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ABSTRACT

Matrix-step-size gradient descent algorithms have demonstrated superior perfor-
mance in solving non-convex optimization problems compared to their scalar
step-size counterparts. The det-CGD algorithm, as introduced by Li et al. (2024),
leverages matrix stepsizes to perform compressed gradient descent for non-convex
objectives and matrix-smooth problems in a federated manner. The authors es-
tablish the algorithm’s convergence to a neighborhood of a weighted stationarity
point under a convex condition for the symmetric and positive-definite matrix
stepsize. In this paper, we propose two variance-reduced versions of the det-CGD
algorithm, incorporating MARINA and DASHA methods. Notably, we estab-
lish theoretically and empirically, that det-MARINA and det-DASHA outperform
MARINA, DASHA and the distributed det-CGD algorithms in terms of iteration
and communication complexities.

1 INTRODUCTION

We focus on optimizing the finite sum non-convex objective

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x)

}
. (1)

In this context, each function fi : Rd → R is differentiable and bounded from below. This type of
objective function finds extensive application in various practical machine learning algorithms, which
increase not only in terms of the data size but also in the model size and overall complexity as well.
As a result, most neural network architectures result in highly non-convex empirical losses, which
need to be minimized. In addition, it becomes computationally infeasible to train these models on one
device, often excessively large, and one needs to redistribute them amongst different devices/clients.
This redistribution results in a high communication overhead, which often becomes the bottleneck in
this framework.

In other words, we have the following setting. The data is partitioned into n clients, where the i-th
client has access to the component function fi and its derivatives. The clients are connected to each
other through a central device, called the server. In this work, we are going to study iterative gradient
descent-based algorithms that operate as follows. The clients compute the local gradients in parallel.
Then they compress these gradients to reduce the communication cost and send them to the server
in parallel. The server then aggregates these vectors and broadcasts the iterate update back to the
clients. This meta-algorithm is called federated learning. We refer the readers to Konečný et al.
(2016); McMahan et al. (2017); Kairouz et al. (2021) for a more thorough introduction.

1.1 CONTRIBUTIONS

In this paper, we introduce two novel federated learning algorithms named det-MARINA and
det-DASHA. These algorithms extend a recent method called det-CGD (Li et al., 2024), which
aims to solve problem (1) using matrix stepsized gradient descent. Under the matrix smoothness
assumption, the authors demonstrate that the matrix stepsized version of the distributed compressed
gradient gescent (Khirirat et al., 2018) algorithm enhances communication complexity compared
to its scalar counterpart. However, in their analysis, Li et al. (2024) show stationarity only within
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a certain neighborhood due to stochastic compressors. The neighborhood influences the solution’s
accuracy, leading to a smaller step size and, consequently, convergence when aiming for a specified
accuracy. Our algorithms address this issue by adapting two variance reduction schemes, namely,
MARINA (Gorbunov et al., 2021) and DASHA (Tyurin & Richtárik, 2024), incorporating variance
reduction into matrix stepsizes. We establish theoretically and empirically, that both algorithms
outperform their scalar alternatives, as well as the distributed det-CGD algorithms. In addition, we
describe specific matrix stepsize choices, for which our algorithms beat MARINA, DASHA and
distributed det-CGD both in theory and in practice. The various numerical evidence obtained from
the extensive experiments further corroborates our findings.

2 BACKGROUND

For a given ε > 0, finding an approximately global optimum, that is xε such that f(xε)−minx f(x) <
ε, is known to be NP-hard (Jain et al., 2017; Danilova et al., 2022). However, gradient descent based
methods are still useful in this case. When these methods are applied to non-convex objectives,
they treat the function f as locally convex and aim to converge to a local minimum. Despite this
simplification, such methods have gained popularity in practice due to their superior performance
compared to other approaches for non-convex optimization, such as convex relaxation-based methods
(Tibshirani, 1996; Cai et al., 2010).

2.1 STOCHASTIC GRADIENT DESCENT

Arguably, one of the most prominent meta-methods for tackling non-convex optimization problems is
stochastic gradient descent (SGD). The formulation of SGD is presented as the following iterative
algorithm: xk+1 = xk − γgk. Here, gk ∈ Rd serves as a stochastic estimator of the gradient ∇f(xk).
SGD essentially mimics the classical gradient descent algorithm, and recovers it when gk = ∇f(xk).
In this scenario, the method approximates the objective function f using a linear function and takes
a step of size γ in the direction that maximally reduces this approximation. When the stepsize is
sufficiently small, and the function f is suitably smooth, it can be demonstrated that the function
value decreases, as discussed by Bubeck et al. (2015); Gower et al. (2019).

However, computing the full gradient can often be computationally expensive. In such cases,
stochastic approximations of the gradient come into play. Stochastic estimators of the gradient can
be employed for various purposes, leading to the development of different methods. These include
stochastic batch gradient descent (Nemirovski et al., 2009; Johnson & Zhang, 2013; Defazio et al.,
2014), randomized coordinate descent (Nesterov, 2012; Wright, 2015), and compressed gradient
descent (Alistarh et al., 2017; Khirirat et al., 2018; Mishchenko et al., 2019). The latter, compressed
gradient descent, holds particular relevance to this paper, and we will delve into a more detailed
discussion of it in subsequent sections.

2.2 SECOND ORDER METHODS

The stochastic gradient descent is considered as a first-order method as it uses only the first order
derivative information. Although being immensely popular, the first order methods are not always
optimal. Not surprisingly, using higher order derivatives in deciding update direction can yield to
faster algorithms. A simple instance of such algorithms is the Newton Star algorithm (Islamov et al.,
2021):

xk+1 = xk −
(
∇2f(x⋆)

)−1 ∇f(xk), (NS)

where x⋆ is the minimum point of the objective function. The authors establish that under specific
conditions, the algorithm’s convergence to the unique solution x⋆ in the convex scenario occurs at a
local quadratic rate. Nonetheless, its practicality is limited since we do not have prior knowledge of
the Hessian matrix at the optimal point. Despite being proposed recently, the Newton-Star algorithm
gives a deeper insight on the generic Newton method (Gragg & Tapia, 1974; Miel, 1980; Yamamoto,
1987):

xk+1 = xk − γ
(
∇2f(xk)

)−1 ∇f(xk). (NM)

Here, the unknown Hessian of the Newton-Star algorithm, is estimated progressively along the
iterations. The latter causes elevated computational costs, as the inverting a large square matrix is
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expensive. As an alternative, quasi-Newton methods replace the inverse of the Hessian at the iterate
with a computationally cheaper estimate (Broyden, 1965; Dennis & Moré, 1977; Al-Baali & Khalfan,
2007; Al-Baali et al., 2014).

2.3 FIXED MATRIX STEPSIZES

The det-CGD algorithm falls into this framework of the second order methods as well. Proposed
by Li et al. (2024)1, the algorithm suggests using a uniform “upper bound” on the inverse Hessian
matrix. Assuming matrix smoothness of the objective (Safaryan et al., 2021), they replace the scalar
stepsize with a positive definite matrix D. The algorithm is given as follows:

xk+1 = xk −DSk∇f(xk). (det-CGD)

Matrix D. Here, D plays the role of the stepsize. Essentially, it uniformly lower bounds the
inverse Hessian. The standard SGD is a particular case of this method, as the scalar stepsize γ can
be seen as a matrix γId, where Id is the d-dimensional identity matrix. An advantage of using a
matrix stepsize is more evident if we take the perspective of the second order methods. Indeed, the
scalar stepsize γId uniformly estimates the largest eigenvalue of the Hessian matrix, while D can
capture the Hessian more accurately. The authors show both theoretical and empirical improvement
that comes with matrix stepsizes.

Matrix Sk. We assume that Sk is a positive semi-definite, stochastic sketch matrix. Furthermore,
it is unbiased: E[Sk] = Id. We notice that det-CGD can be seen as a matrix stepsize instance of
SGD, with gk = Sk∇f(xk). The sketch matrix can be seen as a linear compressing operator, hence
the name of the algorithm: Compressed Gradient Descent (CGD) (Alistarh et al., 2017; Khirirat
et al., 2018). A commonly used example of such a compressor is the Rand-τ compressor. This
compressor randomly selects τ entries from its input and scales them using a scalar multiplier to
ensure an unbiased estimation. By adopting this approach, instead of using all d coordinates of the
gradient, only a subset of size τ is communicated. Formally, Rand-τ is defined as S = d

τ

∑τ
j=1 eije

⊤
ij

,
where eij denotes the ij-th standard basis vector in Rd. For a more comprehensive understanding of
compression techniques, we refer to Safaryan et al. (2022b).

2.4 THE NEIGHBORHOOD OF THE DISTRIBUTED DET-CGD

The distributed version of det-CGD follows the standard federated learning paradigm (McMahan
et al., 2017). The pseudocode of the method, as well as the convergence result of Li et al. (2024), can
be found in Appendix I. Informally, their convergence result can be written as

min
k=1,...,K

E
[∥∥∇f(xk)

∥∥2
D

]
≤ O

(
(1 + α)K

K

)
+O (α) ,

where α > 0 is a constant that can be controlled. The crucial insight from this result is that the
error bound does not diminish as the number of iterations increases. In fact, by controlling α and
considering a large K, it is impossible to make the second term smaller than ε. This implies that
the algorithm converges to a certain neighborhood surrounding the (local) optimum. Ultimately, the
model we obtain suffers from lower accuracy and performance due to the inaccuracies introduced by
this neighborhood. This phenomenon is a common occurrence in SGD and is primarily attributable to
the variance associated with the stochastic gradient estimator. In the case of det-CGD the stochasticity
comes from the sketch Sk.

2.5 VARIANCE REDUCTION

To eliminate this neighborhood, various techniques for reducing variance are employed. One of
the simplest techniques applicable to CGD is gradient shifting. By replacing Sk∇f(xk) with
Sk(∇f(xk) − ∇f(x⋆)) + ∇f(x⋆), the neighborhood effect is removed from the general CGD.

1In the original paper, the algorithm is referred to as det-CGD, as there is a variant of the same algorithm
named det-CGD2. Since we are going to use only the first one and our framework is applicable to both, we will
remove the number in the end for the sake of brevity.
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This algorithm is an instance of a more commonly known method called SGD⋆ (Gower et al.,
2020). However, since the exact optimum x⋆ is typically unknown, this technique encounters similar
challenges as the Newton-Star algorithm mentioned earlier. Fortunately, akin to quasi-Newton
methods, one can employ methods that iteratively learn the optimal shift (Shulgin & Richtárik, 2022).
A line of research focuses on variance reduction for CGD based algorithms on this insight.

To eliminate the neighborhood in the distributed version of CGD, denoted as det-CGD1, we apply a
technique called MARINA (Gorbunov et al., 2021). MARINA cleverly combines the general shifting
(Shulgin & Richtárik, 2022) technique with loopless variance reduction techniques (Qian et al., 2021).
This approach introduces an alternative gradient estimator specifically designed for the federated
learning setting. Thanks to its structure, it allows to establish an upper bound on the stationarity error
that diminishes significantly with a large number of iterations. In this paper, we construct the analog
of the this algorithm called det-MARINA, using matrix stepsizes and sketch gradient compressors.
For this new method, we prove a convergence guarantee similar to the results of Li et al. (2024)
without a neighborhood term.

Furthermore, we also propose det-DASHA, which is the extension of DASHA in the matrix stepsize
setting. The latter was proposed by Tyurin & Richtárik (2024) and it combines MARINA with
momentum variance reduction techniques (Cutkosky & Orabona, 2019). DASHA offers better
practicality compared to MARINA, as it always sends compressed gradients and does not need to
synchronize among all the nodes.

2.6 ORGANIZATION OF THE PAPER

The rest of the paper is organized as follows. Section 3 discusses the general mathematical framework.
Section 4 and Section 5 present the det-MARINA and det-DASHA algorithms, respectively. We show
the superior theoretical performance of our algorithms compared to the relevant existing algorithms,
that is MARINA, DASHA and det-CGD in Section 6. The experimental results validating our
theoretical findings are presented in Section 7, with additional details and setups available in the
Appendix.

3 MATHEMATICAL FRAMEWORK

In this section we present the assumptions that we further require in the analysis.
Assumption 3.1. (Lower Boundedness) There exists f⋆ ∈ R such that, f(x) ≥ f⋆ for all x ∈ Rd.

This is a standard assumption in optimization, as otherwise the problem of minimizing the objective
would not be correct mathematically. We then introduce a matrix version of Lipschitz continuity for
the gradient.
Definition 3.2. Matrix Smoothness Assume that f : Rd → R is a continuously differentiable
function and matrix L ∈ Sd++. We say the gradient of f is L-Lipschitz if for all x, y ∈ Rd

∥∇f(x)−∇f(y)∥L−1 ≤ ∥x− y∥L . (2)

Assumption 3.3. Each function fi is Li-gradient Lipschitz, while f is L-gradient Lipschitz.

In fact, the second half of the assumption is a consequence of the first one. Below, we formalize this
claim.
Lemma 3.4. If fi is Li-gradient Lipschitz for every i = 1, . . . , n, then function f has L-Lipschitz
gradient with L ∈ Sd++ satisfying

1

n

n∑
i=1

λmax

(
L−1

)
· λmax (Li) · λmax

(
LiL

−1
)
= 1.

Remark 3.5. In the scalar case, where L = LId, Li = LiId, the relation becomes L2 = 1
n

∑n
i=1 L

2
i .

This corresponds to the statement in Assumption 1.2 in (Gorbunov et al., 2021).

Nevertheless, the matrix L found according to Lemma 3.4 is only an estimate. In principle, there
might exist a better Lf ⪯ L such that f has Lf -Lipschitz gradient.

4
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More generally, this condition can be interpreted as follows. The gradient of f naturally belongs
to the dual space of Rd, as it is defined as a linear functional on Rd. In the scalar case, ℓ2-norm is
self-dual, thus (2) reduces to the standard Lipschitz continuity of the gradient. However, with the
matrix smoothness assumption, we are using the L-norm for the iterates, which naturally induces the
L−1-matrix norm for the gradients in the dual space. This insight, which is originally presented by
Nemirovski & Yudin (1983), plays a key role in our analysis. See Appendix F for a more thorough
discussion on the properties of Assumption 3.3, as well as its connection to matrix smoothness
(Safaryan et al., 2021).

4 MARINA-BASED VARIANCE REDUCTION

In this section, we present det-MARINA with its convergence result. We construct a sequence
of vectors gk which are stochastic estimators of ∇f(xk). At each iteration, the server samples a
Bernoulli random variable (coin flip) ck and broadcasts it in parallel to the clients, along with the
current gradient estimate gk. Each client, then, does a det-CGD-type update with the stepsize D and
a gradient estimate gk. The next gradient estimate gk+1 is then computed. With a low probability,
that is when ck = 1, we take the gk+1 to be the full gradient ∇f(xk+1). Otherwise, we update it
using the compressed gradient differences at each client. See Algorithm 1 for the pseudocode of
det-MARINA.

Algorithm 1 det-MARINA
1: Input: starting point x0, stepsize matrix D, probability p ∈ (0, 1], number of iterations K
2: Initialize g0 = ∇f(x0)
3: for k = 0, 1, . . . ,K − 1 do
4: Sample ck ∼ Be(p)
5: Broadcast gk to all workers
6: for i = 1, 2, . . . in parallel do
7: xk+1 = xk −D · gk
8: if ck = 1 then
9: gk+1

i = ∇fi(x
k+1)

10: else
11: gk+1

i = gk + Sk
i

(
∇fi(x

k+1)−∇fi(x
k)
)

12: end if
13: end for
14: gk+1 = 1

n

∑n
i=1 g

k+1
i

15: end for
16: Return: x̃K uniformly sampled from {xk}K−1

k=0

4.1 CONVERGENCE GUARANTEES

In the following theorem, we formulate one of the main results of this paper, which guarantees the
convergence of Algorithm 1 under the above-mentioned assumptions.
Theorem 4.1. Assume that Assumptions 3.1 and 3.3 hold, and the following condition on stepsize
matrix D ∈ Sd++ holds,

D−1 ⪰
(
(1− p) ·R(D,S)

np
+ 1

)
L, (3)

where R(D,S) := 1
n

∑n
i=1 λmax (Li)λmax(L

− 1
2LiL

− 1
2 ) ×λmax

(
E
[
Sk
i DSk

i

]
−D

)
. Then, af-

ter K iterations of det-MARINA, we have

E
[∥∥∇f(x̃K)

∥∥2
D

det(D)1/d

]
≤

2
(
f(x0)− f⋆

)
det(D)1/d ·K

. (4)

Here, x̃K is chosen uniformly randomly from the first K iterates of the algorithm.

