x^{k+1} - x^k, \mathbf{L}(x^{k+1} - x^k) \rangle \\ 1494 = f(x^k) + \langle \nabla f(x^k) - g^k, x^{k+1} - x^k \rangle + \langle g^k, x^{k+1} - x^k \rangle + \frac{1}{2} \langle x^{k+1} - x^k, \mathbf{L}(x^{k+1} - x^k) \rangle.$$

1496 We can merge the last two terms and obtain,
1497

$$1498 f(x^{k+1}) \leq f(x^k) + \langle \nabla f(x^k) - g^k, -\mathbf{D} \cdot g^k \rangle - \langle x^{k+1} - x^k, \mathbf{D}^{-1}(x^{k+1} - x^k) \rangle \\ 1499 + \frac{1}{2} \langle x^{k+1} - x^k, \mathbf{L}(x^{k+1} - x^k) \rangle \\ 1500 = f(x^k) + \langle \nabla f(x^k) - g^k, -\mathbf{D} \cdot g^k \rangle - \left\langle x^{k+1} - x^k, \left(\mathbf{D}^{-1} - \frac{1}{2} \mathbf{L} \right) (x^{k+1} - x^k) \right\rangle.$$

1503 We add and subtract $\langle \nabla f(x^k) - g^k, \mathbf{D} \cdot g^k \rangle$,
1504

$$1505 f(x^{k+1}) \leq f(x^k) + \langle \nabla f(x^k) - g^k, \mathbf{D} (\nabla f(x^k) - g^k) \rangle - \langle \nabla f(x^k) - g^k, \mathbf{D} \cdot \nabla f(x^k) \rangle \\ 1506 - \left\langle x^{k+1} - x^k, \left(\mathbf{D}^{-1} - \frac{1}{2} \mathbf{L} \right) (x^{k+1} - x^k) \right\rangle \\ 1507 = f(x^k) + \|\nabla f(x^k) - g^k\|_{\mathbf{D}}^2 - \langle x^{k+1} - \bar{x}^{k+1}, \mathbf{D}^{-1} (x^k - \bar{x}^{k+1}) \rangle \\ 1508 - \left\langle x^{k+1} - x^k, \left(\mathbf{D}^{-1} - \frac{1}{2} \mathbf{L} \right) (x^{k+1} - x^k) \right\rangle.$$

1512 Decomposing the term $\langle x^{k+1} - \bar{x}^{k+1}, \mathbf{D}^{-1} (x^k - \bar{x}^{k+1}) \rangle$, we obtain
 1513

$$\begin{aligned} 1514 \quad f(x^{k+1}) &\leq f(x^k) + \|\nabla f(x^k) - g^k\|_{\mathbf{D}}^2 - \left\langle x^{k+1} - x^k, \left(\mathbf{D}^{-1} - \frac{1}{2} \mathbf{L}\right) (x^{k+1} - x^k) \right\rangle \\ 1515 &\quad - \frac{1}{2} \left(\|x^{k+1} - \bar{x}^{k+1}\|_{\mathbf{D}^{-1}}^2 + \|x^k - \bar{x}^{k+1}\|_{\mathbf{D}^{-1}}^2 - \|x^{k+1} - x^k\|_{\mathbf{D}^{-1}}^2 \right). \end{aligned}$$

1516 Plugging in the definition of x^{k+1}, \bar{x}^{k+1} , we get
 1517

$$\begin{aligned} 1518 \quad f(x^{k+1}) &\leq f(x^k) + \|\nabla f(x^k) - g^k\|_{\mathbf{D}}^2 - \|x^{k+1} - x^k\|_{\mathbf{D}^{-1} - \frac{1}{2} \mathbf{L}}^2 \\ 1519 &\quad - \frac{1}{2} \left(\|\mathbf{D}(\nabla f(x^k) - g^k)\|_{\mathbf{D}^{-1}}^2 + \|\mathbf{D} \cdot \nabla f(x^k)\|_{\mathbf{D}^{-1}}^2 - \|x^{k+1} - x^k\|_{\mathbf{D}^{-1}}^2 \right) \\ 1520 &= f(x^k) + \|\nabla f(x^k) - g^k\|_{\mathbf{D}}^2 - \|x^{k+1} - x^k\|_{\mathbf{D}^{-1} - \frac{1}{2} \mathbf{L}}^2 \\ 1521 &\quad - \frac{1}{2} \left(\|\nabla f(x^k) - g^k\|_{\mathbf{D}}^2 + \|\nabla f(x^k)\|_{\mathbf{D}}^2 - \|x^{k+1} - x^k\|_{\mathbf{D}^{-1}}^2 \right). \end{aligned}$$

1522 Rearranging terms we obtain,
 1523

$$\begin{aligned} 1524 \quad f(x^{k+1}) &\leq f(x^k) - \frac{1}{2} \|\nabla f(x^k)\|_{\mathbf{D}}^2 + \frac{1}{2} \|g^k - \nabla f(x^k)\|_{\mathbf{D}}^2 - \|x^{k+1} - x^k\|_{\mathbf{D}^{-1} - \frac{1}{2} \mathbf{L}}^2 \\ 1525 &\quad + \frac{1}{2} \|x^{k+1} - x^k\|_{\mathbf{D}^{-1}}^2 \\ 1526 &= f(x^k) - \frac{1}{2} \|\nabla f(x^k)\|_{\mathbf{D}}^2 + \frac{1}{2} \|g^k - \nabla f(x^k)\|_{\mathbf{D}}^2 - \frac{1}{2} \|x^{k+1} - x^k\|_{\mathbf{D}^{-1} - \mathbf{L}}^2. \end{aligned}$$

1527 G.9 PROOF OF LEMMA G.2

1528 The definition of the weighted norm yields
 1529

$$\begin{aligned} 1530 \quad \mathbb{E}[\|St - t\|_{\mathbf{D}}^2] &= \mathbb{E}[\langle t, (\mathbf{S} - \mathbf{I}_d) \mathbf{D} (\mathbf{S} - \mathbf{I}_d) t \rangle] \\ 1531 &= \langle t, \mathbb{E}[(\mathbf{S} - \mathbf{I}_d) \mathbf{D} (\mathbf{S} - \mathbf{I}_d)] t \rangle \\ 1532 &= \left\langle t, \mathbf{L}^{-\frac{1}{2}} \cdot \mathbb{E}\left[\mathbf{L}^{\frac{1}{2}} (\mathbf{S} - \mathbf{I}_d) \mathbf{D} (\mathbf{S} - \mathbf{I}_d) \mathbf{L}^{\frac{1}{2}}\right] \cdot \mathbf{L}^{-\frac{1}{2}} t \right\rangle \\ 1533 &= \left\langle \mathbf{L}^{-\frac{1}{2}} t, \mathbb{E}\left[\mathbf{L}^{\frac{1}{2}} (\mathbf{S} - \mathbf{I}_d) \mathbf{D} (\mathbf{S} - \mathbf{I}_d) \mathbf{L}^{\frac{1}{2}}\right] \cdot \mathbf{L}^{-\frac{1}{2}} t \right\rangle \\ 1534 &\leq \lambda_{\max} \left(\mathbb{E}\left[\mathbf{L}^{\frac{1}{2}} (\mathbf{S} - \mathbf{I}_d) \mathbf{D} (\mathbf{S} - \mathbf{I}_d) \mathbf{L}^{\frac{1}{2}}\right] \right) \|\mathbf{L}^{-\frac{1}{2}} t\|^2 \\ 1535 &= \lambda_{\max} \left(\mathbf{L}^{\frac{1}{2}} (\mathbb{E}[\mathbf{S} \mathbf{D} \mathbf{S}^T] - \mathbf{D}) \mathbf{L}^{\frac{1}{2}} \right) \cdot \|t\|_{\mathbf{L}^{-1}}^2. \end{aligned}$$

1536 H ANALYSIS OF DET-DASHA

1537 We first present some technical lemmas essential for the proof.
 1538

1539 **Lemma H.1.** Assume that Definition 3.2 holds and $h_i^0 = \nabla f_i(x^0)$, then for h_i^{k+1} from Algorithm 2,
 1540 we have for any $\mathbf{D} \in \mathbb{S}_{++}^d$

$$1541 \quad \|h^{k+1} - \nabla f(x^{k+1})\|_{\mathbf{D}}^2 = \|h_i^{k+1} - \nabla f_i(x^{k+1})\|_{\mathbf{D}}^2 = 0. \quad \|h_i^{k+1} - h_i^k\|_{\mathbf{L}_i^{-1}}^2 \leq \|x^{k+1} - x^k\|_{\mathbf{L}_i}^2.$$

1542 **Lemma H.2.** Suppose h^{k+1} and g^{k+1} are from Algorithm 2, then the following recurrence holds,
 1543

$$\begin{aligned} 1544 \quad \mathbb{E}[\|g^{k+1} - h^{k+1}\|_{\mathbf{D}}^2] &\leq \frac{2\Lambda_{\mathbf{D}, \mathcal{S}} \cdot \lambda_{\max}(\mathbf{D}^{-1}) \cdot \lambda_{\max}(\mathbf{D})}{n^2} \sum_{i=1}^n \lambda_{\max}(\mathbf{L}_i) \mathbb{E}[\|h_i^{k+1} - h_i^k\|_{\mathbf{L}_i^{-1}}^2] \\ 1545 &\quad + \frac{2a^2 \Lambda_{\mathbf{D}, \mathcal{S}} \cdot \lambda_{\max}(\mathbf{D}^{-1})}{n^2} \sum_{i=1}^n \mathbb{E}[\|g_i^k - h_i^k\|_{\mathbf{D}}^2] + (1-a)^2 \mathbb{E}[\|g^k - h^k\|_{\mathbf{D}}^2], \end{aligned} \quad (31)$$

1546 where $\Lambda_{\mathbf{D}, \mathcal{S}} = \lambda_{\max}(\mathbb{E}[\mathbf{S}_i^k \mathbf{D} \mathbf{S}_i^k] - \mathbf{D})$ for $\mathbf{D} \in \mathbb{S}_{++}^d$ and $\mathbf{S}_i^k \sim \mathcal{S}$.
 1547

1566 **Lemma H.3.** Suppose h_i^{k+1} and g_i^{k+1} for $i \in [n]$ are from Algorithm 2, then the following recurrence
 1567 holds,
 1568

$$\begin{aligned}
 & \mathbb{E} \left[\|g_i^{k+1} - h_i^{k+1}\|_{\mathbf{D}}^2 \right] \\
 & \leq (2a^2 \lambda_{\max}(\mathbf{D}^{-1}) \cdot \Lambda_{\mathbf{D}, \mathcal{S}} + (1-a)^2) \cdot \mathbb{E} \left[\|g_i^k - h_i^k\|_{\mathbf{D}}^2 \right] \\
 & \quad + 2\lambda_{\max}(\mathbf{D}^{-1}) \cdot \lambda_{\max}(\mathbf{D}) \cdot \Lambda_{\mathbf{D}, \mathcal{S}} \cdot \lambda_{\max}(\mathbf{L}_i) \cdot \mathbb{E} \left[\|h_i^{k+1} - h_i^k\|_{\mathbf{L}_i^{-1}}^2 \right].
 \end{aligned}$$

1576 H.1 PROOF OF THEOREM 5.1

1578 Using Lemma G.1 and taking expectations, we obtain
 1579

$$\begin{aligned}
 & \mathbb{E}[f(x^{k+1})] \\
 & \leq \mathbb{E}[f(x^k)] - \frac{1}{2} \mathbb{E} \left[\|\nabla f(x^k)\|_{\mathbf{D}}^2 \right] - \frac{1}{2} \mathbb{E} \left[\|x^{k+1} - x^k\|_{\mathbf{D}^{-1} - \mathbf{L}}^2 \right] + \frac{1}{2} \mathbb{E} \left[\|g^k - \nabla f(x^k)\|_{\mathbf{D}}^2 \right] \\
 & \leq \mathbb{E}[f(x^k)] - \frac{1}{2} \mathbb{E} \left[\|\nabla f(x^k)\|_{\mathbf{D}}^2 \right] - \frac{1}{2} \mathbb{E} \left[\|x^{k+1} - x^k\|_{\mathbf{D}^{-1} - \mathbf{L}}^2 \right] \\
 & \quad + \mathbb{E} \left[\frac{1}{2} \|g^k - h^k + h^k - \nabla f(x^k)\|_{\mathbf{D}}^2 \right] \\
 & \leq \mathbb{E}[f(x^k)] - \frac{1}{2} \mathbb{E} \left[\|\nabla f(x^k)\|_{\mathbf{D}}^2 \right] - \frac{1}{2} \mathbb{E} \left[\|x^{k+1} - x^k\|_{\mathbf{D}^{-1} - \mathbf{L}}^2 \right] \\
 & \quad + \mathbb{E} \left[\|g^k - h^k\|_{\mathbf{D}}^2 + \|h^k - \nabla f(x^k)\|_{\mathbf{D}}^2 \right], \tag{32}
 \end{aligned}$$

1595 where the last step is due to the convexity of the norm. Using Lemma H.2, we obtain
 1596

$$\begin{aligned}
 & \mathbb{E} \left[\|g^{k+1} - h^{k+1}\|_{\mathbf{D}}^2 \right] \leq \frac{2\omega_{\mathbf{D}} \cdot \lambda_{\max}(\mathbf{D})}{n^2} \sum_{i=1}^n \lambda_{\max}(\mathbf{L}_i) \mathbb{E} \left[\|h_i^{k+1} - h_i^k\|_{\mathbf{L}_i^{-1}}^2 \right] \\
 & \quad + \frac{2a^2 \omega_{\mathbf{D}}}{n^2} \sum_{i=1}^n \mathbb{E} \left[\|g_i^k - h_i^k\|_{\mathbf{D}}^2 \right] + (1-a)^2 \mathbb{E} \left[\|g^k - h^k\|_{\mathbf{D}}^2 \right]. \tag{33}
 \end{aligned}$$