Remark 4.2. The criterion ∥·∥2D/ det(D)1/d is the same as that used in Li et al. (2024), known as deter-
minant normalization. The weight matrix of the matrix norm has determinant 1 after normalization,
which makes it comparable to the standard Euclidean norm.

5
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Remark 4.3. We notice that the right-hand side of the algorithm vanishes with the number of iterations,
thus solving the neighborhood issue of the distributed det-CGD. Therefore, det-MARINA is indeed
the variance reduced version of det-CGD in the distributed setting and has better convergence
guarantees.
Remark 4.4. Theorem 4.1 implies the following iteration complexity for the algorithm. In order to
get an ε2 stationarity error2, the algorithm requires K iterations, with

K ≥ 2(f(x0)− f⋆)

det(D)1/d · ε2
.

Remark 4.5. In the case where no compression is applied, that is we have Sk
i = Id, condition (3)

reduces to D ⪯ L−1. The latter is due to E
[
Sk
i DSk

i

]
= D, which results in R(D,S) = 0. This is

expected, since in the deterministic case det-MARINA reduces to GD with matrix stepsize.

The convergence condition and rate of matrix stepsize GD can be found in (Li et al., 2024). Below
we do a sanity check to verify that the convergence condition for scalar MARINA can be obtained.
Remark 4.6. Let us consider the scalar case. In this case, we have Li = LiId,L = LId,D = γId

and ω = λmax

(
E
[(
Sk
i

)⊤
Sk
i

])
− 1 Then, condition (3) reduces to

γ ≤

[
L

(
1 +

√
(1− p)ω

pn

)]−1

.

The latter coincides with the stepsize condition of the convergence result of scalar MARINA.

4.2 OPTIMIZING THE MATRIX STEPSIZE

As previously noted in Remark 4.2, the norm on the left-hand side of (4) is comparable to the standard
Euclidean norm. To optimize the matrix stepsize, our focus will be directed toward the right-hand
side of (4). We notice that it decreases in terms of the determinant of the stepsize matrix. Therefore,
one needs to solve the following optimization problem to find the optimal stepsize:

minimize log det(D−1)

subject to D satisfying (3).

The solution of this constrained minimization problem on Sd++ is not explicit. In theory, one may
show that the constraint (3) is convex and attempt to solve the problem numerically. However, as
stressed by Li et al. (2024), the similar stepsize condition for det-CGD is not easily computed using
solvers like CVXPY (Diamond & Boyd, 2016). Instead, we may relax the problem to certain linear
subspaces of Sd++. In particular, we fix a matrix W ∈ Sd++, and define D := γW . Then, the
condition on the matrix D becomes a condition for the scalar γ, which is given in the following
corollary.

Corollary 4.7. Let W ∈ Sd++, defining D := γ · W , where γ ∈ R+. then the condition in (3)
reduces to the following condition on γ

γ ≤ 2λW

1 +
√
1 + 4αβ · ΛW ,SλW

, (5)

where

ΛW ,S := λmax

(
E
[
Sk
i WSk

i

]
−W

)
,

λW := λ−1
max

(
W

1
2LW

1
2

)
, α :=

1− p

np
,

β :=
1

n

n∑
i=1

λmax (Li) · λmax

(
L−1Li

)
.

2We say a (possibly random) vector x ∈ Rd is an ε-stationary point of a possibly non-convex function
f : Rd 7→ R, if E

[
∥∇f(x)∥2

]
≤ ε2. The expectation is over the randomness of the algorithm

6
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This means that for every fixed W , we can find the optimal scaling coefficient γ. In section Section 6,
we will use this corollary to prove that a suboptimal matrix step size, determined in this efficient way,
is already better than the optimal scalar step size.

Further Extension. A variant of det-CGD was also proposed by Li et al. (2024). This algorithm,
has the same structure as det-CGD with the sketch and stepsize interchanged. It was shown, that this
algorithm has explicit stepsize condition in the single node setting. In Appendix J, we propose the
variance reduced extension of the this algorithm following the MARINA scheme.

5 DASHA-BASED VARIANCE REDUCTION

In this section, we present our second algorithm based on DASHA. The latter utilizes a different
type of variance reduction based on momentum. Compared to MARINA, DASHA makes simpler
optimization steps and does not require periodic synchronization with all the nodes.

Algorithm 2 det-DASHA
1: Input: starting point x0 ∈ Rd, stepsize matrix D ∈ Sd++, momentum a ∈ (0, 1], number of

iterations K
2: Initialize g0i , h

0
i ∈ Rd on the nodes and g0 = 1

n

∑n
i=1 g

0
i on the server

3: for k = 0, 1, . . . ,K − 1 do
4: xk+1 = xk −D · gk
5: Broadcast xk+1 to all nodes
6: for i = 1, 2, . . . n in parallel do
7: hk+1

i = ∇fi(x
k+1)

8: mk+1
i = Sk

i

(
hk+1
i − hk

i − a
(
gki − hk

i

))
9: gk+1

i = gki +mk+1
i

10: Send mk+1
i to the server.

11: end for
12: gk+1 = gk + 1

n

∑n
i=1 m

k+1
i

13: end for
14: Return: x̃K uniformly sampled from {xk}K−1

k=0

5.1 THEORETICAL GUARANTEES

Theorem 5.1. Suppose that Assumptions 3.1 and 3.3 hold. Let us initialize g0i = h0
i = ∇fi(x

0) for
all i ∈ [n] in Algorithm 2, and define ωD := λmax

(
D−1

)
· ΛD,S . If a = 1

2ωD+1 , and the following
condition on stepsize D ∈ Sd++ is satisfied

D−1 ⪰ L− 4λmax (D)ωD (4ωD + 1)

n2

n∑
i=1

λmax (Li)Li,

then the following inequality holds for the iterates of Algorithm 2

E
[∥∥∇f(x̃K)

∥∥2
D/(det(D))1/d

]
≤ 2(f(x0)− f⋆)

det(D)1/d ·K
.

Here x̃K is chosen uniformly randomly from the first K iterates of the algorithm.

Remark 5.2. The term ΛD,S can be viewed as the matrix version of γ · ω, where ω is associated with
the sketch, and γ is the scalar stepsize. On the other hand, the ωD is the extension of ω in matrix
norm. Similar to Remark 4.6, plugging in scalar arguments in the algorithm, we recover the result
from Tyurin & Richtárik (2024).

Following the same scheme as in Section 4, we choose D = γW ·W , where W ∈ Sd++. Thus, for a
fixed W , we relax the problem of finding the optimal stepsize to the problem of finding the optimal
scaling factor γW > 0.

7
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Corollary 5.3. For a fixed W ∈ Sd++, the optimal scaling factor γW ∈ R+ is given by

γW =
2λW

1 +
√
1 + 16CWλmin (L) · λW

,

where CW := λmax (W ) · ωW (4ωW + 1)/n and λW is defined in Corollary 4.7.

We observe that the structure of the optimal scaling factor for obtained above is similar to the one
obtained in Corollary 4.7.

The availability of L: For both algorithms, in order to determine the matrix stepsize, the knowledge
of L is needed, if L is known, better complexities are guaranteed. When L is unknown, a closed-form
solution can be obtained for generalized linear models. In more general cases, Li can be treated
as hyperparameters and estimated using first-order information via a gradient-based method (Wang
et al., 2022). One can think of this as some type of preprocessing step, after which the matrices are
learnt.

6 COMPLEXITIES OF THE ALGORITHMS

6.1 DET-MARINA

The following corollary formulates the iteration complexity for det-MARINA for W = L−1.
Corollary 6.1. If we take W = L−1, then the condition (5) on γ is given by

γ ≤ 2
(
1 +

√
1 + 4αβ · ΛL−1,S

)−1

. (6)

In order to obtain an ε-stationary point, that is, to satisfy E
[∥∥∇f(x̃K)

∥∥2
D

det(D)1/d

]
≤ ε2, we require

K ≥ O

(
∆0 · det(L)

1
d

ε2
·
(
1 +

√
1 + 4αβ · ΛL−1,S

))
,

where ∆0 := f(x0) − f(x⋆). Moreover, this iteration complexity is always better than the one of
MARINA.

The proof can be found in the Appendix. In fact, we can show that in cases where we fix W = Id and
W = diag−1 (L), the same conclusion also holds, relevant details can be found in Appendix G.3.
This essentially means that det-MARINA always has a “larger" stepsize compared to MARINA, even
if the stepsize is suboptimal for the sake of efficiency, which leads to a better iteration complexity.
In addition, since we are using the same compressor for those two algorithms, the communication
complexity of det-MARINA is also provably better than that of MARINA.

In order to compute the communication complexity, we borrow the concept of expected density from
Gorbunov et al. (2021).
Definition 6.2. For a given sketch matrix S ∈ Sd+, the expected density is defined as

ζS = sup
x∈Rd

E[∥Sx∥0] ,

where ∥x∥0 denotes the number of non-zero components of x ∈ Rd.

In particular, we have ζRand-τ = τ . Below, we state the communication complexity of det-MARINA
with W = L−1 and the Rand-τ compressor.
Corollary 6.3. Assume that we are using sketch S ∼ S with expected density ζS . Suppose also we
are running det-MARINA with probability p and we use the optimal stepsize matrix with respect to
W = L−1. Then the overall communication complexity of the algorithm is given by O

(
(Kp+1)d+

(1− p)KζS
)
. Specifically, if we pick p = ζS/d, then the communication complexity is given by

O

(
d+

∆0 det(L)
1
d

ε2

(
ζS +

√
β

n
ΛL−1,SζS(d− ζS)

))
.
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Notice that in case where no compression is applied, the communication complexity reduces to
O(d∆0·det(L)

1
d/ε2). The latter coincides with the rate of matrix stepsize GD (see (Li et al., 2024)).

Therefore, the dependence on ε is not possible to improve further since GD is optimal among first
order methods (Carmon et al., 2020).
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Figure 1: Comparison of DCGD with optimal stepsize, det-CGD with matrix stepsize D∗
3 , MARINA

with optimal stepsize, DASHA with optimal scalar stepsize, det-MARINA with optimal stepsize
D∗

L−1 and det-DASHA with optimal stepsize D∗∗
L−1 . Throughout the experiment, we use Rand-τ

sketch with τ = 60. The GK,D in the y-axis is defined in (51), which is the average squared matrix
norm of the gradients.

6.2 DET-DASHA

The difference of compression mechanisms, does not allow us to have a direct comparison of the
complexities of these algorithms. In particular, det-MARINA compresses the gradient difference
with some probability p, while det-DASHA compresses the gradient difference with momentum in
each iteration.
Corollary 6.4. If we pick D = γL−1 ·L−1, then in order to reach an ε2 stationary point, det-DASHA
needs K iterations with

K ≥ f(x0)− f⋆

det(L)−
1
d ε2

(
1 +

√
1 + 16CL−1λmin (L)

)
.

The following corollary compares the complexities of DASHA and det-DASHA. For the sake of
brevity, we defer the complexities and other details to the proof of this corollary.
Corollary 6.5. Suppose that the conditions in Theorem 5.1 hold, then compared to DASHA,
det-DASHA with W = L−1 always has a better iteration complexity, therefore, communication
complexity as well.

The following corollary suggests that the communication complexity of det-DASHA is better than
that of det-MARINA,
Corollary 6.6. The iteration complexity of det-MARINA with p = 1/(ωL−1+1) and det-DASHA with
momentum 1/(2ωL−1+1) is the same, therefore the communication complexity of det-DASHA is better
than the communication complexity of det-MARINA.

The resulting rates and communication complexities are summarized in Table 1 and Table 2, which
provide a compact comparison of the considered methods under their respective assumptions.

7 EXPERIMENTS

We refer the readers to the appendix for more technical details of the experiments. Figure 1 shows
that the performance in terms of communication complexity of det-DASHA and det-MARINA is
better than their scalar counterpart DASHA and MARINA respectively. This validates the efficiency
of using a matrix stepsize over a scalar stepsize. Further, det-DASHA and det-MARINA have better
communication complexity in this case, compared to det-CGD. This demonstrates the effectiveness of
applying variance reduction. Finally, as expected, det-DASHA has better communication complexity
than det-MARINA.

9
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Table 1: Assumptions and convergence rates. Abbreviations: Sm = smoothness, Interp = interpolation
condition, Unb = unbiasedness, MatSm = matrix smoothness. ζ = expected transmitted coordinates.

Method Assumptions Rate

DCGD Sm+Interp+Unb O
(

L∆0

K

)
det-CGD MatSm+Interp+Unb O

(
det(L)1/d∆0

K

)
MARINA Sm+Unb O

L∆0

(
1+

√
(1−p)ω

pn

)
K


DASHA Sm+Unb O

L∆0

(
1+

ω√
n

)
K


det-MARINA MatSm+Unb O

(
det(L)1/d∆0

(
1+

√
1+4αβΛL−1,S

)
K

)
det-DASHA MatSm+Unb O

(
det(L)1/d∆0(1+

√
1+16CL−1λmin(L))
K

)

B NOTATIONS

The standard Euclidean norm on Rd is defined as ∥·∥. We use Sd++ (resp. Sd+) to denote the positive
definite (resp. semi-definite) cone of dimension d. Sd is used to denote all symmetric matrices of
dimension d. We use the notation Id to denote the identity matrix of size d× d, and Od to denote
the zero matrix of size d × d. Given Q ∈ Sd++ and x ∈ Rd, ∥x∥Q :=

√
x⊤Qx =

√
⟨x,Qx⟩,

where ⟨·, ·⟩ is the standard Euclidean inner product on Rd. For a matrix A ∈ Sd, we use λmax (A)
(resp. λmin (A)) to denote the largest (resp. smallest) eigenvalue of the matrix A. For a function
f : Rd 7→ R, its gradient and its Hessian at a point x ∈ Rd are respectively denoted as ∇f(x) and
∇2f(x). For the sketch matrices Sk

i used in the algorithm, we use the superscript k to denote the
iteration and subscript i to denote the client, the matrix Sk

i is thus sampled for client i in the k-th
iteration from the same distribution S . For any matrix A ∈ Sd, we use the notation diag (A) ∈ Sd to
denote the diagonal of matrix A.

C SUMMARY OF COMPLEXITIES

We present two compact tables to summarize the differences among the considered methods. Table 1
shows assumptions and convergence rates, while Table 2 lists communication complexities. The tables
clarify the distinctions among CGD, det-CGD, MARINA, DASHA, det-MARINA, and det-DASHA.

D ADDITIONAL PRIOR WORK

Non-convex Optimization. Numerous effective convex optimization techniques have been adapted
for application in non-convex scenarios. Here’s a selection of these techniques, although it’s not an
exhaustive list: adaptivity (Dvinskikh et al., 2019; Zhang et al., 2020b), variance reduction (J Reddi
et al., 2016; Li et al., 2021), and acceleration (Guminov et al., 2019). Of particular relevance to our
work is the paper by Khaled & Richtárik (2023), which introduces a unified approach for analyzing
stochastic gradient descent for non-convex objectives. A comprehensive overview of non-convex
optimization can be found in (Jain et al., 2017; Danilova et al., 2022).

Matrix Stepsizes. An illustrative example of a matrix stepsized method is Newton’s method, which
has been a long-standing favorite in the optimization community (Gragg & Tapia, 1974; Miel, 1980;
Yamamoto, 1987). However, the computational complexity involved in computing the stepsize as the
inverse of the Hessian of the current iteration is substantial. An important direction of research that
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Table 2: Communication complexities (same abbreviations as Table 1).

Method Assumptions Communication Complexities

DCGD Sm+Interp+Unb O
(

ζL∆0

ϵ2

)
det-CGD MatSm+Interp+Unb O

(
ζ det(L)1/d∆0

ϵ2

)
MARINA Sm+Unb O

d+ζL∆0

(
1+

√
(1−p)ω

pn

)
ϵ2


DASHA Sm+Unb O

 ζL∆0

(
1+

ω√
n

)
ϵ2


det-MARINA MatSm+Unb O

d+ζ det(L)1/d∆0

1+

√
βΛL−1,S(d−ζ)

ζ


ϵ2


det-DASHA MatSm+Unb O

(
ζ det(L)1/d∆0(1+

√
1+16CL−1λmin(L))

ϵ2

)

is relevant to our work, studies distributed second order methods. Here is a non-exhaustive list of
papers in this area: (Wang et al., 2018; Crane & Roosta, 2019; Zhang et al., 2020a; Islamov et al.,
2021; Alimisis et al., 2021; Safaryan et al., 2022a).

Distributed CGD. The Distributed Compressed Gradient Descent (DCGD) algorithm, initially
proposed by Khirirat et al. (2018), has seen improvements in various aspects, as documented in
works such as (Li et al., 2020; Horváth et al., 2022). Its variance reduced version with gradients
shifts was studied by Shulgin & Richtárik (2022) in the (strongly) convex setting. Additionally, there
exists a substantial body of literature on other federated learning algorithms employing unbiased
compressors (Alistarh et al., 2017; Mishchenko et al., 2019; Gorbunov et al., 2021; Mishchenko et al.,
2022; Maranjyan et al., 2022; Horváth et al., 2023).

Variance Reduction. Variance reduction techniques have gained significant attention in the context
of stochastic batch gradient descent that is prevalent in machine learning. Numerous algorithms have
been developed in this regard, including well-known ones like SVRG (Johnson & Zhang, 2013),
SAG (Schmidt et al., 2017), SDCA(Richtárik & Takáč, 2014), SAGA (Defazio et al., 2014), MISO
(Mairal, 2015), and Katyusha (Allen-Zhu, 2017). An overview of more advanced methods can be
found in (Gower et al., 2020). Notably, SVRG and Katyusha have been extended with loopless
variants, namely L-SVRG and L-Katyusha (Kovalev et al., 2020; Qian et al., 2021). These loopless
versions streamline the algorithms by eliminating the outer loop and introducing a biased coin-flip
mechanism at each step. This simplification eases both the algorithms’ structure and their analyses,
while preserving their worst-case complexity bounds. L-SVRG, in particular, offers the advantage
of setting the exit probability from the outer loop independently of the condition number, thus,
enhancing both robustness and practical efficiency.

This technique of coin flipping allows to obtain variance reduction for the CGD algorithm. A relevant
example is the DIANA algorithm proposed by Mishchenko et al. (2019). Its convergence was proved
both in the convex and non-convex cases. Later, MARINA (Gorbunov et al., 2021) obtained the
optimal convergence rate, improving in communication complexity compared to all previous first
order methods. Finally, there is a line of work developing variance reduction in the federated setting
using other methods and techniques (Chraibi et al., 2019; Hanzely & Richtárik, 2020; Dinh et al.,
2020; Peng et al., 2022).

Another method to obtain variance reduction is based on momentum. It was initially studied by
Cutkosky & Orabona (2019), where they propose the STORM algorithm, which is a stochastic
gradient descent algorithm with a momentum term for non-convex objectives. They obtain station-
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arity guarantees using adaptive stepsizes with optimal convergence rates. However, they require
the variance of the stochastic gradient to be bounded by a constant, which is impractical. Using
momentum for variance reduction has since been widely studied (Liu et al., 2020; Khanduri et al.,
2020; Tran-Dinh et al., 2022; Li et al., 2022).

E BASIC FACTS

Fact E.1. For two matrices A,B ∈ Sd+, denote the i-th largest eigenvalues of A,B as λi(A), λi(B).
If A ⪰ B, then λi(A) ≥ λi(B).

Proof. According to the Courant-Fischer theorem, we have

λi(B) = max
S:dimS=i

min
x∈S\{0}

x⊤Bx

x⊤x
.

Let Si
max be a subspace of dimension i where the maximum is attained,

λi(B) = min
x∈Si

max\{0}

x⊤Bx

x⊤x
≤ min

x∈Si
max\{0}

x⊤Ax

x⊤x
≤ max

S:dimS=i
min

x∈S\{0}

x⊤Ax

x⊤x
= λi(A).

Fact E.2. Given a matrix M ∈ Sd++, a vector c ∈ Rd, and a random vector x ∈ Rd such that

E[∥x∥] ≤ +∞, we have E
[
∥x− E[x]∥2M

]
= E

[
∥x− c∥2M

]
− ∥E[x]− c∥2M .

Proof.

E
[
∥x− c∥2M

]
− ∥E[x]− c∥2M

= E
[
x⊤Mx

]
− 2E[x]⊤ Mc+ c⊤Mc− E[x]⊤ ME[x] + 2E[x]⊤ Mc− c⊤Mc

= E
[
x⊤Mx

]
− E[x]⊤ ME[x]

= E
[
x⊤Mx

]
− 2 · E[x]⊤ ME[x] + E[x]⊤ ME[x]

= E
[
∥x− E[x]∥2M

]
.

Fact E.3. The mapping (A,B,X) 7→ A−XB−1X is jointly concave on Sd+ × Sd++ × Sd. It is
also monotone increasing in variables A and B.

Proof. We refer the reader to Corollary 1.5.3 of Bhatia (2009) for the proof.

Fact E.4. Suppose Li ∈ Sd++, for i = 1, . . . , n. Then, for every matrix X ∈ Sd++, the following
mapping

f(X,L1, . . . ,Ln) =
1

n

n∑
i=1

λmax(Li) · λmax

(
LiX

−1
)
· λmax

(
X−1

)
,

is monotone decreasing in X .

Proof. Fact E.3 suggests the mapping X 7→ X−1 is monotone decreasing which means that if
we have two matrices X1,X2 ∈ Sd++ such that X1 ⪰ X2, then X−1

1 ⪯ X−1
2 . This leads to

0 < λmax(X
−1
1 ) ≤ λmax(X

−1
2 ) due to Fact E.1. Since λmax(LiX

−1) = λmax(L
1/2
i X−1L

1/2
i ) =

λmax(X
−1Li), and since the mapping X 7→ L

1/2
i X−1L

1/2
i is monotone decreasing for every

i ∈ [n], we obtain 0 < λmax

(
LiX

−1
1

)
≤ λmax

(
LiX

−1
2

)
. Notice that λmax (Li) > 0, which

indicates f(X1,L1, . . . ,Ln) ≤ f(X2,L1, . . . ,Ln). As a result, f is monotone decreasing in
X .
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Fact E.5. For any two matrices A,B ∈ Sd++, we have λmax (AB) ≤ λmax (A) · λmax (B).

Proof. Using the Courant-Fischer theorem, we can write

λmax (AB) = min
S:dimS=d

max
x∈S\{0}

x⊤ABx

x⊤x
= max

x∈Rd\{0}

x⊤ABx

x⊤x

≤ max
x∈Rd\{0}

x⊤Ax

x⊤x
· max
x∈Rd\{0}

x⊤Bx

x⊤x

= λmax (A) · λmax (B) .

F PROPERTIES OF MATRIX SMOOTHNESS

F.1 THE MATRIX LIPSCHITZ-CONTINUOUS GRADIENT

In this section, we describe the properties of matrix smoothness, matrix gradient Lipschitzness, and
their relationships. The following lemma describes a sufficient condition for the matrix Lipschitz-
continuity of the gradient.

Lemma F.1. Given twice continuously differentiable function f : Rd 7→ R with uniformly bounded
Hessian ∇2f(x) ⪯ L, where L ∈ Sd++. Then f satisfies Definition 3.2 (Matrix Lipschitz Gradient)
with the matrix L.

The following lemma is a variant of Lemma 3.4, which characterizes the smoothness matrix of the
objective function f , given the smoothness matrices of the component functions fi.

Lemma F.2. Assume that fi has Li-Lipschitz continuous gradient for every i ∈ [n], then function f
has L-Lipschitz gradient with L ∈ Sd++ satisfying

L · λmin (L) =
1

n

n∑
i=1

λmax (Li) ·Li. (7)

F.2 QUADRATICS

Lemma F.3. Consider the quadratic function f(x) = 1
2x

⊤Ax + b⊤x + c, where A ∈ Sd++, b ∈
Rd, c ∈ R. Then f has A matrix Lipschitz gradient.

For a more general setting, consider the following f :,

f(x) =

s∑
i=1

ϕi(Mix),

where Mi ∈ Rqi×d. Here f : Rd 7→ R is the sum of functions ϕi : Rqi 7→ R. We have the following
lemma regarding the matrix gradient Lipschitzness of f .

Lemma F.4. Assume that functions f and {ϕi}si=1 are defined above. If each function ϕi satisfies
Assumption 3.3 (Matrix Lipschitz Gradient) with Li. Then function f has L-Lipschitz gradient, if∑s

i=1 λmax

(
L

1
2
i MiL

−1M⊤
i L

1
2
i

)
= 1.

Note that Lemma F.4 is a generalization of the previous case of quadratics, if we pick s = 1,
Mi = A

1
2 and ϕ1(x) = x⊤Idx, the condition becomes L = A, which recovers Lemma F.3. In

Lemma F.4, we only intend to give a way of finding a matrix L ∈ Sd++, so that f has L-Lipschitz
gradient. This does not mean, however, the L here is optimal.

F.3 RELATION TO MATRIX SMOOTHNESS

Let us recall the definition of matrix smoothness.
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Definition F.5. (L-smoothness) Assume that f : Rd → R is a continuously differentiable function
and matrix L ∈ Sd++. We say that f is L-smooth if for all x, y ∈ Rd

f(y) ≤ f(x) + ⟨∇f(x), x− y⟩+ 1

2
∥x− y∥2L . (8)

We provide a lemma that offers an equivalent formulation for stating the L-matrix smoothness of a
function f .

Lemma F.6. Let function f : Rd → R be continuously differentiable. Then the following statements
are equivalent: (i) f is L-matrix smooth. (ii) ⟨∇f(x)−∇f(y), x− y⟩ ≤ ∥x− y∥2L for all x, y ∈
Rd.

The two lemmas formulated below illustrate the relationship between matrix smoothness of f and
matrix gradient Lipschitzness of f .

Lemma F.7. Assume f : Rd 7→ R is a continuously differentiable function, and its gradient is
L-Lipschitz continuous with L ∈ Sd++. Then function f is L-matrix smooth.

Lemma F.8. Assume f : Rd → R is a continuously differentiable function. Assume also that f is
convex and L-matrix smooth. Then ∇f is L-Lipschitz continuous.

The next proposition shows that standard Lipschitzness of the gradient of a function is an immediate
consequence of matrix Lipschitzness.

Lemma F.9. Assume that the gradient of f is L-Lipschitz continuous. Then ∇f is also L-Lipschitz
with L = λmax (L).

F.4 PROOF OF LEMMA 3.4

For any x, y ∈ Rd,

∥∇f(x)−∇f(y)∥2L−1 =

∥∥∥∥∥ 1n
n∑

i=1

(∇fi(x)−∇fi(y))

∥∥∥∥∥
2

L−1

≤ 1

n

n∑
i=1

∥∇fi(x)−∇fi(y)∥2L−1 ,

where the last inequality follows from convexity. Rewriting L−1 as L−1/2
i L

1/2
i L−1L

1/2
i L

−1/2
i ,

∥∇f(x)−∇f(y)∥2L−1

=
1

n

n∑
i=1

(
L

− 1
2

i (∇fi(x)−∇fi(y))
)⊤

L
1
2
i L

−1L
1
2
i

(
L

− 1
2

i (∇fi(x)−∇fi(y))
)

≤ 1

n

n∑
i=1

λmax

(
L

1
2
i L

−1L
1
2
i

)∥∥∥L− 1
2

i (∇fi(x)−∇fi(y))
∥∥∥2

=
1

n

n∑
i=1

λmax

(
L

1
2
i L

−1L
1
2
i

)
∥∇fi(x)−∇fi(y)∥2L−1

i
≤ 1

n

n∑
i=1

λmax

(
L

1
2
i L

−1L
1
2
i

)
∥x− y∥2Li

,

where the last inequality follows from Lipschitzness of the gradient of fi. Rewriting L−1
i as

L−1/2L1/2L−1
i L1/2L−1/2, we obtain

∥∇f(x)−∇f(y)∥2L−1

=
1

n

n∑
i=1

λmax

(
L

1
2
i L

−1L
1
2
i

)
·
[
(L

1
2 (x− y))⊤L− 1

2LiL
− 1

2 (L
1
2 (x− y))

]
≤ 1

n

n∑
i=1

λmax

(
L

1
2
i L

−1L
1
2
i

)
· λmax

(
L− 1

2LiL
− 1

2

)∥∥∥L 1
2 (x− y)

∥∥∥2
Fact E.5
≤

(
1

n

n∑
i=1

λmax

(
L−1

)
· λmax (Li) · λmax

(
LiL

−1
))

· ∥x− y∥2L = ∥x− y∥2L .
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F.5 PROOF OF LEMMA F.1

For any x, y ∈ Rd, we have

∥∇f(x)−∇f(y)∥2L−1

=

∥∥∥∥∫ 1

0

∇2f(θx+ (1− θ)y)(x− y) dθ

∥∥∥∥2
L−1

= (x− y)⊤
(∫ 1

0

∇2f(θx+ (1− θ)y) dθ

)⊤

L−1

(∫ 1

0

∇2f(θx+ (1− θ)y) dθ

)
(x− y).

Define F :=
∫ 1

0
∇2f(θx+ (1− θ)y) dθ, notice that F is a symmetric matrix. Then.

∥∇f(x)−∇f(y)∥2L−1 = (x− y)⊤F⊤L−1F (x− y).

Since L is an uniform upper bound of the Hessian, we have F ⪯ L. which turns out to be equivalent
to FL−1F ⪯ L, as

FL−1F ⪯ L ⇐⇒ L− 1
2FLFL− 1

2 ⪯ Id

⇐⇒ L− 1
2FL− 1

2 ·L− 1
2FL− 1

2 ⪯ Id

⇐⇒ L− 1
2FL− 1

2 ⪯ Id

⇐⇒ F ⪯ L.

Thus,

∥∇f(x)−∇f(y)∥2L−1 ≤ (x− y)⊤L(x− y) = ∥x− y∥2L .

F.6 PROOF OF LEMMA F.2

Suppose L is a symmetric positive definite matrix satisfying (7). Let us now show that the function
∇f is L-Lipschitz continuous. Picking any two points x, y ∈ Rd, we have:

∥∇f(x)−∇f(y)∥2L−1 =

∥∥∥∥∥ 1n
n∑

i=1

(∇fi(x)−∇fi(y))

∥∥∥∥∥
2

L−1

≤ 1

n

n∑
i=1

∥∇fi(x)−∇fi(y)∥2L−1 .

Rewriting L−1 as L− 1
2

i L
1
2
i L

−1L
1
2
i L

− 1
2

i ,

∥∇f(x)−∇f(y)∥2L−1 ≤ 1

n

n∑
i=1

(∇fi(x)−∇fi(y))
⊤
L

− 1
2

i L
1
2
i L

−1L
1
2
i L

− 1
2

i (∇fi(x)−∇fi(y))

≤ 1

n

n∑
i=1

λmax (Li) · λmax

(
L−1

)
· ∥∇fi(x)−∇fi(y)∥2L−1

i

≤ 1

n

n∑
i=1

λmax (Li) · λmax

(
L−1

)
· ∥x− y∥2Li

= ∥x− y∥2λmax(L−1)· 1
n

∑n
i=1 λmax(Li)·Li

(7)
= ∥x− y∥2L .