1605 Using Lemma H.3, we get
 1606

$$\begin{aligned}
 & \mathbb{E} \left[\|g_i^{k+1} - h_i^{k+1}\|_{\mathbf{D}}^2 \right] \\
 & \leq (2a^2 \omega_{\mathbf{D}} + (1-a)^2) \mathbb{E} \left[\|g_i^k - h_i^k\|_{\mathbf{D}}^2 \right] + 2\omega_{\mathbf{D}} \lambda_{\max}(\mathbf{D}) \lambda_{\max}(\mathbf{L}_i) \mathbb{E} \left[\|h_i^{k+1} - h_i^k\|_{\mathbf{L}_i^{-1}}^2 \right]. \tag{34}
 \end{aligned}$$

1614 Now let us fix $\kappa \in [0, +\infty)$, $\eta \in [0, +\infty)$ which we will determine later, and construct the following
 1615 Lyapunov function Φ_k
 1616

$$\Phi_k = \mathbb{E}[f(x^k) - f^*] + \kappa \cdot \mathbb{E} \left[\|g^k - h^k\|_{\mathbf{D}}^2 \right] + \eta \cdot \mathbb{E} \left[\frac{1}{n} \sum_{i=1}^n \|g_i^k - h_i^k\|_{\mathbf{D}}^2 \right]. \tag{35}$$

Combining (32), (33) and (34), we get

$$\begin{aligned}
& \Phi_{k+1} \\
& \leq \mathbb{E} \left[f(x^k) - f^* - \frac{1}{2} \|\nabla f(x^k)\|_{\mathbf{D}}^2 \right] \\
& \quad + \mathbb{E} \left[-\frac{1}{2} \|x^{k+1} - x^k\|_{\mathbf{D}^{-1} - \mathbf{L}}^2 + \|g^k - h^k\|_{\mathbf{D}}^2 + \|h^k - \nabla f(x^k)\|_{\mathbf{D}}^2 \right] \\
& \quad + \kappa(1-a)^2 \mathbb{E} \left[\|g^k - h^k\|_{\mathbf{D}}^2 \right] + \frac{2\kappa \cdot \omega_{\mathbf{D}} \lambda_{\max}(\mathbf{D})}{n} \cdot \frac{1}{n} \sum_{i=1}^n \lambda_{\max}(\mathbf{L}_i) \mathbb{E} \left[\|h_i^{k+1} - h_i^k\|_{\mathbf{L}_i^{-1}}^2 \right] \\
& \quad + \frac{2a^2 \omega_{\mathbf{D}} \cdot \kappa}{n} \cdot \frac{1}{n} \sum_{i=1}^n \mathbb{E} \left[\|g_i^k - h_i^k\|_{\mathbf{D}}^2 \right] + \eta (2a^2 \omega_{\mathbf{D}} + (1-a)^2) \cdot \frac{1}{n} \sum_{i=1}^n \mathbb{E} \left[\|g_i^k - h_i^k\|_{\mathbf{D}}^2 \right] \\
& \quad + 2\eta \cdot \omega_{\mathbf{D}} \cdot \lambda_{\max}(\mathbf{D}) \cdot \frac{1}{n} \sum_{i=1}^n \lambda_{\max}(\mathbf{L}_i) \cdot \mathbb{E} \left[\|h_i^{k+1} - h_i^k\|_{\mathbf{L}_i^{-1}}^2 \right].
\end{aligned}$$

Rearranging terms, and notice that $\|h^k - \nabla f(x^k)\|_B^2 = 0$,

$$\begin{aligned}
& \Phi_{k+1} \\
& \leq \mathbb{E}[f(x^k) - f^*] - \frac{1}{2} \mathbb{E} \left[\left\| \nabla f(x^k) \right\|_{\mathbf{D}}^2 \right] \\
& \quad - \frac{1}{2} \mathbb{E} \left[\left\| x^{k+1} - x^k \right\|_{\mathbf{D}^{-1} - \mathbf{L}}^2 \right] + (1 + \kappa(1-a)^2) \mathbb{E} \left[\left\| g^k - h^k \right\|_{\mathbf{D}}^2 \right] \\
& \quad + \left(\frac{2a^2 \omega_{\mathbf{D}} \cdot \kappa}{n} + \eta (2a^2 \omega_{\mathbf{D}} + (1-a)^2) \right) \cdot \frac{1}{n} \sum_{i=1}^n \mathbb{E} \left[\left\| g_i^k - h_i^k \right\|_{\mathbf{D}}^2 \right] \\
& \quad + \left(\frac{2\kappa \cdot \omega_{\mathbf{D}} \lambda_{\max}(\mathbf{D})}{n} + 2\eta \cdot \omega_{\mathbf{D}} \cdot \lambda_{\max}(\mathbf{D}) \right) \cdot \frac{1}{n} \sum_{i=1}^n \lambda_{\max}(\mathbf{L}_i) \cdot \mathbb{E} \left[\left\| h_i^{k+1} - h_i^k \right\|_{\mathbf{L}_i^{-1}}^2 \right].
\end{aligned}$$

In order to proceed, we consider the choice of κ and η , for κ ,

$$1 + \kappa(1 - a)^2 \leq \kappa. \quad (36)$$

It is then clear that the choice of $\kappa = \frac{1}{a}$ satisfies the condition. On the other hand, we look at the terms involving $\mathbb{E} \left[\|g_i^k - h_i^k\|_D^2 \right]$, which we denote as T_1 :

$$T_1 := \left(\frac{2a^2\omega_{\mathcal{D}} \cdot \kappa}{n} + \eta \left(2a^2\omega_{\mathcal{D}} + (1-a)^2 \right) \right) \cdot \frac{1}{n} \sum_{i=1}^n \mathbb{E} \left[\|g_i^k - h_i^k\|_{\mathcal{D}}^2 \right].$$

Picking $\kappa = \frac{1}{2}$ and $a = \frac{1}{2^{n+1}}$,

$$T_1 = \left(\frac{2\omega_D}{n \cdot (2\omega_D + 1)} + \eta \cdot \frac{4\omega_D^2 + 2\omega_D}{(2\omega_D + 1)^2} \right) \cdot \frac{1}{n} \sum_i^n \mathbb{E} \left[\|g_i^k - h_i^k\|_D^2 \right].$$

We wish to see that it satisfies

$$\left(\frac{2\omega_D}{n \cdot (2\omega_D + 1)} + \eta \cdot \frac{4\omega_D^2 + 2\omega_D}{(2\omega_D + 1)^2} \right) \leq \eta. \quad (37)$$

Taking $n = \frac{2\omega_D}{\epsilon}$, which is the minimum value satisfying (37), we conclude that

$$T_1 \leq \eta \cdot \frac{1}{n} \sum_i^n \mathbb{E} \left[\left\| g_i^k - h_i^k \right\|_{\mathbf{D}}^2 \right]. \quad (38)$$

Combining (36) and (38), we are able to conclude that

$$\begin{aligned}
\Phi_{k+1} &\leq \mathbb{E}[f(x^k) - f^*] + \kappa \cdot \mathbb{E}\left[\|g^k - h^k\|_{\mathbf{D}}^2\right] + \eta \cdot \frac{1}{n} \sum_{i=1}^n \mathbb{E}\left[\|g_i^k - h_i^k\|_{\mathbf{D}}^2\right] \\
&\quad - \frac{1}{2} \mathbb{E}\left[\|\nabla f(x^k)\|_{\mathbf{D}}^2\right] - \frac{1}{2} \mathbb{E}\left[\|x^{k+1} - x^k\|_{\mathbf{D}^{-1} - \mathbf{L}}^2\right] \\
&\quad + \left(\frac{2\kappa \cdot \omega_{\mathbf{D}} \lambda_{\max}(\mathbf{D})}{n} + 2\eta \cdot \omega_{\mathbf{D}} \cdot \lambda_{\max}(\mathbf{D})\right) \cdot \frac{1}{n} \sum_{i=1}^n \lambda_{\max}(\mathbf{L}_i) \cdot \mathbb{E}\left[\|h_i^{k+1} - h_i^k\|_{\mathbf{L}_i^{-1}}^2\right].
\end{aligned}$$

Using the definition of Φ_k and Lemma H.1, we obtain

$$\begin{aligned}
\Phi_{k+1} &\leq \Phi_k - \frac{1}{2} \mathbb{E}\left[\|\nabla f(x^k)\|_{\mathbf{D}}^2\right] - \frac{1}{2} \mathbb{E}\left[\|x^{k+1} - x^k\|_{\mathbf{D}^{-1} - \mathbf{L}}^2\right] \\
&\quad + \left(\frac{2\kappa \cdot \omega_{\mathbf{D}} \lambda_{\max}(\mathbf{D})}{n} + 2\eta \cdot \omega_{\mathbf{D}} \cdot \lambda_{\max}(\mathbf{D})\right) \cdot \frac{1}{n} \sum_{i=1}^n \lambda_{\max}(\mathbf{L}_i) \cdot \mathbb{E}\left[\|x^{k+1} - x^k\|_{\mathbf{L}_i}^2\right] \\
&= \Phi_k - \frac{1}{2} \mathbb{E}\left[\|\nabla f(x^k)\|_{\mathbf{D}}^2\right] + \mathbb{E}\left[\|x^{k+1} - x^k\|_{\mathbf{N}}^2\right],
\end{aligned}$$

where $\mathbf{N} \in \mathbb{S}^d$ is defined as

$$\mathbf{N} := \left(\frac{2\kappa \cdot \omega_{\mathbf{D}} \lambda_{\max}(\mathbf{D})}{n} + 2\eta \cdot \omega_{\mathbf{D}} \cdot \lambda_{\max}(\mathbf{D})\right) \cdot \frac{1}{n} \sum_{i=1}^n \lambda_{\max}(\mathbf{L}_i) \cdot \mathbf{L}_i - \frac{1}{2} \mathbf{D}^{-1} + \frac{1}{2} \mathbf{L}.$$

We require $\mathbf{N} \preceq \mathbf{O}_d$, which leads to the following condition on \mathbf{D} :

$$\mathbf{D}^{-1} - \mathbf{L} - \frac{4\lambda_{\max}(\mathbf{D}) \cdot \omega_{\mathbf{D}} \cdot (4\omega_{\mathbf{D}} + 1)}{n} \cdot \frac{1}{n} \sum_{i=1}^n \lambda_{\max}(\mathbf{L}_i) \cdot \mathbf{L}_i \succeq \mathbf{O}_d.$$

Given the above condition is satisfied, we have the recurrence

$$\frac{1}{2} \mathbb{E}\left[\|\nabla f(x^k)\|_{\mathbf{D}}^2\right] \leq \Phi_k - \Phi_{k+1}$$

Summing up for $k = 0 \dots K - 1$, we obtain

$$\sum_{k=0}^{K-1} \mathbb{E}\left[\|\nabla f(x^k)\|_{\mathbf{D}}^2\right] \leq 2(\Phi_0 - \Phi_K). \quad (39)$$

Notice that we also have

$$\Phi_0 = f(x^0) - f^* + (2\omega_{\mathbf{D}} + 1) \|g^0 - h^0\|_{\mathbf{D}}^2 + \frac{2\omega_{\mathbf{D}}}{n} \cdot \frac{1}{n} \sum_{i=1}^n \|g_i^0 - h_i^0\|^2 = f(x^0) - f^*,$$

We divide both sides of (39) by K , and perform determinant normalization,

$$\frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}\left[\|\nabla f(x^k)\|_{\frac{\mathbf{D}}{\det(\mathbf{D})^{1/d}}}^2\right] \leq \frac{2(f(x^0) - f^*)}{\det(\mathbf{D})^{1/d} \cdot K}.$$

This is to say

$$\mathbb{E}\left[\|\nabla f(\tilde{x}^K)\|_{\frac{\mathbf{D}}{\det(\mathbf{D})^{1/d}}}^2\right] \leq \frac{2(f(x^0) - f^*)}{\det(\mathbf{D})^{1/d} \cdot K},$$

where \tilde{x}^K is chosen uniformly randomly from the first K iterates of the algorithm.

1728 H.2 PROOF OF COROLLARY 5.3
17291730 Plug $\mathbf{D} = \gamma_{\mathbf{W}} \cdot \mathbf{W}$ into the stepsize condition in Theorem 5.1, we obtain
1731

1732
$$\frac{\mathbf{W}^{-1}}{\gamma_{\mathbf{W}}} - \mathbf{L} - \frac{4\gamma_{\mathbf{W}} \cdot \lambda_{\max}(\mathbf{W}) \cdot \omega_{\mathbf{W}} (4\omega_{\mathbf{W}} + 1)}{n} \cdot \frac{1}{n} \sum_{i=1}^n \lambda_{\max}(\mathbf{L}_i) \cdot \mathbf{L}_i \succeq \mathbf{O}_d.$$

1733

1734 We then simplify the above condition as
1735

1736
$$\frac{\mathbf{L}^{-\frac{1}{2}} \mathbf{W}^{-1} \mathbf{L}^{-\frac{1}{2}}}{\gamma_{\mathbf{W}}}$$

1737
1738
$$\succeq \mathbf{I}_d + \frac{4\gamma_{\mathbf{W}} \cdot \lambda_{\max}(\mathbf{W}) \cdot \omega_{\mathbf{W}} (4\omega_{\mathbf{W}} + 1)}{n} \cdot \mathbf{L}^{-\frac{1}{2}} \left(\frac{1}{n} \sum_{i=1}^n \lambda_{\max}(\mathbf{L}_i) \cdot \mathbf{L}_i \right) \mathbf{L}^{-\frac{1}{2}}.$$

1739

1740 Using Lemma F.2, we have
1741

1742
$$\frac{\mathbf{L}^{-\frac{1}{2}} \mathbf{W}^{-1} \mathbf{L}^{-\frac{1}{2}}}{\gamma_{\mathbf{W}}} - \frac{4\gamma_{\mathbf{W}} \cdot \lambda_{\max}(\mathbf{W}) \cdot \omega_{\mathbf{W}} (4\omega_{\mathbf{W}} + 1)}{n} \cdot \lambda_{\min}(\mathbf{L}) \cdot \mathbf{I}_d \succeq \mathbf{I}_d.$$

1743

1744 Taking the minimum eigenvalue of both sides, we obtain that,
1745

1746
$$\frac{\lambda_{\min}(\mathbf{L}^{-\frac{1}{2}} \mathbf{W}^{-1} \mathbf{L}^{-\frac{1}{2}})}{\gamma_{\mathbf{W}}} - \frac{4\gamma_{\mathbf{W}} \cdot \lambda_{\max}(\mathbf{W}) \cdot \omega_{\mathbf{W}} (4\omega_{\mathbf{W}} + 1)}{n} \cdot \lambda_{\min}(\mathbf{L}) \geq 1,$$

1747

1748 If we denote $C_{\mathbf{W}} := \frac{\lambda_{\max}(\mathbf{W}) \cdot \omega_{\mathbf{W}} (4\omega_{\mathbf{W}} + 1)}{n} > 0$, and $\lambda_{\mathbf{W}} := \lambda_{\max}^{-1}(\mathbf{L}^{\frac{1}{2}} \mathbf{W} \mathbf{L}^{\frac{1}{2}})$, we have $4 \cdot C_{\mathbf{W}} \cdot \lambda_{\min}(\mathbf{L}) \cdot \gamma_{\mathbf{W}}^2 + \gamma_{\mathbf{W}} - \lambda_{\mathbf{W}} \leq 0$, which gives
1750

1751
$$\gamma_{\mathbf{W}} \leq \frac{2\lambda_{\mathbf{W}}}{1 + \sqrt{1 + 16C_{\mathbf{W}} \lambda_{\min}(\mathbf{L}) \cdot \lambda_{\mathbf{W}}}}.$$

1752

1753 H.3 PROOF OF COROLLARY 6.4
17541755 The best scaling factor for \mathbf{L}^{-1} , in this case, is given as, according to Corollary 5.3, $\gamma_{\mathbf{L}^{-1}} = \frac{2}{1 + \sqrt{1 + 16C_{\mathbf{L}^{-1}} \cdot \lambda_{\min}(\mathbf{L})}}$. In order to reach a ε^2 stationary point, we need
1756

1757
$$K \geq \frac{\det(\mathbf{L})^{\frac{1}{d}} (f(x^0) - f^*)}{\varepsilon^2} \cdot \left(1 + \sqrt{1 + 16C_{\mathbf{L}^{-1}} \cdot \lambda_{\min}(\mathbf{L})} \right).$$

1758

1759 H.4 PROOF OF COROLLARY 6.5
17601761 The iteration complexity of **det-DASHA** is given by, according to, Corollary 6.4,
1762

1763
$$\mathcal{O} \left(\frac{f(x^0) - f^*}{\varepsilon^2} \cdot \left(1 + \sqrt{1 + 16C_{\mathbf{L}^{-1}} \cdot \lambda_{\min}(\mathbf{L})} \right) \cdot \det(\mathbf{L})^{\frac{1}{d}} \right).$$

1764

1765 Using the inequality $\sqrt{1+t} \leq 1 + \sqrt{t}$ for $t > 0$ and leaving out the coefficients, we obtain
1766

1767
$$\mathcal{O} \left(\frac{f(x^0) - f^*}{\varepsilon^2} \cdot \left(1 + \sqrt{C_{\mathbf{L}^{-1}} \cdot \lambda_{\min}(\mathbf{L})} \right) \cdot \det(\mathbf{L})^{\frac{1}{d}} \right).$$

1768

1769 Notice that
1770

1771
$$C_{\mathbf{L}^{-1}} \cdot \lambda_{\min}(\mathbf{L}) = \lambda_{\max}(\mathbf{L}^{-1}) \cdot \frac{\omega_{\mathbf{L}^{-1}} (4\omega_{\mathbf{L}^{-1}} + 1)}{n} \cdot \lambda_{\min}(\mathbf{L}) = \frac{\omega_{\mathbf{L}^{-1}} (4\omega_{\mathbf{L}^{-1}} + 1)}{n}.$$

1772

1773 As a result, the iteration complexity can be further simplified as
1774

1775
$$\mathcal{O} \left(\frac{f(x^0) - f^*}{\varepsilon^2} \cdot \left(1 + \frac{\omega_{\mathbf{L}^{-1}}}{\sqrt{n}} \right) \cdot \det(\mathbf{L})^{\frac{1}{d}} \right).$$

1776

1777 The iteration complexity of **DASHA** is, according to (Tyurin & Richtárik, 2024, Corollary 6.2)
1778

1779
$$\mathcal{O} \left(\frac{1}{\varepsilon^2} \cdot (f(x^0) - f^*) \left(L + \frac{\omega}{\sqrt{n}} \hat{L} \right) \right),$$

1780

1781 where $\hat{L} = \sqrt{\frac{1}{n} \sum_{i=1}^n L_i^2}$. Since $\det(\mathbf{L})^{\frac{1}{d}} \leq \lambda_{\max}(\mathbf{L}) = L$, and $L \leq \hat{L}$, we see that compared to
1782 **DASHA**, **det-DASHA** has a better iteration complexity when the momentum is the same.

1782 H.5 PROOF OF COROLLARY 6.6
17831784 The iteration complexity of **det-MARINA** is given by
1785

1786
$$\mathcal{O}\left(\frac{f(x^0) - f^*}{\epsilon^2} \cdot \det(\mathbf{L})^{\frac{1}{d}} \cdot \left(1 + \sqrt{\alpha\beta\Lambda_{\mathbf{L}^{-1}, \mathcal{S}}}\right)\right),$$

1787

1788 after removing logarithmic factors. We obtain in the case of $\omega_{\mathbf{L}^{-1}} + 1 = \frac{1}{p}$ that
1789

1790
$$\mathcal{O}\left(\frac{f(x^0) - f^*}{\epsilon^2} \cdot \det(\mathbf{L})^{\frac{1}{d}} \cdot \left(1 + \frac{\omega_{\mathbf{L}^{-1}}}{n}\right)\right).$$

1791

1792 From the proof of Corollary 6.5, we know that the iteration complexity of **det-DASHA** is
1793

1794
$$\mathcal{O}\left(\frac{1}{\epsilon^2} \cdot (f(x^0) - f^*) \left(L + \frac{\omega}{\sqrt{n}} \widehat{L}\right)\right).$$

1795

1796 We see that in this case the two algorithms have the same iteration complexity asymptotically. Notice
1797 that the communication complexity is the product of bytes sent per iteration and the number of
1798 iterations. **det-DASHA** clearly sends less bytes per iteration since it always sends the compressed
1799 gradient differences, which leads to a better communication complexity than **det-MARINA**.
18001801 H.6 PROOF OF LEMMA H.2
18021803 Throughout the following proof, we denote $\mathbb{E}_{\mathcal{S}}[\cdot]$ as taking expectation with respect to the randomness
1804 contained within the sketch sampled from distribution \mathcal{S} . For $\mathbb{E}_{\mathcal{S}}[\|g^{k+1} - h^{k+1}\|_{\mathbf{D}}^2]$, we have
1805

1806
$$\begin{aligned} \mathbb{E}_{\mathcal{S}}[\|g^{k+1} - h^{k+1}\|_{\mathbf{D}}^2] &= \mathbb{E}_{\mathcal{S}}\left[\left\|g^k + \frac{1}{n} \sum_{i=1}^n m_i^{k+1} - h^{k+1}\right\|_{\mathbf{D}}^2\right] \\ &= \mathbb{E}_{\mathcal{S}}\left[\left\|g^k + \frac{1}{n} \sum_{i=1}^n \mathbf{S}_i^k (h_i^{k+1} - h_i^k - a(g_i^k - h_i^k)) - h^{k+1}\right\|_{\mathbf{D}}^2\right] \end{aligned}$$

1807

1808 Using Fact E.3, we obtain
1809

1810
$$\begin{aligned} \mathbb{E}_{\mathcal{S}}[\|g^{k+1} - h^{k+1}\|_{\mathbf{D}}^2] &= \mathbb{E}_{\mathcal{S}}\left[\left\|\frac{1}{n} \sum_{i=1}^n \mathbf{S}_i^k (h_i^{k+1} - h_i^k - a(g_i^k - h_i^k)) - (h^{k+1} - h^k - a(g^k - h^k))\right\|_{\mathbf{D}}^2\right] \\ &\quad + (1-a)^2 \|h^k - g^k\|_{\mathbf{D}}^2 \\ &= \mathbb{E}_{\mathcal{S}}\left[\left\|\frac{1}{n} \sum_{i=1}^n \mathbf{S}_i^k (h_i^{k+1} - h_i^k - a(g_i^k - h_i^k)) - \frac{1}{n} \sum_{i=1}^n (h_i^{k+1} - h_i^k - a(g_i^k - h_i^k))\right\|_{\mathbf{D}}^2\right] \\ &\quad + (1-a)^2 \|h^k - g^k\|_{\mathbf{D}}^2 \\ &= \frac{1}{n^2} \sum_{i=1}^n \mathbb{E}_{\mathcal{S}}\left[\left\|\mathbf{S}_i^k (h_i^{k+1} - h_i^k - a(g_i^k - h_i^k)) - (h_i^{k+1} - h_i^k - a(g_i^k - h_i^k))\right\|_{\mathbf{D}}^2\right] \\ &\quad + (1-a)^2 \|h^k - g^k\|_{\mathbf{D}}^2. \end{aligned}$$

1811

1812 Here, the last identity is obtained from the unbiasedness of the sketches:
1813

1814
$$\mathbb{E}_{\mathcal{S}}[\mathbf{S}_i^k (h_i^{k+1} - h_i^k - a(g_i^k - h_i^k))] = h_i^{k+1} - h_i^k - a(g_i^k - h_i^k).$$

1815

1836 We further use Lemma G.2, and obtain
 1837

$$\begin{aligned}
 1838 \quad & \mathbb{E}_{\mathcal{S}} \left[\|g^{k+1} - h^{k+1}\|_{\mathcal{D}}^2 \right] \\
 1839 \quad & \leq \frac{1}{n^2} \sum_{i=1}^n \lambda_{\max} \left(\mathcal{D}^{-\frac{1}{2}} (\mathbb{E}[\mathcal{S}_i^k \mathcal{D} \mathcal{S}_i^k] - \mathcal{D}) \mathcal{D}^{-\frac{1}{2}} \right) \|h_i^{k+1} - h_i - a(g_i^k - h_i^k)\|_{\mathcal{D}}^2 \\
 1840 \quad & \quad + (1-a)^2 \|g^k - h^k\|_{\mathcal{D}}^2 \\
 1841 \quad & \leq \frac{1}{n^2} \sum_{i=1}^n \lambda_{\max} (\mathcal{D}^{-1}) \cdot \lambda_{\max} (\mathbb{E}[\mathcal{S}_i^k \mathcal{D} \mathcal{S}_i^k] - \mathcal{D}) \|h_i^{k+1} - h_i^k - a(g_i^k - h_i^k)\|_{\mathcal{D}}^2 \\
 1842 \quad & \quad + (1-a)^2 \|g^k - h^k\|_{\mathcal{D}}^2. \\
 1843 \quad & \\
 1844 \quad & \\
 1845 \quad & \\
 1846 \quad & \\
 1847 \quad & \\
 1848 \quad &
 \end{aligned}$$

1849 Applying Jensen's inequality as
 1850

$$\begin{aligned}
 1851 \quad & \mathbb{E}_{\mathcal{S}} \left[\|g^{k+1} - h^{k+1}\|_{\mathcal{D}}^2 \right] \\
 1852 \quad & \leq \frac{2\Lambda_{\mathcal{D}, \mathcal{S}} \cdot \lambda_{\max} (\mathcal{D}^{-1})}{n^2} \sum_{i=1}^n \|h_i^{k+1} - h_i^k\|_{\mathcal{D}}^2 + \frac{2a^2 \Lambda_{\mathcal{D}, \mathcal{S}} \cdot \lambda_{\max} (\mathcal{D}^{-1})}{n^2} \sum_{i=1}^n \|g_i^k - h_i^k\|_{\mathcal{D}}^2 \\
 1853 \quad & \quad + (1-a)^2 \|g^k - h^k\|_{\mathcal{D}}^2. \\
 1854 \quad & \\
 1855 \quad & \\
 1856 \quad & \\
 1857 \quad & \\
 1858 \quad &
 \end{aligned}$$

Notice that we have

$$\begin{aligned}
 1859 \quad & \|h_i^{k+1} - h_i^k\|_{\mathcal{D}}^2 \leq \lambda_{\max} (\mathcal{D}) \cdot \lambda_{\max} (\mathcal{L}_i) \cdot \|h_i^{k+1} - h_i^k\|_{\mathcal{L}_i^{-1}}^2. \\
 1860 \quad & \\
 1861 \quad & \\
 1862 \quad &
 \end{aligned}$$

We see that,

$$\begin{aligned}
 1863 \quad & \mathbb{E}_{\mathcal{S}} \left[\|g^{k+1} - h^{k+1}\|_{\mathcal{D}}^2 \right] \\
 1864 \quad & \leq \frac{2\Lambda_{\mathcal{D}, \mathcal{S}} \cdot \lambda_{\max} (\mathcal{D}^{-1}) \cdot \lambda_{\max} (\mathcal{D})}{n^2} \sum_{i=1}^n \lambda_{\max} (\mathcal{L}_i) \|h_i^{k+1} - h_i^k\|_{\mathcal{L}_i^{-1}}^2 \\
 1865 \quad & \quad + \frac{2a^2 \Lambda_{\mathcal{D}, \mathcal{S}} \cdot \lambda_{\max} (\mathcal{D}^{-1})}{n^2} \sum_{i=1}^n \|g_i^k - h_i^k\|_{\mathcal{D}}^2 + (1-a)^2 \|g^k - h^k\|_{\mathcal{D}}^2. \\
 1866 \quad & \\
 1867 \quad & \\
 1868 \quad & \\
 1869 \quad & \\
 1870 \quad &
 \end{aligned}$$

We obtain the inequality in the lemma after taking expectation again and applying tower property.