F.7 PROOF OF LEMMA F.3

According to Definition 3.2, L must satisfy:√
(x− y)⊤AL−1A(x− y) ≤

√
(x− y)⊤L(x− y),

for any x, y ∈ Rd, which is AL−1A ⪯ L. Since A ∈ Sd++, we further simplify the condition to
A ⪯ L. Therefore, the “best” L ∈ Sd++ that satisfies (2) is L = A.
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F.8 PROOF OF LEMMA F.4

For any x, y ∈ Rd, we have

∥∇f(x)−∇f(y)∥L−1 =

∥∥∥∥∥
s∑

i=1

M⊤
i ∇ϕi(Mix)−

s∑
i=1

M⊤
i ∇ϕi(Miy)

∥∥∥∥∥
L−1

= s ·

∥∥∥∥∥1s
s∑

i=1

M⊤
i (∇ϕi(Mix)−∇ϕi (Miy))

∥∥∥∥∥
L−1

= s · 1
s

s∑
i=1

∥∥M⊤
i (∇ϕi(Mix)−∇ϕi(Miy))

∥∥
L−1 ,

where the last inequality follows from the convexity. Thus,

∥∇f(x)−∇f(y)∥L−1

=

s∑
i=1

√
(∇ϕi(Mix)−∇ϕi(Miy))

⊤
MiL−1M⊤

i (∇ϕi(Mix)−∇ϕi(Miy))

=

s∑
i=1

√
B⊤

i L
1
2
i MiL−1M⊤

i L
1
2
i Bi

≤
s∑

i=1

√
λmax

(
L

1
2
i MiL−1M⊤

i L
1
2
i

)
· ∥∇ϕi(Mix)−∇ϕi(Miy)∥L−1

i
,

where Bi := L
− 1

2
i (∇ϕi(Mix)−∇ϕi(Miy)). Since ϕi is Li-Lipschitz, we have

∥∇f(x)−∇f(y)∥L−1

≤
s∑

i=1

√
λmax

(
L

1
2
i MiL−1M⊤

i L
1
2
i

)
· ∥Mi(x− y)∥Li

=

s∑
i=1

√
λmax

(
L

1
2
i MiL−1M⊤

i L
1
2
i

)
·
√[

L
1
2 (x− y)

]⊤
L− 1

2M⊤
i LiMiL− 1

2

[
L

1
2 (x− y)

]
≤

s∑
i=1

√
λmax

(
L

1
2
i MiL−1M⊤

i L
1
2
i

)
· λmax

(
L− 1

2M⊤
i LiMiL− 1

2

)
· ∥x− y∥L

=

s∑
i=1

λmax

(
L

1
2
i MiL

−1M⊤
i L

1
2
i

)
· ∥x− y∥L ,

where the last identity is due to λmax

(
L

1
2
i MiL

−1M⊤
i L

1
2
i

)
= λmax

(
L− 1

2M⊤
i LiMiL

− 1
2

)
. Since∑s

i=1 λmax

(
L

1
2
i MiL

−1M⊤
i L

1
2
i

)
= 1, we have ∥∇f(x)−∇f(y)∥L−1 ≤ ∥x− y∥L.

F.9 PROOF OF LEMMA F.6

(i) → (ii). If f is L-matrix smooth. Then for all x, y ∈ Rd, we have

f(x) ≤ f(y) + ⟨∇f(y), x− y⟩+ 1

2
∥x− y∥2L ,

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ 1

2
∥x− y∥2L .

Summing up these two inequalities we get

⟨∇f(x)−∇f(y), x− y⟩ ≤ ∥x− y∥2L .
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(ii) → (i). Choose any x, y ∈ Rd and define z = x+ t(y − x), we have,

f(y) = f(x) +

∫ 1

0

⟨∇f(x+ t(y − x)), y − x⟩dt

= f(x) +

∫ 1

0

⟨∇f(z), y − x⟩dt

= f(x) + ⟨∇f(x), y − x⟩+
∫ 1

0

⟨∇f(z)−∇f(x), y − x⟩dt

= f(x) + ⟨∇f(x), y − x⟩+
∫ 1

0

⟨∇f(z)−∇f(x), z − x⟩ · 1
t
dt.

For any x, z ∈ Rd, we have

⟨∇f(z)−∇f(x), z − x⟩ ≤ ∥z − x∥2L .

As a result,

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+
∫ 1

0

∥z − x∥2L · 1
t
dt

= f(x) + ⟨∇f(x), y − x⟩+
∫ 1

0

∥y − x∥2L · tdt

= f(x) + ⟨∇f(x), y − x⟩+ 1

2
∥y − x∥2L .

F.10 PROOF OF LEMMA F.7

We start with picking any two points x, y ∈ Rd. Using Cauchy-Schwarz inequality, we have

⟨∇f(x)−∇f(y), x− y⟩ ≤ ∥∇f(x)−∇f(y)∥L−1 · ∥x− y∥L
(2)
≤= ∥x− y∥2L .

According to Lemma F.6, this indicates that function f is L-matrix smooth.

F.11 PROOF OF LEMMA F.8

By Lemma F.6, we have for any x, y ∈ Rd,

⟨∇f(x)−∇f(y), x− y⟩ ≤ ∥x− y∥2L . (9)

Now we pick any three points x, y, z ∈ Rd. With the L-smoothness of f , we have

f(x+ z) ≥ f(x) + ⟨∇f(x), z⟩+ 1

2
∥z∥2L . (10)

Using the convexity of f , we have

⟨∇f(y), x+ z − y⟩ ≤ f(x+ z)− f(y). (11)

Combining (10) and (11), we obtain

⟨∇f(y), x+ z − y⟩ ≤ f(x)− f(y) + ⟨∇f(x), z⟩+ 1

2
∥z∥2L .

Rearranging terms we get

⟨∇f(y)−∇f(x), z⟩ − 1

2
∥z∥2L ≤ f(x)− f(y)− ⟨∇f(y), x− y⟩ .

The inequality holds for any z for fixed x and y, and the left hand side is maximized for z when
z = L−1 (∇f(y)−∇f(x)). Plugging it in, we have

1

2
∥∇f(x)−∇f(y)∥2L−1 ≤ f(x)− f(y)− ⟨∇f(y), x− y⟩ . (12)

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

By symmetry, we also have

1

2
∥∇f(y)−∇f(x)∥2L−1 ≤ f(y)− f(x)− ⟨∇f(x), y − x⟩ .

Adding (12) and its counterpart, we obtain

∥∇f(x)−∇f(y)∥2L−1 ≤ ⟨∇f(x)−∇f(y), x− y⟩ . (13)

Combing (13) and (9), it follows

∥∇f(x)−∇f(y)∥2L−1 ≤ ∥x− y∥2L .

F.12 PROOF OF LEMMA F.9

Pick any two points x, y ∈ Rd. With the matrix L-Lipschitzness of the gradient of function f , we
have

∥∇f(x)−∇f(y)∥2L−1 ≤ ∥x− y∥2L .

This implies

(x− y)⊤L(x− y)− (∇f(x)−∇f(y))
⊤
L−1 (∇f(x)−∇f(y)) ≥ 0.

Define function f(X) := a⊤Xa− b⊤X−1b for X ∈ Sd++, where a, b ∈ Rd are fixed vectors. Then
f is monotone increasing in X . This can be shown in the following way, picking two matrices
X1,X2 ∈ Sd++, where X1 ⪰ X2. We see that −X−1

1 ⪰ −X−1
2 , since from Fact E.3 the map

X 7→ −X−1 is monotone increasing for X ∈ Sd++. Thus,

f(X1)− f(X2) = (x− y)⊤ (X1 −X2) (x− y)

+ (∇f(x)−∇f(y))
⊤ (−X−1

1 − (−X−1
2 )
)
(∇f(x)−∇f(y)) ≥ 0.

As a result, f(λmax (L) · Id) ≥ f(L) ≥ 0, due to the fact that λmax (L) · Id ⪰ L. It remains to
notice that

f(λmax (L) · Id) = λmax (L) ∥x− y∥2 − 1

λmax (L)
∥∇f(x)−∇f(y)∥2 ≥ 0,

which yields

∥∇f(x)−∇f(y)∥2 ≤ λ2
max (L) ∥x− y∥2 .

G ANALYSIS OF DET-MARINA

G.1 TECHNICAL LEMMAS

We first state some technical lemmas essential for the proof.

Lemma G.1 (Descent lemma). Assume function f is L smooth, and xk+1 = xk −D · gk, where
D ∈ Sd++. Then the iterates generated by Algorithm 1 satisfy:

f(xk+1) ≤ f(xk)− 1

2

∥∥∇f(xk)
∥∥2
D

+
1

2

∥∥gk −∇f(xk)
∥∥2
D

− 1

2

∥∥xk+1 − xk
∥∥
D−1−L

.

The following lemma is obtained for any sketch matrix S ∈ Sd+ and any two positive definite matrices
D and L.

Lemma G.2 (Property of sketch matrix). For any sketch matrix S ∈ Sd+, a vector t ∈ Rd, and
matrices D,L ∈ Sd++, we have

E
[
∥St− t∥2D

]
≤ λmax

(
L

1
2 (E[SDS]−D)L

1
2

)
· ∥t∥2L−1 . (14)
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G.2 PROOF OF THEOREM 4.1

According to Lemma G.1, we have

E
[
f(xk+1)

]
≤ E

[
f(xk)

]
− E

[
1

2

∥∥∇f(xk)
∥∥2
D

]
(15)

+ E
[
1

2

∥∥gk −∇f(xk)
∥∥2
D

]
− E

[
1

2

∥∥xk+1 − xk
∥∥2
D−1−L

]
. (16)

Notice that,

gk+1 =

{
∇f(xk+1) with probability p,

gk + 1
n

∑n
i=1 S

k
i

(
∇fi(x

k+1)−∇fi(x
k)
)

with probability 1− p.

As a result, from the tower property,

E
[∥∥gk+1 −∇f(xk+1)

∥∥2
D

| xk+1, xk
]

= E
[
E
[∥∥gk+1 −∇f(xk+1)

∥∥2
D

| xk+1, xk, ck

]]
= (1− p) · E

∥∥∥∥∥gk +
1

n

n∑
i=1

Sk
i (∇fi(x

k+1)−∇fi(x
k))−∇f(xk+1)

∥∥∥∥∥
2

D

| xk+1, xk

 .

Using Fact E.2, we have

E
[∥∥gk+1 −∇f(xk+1)

∥∥2
D

| xk+1, xk
]

= (1− p) · E

∥∥∥∥∥ 1n
n∑

i=1

Sk
i (∇fi(x

k+1)−∇fi(x
k))−

(
∇f(xk+1)−∇f(xk)

)∥∥∥∥∥
2

D

| xk+1, xk


+ (1− p) ·

∥∥gk −∇f(xk)
∥∥2
D

= (1− p) · E

∥∥∥∥∥ 1n
n∑

i=1

(
Sk
i (∇fi(x

k+1)−∇fi(x
k))− (∇fi(x

k+1)−∇fi(x
k))
)∥∥∥∥∥

2

D

| xk+1, xk


+ (1− p) ·

∥∥gk −∇f(xk)
∥∥2
D
.

Notice that the sketch matrix is unbiased, which implies

E
[
Sk
i

(
∇fi(x

k+1)−∇fi(x
k)
)
| xk+1, xk

]
= ∇fi(x

k+1)−∇fi(x
k),

Since any two distinct random vectors in the set {Sk
i (∇fi(x

k+1)−∇fi(x
k))}ni=1 are independent

from each other, if xk+1 and xk are fixed, we have

E
[∥∥gk+1 −∇f(xk+1)

∥∥2
D

| xk+1, xk
]

=
1− p

n2

n∑
i=1

E
[∥∥Sk

i (∇fi(x
k+1)−∇fi(x

k))− (∇fi(x
k+1)−∇fi(x

k))
∥∥2
D

| xk+1, xk
]

+ (1− p) ·
∥∥gk −∇f(xk)

∥∥2
D
. (17)

Applying Lemma G.2, we obtain

E
[∥∥Sk

i (∇fi(x
k+1)−∇fi(x

k))− (∇fi(x
k+1)−∇fi(x

k))
∥∥2
D

| xk+1, xk
]

≤ λmax

(
L

1
2
i

(
E
[
Sk
i DSk

i

]
−D

)
L

1
2
i

)∥∥∇fi(x
k+1)−∇fi(x

k)
∥∥2
L−1

i

.

Using the fact that fi has Li-Lipschitz gradient, we have

E
[∥∥Sk

i (∇fi(x
k+1)−∇fi(x

k))− (∇fi(x
k+1)−∇fi(x

k))
∥∥2
D

| xk+1, xk
]

≤ λmax

(
L

1
2
i

(
E
[
Sk
i DSk

i

]
−D

)
L

1
2
i

)∥∥xk+1 − xk
∥∥2
Li

. (18)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Plugging (18) into (17), we deduce

E
[∥∥gk+1 −∇f(xk+1)

∥∥2
D

| xk+1, xk
]

≤ 1− p

n2

n∑
i=1

λmax

(
L

1
2
i

(
E
[
Sk
i DSk

i

]
−D

)
L

1
2
i

)∥∥xk+1 − xk
∥∥2
Li

+ (1− p) ·
∥∥gk −∇f(xk)

∥∥2
D
.

Rewriting L−1
i and denote λi := λmax

(
L

1
2
i

(
E
[
Sk
i DSk

i

]
−D

)
L

1
2
i

)
.

E
[∥∥gk+1 −∇f(xk+1)

∥∥2
D

| xk+1, xk
]

=
1− p

n2

n∑
i=1

λi ·
(
L

1
2 (xk+1 − xk)

)⊤
L− 1

2LiL
− 1

2

(
L

1
2 (xk+1 − xk)

)
+ (1− p)

∥∥gk −∇f(xk)
∥∥2
D

≤ 1− p

n2

n∑
i=1

λi · λmax

(
L− 1

2LiL
− 1

2

)∥∥xk+1 − xk
∥∥2
L
+ (1− p) ·

∥∥gk −∇f(xk)
∥∥2
D
.

We further use Fact E.5 to upper bound λmax

(
L

1
2
i

(
E
[
Sk
i DSk

i

]
−D

)
L

1
2
i

)
by the product

of λmax (Li) and λmax

(
E
[
Sk
i DSk

i

]
−D

)
. This allows us to simplify the expression since

λmax

(
E
[
Sk
i DSk

i

]
−D

)
is independent of the index i. Notice that we have already defined:

R(D,S) = 1

n

n∑
i=1

λmax

(
E
[
Sk
i DSk

i

]
−D

)
· λmax (Li) · λmax

(
L− 1

2LiL
− 1

2

)
.

Taking expectation, using tower property and using the definition above, we obtain

E
[∥∥gk+1 −∇f(xk+1)

∥∥2
D

]
≤ (1− p) ·R(D,S)

n
E
[∥∥xk+1 − xk

∥∥2
L

]
+ (1− p)E

[∥∥gk −∇f(xk)
∥∥2
D

]
.

(19)

Construct the following Lyapunov function Φk = f(xk)− f⋆ + 1
2p

∥∥gk −∇f(xk)
∥∥2
D

. Using (15)
and (19), we have

E[Φk+1] ≤
1

2p

[
(1− p) ·R(D,S)

n
E
[∥∥xk+1 − xk

∥∥2
L

]
+ (1− p) · E

[∥∥gk −∇f(xk)
∥∥2
D

]]
+ E

[
f(xk)− f⋆

]
− 1

2
E
[∥∥∇f(xk)

∥∥2
D

]
+

1

2
E
[∥∥gk −∇f(xk)

∥∥2
D

]
− 1

2
E
[∥∥xk+1 − xk

∥∥2
D−1−L

]
= E[Φk]−

1

2
E
[∥∥∇f(xk)

∥∥2
D

]
+

(
(1− p) ·R(D,S)

2np
E
[∥∥xk+1 − xk

∥∥2
L

]
− 1

2
E
[∥∥xk+1 − xk

∥∥2
D−1−L

])
= E[Φk]−

1

2
E
[∥∥∇f(xk)

∥∥2
D

]
+

1

2

(
(1− p) ·R(D,S)

np
E
[∥∥xk+1 − xk

∥∥2
L

]
− E

[∥∥xk+1 − xk
∥∥2
D−1−L

])
.