H.7 PROOF OF LEMMA H.3

We start with

$$\begin{aligned}
 1877 \quad & \mathbb{E}_{\mathcal{S}} \left[\|g_i^{k+1} - h_i^{k+1}\|_{\mathcal{D}}^2 \right] \\
 1878 \quad & = \mathbb{E}_{\mathcal{S}} \left[\|g_i^k + \mathcal{S}_i^k (h_i^{k+1} - h_i^k - a(g_i^k - h_i^k)) - h_i^{k+1}\|_{\mathcal{D}}^2 \right] \\
 1879 \quad & = \mathbb{E}_{\mathcal{S}} \left[\|\mathcal{S}_i^k (h_i^{k+1} - h_i^k - a(g_i^k - h_i^k)) - (h_i^{k+1} - h_i^k - a(g_i^k - h_i^k)) + (1-a)(h_i^k - g_i^k)\|_{\mathcal{D}}^2 \right]. \\
 1880 \quad & \\
 1881 \quad & \\
 1882 \quad &
 \end{aligned}$$

Using Fact E.3,

$$\begin{aligned}
 1885 \quad & \mathbb{E}_{\mathcal{S}} \left[\|g_i^{k+1} - h_i^{k+1}\|_{\mathcal{D}}^2 \right] \\
 1886 \quad & = \mathbb{E}_{\mathcal{S}} \left[\|\mathcal{S}_i^k (h_i^{k+1} - h_i^k - a(g_i^k - h_i^k)) - (h_i^{k+1} - h_i^k - a(g_i^k - h_i^k))\|_{\mathcal{D}}^2 \right] \\
 1887 \quad & \quad + (1-a)^2 \|h_i^k - g_i^k\|_{\mathcal{D}}^2. \\
 1888 \quad & \\
 1889 \quad &
 \end{aligned}$$

1890

Using Lemma G.2

$$\begin{aligned}
& \mathbb{E}_{\mathcal{S}} \left[\|g_i^{k+1} - h_i^{k+1}\|_{\mathcal{D}}^2 \right] \\
& \stackrel{(14)}{\leq} \lambda_{\max} \left(\mathcal{D}^{-\frac{1}{2}} \left(\mathbb{E} [\mathcal{S}_i^k \mathcal{D} \mathcal{S}_i^k] - \mathcal{D} \right) \mathcal{D}^{-\frac{1}{2}} \right) \|h_i^{k+1} - h_i^k - a(g_i^k - h_i^k)\|_{\mathcal{D}}^2 \\
& \quad + (1-a)^2 \|g_i^k - h_i^k\|_{\mathcal{D}}^2 \\
& \leq \lambda_{\max} (\mathcal{D}^{-1}) \cdot \Lambda_{\mathcal{D}, \mathcal{S}} \|h_i^{k+1} - h_i^k - a(g_i^k - h_i^k)\|_{\mathcal{D}}^2 + (1-a)^2 \|g_i^k - h_i^k\|_{\mathcal{D}}^2 \\
& \leq 2\lambda_{\max} (\mathcal{D}^{-1}) \cdot \Lambda_{\mathcal{D}, \mathcal{S}} \|h_i^{k+1} - h_i^k\|_{\mathcal{D}}^2 + 2a^2 \lambda_{\max} (\mathcal{D}^{-1}) \cdot \Lambda_{\mathcal{D}, \mathcal{S}} \|g_i^k - h_i^k\|_{\mathcal{D}}^2 \\
& \quad + (1-a)^2 \|g_i^k - h_i^k\|_{\mathcal{D}}^2 \\
& \leq 2\lambda_{\max} (\mathcal{D}^{-1}) \cdot \lambda_{\max} (\mathcal{D}) \cdot \Lambda_{\mathcal{D}, \mathcal{S}} \cdot \lambda_{\max} (\mathcal{L}_i) \cdot \|h_i^{k+1} - h_i^k\|_{\mathcal{L}_i^{-1}}^2 \\
& \quad + 2a^2 \lambda_{\max} (\mathcal{D}^{-1}) \cdot \Lambda_{\mathcal{D}, \mathcal{S}} \|g_i^k - h_i^k\|_{\mathcal{D}}^2 + (1-a)^2 \|g_i^k - h_i^k\|_{\mathcal{D}}^2 \\
& = (2a^2 \lambda_{\max} (\mathcal{D}^{-1}) \cdot \Lambda_{\mathcal{D}, \mathcal{S}} + (1-a)^2) \|g_i^k - h_i^k\|_{\mathcal{D}}^2 \\
& \quad + 2\lambda_{\max} (\mathcal{D}^{-1}) \cdot \lambda_{\max} (\mathcal{D}) \cdot \Lambda_{\mathcal{D}, \mathcal{S}} \cdot \lambda_{\max} (\mathcal{L}_i) \cdot \|h_i^{k+1} - h_i^k\|_{\mathcal{L}_i^{-1}}^2.
\end{aligned}$$

1908 Taking expectation again, and using tower property, we obtain,

$$\begin{aligned}
& \mathbb{E} \left[\|g_i^{k+1} - h_i^{k+1}\|_{\mathcal{D}}^2 \right] \\
& \leq (2a^2 \lambda_{\max} (\mathcal{D}^{-1}) \cdot \Lambda_{\mathcal{D}, \mathcal{S}} + (1-a)^2) \mathbb{E} \left[\|g_i^k - h_i^k\|_{\mathcal{D}}^2 \right] \\
& \quad + 2\lambda_{\max} (\mathcal{D}^{-1}) \cdot \lambda_{\max} (\mathcal{D}) \cdot \Lambda_{\mathcal{D}, \mathcal{S}} \cdot \lambda_{\max} (\mathcal{L}_i) \cdot \mathbb{E} \left[\|h_i^{k+1} - h_i^k\|_{\mathcal{L}_i^{-1}}^2 \right].
\end{aligned}$$

1916

I DISTRIBUTED DET-CGD

1918 This section is a brief summary of the distributed **det-CGD** algorithm and its theoretical analysis. The
1919 details can be found in (Li et al., 2024). The algorithm follows the standard FL paradigm. See the
1920 pseudocode in Algorithm 3.1922 **Algorithm 3** Distributed **det-CGD**

- 1: **Input:** Starting point x^0 , stepsize matrix \mathcal{D} , number of iterations K
- 2: **for** $k = 0, 1, 2, \dots, K-1$ **do**
- 3: **The devices in parallel:**
- 4: sample $\mathcal{S}_i^k \sim \mathcal{S}$;
- 5: compute $\mathcal{S}_i^k \nabla f_i(x^k)$;
- 6: broadcast $\mathcal{S}_i^k \nabla f_i(x^k)$.
- 7: **The server:**
- 8: combines $g^k = \frac{1}{n} \sum_{i=1}^n \mathcal{S}_i^k \nabla f_i(x^k)$;
- 9: computes $x^{k+1} = x^k - \mathcal{D}g^k$;
- 10: broadcasts x^{k+1} .
- 11: **end for**
- 12: **Return:** x^K

1936 **Theorem I.1.** Suppose that f is \mathcal{L} -smooth. Under the Assumptions 3.1, 3.3, if the stepsize satisfies

1937
$$\mathcal{D} \mathcal{L} \mathcal{D} \preceq \mathcal{D}, \tag{40}$$

1938 then the following convergence bound is true for the iteration of Algorithm 3:

1939
$$\min_{0 \leq k \leq K-1} \mathbb{E} \left[\left\| \nabla f(x^k) \right\|_{\frac{\mathcal{D}}{\det(\mathcal{D})^{1/d}}}^2 \right] \leq \frac{2(1 + \frac{\lambda_{\mathcal{D}}}{n})^K (f(x^0) - f^*)}{\det(\mathcal{D})^{1/d} K} + \frac{2\lambda_{\mathcal{D}} \Delta^*}{\det(\mathcal{D})^{1/d} n}, \tag{41}$$

1942 where $\Delta^* := f^* - \frac{1}{n} \sum_{i=1}^n f_i^*$ and

1943
$$\lambda_{\mathcal{D}} := \max_i \left\{ \lambda_{\max} \left(\mathbb{E} \left[\mathcal{L}_i^{\frac{1}{2}} (\mathcal{S}_i^k - \mathcal{I}_d) \mathcal{D} \mathcal{L} \mathcal{D} (\mathcal{S}_i^k - \mathcal{I}_d) \mathcal{L}_i^{\frac{1}{2}} \right] \right) \right\}.$$

1944
 1945 *Remark I.2.* On the right hand side of (41) we observe that increasing K will only reduce the first
 1946 term, that corresponds to the convergence error. Whereas, the second term, which does not depend
 1947 on K , will remain constant, if the other parameters of the algorithm are fixed. This testifies to the
 1948 neighborhood phenomenon which we discussed in Section 2.

1949 *Remark I.3.* If the stepsize satisfies the below conditions,

1950
$$\mathbf{D}\mathbf{L}\mathbf{D} \preceq \mathbf{D}, \quad \lambda_{\mathbf{D}} \leq \min \left\{ \frac{n}{K}, \frac{n\varepsilon^2}{4\Delta^*} \det(\mathbf{D})^{1/d} \right\}, \quad K \geq \frac{12(f(x^0) - f^*)}{\det(\mathbf{D})^{1/d} \varepsilon^2}, \quad (42)$$

1951

1952 then we obtain ε -stationary point.

1953 One can see that in the convergence guarantee of **det-CGD** in the distributed case, the result (41) is
 1954 not variance-reduced. Because of this, in order to reach a ε stationary point, the stepsize condition in
 1955 (42) is restrictive.

J EXTENSION OF DET-CGD2 IN MARINA FORM

1959 In this section we want to extend **det-CGD2** into its variance reduced counterpart in **MARINA** form.

J.1 EXTENSION OF DET-CGD2 TO ITS VARIANCE REDUCED COUNTERPART

Algorithm 4 det-CGD2-VR

1965 1: **Input:** starting point x^0 , stepsize matrix \mathbf{D} , probability $p \in (0, 1]$, number of iterations K
 1966 2: Initialize $g^0 = \mathbf{D} \cdot \nabla f(x^0)$
 1967 3: **for** $k = 0, 1, \dots, K - 1$ **do**
 1968 4: Sample $c_k \sim \text{Be}(p)$
 1969 5: Broadcast g^k to all workers
 1970 6: **for** $i = 1, 2, \dots$ in parallel **do**
 1971 7: $x^{k+1} = x^k - g^k$
 1972 8: Set $g_i^{k+1} = \begin{cases} \mathbf{D} \cdot \nabla f_i(x^{k+1}) & \text{if } c_k = 1 \\ g^k + \mathbf{T}_i^k \mathbf{D} (\nabla f_i(x^{k+1}) - \nabla f_i(x^k)) & \text{if } c_k = 0 \end{cases}$
 1973 9: **end for**
 1974 10: $g^{k+1} = \frac{1}{n} \sum_{i=1}^n g_i^{k+1}$
 1975 11: **end for**
 1976 12: **Return:** \tilde{x}^K chosen uniformly at random from $\{x^k\}_{k=0}^{K-1}$

1978 We call **det-MARINA** as the extension of **det-CGD1**, and Algorithm 4 as the extension of **det-CGD2**
 1979 due to the difference in the order of applying sketches and stepsize matrices. The key difference
 1980 between **det-CGD1** and **det-CGD2** is that in **det-CGD1** the gradient is sketched first and then multi-
 1981 plied by the stepsize, while for **det-CGD2**, the gradient is multiplied by the stepsize first after which
 1982 the product is sketched. The convergence for Algorithm 4 can be obtained in a similar manner as
 1983 Theorem 4.1.

1984 **Theorem J.1.** *Let Assumptions 3.1 and 3.3 hold, with the gradient of f being \mathbf{L} -Lipschitz. If the
 1985 stepsize matrix $\mathbf{D} \in \mathbb{S}_{++}^d$ satisfies*

1986
$$\mathbf{D}^{-1} \succeq \left(\frac{(1-p) \cdot R'(\mathbf{D}, \mathcal{S})}{np} + 1 \right) \mathbf{L},$$

1989 where

1990
$$R'(\mathbf{D}, \mathcal{S}) = \frac{1}{n} \sum_{i=1}^n \lambda_{\max} \left(\mathbf{D} \mathbb{E} [\mathbf{T}_i^k \mathbf{D}^{-1} \mathbf{T}_i^k] \mathbf{D} \mathbf{L}_i^{\frac{1}{2}} - \mathbf{L}_i^{\frac{1}{2}} \mathbf{D} \right) \cdot \lambda_{\max} (\mathbf{L}_i) \cdot \lambda_{\max} \left(\mathbf{L}^{-\frac{1}{2}} \mathbf{L}_i \mathbf{L}^{-\frac{1}{2}} \right).$$

1993 Then after K iterations of Algorithm 4, we have

1995
$$\mathbb{E} \left[\left\| \nabla f(\tilde{x}^K) \right\|^2 \frac{\mathbf{D}}{\det(\mathbf{D})^{1/d}} \right] \leq \frac{2(f(x^0) - f^*)}{\det(\mathbf{D})^{1/d} \cdot K}.$$

1996

1997 This is to say that in order to reach a ε -stationary point, we require $K \geq \frac{2(f(x^0) - f^*)}{\det(\mathbf{D})^{1/d} \cdot \varepsilon^2}$.

If we look at the scalar case where $\mathbf{D} = \gamma \cdot \mathbf{I}_d$, $\mathbf{L}_i = L_i \cdot \mathbf{I}_d$ and $\mathbf{L} = L \cdot \mathbf{I}_d$, then the condition in Theorem J.1 reduces to

$$\frac{(1-p)\omega L^2}{np} + L - \frac{1}{\gamma} \leq 0. \quad (43)$$

Notice that here $\omega = \lambda_{\max}(\mathbb{E}[(\mathbf{T}_i^k)^2]) - 1$, and we have $L^2 = \frac{1}{n} \sum_{i=1}^n L_i^2$, which is due to Lemma F.6. This condition coincides with the condition for convergence of MARINA. One may also check that, the update rule in Algorithm 4, is the same as MARINA in the scalar case. However, the condition given in Theorem J.1 is not simpler than Theorem 4.1, contrary to the single-node case. We emphasize that Algorithm 4 is not suitable for the federated learning setting where the clients have limited resources. In order to perform the update, each client is required to store the stepsize matrix \mathbf{D} which is of size $d \times d$. In the over-parameterized regime, the dataset size is $m \times d$ where m is the number of data samples, and we have $d > m$. This means that the stepsize matrix each client needs to store is even larger than the dataset itself, which is unacceptable given the limited resources each client has.

We first present two lemmas which are necessary for the proofs of Theorem J.1.

Lemma J.2. *Assume that function f is \mathbf{L} -smooth, and $x^{k+1} = x^k - g^k$, and matrix $\mathbf{D} \in \mathbb{S}_{++}^d$. Then the iterates generated by Algorithm 4 satisfy the following inequality:*

$$f(x^{k+1}) \leq f(x^k) - \frac{1}{2} \|\nabla f(x^k)\|_{\mathbf{D}}^2 + \frac{1}{2} \|\mathbf{D} \cdot \nabla f(x^k) - g^k\|_{\mathbf{D}^{-1}}^2 - \frac{1}{2} \|x^{k+1} - x^k\|_{\mathbf{D}^{-1} - \mathbf{L}}^2.$$

Lemma J.3. *For any sketch matrix $\mathbf{T} \in \mathbb{S}_+^d$, vector $t \in \mathbb{R}^d$, matrix $\mathbf{D} \in \mathbb{S}_{++}^d$ and matrix $\mathbf{L} \in \mathbb{S}_{++}^d$, we have*

$$\mathbb{E}[\|\mathbf{T}\mathbf{D}t - \mathbf{D}t\|_{\mathbf{D}^{-1}}^2] \leq \lambda_{\max}(\mathbf{L}^{\frac{1}{2}} \mathbf{D} \mathbb{E}[\mathbf{T}\mathbf{D}^{-1}\mathbf{T}] \mathbf{D} \mathbf{L}^{\frac{1}{2}} - \mathbf{L}^{\frac{1}{2}} \mathbf{D} \mathbf{L}^{\frac{1}{2}}) \|t\|_{\mathbf{L}^{-1}}^2. \quad (44)$$

J.2 PROOF OF THEOREM J.1

We start with Lemma J.2,

$$\begin{aligned} \mathbb{E}[f(x^{k+1})] &\leq \mathbb{E}[f(x^k)] - \mathbb{E}\left[\frac{1}{2} \|\nabla f(x^k)\|_{\mathbf{D}}^2\right] \\ &\quad + \mathbb{E}\left[\frac{1}{2} \|\mathbf{D} \cdot \nabla f(x^k) - g^k\|_{\mathbf{D}^{-1}}^2\right] - \mathbb{E}\left[\frac{1}{2} \|x^{k+1} - x^k\|_{\mathbf{D}^{-1} - \mathbf{L}}^2\right]. \end{aligned} \quad (45)$$

Now we look at the term $\mathbb{E}[\|\mathbf{D} \cdot \nabla f(x^{k+1}) - g^{k+1}\|_{\mathbf{D}^{-1}}^2]$. Recall that g^k here is given by

$$g^{k+1} = \begin{cases} \mathbf{D} \cdot \nabla f(x^{k+1}) & \text{with probability } p \\ g^k + \frac{1}{n} \sum_{i=1}^n \mathbf{T}_i^k \mathbf{D} (\nabla f_i(x^{k+1}) - \nabla f_i(x^k)) & \text{with probability } 1-p. \end{cases}$$

As a result, we have

$$\begin{aligned} &\mathbb{E}[\|g^{k+1} - \mathbf{D} \nabla f(x^{k+1})\|_{\mathbf{D}^{-1}}^2 \mid x^{k+1}, x^k] \\ &= \mathbb{E}[\mathbb{E}[\|g^{k+1} - \mathbf{D} \nabla f(x^{k+1})\|_{\mathbf{D}^{-1}}^2 \mid x^{k+1}, x^k, c_k]] \\ &= (1-p) \cdot \mathbb{E}\left[\left\|g^k + \frac{1}{n} \sum_{i=1}^n \mathbf{T}_i^k \mathbf{D} (\nabla f_i(x^{k+1}) - \nabla f_i(x^k)) - \mathbf{D} \nabla f(x^{k+1})\right\|_{\mathbf{D}^{-1}}^2 \mid x^{k+1}, x^k\right]. \end{aligned}$$

For the sake of presentation, we use $\mathbb{E}_k[\cdot]$ to denote the conditional expectation $\mathbb{E}[\cdot \mid x_k, x_{k+1}]$ on x_k, x_{k+1} . Using Fact E.2 with $x = \frac{1}{n} \sum_{i=1}^n \mathbf{T}_i^k \mathbf{D} (\nabla f_i(x^{k+1}) - \nabla f_i(x^k))$, $c = \mathbf{D} \nabla f(x^{k+1}) - g^k$,

2052 we obtain:

$$\begin{aligned}
 2054 \quad & (1-p)\mathbb{E}_k \left[\left\| g^k + \frac{1}{n} \sum_{i=1}^n \mathbf{T}_i^k \mathbf{D} (\nabla f_i(x^{k+1}) - \nabla f_i(x^k)) - \mathbf{D} \nabla f(x^{k+1}) \right\|_{\mathbf{D}^{-1}}^2 \right] \\
 2055 \quad & = (1-p)\mathbb{E}_k \left[\left\| \frac{1}{n} \sum_{i=1}^n \mathbf{T}_i^k \mathbf{D} (\nabla f_i(x^{k+1}) - \nabla f_i(x^k)) - \mathbf{D} (\nabla f(x^{k+1}) - \nabla f(x^k)) \right\|_{\mathbf{D}^{-1}}^2 \right] \\
 2056 \quad & \quad + (1-p) \|g^k - \nabla f(x^k)\|_{\mathbf{D}^{-1}}^2 \\
 2057 \quad & = (1-p)\mathbb{E}_k \left[\left\| \frac{1}{n} \sum_{i=1}^n [\mathbf{T}_i^k \mathbf{D} (\nabla f_i(x^{k+1}) - \nabla f_i(x^k)) - \mathbf{D} (\nabla f_i(x^{k+1}) - \nabla f_i(x^k))] \right\|_{\mathbf{D}^{-1}}^2 \right] \\
 2058 \quad & \quad + (1-p) \|g^k - \nabla f(x^k)\|_{\mathbf{D}^{-1}}^2.
 \end{aligned}$$

2061 The following identity holds due to the unbiasedness,

$$2068 \quad \mathbb{E}_k [\mathbf{T}_i^k \mathbf{D} (\nabla f_i(x^{k+1}) - \nabla f_i(x^k))] = \mathbf{D} (\nabla f_i(x^{k+1}) - \nabla f_i(x^k)),$$

2070 and any two random vectors in the set $\{\mathbf{T}_i^k \mathbf{D} (\nabla f_i(x^{k+1}) - \nabla f_i(x^k))\}_{i=1}^n$ are independent if
2071 x^{k+1}, x^k are fixed. As a result

$$\begin{aligned}
 2073 \quad & \mathbb{E}_k \left[\|g^{k+1} - \mathbf{D} \nabla f(x^{k+1})\|_{\mathbf{D}^{-1}}^2 \right] \\
 2074 \quad & = \frac{1-p}{n^2} \sum_{i=1}^n \mathbb{E}_k \left[\left\| \mathbf{T}_i^k (\mathbf{D} \nabla f_i(x^{k+1}) - \mathbf{D} \nabla f_i(x^k)) - (\mathbf{D} \nabla f_i(x^{k+1}) - \mathbf{D} \nabla f_i(x^k)) \right\|_{\mathbf{D}^{-1}}^2 \right] \\
 2075 \quad & \quad + (1-p) \cdot \|g^k - \mathbf{D} \nabla f(x^k)\|_{\mathbf{D}^{-1}}^2. \tag{46}
 \end{aligned}$$

2079 For each term within the summation, we further upper bound it using Lemma J.3

$$\begin{aligned}
 2081 \quad & \mathbb{E}_k \left[\left\| \mathbf{T}_i^k (\mathbf{D} \nabla f_i(x^{k+1}) - \mathbf{D} \nabla f_i(x^k)) - (\mathbf{D} \nabla f_i(x^{k+1}) - \mathbf{D} \nabla f_i(x^k)) \right\|_{\mathbf{D}^{-1}}^2 \right] \\
 2082 \quad & \leq \lambda_{\max} \left(\mathbf{L}_i^{\frac{1}{2}} \mathbf{D} \mathbb{E} [\mathbf{T}_i^k \mathbf{D}^{-1} \mathbf{T}_i^k] \mathbf{D} \mathbf{L}_i^{\frac{1}{2}} - \mathbf{L}_i^{\frac{1}{2}} \mathbf{D} \mathbf{L}_i^{\frac{1}{2}} \right) \|\nabla f_i(x^{k+1}) - \nabla f_i(x^k)\|_{\mathbf{L}_i^{-1}}^2 \\
 2083 \quad & \leq \lambda_{\max} \left(\mathbf{L}_i^{\frac{1}{2}} \mathbf{D} \mathbb{E} [\mathbf{T}_i^k \mathbf{D}^{-1} \mathbf{T}_i^k] \mathbf{D} \mathbf{L}_i^{\frac{1}{2}} - \mathbf{L}_i^{\frac{1}{2}} \mathbf{D} \mathbf{L}_i^{\frac{1}{2}} \right) \|x^{k+1} - x^k\|_{\mathbf{L}_i}^2,
 \end{aligned}$$

2086 where the last inequality is due to Assumption 3.3. Plugging this back into (46), we obtain

$$\begin{aligned}
 2088 \quad & \mathbb{E}_k \left[\|g^{k+1} - \mathbf{D} \nabla f(x^{k+1})\|_{\mathbf{D}^{-1}}^2 \right] \\
 2089 \quad & \leq \frac{1-p}{n^2} \sum_{i=1}^n \lambda_{\max} \left(\mathbf{L}_i^{\frac{1}{2}} \mathbf{D} \mathbb{E} [\mathbf{T}_i^k \mathbf{D}^{-1} \mathbf{T}_i^k] \mathbf{D} \mathbf{L}_i^{\frac{1}{2}} - \mathbf{L}_i^{\frac{1}{2}} \mathbf{D} \mathbf{L}_i^{\frac{1}{2}} \right) \|x^{k+1} - x^k\|_{\mathbf{L}_i}^2 \\
 2090 \quad & \quad + (1-p) \cdot \|g^k - \mathbf{D} \nabla f(x^k)\|_{\mathbf{D}^{-1}}^2.
 \end{aligned}$$

2094 Similarly to Theorem 4.1, we obtain

$$\begin{aligned}
 2096 \quad & \mathbb{E}_k \left[\|g^{k+1} - \mathbf{D} \nabla f(x^{k+1})\|_{\mathbf{D}^{-1}}^2 \right] \\
 2097 \quad & \leq \frac{1-p}{n^2} \sum_{i=1}^n \lambda_{\max} \left(\mathbf{L}_i^{\frac{1}{2}} \mathbf{D} \mathbb{E} [\mathbf{T}_i^k \mathbf{D}^{-1} \mathbf{T}_i^k] \mathbf{D} \mathbf{L}_i^{\frac{1}{2}} - \mathbf{L}_i^{\frac{1}{2}} \mathbf{D} \mathbf{L}_i^{\frac{1}{2}} \right) \\
 2098 \quad & \quad \times \left\langle \mathbf{L}^{\frac{1}{2}} (x^{k+1} - x^k), (\mathbf{L}^{-\frac{1}{2}} \mathbf{L}_i \mathbf{L}^{-\frac{1}{2}}) \cdot \mathbf{L}^{\frac{1}{2}} (x^{k+1} - x^k) \right\rangle + (1-p) \cdot \|g^k - \mathbf{D} \nabla f(x^k)\|_{\mathbf{D}^{-1}}^2 \\
 2099 \quad & \leq \frac{1-p}{n^2} \sum_{i=1}^n \lambda_{\max} \left(\mathbf{L}_i^{\frac{1}{2}} (\mathbf{D} \mathbb{E} [\mathbf{T}_i^k \mathbf{D}^{-1} \mathbf{T}_i^k] \mathbf{D} - \mathbf{D}) \mathbf{L}_i^{\frac{1}{2}} \right) \cdot \lambda_{\max} \left(\mathbf{L}^{-\frac{1}{2}} \mathbf{L}_i \mathbf{L}^{-\frac{1}{2}} \right) \|x^{k+1} - x^k\|_{\mathbf{L}}^2 \\
 2100 \quad & \quad + (1-p) \cdot \|g^k - \mathbf{D} \nabla f(x^k)\|_{\mathbf{D}^{-1}}^2.
 \end{aligned}$$

2106 Applying Fact E.5, we obtain
 2107

$$\begin{aligned} 2108 \quad & \mathbb{E}_k \left[\|g^{k+1} - \mathbf{D} \nabla f(x^{k+1})\|_{\mathbf{D}^{-1}}^2 \right] \\ 2109 \quad & \leq \frac{1-p}{n^2} \sum_{i=1}^n \lambda_{\max} (\mathbf{D} \mathbb{E}[\mathbf{T}_i^k \mathbf{D}^{-1} \mathbf{T}_i^k] \mathbf{D} - \mathbf{D}) \lambda_{\max} (\mathbf{L}_i) \lambda_{\max} \left(\mathbf{L}^{-\frac{1}{2}} \mathbf{L}_i \mathbf{L}^{-\frac{1}{2}} \right) \|x^{k+1} - x^k\|_{\mathbf{L}}^2 \\ 2110 \quad & + (1-p) \cdot \|g^k - \mathbf{D} \nabla f(x^k)\|_{\mathbf{D}^{-1}}^2. \\ 2111 \end{aligned}$$

2112 Using the definition of $R'(\mathbf{D}, \mathcal{S})$, we further simplify it to
 2113

$$\begin{aligned} 2114 \quad & \mathbb{E}_k \left[\|g^{k+1} - \mathbf{D} \nabla f(x^{k+1})\|_{\mathbf{D}^{-1}}^2 \right] \\ 2115 \quad & \leq \frac{(1-p) \cdot R'(\mathbf{D}, \mathcal{S})}{n} \|x^{k+1} - x^k\|_{\mathbf{L}}^2 + (1-p) \cdot \|g^k - \mathbf{D} \nabla f(x^k)\|_{\mathbf{D}^{-1}}^2. \\ 2116 \end{aligned}$$