We rewrite the last term as

E
[
(xk+1 − xk)⊤

[
(1− p) ·R(D,S)

np
L+L−D−1

]
(xk+1 − xk)

]
, (20)

and we require the matrix in between to be negative semi-definite:

D−1 ⪰
(
(1− p) ·R(D,S)

np
+ 1

)
L.
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As a result, (20) is always non-positive and we obtain

E[Φk+1] ≤ E[Φk]−
1

2
E
[∥∥∇f(xk)

∥∥2
D

]
.

Unrolling this recurrence, we get

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
D

]
≤ 2 (E[Φ0]− E[ΦK ])

K
. (21)

The left-hand side can viewed as E
[∥∥∇f(x̃K)

∥∥2
D

]
, where x̃K is sampled uniformly from {xk}K−1

k=0 .
Notice that ΦK > 0, we have

2 (E[Φ0]− E[ΦK ])

K
≤ 2Φ0

K
=

2
(
f(x0)− f⋆ + 1

2p

∥∥g0 −∇f(x0)
∥∥2
D

)
K

=
2
(
f(x0)− f⋆

)
K

.

Plugging in the simplified result into (21), and performing determinant normalization, we obtain

E
[∥∥∇f(x̃K)

∥∥2
D

det(D)1/d

]
≤

2
(
f(x0)− f⋆

)
det(D)1/dK

. (22)

Remark G.3. We can achieve a slightly more refined stepsize condition than (3) for det-MARINA,
which is given as follows

D ⪰

(
(1− p) · R̃(D,S)

np
+ 1

)
L, (23)

where

R̃(D,S) := 1

n

n∑
i=1

λmax

(
L

1
2
i

(
E
[
Sk
i DSk

i

]
−D

)
L

1
2
i

)
· λmax

(
L− 1

2LiL
− 1

2

)
.

This is obtained if we do not use Fact E.5 to upper bound λmax

(
L

1
2
i

(
E
[
Sk
i DSk

i

]
−D

)
L

1
2
i

)
by

the product of λmax (Li) and λmax

(
E
[
Sk
i DSk

i

]
−D

)
. However, (23) results in a condition that

is much harder to solve even if we assume D = γ · W . So instead of using the more refined
condition (23), we turn to (3). Notice that both of the two conditions (23) and (3) reduce to the
stepsize condition for MARINA in the scalar setting.

G.3 COMPARISON OF DIFFERENT STEPSIZES

In Corollary 6.1, we focus on a special stepsize where we fix W = L−1 and demonstrate that,
in this case, det-MARINA outperforms MARINA in terms of both iteration and communication
complexities. However, other choices for W are also possible. Specifically, we consider the case
where W = diag−1 (L).

G.3.1 THE DIAGONAL CASE

We consider W = diag−1 (L).

Corollary G.4. If we take W = diag−1 (L) in Corollary 4.7, then the optimal stepsize satisfies

D∗
diag−1(L) =

2

1 +
√

1 + 4αβ · Λdiag−1(L),S
· diag−1 (L) . (24)

This stepsize leads to better iteration complexity for det-MARINA compared to the scalar version of
MARINA.

Since the same sketch is used for MARINA and det-MARINA, the communication complexity is
improved as well. However, in general there is no clear relation between the iteration complexity of
W = L−1 and W = diag−1 (L). This is also confirmed by one of our experiments, see Figure 6 to
see the comparison of det-MARINA using those stepsizes.
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G.4 PROOF OF COROLLARY 4.7

We start with rewriting (3) as(
1− p

np
·R (D,S) + 1

)
D

1
2LD

1
2 ⪯ Id.

Notice that we have already defined

α =
1− p

np
; β =

1

n

n∑
i=1

λmax (Li) · λmax

(
L−1Li

)
;

ΛW ,S = λmax

(
E
[
Sk
i WSk

i

]
−W

)
; λW = λ−1

max

(
W

1
2LW

1
2

)
.

Plugging in the definition of R(D,S) and D = γW , we obtain

αβΛW ,S · γ2 + γ − λW ≤ 0,

which yields the upper bound on γ

γ ≤
√

1 + 4αβ · ΛW ,SλW − 1

2αβ · ΛW ,S
.

Since
√
1 + 4αβ · ΛW ,SλW + 1 > 0, we further simplify the result as

γ ≤ 2λW

1 +
√
1 + 4αβ · ΛW ,SλW

.

G.5 PROOF OF COROLLARY 6.1

It is obvious that (6) directly follows from plugging W = L−1 into (5). The iteration complexity of
MARINA, according to Gorbunov et al. (2021), is

K ≥ K1 = O

(
∆0L

ε2

(
1 +

√
(1− p)ω

pn

))
. (25)

On the other hand,
det(L)

1
d ≤ λmax (L) = L. (26)

In addition, using the inequality √
1 + 4t ≤ 1 + 2

√
t, (27)

which holds for any t ≥ 0, we obtain the following bound(
1 +

√
1 + 4αβ · ΛL−1,S

)
2

≤ 1 +
√

αβ · ΛL−1,S .

Next we prove that

1 +
√
αβ · ΛL−1,S ≤ 1 +

√
(1− p)

pn
· ω, (28)

which is equivalent to

1

n

n∑
i=1

λmax (Li)λmax

(
LiL

−1
)
· λmax

(
E
[
Sk
i L

−1Sk
i

]
−L−1

)
≤ ω.

The left hand side can be upper bounded by,

1

n

n∑
i=1

λmax (Li)λmax

(
L−1Li

)
· λmax

(
L−1

)
·
λmax

(
E
[
Sk
i L

−1Sk
i

]
−L−1

)
λmax (L−1)

≤
λmax

(
E
[
Sk
i L

−1Sk
i

]
−L−1

)
λmax (L−1)

,
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where the inequality is a consequence of Lemma 3.4. We further bound the last term with

λmax

(
E
[
Sk
i L

−1Sk
i

]
−L−1

)
λmax (L−1)

= λmax

(
E
[
Sk
i · L−1

λmax(L−1)
· Sk

i

]
− L−1

λmax (L−1)

)
≤ λmax

(
E
[
Sk
i S

k
i

]
− Id

)
=: ω.

Here, the last inequality is due to the monotonicity of the mapping X 7→ λmax

(
E
[
Sk
i XSk

i

]
−X

)
with X ∈ Sd++, which can be shown as follows, let us pick any X1,X2 ∈ Sd++ and X1 ⪯ X2,(
E
[
Sk
i X2S

k
i

]
−X2

)
−
(
E
[
Sk
i X1S

k
i

]
−X1

)
= E

[
Sk
i (X2 −X1)S

k
i

]
− (X2 −X1) ⪰ Od.

The above inequality is due to the convexity of the mapping Sk
i 7→ Sk

i XSk
i . As a result, we have

λmax

(
E
[
Sk
i X2S

k
i

]
−X2

)
≥ λmax

(
E
[
Sk
i X1S

k
i

]
−X1

)
,

whenever X2 ⪰ X1. Due to the fact that

L−1

λmax (L−1)
⪯ Id,

we have

λmax

(
E
[
Sk
i · L−1

λmax(L−1)
· Sk

i

]
− L−1

λmax (L−1)

)
≤ λmax

(
E
[
Sk
i · Id · Sk

i

]
− Id

)
= ω.

Combining (26) and (28), we have

∆0 det(L)
1
d

ε2
·
(
1 +

√
1 + 4αβ · ΛL−1,S

)
≤ ∆0L

ε2

(
1 +

√
(1− p)ω

pn

)
,

which implies that the iteration complexity of det-MARINA is always better than that of MARINA.

G.6 PROOF OF COROLLARY 6.3

The number of bits sent in expectation is O(d+K(pd+(1−p)ζS)) = O((Kp+1)d+(1−p)KζS).
The special case where we choose p = ζS/d indicates that α = 1−p

np = 1
n

(
d
ζS

− 1
)

. In order to

reach an error of ε2, we need

K = O

(
∆0 · det(L)

1
d

ε2
·

(
1 +

√
1 +

4β

n

(
d

ζS
− 1

)
· ΛL−1,S

))
.

Applying once again (27), using the fact that p = ζS/d, the communication complexity in this case is
given by

O

(
d+

∆0 · det(L)
1
d

ε2
·

(
1 +

√
1 +

4β

n

(
d

ζS
− 1

)
· ΛL−1,S

)
· (pd+ (1− p)ζS)

)

≤ O

(
d+

2∆0 · det(L)
1
d

ε2
·

(
1 +

√
β

n

(
d

ζS
− 1

)
· ΛL−1,S

)
· (pd+ (1− p)ζS)

)

≤ O

(
d+

4∆0 · det(L)
1
d

ε2
·

(
ζS +

√
β · ΛL−1,S

n
· ζS(d− ζS)

))
.

Ignoring the coefficient, we have

O

(
d+

∆0 · det(L)
1
d

ε2
·

(
ζS +

√
β · ΛL−1,S

n
· ζS(d− ζS)

))
.
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G.7 PROOF OF COROLLARY G.4

Applying Corollary 4.7, notice that in this case λdiag−1(L) = λ−1
max

(
diag−

1
2 (L)Ldiag−

1
2 (L)

)
=

1, we obtain D∗
diag−1(L)

. The iteration complexity is given by

O

(
det (diag(L))

1
d ·∆0

ε2
·

(
1 +

√
1 + 4αβΛdiag−1(L),S

2

))
.

We now compare it to the iteration complexity of MARINA, which is given in (25). We know that
each diagonal element Ljj satisfies Ljj ≤ λmax (L) = L for j = 1, . . . , d. As a result,

det (diag(L))
1
d ≤ L. (29)

From (27), we deduce

1 +
√

1 + 4αβ · Λdiag−1(L),S

2
≤ 1 +

√
αβ · Λdiag−1(L),S .

Now, let us prove the below inequality

1 +
√
αβ · Λdiag−1(L),S ≤ 1 +

√
(1− p)

pn
· ω, (30)

which is equivalent to β · Λdiag−1(L),S ≤ ω. Plugging in the definition of β, ω and Λdiag−1(L),S and
using Lemma 3.4, we obtain,

λmax

(
E
[
Sk
i

diag−1 (L)

λmax (L−1)
Sk
i − diag−1 (L)

λmax (L−1)

])
≤ λmax

(
E
[
Sk
i IdS

k
i

]
− Id

)
.

It is enough to prove that diag−1(L)
λmax(L−1) ⪯ Id, which can be further simplified as λmin (L) ≤

λmin (diag(L)). This is always true for any L ∈ Sd++. Combining (29) and (30) we conclude
the proof.

G.8 PROOF OF LEMMA G.1

Let x̄k+1 := xk −D · ∇f(xk). Since f has matrix L-Lipschitz gradient, by Lemma F.7, f is also
L-smooth. By the L-smoothness of f , we have

f(xk+1)

≤ f(xk) +
〈
∇f(xk), xk+1 − xk

〉
+

1

2

〈
xk+1 − xk,L(xk+1 − xk)

〉
= f(xk) +

〈
∇f(xk)− gk, xk+1 − xk

〉
+
〈
gk, xk+1 − xk

〉
+

1

2

〈
xk+1 − xk,L(xk+1 − xk)

〉
.

We can merge the last two terms and obtain,

f(xk+1) ≤ f(xk) +
〈
∇f(xk)− gk,−D · gk

〉
−
〈
xk+1 − xk,D−1(xk+1 − xk)

〉
+

1

2

〈
xk+1 − xk,L(xk+1 − xk)

〉
= f(xk) +

〈
∇f(xk)− gk,−D · gk

〉
−
〈
xk+1 − xk,

(
D−1 − 1

2
L

)
(xk+1 − xk)

〉
.

We add and subtract
〈
∇f(xk)− gk,D · gk

〉
,

f(xk+1) ≤ f(xk) +
〈
∇f(xk)− gk,D

(
∇f(xk)− gk

)〉
−
〈
∇f(xk)− gk,D · ∇f(xk)

〉
−
〈
xk+1 − xk,

(
D−1 − 1

2
L

)
(xk+1 − xk)

〉
= f(xk) +

∥∥∇f(xk)− gk
∥∥2
D

−
〈
xk+1 − x̄k+1,D−1

(
xk − x̄k+1

)〉
−
〈
xk+1 − xk,

(
D−1 − 1

2
L

)
(xk+1 − xk)

〉
.
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Decomposing the term
〈
xk+1 − x̄k+1,D−1

(
xk − x̄k+1

)〉
, we obtain

f(xk+1) ≤ f(xk) +
∥∥∇f(xk)− gk

∥∥2
D

−
〈
xk+1 − xk,

(
D−1 − 1

2
L

)
(xk+1 − xk)

〉
−1

2

(∥∥xk+1 − x̄k+1
∥∥2
D−1 +

∥∥xk − x̄k+1
∥∥2
D−1 −

∥∥xk+1 − xk
∥∥2
D−1

)
.

Plugging in the definition of xk+1, x̄k+1, we get

f(xk+1) ≤ f(xk) +
∥∥∇f(xk)− gk

∥∥2
D

−
∥∥xk+1 − xk

∥∥2
D−1− 1

2L

− 1

2

(∥∥D(∇f(xk)− gk)
∥∥2
D−1 +

∥∥D · ∇f(xk)
∥∥2
D−1 −

∥∥xk+1 − xk
∥∥2
D−1

)
= f(xk) +

∥∥∇f(xk)− gk
∥∥2
D

−
∥∥xk+1 − xk

∥∥2
D−1− 1

2L

− 1

2

(∥∥∇f(xk)− gk
∥∥2
D

+
∥∥∇f(xk)

∥∥2
D

−
∥∥xk+1 − xk

∥∥2
D−1

)
.

Rearranging terms we obtain,

f(xk+1) ≤ f(xk)− 1

2

∥∥∇f(xk)
∥∥2
D

+
1

2

∥∥gk −∇f(xk)
∥∥2
D

−
∥∥xk+1 − xk

∥∥2
D−1− 1

2L

+
1

2

∥∥xk+1 − xk
∥∥2
D−1

= f(xk)− 1

2

∥∥∇f(xk)
∥∥2
D

+
1

2

∥∥gk −∇f(xk)
∥∥2
D

− 1

2

∥∥xk+1 − xk
∥∥
D−1−L

.

G.9 PROOF OF LEMMA G.2

The definition of the weighted norm yields

E
[
∥St− t∥2D

]
= E[⟨t, (S − Id)D (S − Id) t⟩]

= ⟨t,E[(S − Id)D(S − Id)] t⟩

=
〈
t,L− 1

2 · E
[
L

1
2 (S − Id)D(S − Id)L

1
2

]
·L− 1

2 t
〉

=
〈
L− 1

2 t,E
[
L

1
2 (S − Id)D(S − Id)L

1
2

]
·L− 1

2 t
〉

≤ λmax

(
E
[
L

1
2 (S − Id)D(S − Id)L

1
2

]) ∥∥∥L− 1
2 t
∥∥∥2

= λmax

(
L

1
2 (E[SDS]−D)L

1
2

)
· ∥t∥2L−1 .

H ANALYSIS OF DET-DASHA

We first present some technical lemmas essential for the proof.

Lemma H.1. Assume that Definition 3.2 holds and h0
i = ∇fi(x

0), then for hk+1
i from Algorithm 2,

we have for any D ∈ Sd++∥∥hk+1 −∇f(xk+1)
∥∥2
D

=
∥∥hk+1

i −∇fi(x
k+1)

∥∥2
D

= 0.
∥∥hk+1

i − hk
i

∥∥2
L−1

i

≤
∥∥xk+1 − xk

∥∥2
Li

.

Lemma H.2. Suppose hk+1 and gk+1 are from Algorithm 2, then the following recurrence holds,

E
[∥∥gk+1 − hk+1

∥∥2
D

]
≤

2ΛD,S · λmax

(
D−1

)
· λmax (D)

n2

n∑
i=1

λmax (Li)E
[∥∥hk+1

i − hk
i

∥∥2
L−1

i

]
+

2a2ΛD,S · λmax

(
D−1

)
n2

n∑
i=1

E
[∥∥gki − hk

i

∥∥2
D

]
+ (1− a)2E

[∥∥gk − hk
∥∥2
D

]
, (31)

where ΛD,S = λmax

(
E
[
Sk
i DSk

i

]
−D

)
for D ∈ Sd++ and Sk

i ∼ S.
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Lemma H.3. Suppose hk+1
i and gk+1

i for i ∈ [n] are from Algorithm 2, then the following recurrence
holds,

E
[∥∥gk+1

i − hk+1
i

∥∥2
D

]
≤
(
2a2λmax

(
D−1

)
· ΛD,S + (1− a)2

)
· E
[∥∥gki − hk

i

∥∥2
D

]
+ 2λmax

(
D−1

)
· λmax (D) · ΛD,S · λmax (Li) · E

[∥∥hk+1
i − hk

i

∥∥2
L−1

i

]
.

H.1 PROOF OF THEOREM 5.1

Using Lemma G.1 and taking expectations, we obtain

E
[
f(xk+1)

]
≤ E

[
f(xk)

]
− 1

2
E
[∥∥∇f(xk)

∥∥2
D

]
− 1

2
E
[∥∥xk+1 − xk

∥∥2
D−1−L

]
+

1

2
E
[∥∥gk −∇f(xk)

∥∥2
D

]
≤ E

[
f(xk)

]
− 1

2
E
[∥∥∇f(xk)

∥∥2
D

]
− 1

2
E
[∥∥xk+1 − xk

∥∥2
D−1−L

]
+ E

[
1

2

∥∥gk − hk + hk −∇f(xk)
∥∥2
D

]
≤ E

[
f(xk)

]
− 1

2
E
[∥∥∇f(xk)

∥∥2
D

]
− 1

2
E
[∥∥xk+1 − xk

∥∥2
D−1−L

]
+ E

[∥∥gk − hk
∥∥2
D

+
∥∥hk −∇f(xk)

∥∥2
D

]
, (32)

where the last step is due to the convexity of the norm. Using Lemma H.2, we obtain

E
[∥∥gk+1 − hk+1

∥∥2
D

]
≤ 2ωD · λmax (D)

n2

n∑
i=1

λmax (Li)E
[∥∥hk+1

i − hk
i

∥∥2
L−1

i

]
+

2a2ωD

n2

n∑
i=1

E
[∥∥gki − hk

i

∥∥2
D

]
+ (1− a)2E

[∥∥gk − hk
∥∥2
D

]
. (33)

Using Lemma H.3, we get

E
[∥∥gk+1

i − hk+1
i

∥∥2
D

]
≤
(
2a2ωD + (1− a)2

)
E
[∥∥gki − hk

i

∥∥2
D

]
+ 2ωDλmax (D)λmax (Li)E

[∥∥hk+1
i − hk

i

∥∥2
L−1

i

]
.

(34)

Now let us fix κ ∈ [0,+∞), η ∈ [0,+∞) which we will determine later, and construct the following
Lyapunov function Φk

Φk = E
[
f(xk)− f⋆

]
+ κ · E

[∥∥gk − hk
∥∥2
D

]
+ η · E

[
1

n

n∑
i=1

∥∥gki − hk
i

∥∥2
D

]
. (35)
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Combining (32), (33) and (34), we get

Φk+1

≤ E
[
f(xk)− f⋆ − 1

2

∥∥∇f(xk)
∥∥2
D

]
+ E

[
−1

2

∥∥xk+1 − xk
∥∥2
D−1−L

+
∥∥gk − hk

∥∥2
D

+
∥∥hk −∇f(xk)

∥∥2
D

]
+ κ(1− a)2E

[∥∥gk − hk
∥∥2
D

]
+

2κ · ωDλmax (D)

n
· 1
n

n∑
i=1

λmax (Li)E
[∥∥hk+1

i − hk
i

∥∥2
L−1

i

]
+

2a2ωD · κ
n

· 1
n

n∑
i=1

E
[∥∥gki − hk

i

∥∥2
D

]
+ η

(
2a2ωD + (1− a)2

)
· 1
n

n∑
i=1

E
[∥∥gki − hk

i

∥∥2
D

]
+ 2η · ωD · λmax (D) · 1

n

n∑
i=1

λmax (Li) · E
[∥∥hk+1

i − hk
i

∥∥2
L−1

i

]
.

Rearranging terms, and notice that
∥∥hk −∇f(xk)

∥∥2
D

= 0,

Φk+1

≤ E
[
f(xk)− f⋆

]
− 1

2
E
[∥∥∇f(xk)

∥∥2
D

]
− 1

2
E
[∥∥xk+1 − xk

∥∥2
D−1−L

]
+
(
1 + κ(1− a)2

)
E
[∥∥gk − hk

∥∥2
D

]
+

(
2a2ωD · κ

n
+ η

(
2a2ωD + (1− a)2

))
· 1
n

n∑
i=1

E
[∥∥gki − hk

i

∥∥2
D

]
+

(
2κ · ωDλmax (D)

n
+ 2η · ωD · λmax (D)

)
· 1
n

n∑
i=1

λmax (Li) · E
[∥∥hk+1

i − hk
i

∥∥2
L−1

i

]
.

In order to proceed, we consider the choice of κ and η, for κ,

1 + κ(1− a)2 ≤ κ. (36)

It is then clear that the choice of κ = 1
a satisfies the condition. On the other hand, we look at the

terms involving E
[∥∥gki − hk

i

∥∥2
D

]
, which we denote as T1:

T1 :=

(
2a2ωD · κ

n
+ η

(
2a2ωD + (1− a)2

))
· 1
n

n∑
i=1

E
[∥∥gki − hk

i

∥∥2
D

]
.

Picking κ = 1
a and a = 1

2ωD+1 ,

T1 =

(
2ωD

n · (2ωD + 1)
+ η · 4ω

2
D + 2ωD

(2ωD + 1)
2

)
· 1
n

n∑
i=1

E
[∥∥gki − hk

i

∥∥2
D

]
.

We pick η so that it satisfies(
2ωD

n · (2ωD + 1)
+ η · 4ω

2
D + 2ωD

(2ωD + 1)
2

)
≤ η. (37)

Taking η = 2ωD

n , which is the minimum value satisfying (37), we conclude that

T1 ≤ η · 1
n

n∑
i=1

E
[∥∥gki − hk

i

∥∥2
D

]
. (38)

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Combining (36) and (38), we are able to conclude that

Φk+1

≤ E
[
f(xk)− f⋆

]
+ κ · E

[∥∥gk − hk
∥∥2
D

]
+ η · 1

n

n∑
i=1

E
[∥∥gki − hk

i

∥∥2
D

]
− 1

2
E
[∥∥∇f(xk)

∥∥2
D

]
− 1

2
E
[∥∥xk+1 − xk

∥∥2
D−1−L

]
+

(
2κ · ωDλmax (D)

n
+ 2η · ωD · λmax (D)

)
· 1
n

n∑
i=1

λmax (Li) · E
[∥∥hk+1

i − hk
i

∥∥2
L−1

i

]
.

Using the definition of Φk and Lemma H.1, we obtain

Φk+1 ≤ Φk − 1

2
E
[∥∥∇f(xk)

∥∥2
D

]
− 1

2
E
[∥∥xk+1 − xk

∥∥2
D−1−L

]
(
2κ · ωDλmax (D)

n
+ 2η · ωD · λmax (D)

)
· 1
n

n∑
i=1

λmax (Li) · E
[∥∥xk+1 − xk

∥∥2
Li

]
= Φk − 1

2
E
[∥∥∇f(xk)

∥∥2
D

]
+ E

[∥∥xk+1 − xk
∥∥2
N

]
,

where N ∈ Sd is defined as

N :=

(
2κ · ωDλmax (D)

n
+ 2η · ωD · λmax (D)

)
· 1
n

n∑
i=1

λmax (Li) ·Li −
1

2
D−1 +

1

2
L.

We require N ⪯ Od, which leads to the following condition on D:

D−1 −L− 4λmax (D) · ωD · (4ωD + 1)

n
· 1
n

n∑
i=1

λmax (Li) ·Li ⪰ Od.

Given the above condition is satisfied, we have the recurrence

1

2
E
[∥∥∇f(xk)

∥∥2
D

]
≤ Φk − Φk+1

Summing up for k = 0 . . .K − 1, we obtain

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
D

]
≤ 2(Φ0 − Φk). (39)

Notice that we also have

Φ0 = f(x0)− f⋆ + (2ωD + 1)
∥∥g0 − h0

∥∥2
D

+
2ωD

n
· 1
n

n∑
i=1

∥∥g0i − h0
i

∥∥2 = f(x0)− f⋆,

We divide both sides of (39) by K, and perform determinant normalization,

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
D

det(D)1/d

]
≤ 2(f(x0)− f⋆)

det(D)1/d ·K
.

This is to say

E
[∥∥∇f(x̃K)

∥∥2
D

det(D)1/d

]
≤ 2(f(x0)− f⋆)

det(D)1/d ·K
,

where x̃K is chosen uniformly randomly from the first K iterates of the algorithm.
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H.2 PROOF OF COROLLARY 5.3

Plug D = γW ·W into the stepsize condition in Theorem 5.1, we obtain

W−1

γW
−L− 4γW · λmax (W ) · ωW (4ωW + 1)

n
· 1
n

n∑
i=1

λmax (Li) ·Li ⪰ Od.

We then simplify the above condition as

L− 1
2W−1L− 1

2

γW

⪰ Id +
4γW · λmax (W ) · ωW (4ωW + 1)

n
·L− 1

2

(
1

n

n∑
i=1

λmax (Li) ·Li

)
L− 1

2 .

Using Lemma F.2, we have

L− 1
2W−1L− 1

2

γW
− 4γW · λmax (W ) · ωW (4ωW + 1)

n
· λmin (L) · Id ⪰ Id.

Taking the minimum eigenvalue of both sides, we obtain that,

λmin

(
L− 1

2W−1L− 1
2

)
γW

− 4γW · λmax (W ) · ωW (4ωW + 1)

n
· λmin (L) ≥ 1,

If we denote CW := λmax(W )·ωW (4ωW +1)
n > 0, and λW := λ−1

max

(
L

1
2WL

1
2

)
, we have 4 · CW ·

λmin (L) · γ2
W + γW − λW ≤ 0, which gives

γW ≤ 2λW

1 +
√
1 + 16CWλmin (L) · λW

.

H.3 PROOF OF COROLLARY 6.4

The best scaling factor for L−1, in this case, is given as, according to Corollary 5.3, γL−1 =
2

1+
√

1+16CL−1 ·λmin(L)
. In order to reach a ε2 stationary point, we need

K ≥
det(L)

1
d

(
f(x0)− f⋆

)
ε2

·
(
1 +

√
1 + 16CL−1 · λmin (L)

)
.

H.4 PROOF OF COROLLARY 6.5

The iteration complexity of det-DASHA is given by, according to, Corollary 6.4,

O
(
f(x0)− f⋆

ϵ2
·
(
1 +

√
1 + 16CL−1 · λmin (L)

)
· det(L)

1
d

)
.

Using the inequality
√
1 + t ≤ 1 +

√
t for t > 0 and leaving out the coefficients, we obtain

O
(
f(x0)− f⋆

ϵ2
·
(
1 +

√
CL−1 · λmin (L)

)
· det(L)

1
d

)
.

Notice that

CL−1 · λmin (L) = λmax

(
L−1

)
· ωL−1 (4ωL−1 + 1)

n
· λmin (L) =

ωL−1 (4ωL−1+1)

n
.

As a result, the iteration complexity can be further simplified as

O
(
f(x0)− f∗

ϵ2
·
(
1 +

ωL−1√
n

)
· det(L)

1
d

)
.

The iteration complexity of DASHA is, according to (Tyurin & Richtárik, 2024, Corollary 6.2)

O
(

1

ϵ2
·
(
f(x0)− f⋆

)(
L+

ω√
n
L̂

))
,

where L̂ =
√

1
n

∑n
i=1 L

2
i . Since det(L)

1
d ≤ λmax (L) = L, and L ≤ L̂, we see that compared to

DASHA, det-DASHA has a better iteration complexity when the momentum is the same.
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H.5 PROOF OF COROLLARY 6.6

The iteration complexity of det-MARINA is given by

O
(
f(x0)− f⋆

ϵ2
· det(L)

1
d ·
(
1 +

√
αβΛL−1,S

))
,

after removing logarithmic factors. We obtain in the case of ωL−1 + 1 = 1
p that

O
(
f(x0)− f⋆

ϵ2
· det(L)

1
d ·
(
1 +

ωL−1

n

))
.

From the proof of Corollary 6.5, we know that the iteration complexity of det-DASHA is

O
(

1

ϵ2
·
(
f(x0)− f⋆

)(
L+

ω√
n
L̂

))
.

We see that in this case the two algorithms have the same iteration complexity asymptotically. Notice
that the communication complexity is the product of bytes sent per iteration and the number of
iterations. det-DASHA clearly sends less bytes per iteration since it always sends the compressed
gradient differences, which leads to a better communication complexity than det-MARINA.

H.6 PROOF OF LEMMA H.2

Throughout the following proof, we denote ES [·] as taking expectation with respect to the randomness
contained within the sketch sampled from distribution S. For ES

[∥∥gk+1 − hk+1
∥∥2
D

]
, we have

ES

[∥∥gk+1 − hk+1
∥∥2
D

]
= ES

∥∥∥∥∥gk +
1

n

n∑
i=1

mk+1
i − hk+1

∥∥∥∥∥
2

D


= ES

∥∥∥∥∥gk +
1

n

n∑
i=1

Sk
i

(
hk+1
i − hk

i − a(gki − hk
i )
)
− hk+1

∥∥∥∥∥
2

D



Using Fact E.3, we obtain

ES

[∥∥gk+1 − hk+1
∥∥2
D

]
= ES

∥∥∥∥∥ 1n
n∑

i=1

Sk
i

(
hk+1
i − hk

i − a(gki − hk
i )
)
−
(
hk+1 − hk − a(gk − hk)

)∥∥∥∥∥
2

D


+ (1− a)2

∥∥hk − gk
∥∥2
D

= ES

∥∥∥∥∥ 1n
n∑

i=1

Sk
i

(
hk+1
i − hk

i − a(gki − hk
i )
)
− 1

n

n∑
i=1

(
hk+1
i − hk

i − a(gki − hk
i )
)∥∥∥∥∥

2

D


+ (1− a)2

∥∥hk − gk
∥∥2
D

=
1

n2

n∑
i=1

ES

[∥∥Sk
i

(
hk+1
i − hk

i − a(gki − hk
i )
)
−
(
hk+1
i − hk

i − a(gki − hk
i )
)∥∥2

D

]
+ (1− a)2

∥∥hk − gk
∥∥2
D
.

Here, the last identity is obtained from the unbiasedness of the sketches:

ES

[
Sk
i

(
hk+1
i − hk

i − a(gki − hk
i )
)]

= hk+1
i − hk

i − a(gki − hk
i ).
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We further use Lemma G.2, and obtain

ES

[∥∥gk+1 − hk+1
∥∥2
D

]
≤ 1

n2

n∑
i=1

λmax

(
D− 1

2

(
E
[
Sk
i DSk

i

]
−D

)
D− 1

2

)∥∥hk+1
i − hi − a(gki − hk

i )
∥∥2
D

+ (1− a)2
∥∥gk − hk

∥∥2
D

≤ 1

n2

n∑
i=1

λmax

(
D−1

)
· λmax

(
E
[
Sk
i DSk

i

]
−D

) ∥∥hk+1
i − hk

i − a(gki − hk
i )
∥∥2
D

+ (1− a)2
∥∥gk − hk

∥∥2
D
.