2117 Taking expectation again and using the tower property, we have
 2118

$$\mathbb{E} \left[\|g^{k+1} - \mathbf{D} \nabla f(x^{k+1})\|_{\mathbf{D}^{-1}}^2 \right] \quad (47)$$

$$\leq (1-p) \left(\frac{R'(\mathbf{D}, \mathcal{S})}{n} \mathbb{E} \left[\|x^{k+1} - x^k\|_{\mathbf{L}}^2 \right] + \mathbb{E} \left[\|g^k - \mathbf{D} \nabla f(x^k)\|_{\mathbf{D}^{-1}}^2 \right] \right). \quad (48)$$

2119 Consider the Lyapunov function $\Phi_k = \Phi_k = f(x^k) - f^* + \frac{1}{2p} \|g^k - \mathbf{D} \nabla f(x^k)\|_{\mathbf{D}^{-1}}^2$. Using (45)
 2120 and (47), we have
 2121

$$\begin{aligned} 2122 \quad & \mathbb{E}[\Phi_{k+1}] \\ 2123 \quad & \leq \mathbb{E}[f(x^k) - f^*] - \frac{1}{2} \mathbb{E} \left[\|\nabla f(x^k)\|_{\mathbf{D}}^2 \right] + \frac{1}{2} \mathbb{E} \left[\|g^k - \mathbf{D} \nabla f(x^k)\|_{\mathbf{D}^{-1}}^2 \right] \\ 2124 \quad & - \frac{1}{2} \mathbb{E} \left[\|x^{k+1} - x^k\|_{\mathbf{D}^{-1} - \mathbf{L}}^2 \right] + \frac{1}{2p} \cdot \frac{(1-p)R'(\mathbf{D}, \mathcal{S})}{n} \mathbb{E} \left[\|x^{k+1} - x^k\|_{\mathbf{L}}^2 \right] \\ 2125 \quad & + \frac{1-p}{2p} \mathbb{E} \left[\|g^k - \mathbf{D} \nabla f(x^k)\|_{\mathbf{D}^{-1}}^2 \right] \\ 2126 \quad & = \mathbb{E}[\Phi_k] - \frac{1}{2} \mathbb{E} \left[\|\nabla f(x^k)\|_{\mathbf{D}}^2 \right] \\ 2127 \quad & + \frac{1}{2} \left(\frac{(1-p)R'(\mathbf{D}, \mathcal{S})}{np} \mathbb{E} \left[\|x^{k+1} - x^k\|_{\mathbf{L}}^2 \right] - \mathbb{E} \left[\|x^{k+1} - x^k\|_{\mathbf{D}^{-1} - \mathbf{L}}^2 \right] \right). \\ 2128 \end{aligned}$$

2129 Now, notice that the last term in the above inequality is non-positive as guaranteed by the condition
 2130

$$\mathbf{D}^{-1} \succeq \left(\frac{(1-p)R'(\mathbf{D}, \mathcal{S})}{np} + 1 \right) \mathbf{L}.$$

2131 This leads to the following recurrence after ignoring the last term,
 2132

$$\mathbb{E}[\Phi_{k+1}] \leq \mathbb{E}[\Phi_k] - \frac{1}{2} \mathbb{E} \left[\|\nabla f(x^k)\|_{\mathbf{D}}^2 \right].$$

2133 Unrolling this recurrence, we get
 2134

$$\frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \left[\|\nabla f(x^k)\|_{\mathbf{D}}^2 \right] \leq \frac{2(\mathbb{E}[\Phi_0] - \mathbb{E}[\Phi_K])}{K}.$$

2135 The left hand side can be viewed as average over \tilde{x}^K , which is drawn uniformly at random from
 2136 $\{x_k\}_{k=0}^{K-1}$, while the right hand side can be simplified as
 2137

$$\frac{2(\mathbb{E}[\Phi_0] - \mathbb{E}[\Phi_K])}{K} \leq \frac{2\Phi_0}{K} = \frac{2(f(x^0) - f^* + \frac{1}{2p} \|g^0 - \nabla f(x^0)\|_{\mathbf{D}}^2)}{K}.$$

2138 Recall that $g^0 = \nabla f(x^0)$, we obtain
 2139

$$\mathbb{E} \left[\|\nabla f(\tilde{x}^K)\|_{\frac{\mathbf{D}}{\det(\mathbf{D})^{1/d}}}^2 \right] \leq \frac{2(f(x^0) - f^*)}{\det(\mathbf{D})^{1/d} K}.$$

2160 J.3 PROOF OF LEMMA J.2
2161

2162 From Lemma F.6, we know that f is \mathbf{L} -smooth. Define $\bar{x}^{k+1} := x^k - \mathbf{D} \cdot \nabla f(x^k)$. Using \mathbf{L} -
2163 smoothness, we have

$$\begin{aligned} 2164 \quad f(x^{k+1}) &\leq f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{1}{2} \langle x^{k+1} - x^k, \mathbf{L}(x^{k+1} - x^k) \rangle \\ 2165 &= f(x^k) + \langle \nabla f(x^k) - \mathbf{D}^{-1} \cdot g^k, x^{k+1} - x^k \rangle + \langle \mathbf{D}^{-1} \cdot g^k, x^{k+1} - x^k \rangle \\ 2166 &= + \frac{1}{2} \langle x^{k+1} - x^k, \mathbf{L}(x^{k+1} - x^k) \rangle \\ 2167 &= f(x^k) + \langle \nabla f(x^k) - \mathbf{D}^{-1} \cdot g^k, -g^k \rangle - \langle x^{k+1} - x^k, \mathbf{D}^{-1}(x^{k+1} - x^k) \rangle \\ 2168 &+ \frac{1}{2} \langle x^{k+1} - x^k, \mathbf{L}(x^{k+1} - x^k) \rangle. \\ 2169 \end{aligned}$$

2170 Simplify the above inner-products we have,
2171

$$\begin{aligned} 2172 \quad f(x^{k+1}) &\leq f(x^k) + \langle \nabla f(x^k) - \mathbf{D}^{-1} \cdot g^k, -g^k \rangle - \left\langle x^{k+1} - x^k, \left(\mathbf{D}^{-1} - \frac{1}{2} \mathbf{L} \right) (x^{k+1} - x^k) \right\rangle. \\ 2173 \end{aligned}$$

2174 We then add and subtract $\langle \nabla f(x^k) - \mathbf{D}^{-1} \cdot g^k, \mathbf{D} \cdot \nabla f(x^k) \rangle$,

$$\begin{aligned} 2175 \quad f(x^{k+1}) &\leq f(x^k) + \langle \nabla f(x^k) - \mathbf{D}^{-1} \cdot g^k, \mathbf{D} \cdot \nabla f(x^k) - g^k \rangle \\ 2176 &- \langle \nabla f(x^k) - \mathbf{D}^{-1} \cdot g^k, \mathbf{D} \cdot \nabla f(x^k) \rangle - \left\langle x^{k+1} - x^k, \left(\mathbf{D}^{-1} - \frac{1}{2} \mathbf{L} \right) (x^{k+1} - x^k) \right\rangle \\ 2177 &= f(x^k) + \|\nabla f(x^k) - \mathbf{D}^{-1} \cdot g^k\|_{\mathbf{D}}^2 - \langle \mathbf{D}^{-1}(x^{k+1} - \bar{x}^{k+1}), x^k - \bar{x}^{k+1} \rangle \\ 2178 &- \left\langle x^{k+1} - x^k, \left(\mathbf{D}^{-1} - \frac{1}{2} \mathbf{L} \right) (x^{k+1} - x^k) \right\rangle. \\ 2179 \end{aligned}$$

2180 Decomposing the inner product term,
2181

$$\begin{aligned} 2182 \quad f(x^{k+1}) &\leq f(x^k) + \|\mathbf{D}^{-1}(\mathbf{D} \cdot \nabla f(x^k) - g^k)\|_{\mathbf{D}}^2 - \left\langle x^{k+1} - x^k, \left(\mathbf{D}^{-1} - \frac{1}{2} \mathbf{L} \right) (x^{k+1} - x^k) \right\rangle \\ 2183 &- \frac{1}{2} \left(\|x^{k+1} - \bar{x}^{k+1}\|_{\mathbf{D}^{-1}}^2 + \|x^k - \bar{x}^{k+1}\|_{\mathbf{D}^{-1}}^2 - \|x^{k+1} - x^k\|_{\mathbf{D}^{-1}}^2 \right) \\ 2184 &= f(x^k) + \|\mathbf{D} \cdot \nabla f(x^k) - g^k\|_{\mathbf{D}^{-1}}^2 - \|x^{k+1} - x^k\|_{\mathbf{D}^{-1} - \frac{1}{2} \mathbf{L}}^2 \\ 2185 &- \frac{1}{2} \left(\|\mathbf{D} \cdot \nabla f(x^k) - g^k\|_{\mathbf{D}^{-1}}^2 + \|\mathbf{D} \cdot \nabla f(x^k)\|_{\mathbf{D}^{-1}}^2 - \|x^{k+1} - x^k\|_{\mathbf{D}^{-1}}^2 \right). \\ 2186 \end{aligned}$$

2187 Therefore,
2188

$$f(x^{k+1}) \leq f(x^k) + \frac{1}{2} \|\mathbf{D} \nabla f(x^k) - g^k\|_{\mathbf{D}^{-1}}^2 - \frac{1}{2} \|\nabla f(x^k)\|_{\mathbf{D}}^2 - \frac{1}{2} \|x^{k+1} - x^k\|_{\mathbf{D}^{-1} - \mathbf{L}}^2.$$

2189 J.4 PROOF OF LEMMA J.3
2190

2191 We start with
2192

$$\begin{aligned} 2193 \quad \mathbb{E}[\|\mathbf{T} \mathbf{D} t - \mathbf{D} t\|_{\mathbf{D}^{-1}}^2] &= \mathbb{E}[\|(\mathbf{T} - \mathbf{I}_d) \mathbf{D} t\|_{\mathbf{D}^{-1}}^2] \\ 2194 &= \langle t, \mathbb{E}[\mathbf{D}(\mathbf{T} - \mathbf{I}_d) \mathbf{D}^{-1}(\mathbf{T} - \mathbf{I}_d) \mathbf{D}] \cdot t \rangle \\ 2195 &= \langle t, \mathbf{D} (\mathbb{E}[\mathbf{T} \mathbf{D}^{-1} \mathbf{T}] - \mathbf{D}^{-1}) \mathbf{D} \cdot t \rangle \\ 2196 &= \langle \mathbf{L}^{-\frac{1}{2}} t, \mathbf{L}^{\frac{1}{2}} \mathbf{D} (\mathbb{E}[\mathbf{T} \mathbf{D}^{-1} \mathbf{T}] - \mathbf{D}^{-1}) \mathbf{D} \mathbf{L}^{\frac{1}{2}} \cdot \mathbf{L}^{-\frac{1}{2}} t \rangle \\ 2197 &\leq \lambda_{\max} \left(\mathbf{L}^{\frac{1}{2}} \mathbf{D} \mathbb{E}[\mathbf{T} \mathbf{D}^{-1} \mathbf{T}] \mathbf{D} \mathbf{L}^{\frac{1}{2}} - \mathbf{L}^{\frac{1}{2}} \mathbf{D} \mathbf{L}^{\frac{1}{2}} \right) \cdot \|\mathbf{L}^{-\frac{1}{2}} t\|^2 \\ 2198 &= \lambda_{\max} \left(\mathbf{L}^{\frac{1}{2}} \mathbf{D} \mathbb{E}[\mathbf{T} \mathbf{D}^{-1} \mathbf{T}] \mathbf{D} \mathbf{L}^{\frac{1}{2}} - \mathbf{L}^{\frac{1}{2}} \mathbf{D} \mathbf{L}^{\frac{1}{2}} \right) \cdot \|t\|_{\mathbf{L}^{-1}}^2. \\ 2199 \end{aligned}$$

2214 **K EXPERIMENTS**
 2215

2216 In this section, we present numerical experiments to support the theoretical results for **det-MARINA**
 2217 and **det-DASHA**. The code for the experiments is available at [https://anonymous.4open.
 2218 science/r/detCGD-VR-Code-865B](https://anonymous.4open.science/r/detCGD-VR-Code-865B). All the experiment code is implemented in Python 3.11,
 2219 utilizing the NumPy and SciPy libraries. The experiments were conducted on a machine equipped
 2220 with an AMD Ryzen 9 5900HX processor (Radeon Graphics) running at 3.3 GHz, featuring 8 cores
 2221 and 16 threads. The datasets from LibSVM (Chang & Lin, 2011), which represent non-IID real-world
 2222 datasets, were randomly distributed across all clients.