Applying Jensen’s inequality as

ES

[∥∥gk+1 − hk+1
∥∥2
D

]
≤

2ΛD,S · λmax

(
D−1

)
n2

n∑
i=1

∥∥hk+1
i − hk

i

∥∥2
D

+
2a2ΛD,S · λmax

(
D−1

)
n2

n∑
i=1

∥∥gki − hk
i

∥∥2
D

+ (1− a)2
∥∥gk − hk

∥∥2
D
.

Notice that we have∥∥hk+1
i − hk

i

∥∥2
D

≤ λmax (D) · λmax (Li) ·
∥∥hk+1

i − hk
i

∥∥2
L−1

i

.

We see that,

ES

[∥∥gk+1 − hk+1
∥∥2
D

]
≤

2ΛD,S · λmax

(
D−1

)
· λmax (D)

n2

n∑
i=1

λmax (Li)
∥∥hk+1

i − hk
i

∥∥2
L−1

i

+
2a2ΛD,S · λmax

(
D−1

)
n2

n∑
i=1

∥∥gki − hk
i

∥∥2
D

+ (1− a)2
∥∥gk − hk

∥∥2
D
.

We obtain the inequality in the lemma after taking expectation again and applying tower property.

H.7 PROOF OF LEMMA H.3

We start with

ES

[∥∥gk+1
i − hk+1

i

∥∥2
D

]
= ES

[∥∥gki + Sk
i

(
hk+1
i − hk

i − a(gki − hk
i )
)
− hk+1

i

∥∥2
D

]
= ES

[∥∥Sk
i

(
hk+1
i − hk

i − a(gki − hk
i )
)
−
(
hk+1
i − hk

i − a(gki − hk
i )
)
+ (1− a)(hk

i − gki )
∥∥2
D

]
.

Using Fact E.3,

ES

[∥∥gk+1
i − hk+1

i

∥∥2
D

]
= ES

[∥∥Sk
i

(
hk+1
i − hk

i − a(gki − hk
i )
)
−
(
hk+1
i − hk

i − a(gki − hk
i )
)∥∥2

D

]
+ (1− a)2

∥∥hk
i − gki

∥∥2
D
.
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Using Lemma G.2

ES

[∥∥gk+1
i − hk+1

i

∥∥2
D

]
(14)
≤ λmax

(
D− 1

2

(
E
[
Sk
i DSk

i

]
−D

)
D− 1

2

)∥∥hk+1
i − hk

i − a(gki − hk
i )
∥∥2
D

+ (1− a)2
∥∥gki − hk

i

∥∥2
D

≤ λmax

(
D−1

)
· ΛD,S

∥∥hk+1
i − hk

i − a(gki − hk
i )
∥∥2
D

+ (1− a)2
∥∥gki − hk

i

∥∥2
D

≤ 2λmax

(
D−1

)
· ΛD,S

∥∥hk+1
i − hk

i

∥∥2
D

+ 2a2λmax

(
D−1

)
· ΛD,S

∥∥gki − hk
i

∥∥2
D

+ (1− a)2
∥∥gki − hk

i

∥∥2
D

≤ 2λmax

(
D−1

)
· λmax (D) · ΛD,S · λmax (Li) ·

∥∥hk+1
i − hk

i

∥∥2
L−1

i

+ 2a2λmax

(
D−1

)
· ΛD,S

∥∥gki − hk
i

∥∥2
D

+ (1− a)2
∥∥gki − hk

i

∥∥2
D

=
(
2a2λmax

(
D−1

)
· ΛD,S + (1− a)2

) ∥∥gki − hk
i

∥∥2
D

+ 2λmax

(
D−1

)
· λmax (D) · ΛD,S · λmax (Li) ·

∥∥hk+1
i − hk

i

∥∥2
L−1

i

.

Taking expectation again, and using tower property, we obtain,

E
[∥∥gk+1

i − hk+1
i

∥∥2
D

]
≤
(
2a2λmax

(
D−1

)
· ΛD,S + (1− a)2

)
E
[∥∥gki − hk

i

∥∥2
D

]
+ 2λmax

(
D−1

)
· λmax (D) · ΛD,S · λmax (Li) · E

[∥∥hk+1
i − hk

i

∥∥2
L−1

i

]
.

I DISTRIBUTED DET-CGD

This section is a brief summary of the distributed det-CGD algorithm and its theoretical analysis. The
details can be found in (Li et al., 2024). The algorithm follows the standard FL paradigm. See the
pseudocode in Algorithm 3.

Algorithm 3 Distributed det-CGD
1: Input: Starting point x0, stepsize matrix D, number of iterations K
2: for k = 0, 1, 2, . . . ,K − 1 do
3: The devices in parallel:
4: sample Sk

i ∼ S;
5: compute Sk

i ∇fi(x
k);

6: broadcast Sk
i ∇fi(x

k).
7: The server:
8: combines gk = 1

n

∑n
i=1 S

k
i ∇fi(x

k);
9: computes xk+1 = xk −Dgk;

10: broadcasts xk+1.
11: end for
12: Return: xK

Theorem I.1. Suppose that f is L-smooth. Under the Assumptions 3.1,3.3, if the stepsize satisfies
DLD ⪯ D, (40)

then the following convergence bound is true for the iteration of Algorithm 3:

min
0≤k≤K−1

E
[∥∥∇f(xk)

∥∥2
D

det(D)1/d

]
≤

2(1 + λD

n )K
(
f(x0)− f⋆

)
det(D)1/d K

+
2λD∆⋆

det(D)1/d n
, (41)

where ∆⋆ := f⋆ − 1
n

∑n
i=1 f

⋆
i and

λD := max
i

{
λmax

(
E
[
L

1
2
i

(
Sk
i − Id

)
DLD

(
Sk
i − Id

)
L

1
2
i

])}
.
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Remark I.2. On the right hand side of (41) we observe that increasing K will only reduce the first
term, that corresponds to the convergence error. Whereas, the second term, which does not depend
on K, will remain constant, if the other parameters of the algorithm are fixed. This testifies to the
neighborhood phenomenon which we discussed in Section 2.
Remark I.3. If the stepsize satisfies the below conditions,

DLD ⪯ D, λD ≤ min

{
n

K
,
nε2

4∆⋆
det(D)1/d

}
, K ≥ 12(f(x0)− f⋆)

det(D)1/d ε2
, (42)

then we obtain ε-stationary point.

One can see that in the convergence guarantee of det-CGD in the distributed case, the result (41) is
not variance-reduced. Because of this, in order to reach a ε stationary point, the stepsize condition in
(42) is restrictive.

J EXTENSION OF DET-CGD2 IN MARINA FORM

In this section we want to extend det-CGD2 into its variance reduced counterpart in MARINA form.

J.1 EXTENSION OF DET-CGD2 TO ITS VARIANCE REDUCED COUNTERPART

Algorithm 4 det-CGD2-VR
1: Input: starting point x0, stepsize matrix D, probability p ∈ (0, 1], number of iterations K
2: Initialize g0 = D · ∇f(x0)
3: for k = 0, 1, . . . ,K − 1 do
4: Sample ck ∼ Be(p)
5: Broadcast gk to all workers
6: for i = 1, 2, . . . in parallel do
7: xk+1 = xk − gk

8: Set gk+1
i =

{
D · ∇fi(x

k+1) if ck = 1

gk + T k
i D

(
∇fi(x

k+1)−∇fi(x
k)
)

if ck = 0
9: end for

10: gk+1 = 1
n

∑n
i=1 g

k+1
i

11: end for
12: Return: x̃K chosen uniformly at random from {xk}K−1

k=0

We call det-MARINA as the extension of det-CGD1, and Algorithm 4 as the extension of det-CGD2
due to the difference in the order of applying sketches and stepsize matrices. The key difference
between det-CGD1 and det-CGD2 is that in det-CGD1 the gradient is sketched first and then multi-
plied by the stepsize, while for det-CGD2, the gradient is multiplied by the stepsize first after which
the product is sketched. The convergence for Algorithm 4 can be obtained in a similar manner as
Theorem 4.1.
Theorem J.1. Let Assumptions 3.1 and 3.3 hold, with the gradient of f being L-Lipschitz. If the
stepsize matrix D ∈ Sd++ satisfies

D−1 ⪰
(
(1− p) ·R′(D,S)

np
+ 1

)
L,

where

R′(D,S) = 1

n

n∑
i=1

λmax

(
DE

[
T k
i D

−1T k
i

]
DL

1
2
i −L

1
2
i D

)
· λmax (Li) · λmax

(
L− 1

2LiL
− 1

2

)
.

Then after K iterations of Algorithm 4, we have

E
[∥∥∇f(x̃K)

∥∥2
D

det(D)1/d

]
≤

2
(
f(x0)− f⋆

)
det(D)1/d ·K

.

This is to say that in order to reach a ε-stationary point, we require K ≥ 2(f(x0)−f⋆)
det(D)1/d·ε2 .
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If we look at the scalar case where D = γ · Id, Li = Li · Id and L = L · Id, then the condition in
Theorem J.1 reduces to

(1− p)ωL2

np
+ L− 1

γ
≤ 0. (43)

Notice that here ω = λmax

(
E
[(
T k
i

)2]) − 1, and we have L2 = 1
n

∑n
i=1 L

2
i , which is due to

Lemma F.6. This condition coincides with the condition for convergence of MARINA. One may also
check that, the update rule in Algorithm 4, is the same as MARINA in the scalar case. However, the
condition given in Theorem J.1 is not simpler than Theorem 4.1, contrary to the single-node case. We
emphasize that Algorithm 4 is not suitable for the federated learning setting where the clients have
limited resources. In order to perform the update, each client is required to store the stepsize matrix
D which is of size d× d. In the over-parameterized regime, the dataset size is m× d where m is the
number of data samples, and we have d > m. This means that the stepsize matrix each client needs
to store is even larger than the dataset itself, which is unacceptable given the limited resources each
client has.

We first present two lemmas which are necessary for the proofs of Theorem J.1.

Lemma J.2. Assume that function f is L-smooth, and xk+1 = xk − gk, and matrix D ∈ Sd++. Then
the iterates generated by Algorithm 4 satisfy the following inequality:

f(xk+1) ≤ f(xk)− 1

2

∥∥∇f(xk)
∥∥2
D

+
1

2

∥∥D · ∇f(xk)− gk
∥∥2
D−1 −

1

2

∥∥xk+1 − xk
∥∥2
D−1−L

.

Lemma J.3. For any sketch matrix T ∈ Sd+, vector t ∈ Rd, matrix D ∈ Sd++ and matrix L ∈ Sd++,
we have

E
[
∥TDt−Dt∥2D−1

]
≤ λmax

(
L

1
2DE

[
TD−1T

]
DL

1
2 −L

1
2DL

1
2

)
∥t∥2L−1 . (44)

J.2 PROOF OF THEOREM J.1

We start with Lemma J.2,

E
[
f(xk+1)

]
≤ E

[
f(xk)

]
− E

[
1

2

∥∥∇f(xk)
∥∥2
D

]
+ E

[
1

2

∥∥D · ∇f(xk)− gk
∥∥2
D−1

]
− E

[
1

2

∥∥xk+1 − xk
∥∥2
D−1−L

]
. (45)

Now we look at the term E
[∥∥D · ∇f(xk+1)− gk+1

∥∥2
D−1

]
. Recall that gk here is given by

gk+1 =

{
D · ∇f(xk+1) with probability p

gk + 1
n

∑n
i=1 T

k
i D

(
∇fi(x

k+1)−∇fi(x
k)
)

with probability 1− p .

As a result, we have

E
[∥∥gk+1 −D∇f(xk+1)

∥∥2
D−1 | xk+1, xk

]
= E

[
E
[∥∥gk+1 −D∇f(xk+1)

∥∥2
D−1 | xk+1, xk, ck

]]
= (1− p) · E

∥∥∥∥∥gk +
1

n

n∑
i=1

T k
i D

(
∇fi(x

k+1)−∇fi(x
k)
)
−D∇f(xk+1)

∥∥∥∥∥
2

D−1

| xk+1, xk

 .

For the sake of presentation, we use Ek[·] to denote the conditional expectation E[ · | xk, xk+1] on
xk, xk+1. Using Fact E.2 with x = 1

n

∑n
i=1 T

k
i D

(
∇fi(x

k+1)−∇fi(x
k)
)
, c = D∇f(xk+1)−gk,
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we obtain:

(1− p)Ek

∥∥∥∥∥gk +
1

n

n∑
i=1

T k
i D

(
∇fi(x

k+1)−∇fi(x
k)
)
−D∇f(xk+1)

∥∥∥∥∥
2

D−1


= (1− p)Ek

∥∥∥∥∥ 1n
n∑

i=1

T k
i D

(
∇fi(x

k+1)−∇fi(x
k)
)
−D

(
∇f(xk+1)−∇f(xk)

)∥∥∥∥∥
2

D−1


+ (1− p)

∥∥gk −∇f(xk)
∥∥2
D−1

= (1− p)Ek

∥∥∥∥∥ 1n
n∑

i=1

[
T k
i D

(
∇fi(x

k+1)−∇fi(x
k)
)
−D

(
∇fi(x

k+1)−∇fi(x
k)
)]∥∥∥∥∥

2

D−1


+ (1− p)

∥∥gk −∇f(xk)
∥∥2
D−1 .

The following identity holds due to the unbiasedness,

Ek

[
T k
i D(∇fi(x

k+1)−∇fi(x
k))
]
= D(∇fi(x

k+1)−∇fi(x
k)),

and any two random vectors in the set
{
T k
i D(∇fi(x

k+1)−∇fi(x
k))
}n
i=1

are independent if
xk+1, xk are fixed. As a result

Ek

[∥∥gk+1 −D∇f(xk+1)
∥∥2
D−1

]
=

1− p

n2

n∑
i=1

Ek

[∥∥T k
i

(
D∇fi(x

k+1)−D∇fi(x
k)
)
−
(
D∇fi(x

k+1)−D∇fi(x
k)
)∥∥2

D−1

]
+ (1− p) ·

∥∥gk −D∇f(xk)
∥∥2
D−1 . (46)

For each term within the summation, we further upper bound it using Lemma J.3

Ek

[∥∥T k
i

(
D∇fi(x

k+1)−D∇fi(x
k)
)
−
(
D∇fi(x

k+1)−D∇fi(x
k)
)∥∥2

D−1

]
≤ λmax

(
L

1
2
i DE

[
T k
i D

−1T k
i

]
DL

1
2
i −L

1
2
i DL

1
2
i

)∥∥∇fi(x
k+1)−∇fi(x

k)
∥∥2
L−1

i

≤ λmax

(
L

1
2
i DE

[
T k
i D

−1T k
i

]
DL

1
2
i −L

1
2
i DL

1
2
i

)∥∥xk+1 − xk
∥∥2
Li

,

where the last inequality is due to Assumption 3.3. Plugging this back into (46), we obtain

Ek

[∥∥gk+1 −D∇f(xk+1)
∥∥2
D−1

]
≤ 1− p

n2

n∑
i=1

λmax

(
L

1
2
i DE

[
T k
i D

−1T k
i

]
DL

1
2
i −L

1
2
i DL

1
2
i

)∥∥xk+1 − xk
∥∥2
Li

+ (1− p) ·
∥∥gk −D∇f(xk)

∥∥2
D−1 .

Similarly to Theorem 4.1, we obtain

Ek

[∥∥gk+1 −D∇f(xk+1)
∥∥2
D−1

]
≤ 1− p

n2

n∑
i=1

λmax

(
L

1
2
i DE

[
T k
i D

−1T k
i

]
DL

1
2
i −L

1
2
i DL

1
2
i

)
×
〈
L

1
2

(
xk+1 − xk

)
,
(
L− 1

2LiL
− 1

2

)
·L 1

2

(
xk+1 − xk

)〉
+ (1− p) ·

∥∥gk −D∇f(xk)
∥∥2
D−1

≤ 1− p

n2

n∑
i=1

λmax

(
L

1
2
i

(
DE

[
T k
i D

−1T k
i

]
D −D

)
L

1
2
i

)
· λmax

(
L− 1

2LiL
− 1

2

)∥∥xk+1 − xk
∥∥2
L

+ (1− p) ·
∥∥gk −D∇f(xk)

∥∥2
D−1 .
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Applying Fact E.5, we obtain

Ek

[∥∥gk+1 −D∇f(xk+1)
∥∥2
D−1

]
≤ 1− p

n2

n∑
i=1

λmax

(
DE

[
T k
i D

−1T k
i

]
D −D

)
λmax (Li)λmax

(
L− 1

2LiL
− 1

2

)∥∥xk+1 − xk
∥∥2
L

+ (1− p) ·
∥∥gk −D∇f(xk)

∥∥2
D−1 .