2223 **K.1 EXPERIMENT SETTING**
 2224

2225 We are interested in the following logistic regression problem with a non-convex regularizer.
 2226

2227
$$f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x), \quad f_i(x) = \frac{1}{m_i} \sum_{j=1}^{m_i} \log \left(1 + e^{-b_{i,j} \cdot \langle a_{i,j}, x \rangle} \right) + \lambda \cdot \sum_{t=1}^d \frac{x_t^2}{1 + x_t^2},$$

 2228

2229 where $x \in \mathbb{R}^d$ represents the model, and $(a_{i,j}, b_{i,j}) \in \mathbb{R}^d \times \{-1, 1\}$ denotes a data point in the
 2230 dataset of client i , which has a size of m_i . The constant $\lambda > 0$ serves as the coefficient of the
 2231 regularization term. For each function f_i , its Hessian is upper bounded by
 2232

2233
$$\mathbf{L}_i = \frac{1}{m_i} \sum_{i=1}^{m_i} \frac{a_i a_i^\top}{4} + 2\lambda \cdot \mathbf{I}_d.$$

 2234

2235 Therefore, the Hessian of f is bounded by
 2236

2237
$$\mathbf{L} = \frac{1}{\sum_{i=1}^n m_i} \sum_{i=1}^n \sum_{j=1}^{m_i} \frac{a_i a_i^\top}{4} + 2\lambda \cdot \mathbf{I}_d.$$

 2238

2239 Due to Lemma F.1, f_i and f satisfy Definition 3.2 (Matrix Lipschitz Gradient) with $\mathbf{L}_i \in \mathbb{S}_{++}^d$ and
 2240 $\mathbf{L} \in \mathbb{S}_{++}^d$, respectively.
 2241

2242 **K.2 COMPARISON OF ALL RELEVANT METHODS**
 2243

2244 In this section, we compare all relevant methods to **det-MARINA** and **det-DASHA**, which include
 2245 (i) **DCGD** with scalar stepsize γ_2 , (ii) **det-CGD** with matrix stepsize \mathbf{D}_3^* , (iii) **MARINA** with scalar
 2246 stepsize γ_1 , (iv) **DASHA** with scalar stepsize γ_4 , (v) **det-MARINA** with \mathbf{D}_{L-1}^* , (vi) **det-DASHA**
 2247 with \mathbf{D}_{L-1}^{**} . Throughout the experiment, we set $\varepsilon = 0.01$, $\lambda = 0.9$ and $K = 10000$, rand- τ sketch is
 2248 used as an example of the compressor.
 2249

2250 As shown in Figure 2, the performance of **det-DASHA** and **det-MARINA** in terms of communica-
 2251 tion complexity surpasses that of their scalar counterparts, **DASHA** and **MARINA**, respectively.
 2252 This highlights the efficiency of employing a matrix stepsize over a scalar stepsize. Furthermore,
 2253 **det-DASHA** and **det-MARINA** demonstrate superior communication complexity in this case com-
 2254 pared to **det-CGD**. Additionally, we observe evidence of variance reduction.
 2255

2256 Note that the optimal stepsizes for **det-CGD** and **DCGD** require knowledge of the function value
 2257 differences at x^* . Additionally, these stepsizes are constrained by the number of iterations K and the
 2258 error ε^2 . In contrast, the variance-reduced methods do not rely on such considerations, making them
 2259 significantly more practical in general.
 2260

2261 **K.3 IMPROVEMENT OF DET-MARINA OVER MARINA**
 2262

2263 The purpose of this experiment is to compare the iteration complexity of **MARINA** with that of
 2264 **det-MARINA** using rand- τ sketches, thereby demonstrating the improvements of **det-MARINA**
 2265 over **MARINA**. According to Theorem C.1 from (Gorbunov et al., 2021), the optimal stepsize for
 2266 **MARINA** is
 2267

$$\gamma_1 = \frac{1}{L \left(1 + \sqrt{\frac{(1-p)\omega}{pn}} \right)}, \quad (49)$$

2305 Figure 2: Comparison of **DCGD** with optimal scalar stepsize, **det-CGD** with matrix stepsize D_3^* ,
2306 **MARINA** with optimal scalar stepsize, **DASHA** with optimal scalar stepsize, **det-MARINA** with
2307 optimal stepsize D_{L-1}^* and **det-DASHA** with optimal stepsize D_{L-1}^{**} . Throughout the experiment,
2308 we are using rand- τ sketch with $\tau = 60$, and each algorithm is run for a fixed number of iterations
2309 $K = 10000$. The momentum of **DASHA** is set as $1/2\omega_1 + 1$ and **det-DASHA** is $1/2\omega_D + 1$. The notation
2310 n in the title stands for the number of clients in each case, and p stands for the probability used by
2311 **MARINA** and **det-MARINA**.

2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

where ω is the quantization coefficient. In particular, $\omega = \frac{d}{\tau} - 1$ for the rand- τ compressor. For further explanation, we refer the readers to Section 1.3 of (Gorbunov et al., 2021). The stepsize for **det-MARINA** is determined using Corollary 4.7. Below, we list some of the optimal stepsizes corresponding to different choices of \mathbf{W} , as used in the experimental section. Specifically, we have:

$$\begin{aligned} \mathbf{D}_{\mathbf{I}_d}^* &= \frac{2}{1 + \sqrt{1 + 4\alpha\beta \cdot \frac{1}{\lambda_{\max}(\mathbf{L})} \cdot \omega}} \cdot \frac{\mathbf{I}_d}{\lambda_{\max}(\mathbf{L})}, \\ \mathbf{D}_{\mathbf{L}^{-1}}^* &= \frac{2}{1 + \sqrt{1 + 4\alpha\beta \cdot \lambda_{\max}(\mathbb{E}[\mathbf{S}_i^k \mathbf{L}^{-1} \mathbf{S}_i^k] - \mathbf{L}^{-1})}} \cdot \mathbf{L}^{-1}, \\ \mathbf{D}_{\text{diag}^{-1}(\mathbf{L})}^* &= \frac{2}{1 + \sqrt{1 + 4\alpha\beta \cdot \lambda_{\max}(\mathbb{E}[\mathbf{S}_i^k \text{diag}^{-1}(\mathbf{L}) \mathbf{S}_i^k] - \text{diag}^{-1}(\mathbf{L}))}} \cdot \text{diag}^{-1}(\mathbf{L}) \end{aligned} \quad (50)$$

Throughout the experiments, we set $\lambda = 0.3$. The y -axis in the figure represents the expectation of the corresponding matrix norm of the gradient of the function, defined as

$$G_{K, \mathbf{D}} = \mathbb{E} \left[\left\| \nabla f(\tilde{x}^K) \right\|_{\mathbf{D}/\det(\mathbf{D})^{1/d}}^2 \right]. \quad (51)$$

Notice that for a fixed \mathbf{D} , we have

$$\lambda_{\min} \left(\frac{\mathbf{D}}{\det(\mathbf{D})^{1/d}} \right) \cdot \left\| \nabla f(x) \right\|^2 \leq \left\| \nabla f(x) \right\|_{\frac{\mathbf{D}}{\det(\mathbf{D})^{1/d}}}^2 \leq \lambda_{\max} \left(\frac{\mathbf{D}}{\det(\mathbf{D})^{1/d}} \right) \cdot \left\| \nabla f(x) \right\|^2.$$

which means that it is comparable to standard Euclidean norm once \mathbf{D} is fixed.

As illustrated in Figure 3, **det-MARINA** consistently achieves a faster convergence rate compared to **MARINA**, provided they use the same sketch. This observation aligns with the results established in Corollary 6.1. Notably, in some cases, **det-MARINA** with a Rand-1 sketch even outperforms the standard **MARINA** with a Rand-80 sketch. This further underscores the superiority of matrix stepsizes and smoothness over the conventional scalar setting.

K.4 IMPROVEMENT OF **DET-MARINA** OVER NON-VARIANCE-REDUCED METHODS

In this section, we compare two non-variance-reduced methods, distributed compressed gradient descent (**DCGD**) and distributed **det-CGD**, with two variance-reduced methods, **MARINA** and **det-MARINA**. In this experiment, Rand-1 sketch is used for all the algorithms. For the non-variance-reduced methods, ε^2 is fixed at 0.01 to determine the optimal stepsize. In our case, the optimal scalar stepsize for **DCGD** can be determined directly using Proposition 4 in (Khaled & Richtárik, 2023). To ensure that $\min_{0 \leq k \leq K-1} \mathbb{E} \left[\left\| \nabla f(x^k) \right\|^2 \right] \leq \varepsilon^2$, the stepsize condition of **DCGD** in the non-convex case reduces to:

$$\gamma_2 \leq \min \left\{ \frac{1}{L}, \sqrt{\frac{n}{\omega L L_{\max} K}}, \frac{n \varepsilon^2}{4 L L_{\max} \omega \cdot \Delta^*} \right\},$$

where L, L_i are the smoothness constants of f, f_i , respectively. We use $L_{\max} = \max_i L_i$, K to denote the total number of iterations, and $\Delta^* = f(x^*) - \frac{1}{n} \sum_{i=1}^n f_i(x^*)$. The constant ω is associated with the compressor used in the algorithm. For the rand- τ sketch, $\omega = \frac{d}{\tau} - 1$. In the case of distributed **det-CGD**, according to Li et al. (2024), the stepsize condition to satisfy $\min_{0 \leq k \leq K-1} \mathbb{E} \left[\left\| \nabla f(x^k) \right\|_{\mathbf{D}/\det(\mathbf{D})^{1/d}}^2 \right] \leq \varepsilon^2$ is given by:

$$\mathbf{D} \mathbf{L} \mathbf{D} \preceq \mathbf{D}, \quad \phi_{\mathbf{D}} \leq \min \left\{ \frac{n}{K}, \frac{n \varepsilon^2}{4 \Delta^* \det(\mathbf{D})^{1/d}} \right\}, \quad (52)$$

where $\lambda_{\mathbf{D}}$ is defined as

$$\phi_{\mathbf{D}} = \max_i \left\{ \lambda_{\max} \left(\mathbb{E} \left[\mathbf{L}_i^{\frac{1}{2}} (\mathbf{S}_i^k - \mathbf{I}_d) \mathbf{D} \mathbf{L} \mathbf{D} (\mathbf{S}_i^k - \mathbf{I}_d) \mathbf{L}_i^{\frac{1}{2}} \right] \right) \right\}. \quad (53)$$

In general, there is no straightforward way to determine an optimal stepsize matrix \mathbf{D} that satisfies (52). Alternatively, we select the optimal diagonal stepsize \mathbf{D}_3^* , following a similar approach to

2420 Figure 3: In this experiment, we compare **det-MARINA** with stepsize D_{L-1}^* to standard **MARINA**
2421 with the optimal scalar stepsize. Rand- τ compressor is used in the comparison. Throughout the
2422 experiments, λ is fixed at 0.3. The x -axis represents the number of iterations, while the y -axis denotes
2423 $G_{K,D}$, as defined in (51), which is the averaged matrix norm of the gradient. The notation p in
2424 the title denotes the probability used in the two algorithms, n denotes the number of clients in each
2425 setting.

2426
2427
2428
2429

Figure 4: Comparison of **DCGD** with optimal scalar stepsize γ_2 , **det-CGD** with optimal diagonal stepsize D_3^* , **MARINA** with optimal scalar stepsize γ_1 , and **det-MARINA** with optimal stepsize D_{L-1}^* . The probability p is selected from the set $\{0.05, 0.2, 0.5\}$ for **MARINA** and **det-MARINA**. $\lambda = 0.3$ is fixed throughout the experiment. The notation n in the title indicates the number of clients in each case.

(Li et al., 2024). The stepsize condition for **MARINA** has already been described by (49). For **det-MARINA**, we fix $\mathbf{W} = \mathbf{L}^{-1}$ and use D_{L-1}^* as the stepsize matrix.

In Figure 4, each plot shows that **det-MARINA** outperforms **MARINA** as well as the non-variance-reduced methods. This result is anticipated, as our theoretical analysis confirms that **det-MARINA** achieves a better rate compared to **MARINA**, while the stepsizes of non-variance-reduced methods are adversely affected by the neighborhood. Furthermore, when p is sufficiently large, the variance-reduced methods considered here consistently outperform the non-variance-reduced methods.

K.5 IMPROVEMENT OF DET-MARINA OVER DET-CGD

In this section, we compare **det-CGD** in the distributed setting with **det-MARINA**, as both algorithms utilize matrix stepsizes and matrix smoothness. Throughout the experiment, $\lambda = 0.3$ is fixed, and for **det-CGD**, $\varepsilon^2 = 0.01$ is fixed to determine its stepsize. We first fix a matrix \mathbf{W} , selecting it from the set $\mathbf{L}^{-1}, \text{diag}^{-1}(\mathbf{L}), \mathbf{I}_d$. Then, for each choice of \mathbf{W} , we determine the optimal scaling $\gamma_{\mathbf{W}}$ using the condition provided in (Li et al., 2024) (see (52) and (53)). The matrix stepsizes for **det-CGD** are defined as:

$$D_1 = \gamma_{\mathbf{I}_d} \cdot \mathbf{I}_d, \quad D_2 = \gamma_{\text{diag}^{-1}(\mathbf{L})} \cdot \text{diag}^{-1}(\mathbf{L}), \quad D_3 = \gamma_{\mathbf{L}^{-1}} \cdot \mathbf{L}^{-1}. \quad (54)$$

For **det-MARINA**, we use the stepsize D_{L-1}^* , as described in (50). In this experiment, we compare **det-CGD** with three stepsizes, D_1 , D_2 , and D_3 , against **det-MARINA** using the stepsize D_{L-1}^* .

From Figure 5, it is evident that **det-MARINA** outperforms **det-CGD** with all matrix optimal stepsizes corresponding to the fixed choices of \mathbf{W} considered here. This result is expected, as the convergence rate of non-variance-reduced methods is influenced by their neighborhood. This experiment highlights the advantages of **det-MARINA** over **det-CGD** and is consistent with our theoretical findings.

K.6 DET-MARINA WITH DIFFERENT STEPSIZES

As mentioned in Appendix K.3, for each choice of $\mathbf{W} \in \mathbb{S}_{++}^d$, an optimal stepsize $D_{\mathbf{W}}^*$ can be determined. In this experiment, we compare **det-MARINA** with three different stepsize choices: D_{L-1}^* ,

Figure 5: Comparison of det-CGD with matrix stepsize D_1 , D_2 and D_3 and det-MARINA with optimal matrix stepsize when $W = L^{-1}$. The stepsizes $\{D_i\}_{i=1}^3$ are given in (54). Throughout the experiment ε^2 is fixed at 0.01. The notation p in the title refers to the probability of det-MARINA, n denotes the number of clients considered. Rand-1 sketch is used in all cases.

Figure 6: Comparison of **det-MARINA** with matrix stepsize $D_{I_d}^*$, $D_{\text{diag}^{-1}(L)}^*$ and $D_{L^{-1}}^*$. The stepsizes are defined in (50). Throughout the experiment, $\lambda = 0.3$ is fixed. Rand-1 sketch is used in all cases. The notation p indicates the probability of sending the true gradient in **det-MARINA**, n denotes the number of clients considered.

$D_{\text{diag}^{-1}(L)}^*$, and $D_{I_d}^*$. There stepsizes are explicitly defined in (50). Throughout the experiment, we fix $\lambda = 0.3$, and the rand-1 sketch is used in all cases.

As shown in Figure 6, in almost all cases **det-MARINA** with stepsize $D_{\text{diag}^{-1}(L)}^*$ and $D_{L^{-1}}^*$ outperforms **det-MARINA** with $D_{I_d}^*$. Since **det-MARINA** with $D_{I_d}^*$ can be viewed as **MARINA** using a scalar stepsize under the matrix Lipschitz gradient assumption, this highlights the effectiveness of using a matrix stepsize over a scalar stepsize.

In Figure 6, there are cases where **det-MARINA** with $D_{\text{diag}^{-1}(L)}^*$ outperforms $D_{L^{-1}}^*$. This suggests that these two stepsizes are perhaps incomparable in general cases. A similar observation can be made for **det-CGD**, where the optimal stepsizes corresponding to subspaces associated with a fixed W are also incomparable.

K.7 COMMUNICATION COMPLEXITY OF DET-MARINA

In this section, we examine how different probabilities p influence the overall communication complexity of **det-MARINA**. We use $D_{L^{-1}}^*$ as the stepsize, determined based on the sketch employed (see (50)). Rand- τ sketches are utilized in these experiments, with the minibatch size τ varied to enable a more comprehensive comparison. For Rand- τ sketch S and any matrix $A \in \mathbb{S}_{++}^d$, it can be

Figure 7: Comparison of **det-MARINA** with stepsize D_{L-1}^* using different probability p . The probability p here is selected from the set $\{0.05, 0.1, 0.2, 0.4, 0.8\}$. The notation n denotes the number of clients. The x -axis is the number of bytes sent from a single node to the server. In each case, we run **det-MARINA** for a fixed number of iterations $K = 5000$.

shown that

$$\mathbb{E}[\mathbf{SAS}] = \frac{d}{\tau} \left(\frac{d-\tau}{d-1} \text{diag}(\mathbf{A}) + \frac{\tau-1}{d-1} \mathbf{A} \right). \quad (55)$$

Combining (55) and (50), the corresponding matrix stepsize can be easily determined. In this experiment, we fix the total number of iterations to $K = 5000$.

As observed in Figure 7, for each dataset, the communication complexity tends to increase with a higher probability p . However, when the number of iterations is fixed, a larger p often results in a faster convergence rate. This difference in communication complexity becomes more pronounced when using rand-1 sketch. In real-world federated learning scenarios, network bandwidth constraints

2646 between clients and the server are common. Therefore, balancing communication complexity and
 2647 iteration complexity—by carefully selecting the compression mechanism to ensure an acceptable
 2648 speed that satisfies bandwidth limitations—becomes crucial.
 2649

2650 K.8 COMPARISON OF **DASHA** AND **det-DASHA**

2652 In this experiment, we compare the performance of original **DASHA** with **det-DASHA**. Throughout
 2653 the experiments, λ is fixed at 0.3, and the same rand- τ sketch is used for both algorithms. For
 2654 **DASHA**, setting the momentum as $a = \frac{1}{2\omega+1}$ results in the following stepsize condition:

$$2656 \gamma_4 \leq \left(L + \sqrt{\frac{16\omega(2\omega+1)}{n} \hat{L}} \right)^{-1},$$

2659 as stated in Theorem 6.1 of Tyurin & Richtárik (2024). Here, \hat{L} satisfies $\hat{L}^2 = \frac{1}{n} \sum_{i=1}^n L_i^2$, where L_i
 2660 is the smoothness constant of the local objective f_i . For simplicity, one can choose $\hat{L} = L$. According
 2661 to Corollary 5.3, the optimal stepsize matrix $\mathbf{D}_{\mathbf{L}^{-1}}^{**}$ is given by

$$2663 \mathbf{D}_{\mathbf{L}^{-1}}^{**} = \frac{2}{1 + \sqrt{1 + 16C_{\mathbf{L}^{-1}} \cdot \lambda_{\min}(\mathbf{L})}} \cdot \mathbf{L}^{-1}, \quad (56)$$

2665 when the momentum is set as $a = \frac{1}{2\omega_D+1}$.
 2666

2667 As observed in Figure 8, **det-DASHA** with the matrix stepsize $\mathbf{D}_{\mathbf{L}^{-1}}^{**}$ outperforms **DASHA** with the
 2668 optimal scalar stepsize using the same sketch in every setting we considered. Note that, since the
 2669 same sketch is used for both algorithms, the number of bits transferred in each iteration is identical
 2670 for both. This indicates that **det-DASHA** achieves better iteration complexity and communication
 2671 complexity than **DASHA**.
 2672

2673 K.9 IMPROVEMENT OF **DET-DASHA** OVER NON-VARIANCE-REDUCED METHODS

2674 In this experiment, we compare two non-variance-reduced methods, **DCGD** and **det-CGD**, with two
 2675 variance-reduced methods, **DASHA** and **det-DASHA**. The stepsize choices for **DCGD** and **det-CGD**
 2676 have already been discussed Appendix K.4. For **DASHA** and **det-DASHA**, we use the stepsize
 2677 choices provided in Appendix K.8. We fix ε^2 at 0.01, λ at 0.9, and use Rand- τ sketch throughout the
 2678 experiment.

2679 It is clear from Figure 9 that **det-DASHA** outperforms the other algorithms in each case. This is
 2680 expected, as **det-DASHA** surpasses **DASHA**, a result also illustrated in Figure 8, which stems from
 2681 using a matrix stepsize instead of a scalar stepsize. Additionally, we observe that **det-DASHA** and
 2682 **DASHA** outperform **det-CGD** and **DCGD**, respectively, highlighting the advantages of the variance
 2683 reduction technique. Note that in this case, all four algorithms use the same sketch, meaning the
 2684 number of bits transferred in each iteration is identical for all algorithms. Consequently, compared to
 2685 the others, **det-DASHA** excels in both iteration complexity and communication complexity.
 2686

2687 K.10 IMPROVEMENT OF **DET-DASHA** OVER **DET-CGD**

2688 In this experiment, we compare **det-DASHA** and **det-CGD** using different matrix stepsizes. Through-
 2689 out the experiment, we fix $\varepsilon^2 = 0.01$ and $\lambda = 0.9$, and the same Rand- τ sketch is used for both
 2690 algorithms. For **det-CGD**, we use the stepsize $\mathbf{D}_1 = \gamma_{\mathbf{I}_d} \cdot \mathbf{I}_d$, $\mathbf{D}_2 = \gamma_{\text{diag}^{-1}(\mathbf{L})} \cdot \text{diag}^{-1}(\mathbf{L})$ and
 2691 $\mathbf{D}_3 = \gamma_{\mathbf{L}^{-1}} \cdot \mathbf{L}^{-1}$, while for **det-DASHA** we use the stepsize $\mathbf{D}_{\mathbf{L}^{-1}}^{**}$.
 2692

2693 It can be observed from Figure 10 that **det-DASHA** outperforms **det-CGD** with different stepsizes in
 2694 all cases. This further corroborates our theory that **det-DASHA** is variance-reduced and, as a result,
 2695 performs better in terms of both iteration complexity and communication complexity.
 2696

2697 K.11 **DET-MARINA** WITH DIFFERENT STEPSIZES

2698 In this experiment, we compare **det-DASHA** using different matrix stepsizes. Specifically, we fix
 2699 the matrix \mathbf{W} to be one of three choices: \mathbf{I}_d , $\text{diag}^{-1}(\mathbf{L})$, and \mathbf{L}^{-1} . We denote the corresponding

Figure 8: Comparison of **det-DASHA** with matrix stepsize D_{L-1}^{**} and **DASHA** with optimal scalar stepsize γ using different rand- τ sketches. We fix $\lambda = 0.3$ throughout the experiments. The x -axis denotes the number of iterations while the notation $G_{K,D}$ in the y -axis denotes the averaged matrix norm of the gradient. The notation n denotes the number of clients in each setting.

Figure 9: Comparison of DCGD with optimal scalar stepsize γ_2 , det-CGD with optimal diagonal stepsize D_3^* , DASHA with optimal scalar stepsize γ_1 and det-DASHA with optimal stepsize D_{L-1}^{**} . We fix $\lambda = 0.9$ throughout the experiment. The notation n indicates the number of clients in each case. Rand- τ sketch with $\tau = 50$ are used in all cases.

Figure 10: Comparison of det-DASHA with stepsize D_{L-1}^{**} and det-CGD with three different stepsizes D_1 , D_2 and D_3 . Throughout the experiment, λ is fixed at 0.9, ε^2 is fixed at 0.01. Rand- τ sketch is used in all cases with τ selected from $\{20, 50, 80\}$.

Figure 11: Comparison of **det-DASHA** with three different stepsizes D_{L-1}^{**} , $D_{\text{diag}^{-1}(L)}^{**}$ and $D_{I_d}^{**}$. The definition for those matrix stepsize notation are given in (56), (58) and (57) respectively. Throughout the experiment, λ is fixed at 0.9. Rand- τ sketch is used in all cases.

optimal stepsizes as $D_{I_d}^{**}$, $D_{\text{diag}^{-1}(L)}^{**}$ and D_{L-1}^{**} . For D_{L-1}^{**} , it is already given in (56). For $D_{I_d}^{**}$ and $D_{\text{diag}^{-1}(L)}^{**}$, we use Corollary 5.3 to compute them. As a result, we have

$$D_{I_d}^{**} = \frac{2}{1 + \sqrt{1 + 16 \cdot \frac{\omega_{I_d}(4\omega_{I_d} + 1)}{n} \cdot \frac{\lambda_{\min}(\mathbf{L})}{\lambda_{\max}(\mathbf{L})}}} \cdot \frac{I_d}{\lambda_{\max}(\mathbf{L})}, \quad (57)$$

$$D_{\text{diag}^{-1}(\mathbf{L})}^{**} = \frac{2}{1 + \sqrt{1 + 16C_{\text{diag}^{-1}(\mathbf{L})} \cdot \lambda_{\min}(\mathbf{L})}} \cdot \text{diag}^{-1}(\mathbf{L}). \quad (58)$$

Throughout the experiment, λ is fixed at 0.9, rand- τ sketch is used for all the algorithms.

As observed in Figure 11, **det-DASHA** with D_{L-1}^{**} and $D_{\text{diag}^{-1}(\mathbf{L})}^{**}$ both outperform **det-DASHA** with $D_{I_d}^{**}$, demonstrating the effectiveness of using a matrix stepsize over a scalar stepsize. However, depending on the parameters of the problem, it is difficult to draw a general conclusion whether D_{L-1}^{**} is better than $D_{\text{diag}^{-1}(\mathbf{L})}^{**}$.

K.12 COMPARISON OF DET-MARINA AND DET-DASHA

In this section, we provide a comparison between **det-DASHA** and **det-MARINA**. Both methods are variance-reduced versions of **det-CGD**, but they employ different variance reduction techniques. For **det-MARINA**, the method is based on **MARINA** and requires synchronization at intervals, depending on the probability parameter p . In contrast, **det-DASHA** utilizes the momentum variance reduction technique and does not require any synchronization at all. We primarily focus on the communication complexity, specifically the convergence with respect to the number of bits transferred. Throughout the experiment, we fix $\lambda = 0.9$. For **det-DASHA** we choose 3 different stepsizes: $D_{I_d}^{**}$, D_{L-1}^{**} and $D_{\text{diag}^{-1}(\mathbf{L})}^{**}$. For **det-MARINA**, we also select three stepsizes correspondingly: $D_{I_d}^*$, D_{L-1}^* and $D_{\text{diag}^{-1}(\mathbf{L})}^*$.

It is evident from Figure 12 that **det-DASHA** consistently exhibits better communication complexity compared to its **det-MARINA**. Note that since each algorithm is run for a fixed number of iterations, the x -axis actually records the total number of bytes transferred for each algorithm.

Figure 12: Comparison of **det-DASHA** with three different stepsizes $D_{I_d}^{**}$, D_{L-1}^{**} and $D_{\text{diag}^{-1}(L)}^{**}$, and **det-MARINA** with $D_{I_d}^*$, D_{L-1}^* and $D_{\text{diag}^{-1}(L)}^*$ in terms of communication complexity. Throughout the experiment, λ is fixed at 0.9. Each algorithm is run for a fixed number of iteration $K = 5000$.

Figure 13: Comparing the performance of **det-DASHA** with $D^{**}L^{-1}$ and **det-MARINA** with D^*L^{-1} in terms of the function value decreases. The function values for each algorithm represent the average of 20 runs using different random seeds. The two algorithms are initialized at the same starting point. The same rand- τ sketch is employed for both algorithms.

K.13 COMPARISON IN TERMS OF FUNCTION VALUES

In this section, we compare **det-MARINA** and **det-DASHA** in terms of the decrease in function value. The two algorithms are initialized at the same starting point, and we run them 20 times before averaging the function values obtained in each iteration. The same sketch is used since we are interested in the performance in terms of communication complexity. We use D_{L-1}^{**} as the stepsize of **det-DASHA** and D_{L-1}^* as the stepsize of **det-MARINA**.

Observe that in Figure 13, the function values continuously decrease as the algorithms progress through more iterations. However, the stability observed here differs from that in the case of the average (matrix) norm of gradients. Our theoretical framework, as presented in this paper, primarily addresses the average norm of gradients in the non-convex case. Nonetheless, the experiment reinforces the effectiveness of our algorithms, showing consistent decreases in function values.

Figure 14: Deep learning experiment on CIFAR-10. We are comparing **DCGD** and distributed **det-CGD** with rand-100 sketches in this case using a simple three-layer neural network. Left: training loss curve. Right: test accuracy curve. The matrix stepsize is set as a layer-wise block-diagonal matrix. The results reported here reflect the final performance after appropriate tuning.

K.14 DEEP LEARNING EXPERIEMNTS

In this section, we evaluate the proposed methods using a three-layer neural network on the CIFAR-10 classification task. We use the scalar stepsize variants of the algorithms as baselines and compare them against their matrix stepsize counterparts, where the stepsize matrix is chosen as a layer-wise block-diagonal matrix. As we can see from Figure 14, the matrix stepsize versions consistently outperform their scalar counterparts after proper tuning of both methods.