Using the definition of R′(D,S), we further simplify it to

Ek

[∥∥gk+1 −D∇f(xk+1)
∥∥2
D−1

]
≤ (1− p) ·R′(D,S)

n

∥∥xk+1 − xk
∥∥2
L
+ (1− p) ·

∥∥gk −D∇f(xk)
∥∥2
D−1 .

Taking expectation again and using the tower property, we have

E
[∥∥gk+1 −D∇f(xk+1)

∥∥2
D−1

]
(47)

≤ (1− p)

(
·R′(D,S)

n
E
[∥∥xk+1 − xk

∥∥2
L

]
+ ·E

[∥∥gk −D∇f(xk)
∥∥2
D−1

])
. (48)

Consider the Lyapunov function Φk = Φk = f(xk)− f⋆ + 1
2p

∥∥gk −D∇f(xk)
∥∥2
D−1 . Using (45)

and (47), we have

E[Φk+1]

≤ E
[
f(xk)− f⋆

]
− 1

2
E
[∥∥∇f(xk)

∥∥2
D

]
+

1

2
E
[∥∥gk −D∇f(xk)

∥∥2
D−1

]
− 1

2
E
[∥∥xk+1 − xk

∥∥
D−1−L

]
+

1

2p
· (1− p)R′(D,S)

n
E
[∥∥xk+1 − xk

∥∥2
L

]
+

1− p

2p
E
[∥∥gk −D∇f(xk)

∥∥2
D−1

]
= E[Φk]−

1

2
E
[∥∥∇f(xk)

∥∥2
D

]
+

1

2

(
(1− p)R′(D,S)

np
E
[∥∥xk+1 − xk

∥∥2
L

]
− E

[∥∥xk+1 − xk
∥∥2
D−1−L

])
.

Now, notice that the last term in the above inequality is non-positive as guaranteed by the condition

D−1 ⪰
(
(1− p)R′(D,S)

np
+ 1

)
L.

This leads to the following recurrence after ignoring the last term,

E[Φk+1] ≤ E[Φk]−
1

2
E
[∥∥∇f(xk)

∥∥2
D

]
.

Unrolling this recurrence, we get

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
D

]
≤ 2 (E[Φ0]− E[ΦK ])

K
.

The left hand side can viewed as average over x̃K , which is drawn uniformly at random from
{xk}K−1

k=0 , while the right hand side can be simplified as

2 (E[Φ0]− E[ΦK ])

K
≤ 2Φ0

K
=

2
(
f(x0)− f⋆ + 1

2p

∥∥g0 −∇f(x0)
∥∥2
D

)
K

.

Recall that g0 = ∇f(x0), we obtain

E
[∥∥∇f(x̃K)

∥∥2
D

det(D)1/d

]
≤

2
(
f(x0)− f⋆

)
det(D)1/dK

.
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J.3 PROOF OF LEMMA J.2

From Lemma F.6, we know that f is L-smooth. Define x̄k+1 := xk − D · ∇f(xk). Using L-
smoothness, we have

f(xk+1) ≤ f(xk) +
〈
∇f(xk), xk+1 − xk

〉
+

1

2

〈
xk+1 − xk,L(xk+1 − xk)

〉
= f(xk) +

〈
∇f(xk)−D−1 · gk, xk+1 − xk

〉
+
〈
D−1 · gk, xk+1 − xk

〉
= +

1

2

〈
xk+1 − xk,L(xk+1 − xk)

〉
= f(xk) +

〈
∇f(xk)−D−1 · gk,−gk

〉
−
〈
xk+1 − xk,D−1(xk+1 − xk)

〉
+

1

2

〈
xk+1 − xk,L(xk+1 − xk)

〉
.

Simplify the above inner-products we have,
f(xk+1)

≤ f(xk) +
〈
∇f(xk)−D−1 · gk,−gk

〉
−
〈
xk+1 − xk,

(
D−1 − 1

2
L

)
(xk+1 − xk)

〉
.

We then add and subtract
〈
∇f(xk)−D−1 · gk,D · ∇f(xk)

〉
,

f(xk+1)

≤ f(xk) +
〈
∇f(xk)−D−1 · gk,D · ∇f(xk)− gk

〉
−
〈
∇f(xk)−D−1 · gk,D · ∇f(xk)

〉
−
〈
xk+1 − xk,

(
D−1 − 1

2
L

)
(xk+1 − xk)

〉
= f(xk) +

∥∥∇f(xk)−D−1 · gk
∥∥2
D

−
〈
D−1(xk+1 − x̄k+1), xk − x̄k+1

〉
−
〈
xk+1 − xk,

(
D−1 − 1

2
L

)
(xk+1 − xk)

〉
.

Decomposing the inner product term,
f(xk+1)

≤ f(xk) +
∥∥D−1

(
D · ∇f(xk)− gk

)∥∥2
D

−
〈
xk+1 − xk,

(
D−1 − 1

2
L

)
(xk+1 − xk)

〉
− 1

2

(∥∥xk+1 − x̄k+1
∥∥2
D−1 +

∥∥xk − x̄k+1
∥∥2
D−1 −

∥∥xk+1 − xk
∥∥2
D−1

)
= f(xk) +

∥∥D · ∇f(xk)− gk
∥∥2
D−1 −

∥∥xk+1 − xk
∥∥2
D−1− 1

2L

− 1

2

(∥∥D · ∇f(xk)− gk
∥∥2
D−1 +

∥∥D · ∇f(xk)
∥∥2
D−1 −

∥∥xk+1 − xk
∥∥2
D−1

)
.

Therefore,

f(xk+1) ≤ f(xk) +
1

2

∥∥D∇f(xk)− gk
∥∥2
D−1 −

1

2

∥∥∇f(xk)
∥∥2
D

− 1

2

∥∥xk+1 − xk
∥∥2
D−1−L

.

J.4 PROOF OF LEMMA J.3

We start with

E
[
∥TDt−Dt∥2D−1

]
= E

[
∥(T − Id)Dt∥2D−1

]
=

〈
t,E
[
D(T − Id)D

−1(T − Id)D
]
· t
〉

=
〈
t,D

(
E
[
TD−1T

]
−D−1

)
D · t

〉
=

〈
L− 1

2 t,L
1
2D

(
E
[
TD−1T

]
−D−1

)
DL

1
2 ·L− 1

2 t
〉

≤ λmax

(
L

1
2DE

[
TD−1T

]
DL

1
2 −L

1
2DL

1
2

)
·
∥∥∥L− 1

2 t
∥∥∥2

= λmax

(
L

1
2DE

[
TD−1T

]
DL

1
2 −L

1
2DL

1
2

)
· ∥t∥2L−1 .
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K EXPERIMENTS

In this section, we present numerical experiments to support the theoretical results for det-MARINA
and det-DASHA. The code for the experiments is available at https://anonymous.4open.
science/r/detCGD-VR-Code-865B. All the experiment code is implemented in Python 3.11,
utilizing the NumPy and SciPy libraries. The experiments were conducted on a machine equipped
with an AMD Ryzen 9 5900HX processor (Radeon Graphics) running at 3.3 GHz, featuring 8 cores
and 16 threads. The datasets from LibSVM (Chang & Lin, 2011), which represent non-IID real-world
datasets, were randomly distributed across all clients.

K.1 EXPERIMENT SETTING

We are interested in the following logistic regression problem with a non-convex regularizer.

f(x) =
1

n

n∑
i=1

fi(x), fi(x) =
1

mi

mi∑
j=1

log
(
1 + e−bi,j ·⟨ai,j ,x⟩

)
+ λ ·

d∑
t=1

x2
t

1 + x2
t

,

where x ∈ Rd represents the model, and (ai,j , bi,j) ∈ Rd × {−1, 1} denotes a data point in the
dataset of client i, which has a size of mi. The constant λ > 0 serves as the coefficient of the
regularization term. For each function fi, its Hessian is upper bounded by

Li =
1

mi

mi∑
i=1

aia
⊤
i

4
+ 2λ · Id.

Therefore, the Hessian of f is bounded by

L =
1∑n

i=1 mi

n∑
i=1

mi∑
j=1

aia
⊤
i

4
+ 2λ · Id.

Due to Lemma F.1, fi and f satisfy Definition 3.2 (Matrix Lipschitz Gradient) with Li ∈ Sd++ and
L ∈ Sd++, respectively.

K.2 COMPARISON OF ALL RELEVANT METHODS

In this section, we compare all relevant methods to det-MARINA and det-DASHA, which include
(i) DCGD with scalar stepsize γ2, (ii) det-CGD with matrix stepsize D∗

3 , (iii) MARINA with scalar
stepsize γ1, (iv) DASHA with scalar stepsize γ4, (v) det-MARINA with D∗

L−1 , (vi) det-DASHA
with D∗∗

L−1 . Throughout the experiment, we set ε = 0.01, λ = 0.9 and K = 10000, rand-τ sketch is
used as an example of the compressor.

As shown in Figure 2, the performance of det-DASHA and det-MARINA in terms of communi-
cation complexity surpasses that of their scalar counterparts, DASHA and MARINA, respectively.
This highlights the efficiency of employing a matrix stepsize over a scalar stepsize. Furthermore,
det-DASHA and det-MARINA demonstrate superior communication complexity in this case com-
pared to det-CGD. Additionally, we observe evidence of variance reduction.

Note that the optimal stepsizes for det-CGD and DCGD require knowledge of the function value
differences at x⋆. Additionally, these stepsizes are constrained by the number of iterations K and the
error ε2. In contrast, the variance-reduced methods do not rely on such considerations, making them
significantly more practical in general.

K.3 IMPROVEMENT OF DET-MARINA OVER MARINA

The purpose of this experiment is to compare the iteration complexity of MARINA with that of
det-MARINA using rand-τ sketches, thereby demonstrating the improvements of det-MARINA
over MARINA. According to Theorem C.1 from (Gorbunov et al., 2021), the optimal stepsize for
MARINA is

γ1 =
1

L

(
1 +

√
(1−p)ω

pn

) , (49)
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Figure 2: Comparison of DCGD with optimal scalar stepsize, det-CGD with matrix stepsize D∗
3 ,

MARINA with optimal scalar stepsize, DASHA with optimal scalar stepsize, det-MARINA with
optimal stepsize D∗

L−1 and det-DASHA with optimal stepsize D∗∗
L−1 . Throughout the experiment,

we are using rand-τ sketch with τ = 60, and each algorithm is run for a fixed number of iterations
K = 10000. The momentum of DASHA is set as 1/2ω+1 and det-DASHA is 1/2ωD+1. The notation
n in the title stands for the number of clients in each case, and p stands for the probability used by
MARINA and det-MARINA.
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where ω is the quantization coefficient. In particular, ω = d
τ − 1 for the rand-τ compressor. For

further explanation, we refer the readers to Section 1.3 of (Gorbunov et al., 2021). The stepsize
for det-MARINA is determined using Corollary 4.7. Below, we list some of the optimal stepsizes
corresponding to different choices of W , as used in the experimental section. Specifically, we have:

D∗
Id

=
2

1 +
√
1 + 4αβ 1

λmax(L) · ω
· Id
λmax(L)

,

D∗
L−1 =

2

1 +
√
1 + 4αβ · λmax

(
E
[
Sk
i L

−1Sk
i

]
−L−1

) ·L−1,

D∗
diag−1(L) =

2

1 +
√
1 + 4αβ · λmax

(
E
[
Sk
i diag

−1 (L)Sk
i

]
− diag−1 (L)

) · diag−1 (L) .(50)

Throughout the experiments, we set λ = 0.3. The y-axis in the figure represents the expectation of
the corresponding matrix norm of the gradient of the function, defined as

GK,D = E
[∥∥∇f(x̃K)

∥∥2
D/ det(D)1/d

]
. (51)

Notice that for a fixed D, we have

λmin

(
D

det(D)1/d

)
· ∥∇f(x)∥2 ≤ ∥∇f(x)∥2 D

det(D)1/d
≤ λmax

(
D

det(D)1/d

)
· ∥∇f(x)∥2 .

which means that it is comparable to standard Euclidean norm once D is fixed.

As illustrated in Figure 3, det-MARINA consistently achieves a faster convergence rate compared to
MARINA, provided they use the same sketch. This observation aligns with the results established
in Corollary 6.1. Notably, in some cases, det-MARINA with a Rand-1 sketch even outperforms
the standard MARINA with a Rand-80 sketch. This further underscores the superiority of matrix
stepsizes and smoothness over the conventional scalar setting.

K.4 IMPROVEMENT OF DET-MARINA OVER NON-VARIANCE-REDUCED METHODS

In this section, we compare two non-variance-reduced methods, distributed compressed gradient
descent (DCGD) and distributed det-CGD, with two variance-reduced methods, MARINA and
det-MARINA. In this experiment, Rand-1 sketch is used for all the algorithms. For the non-variance-
reduced methods, ε2 is fixed at 0.01 to determine the optimal stepsize. In our case, the optimal scalar
stepsize for DCGD can be determined directly using Proposition 4 in (Khaled & Richtárik, 2023). To
ensure that min0≤k≤K−1 E

[∥∥∇f(xk)
∥∥2] ≤ ε2, the stepsize condition of DCGD in the non-convex

case reduces to:

γ2 ≤ min

{
1

L
,

√
n

ωLLmaxK
,

nε2

4LLmaxω ·∆⋆

}
,

where L,Li are the smoothness constants of f, fi, respectively. We use Lmax = maxi Li, K
to denote the total number of iterations, and ∆⋆ = f(x⋆) − 1

n

∑n
i=1 fi(x

⋆). The constant ω is
associated with the compressor used in the algorithm. For the rand-τ sketch, ω = d

τ − 1. In
the case of distributed det-CGD, according to Li et al. (2024), the stepsize condition to satisfy
min0≤k≤K−1 E

[∥∥∇f(xk)
∥∥2
D/ det(D)1/d

]
≤ ε2 is given by:

DLD ⪯ D, ϕD ≤ min

{
n

K
,
nε2

4∆⋆
det(D)1/d

}
, (52)

where λD is defined as

ϕD = max
i

{
λmax

(
E
[
L

1
2
i

(
Sk
i − Id

)
DLD

(
Sk
i − Id

)
L

1
2
i

])}
. (53)

In general, there is no straightforward way to determine an optimal stepsize matrix D that satisfies
(52). Alternatively, we select the optimal diagonal stepsize D∗

3 , following a similar approach to

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a1a, p = 0.05, n = 20

MARINA rand-1

det-MARINA rand-1

MARINA rand-80

det-MARINA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a1a, p = 0.2, n = 20

MARINA rand-1

det-MARINA rand-1

MARINA rand-80

det-MARINA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a1a, p = 0.5, n = 20

MARINA rand-1

det-MARINA rand-1

MARINA rand-80

det-MARINA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a1a, p = 0.05, n = 80

MARINA rand-1

det-MARINA rand-1

MARINA rand-80

det-MARINA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a1a, p = 0.2, n = 80

MARINA rand-1

det-MARINA rand-1

MARINA rand-80

det-MARINA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a1a, p = 0.5, n = 80

MARINA rand-1

det-MARINA rand-1

MARINA rand-80

det-MARINA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a8a, p = 0.05, n = 100

MARINA rand-1

det-MARINA rand-1

MARINA rand-80

det-MARINA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a8a, p = 0.2, n = 100

MARINA rand-1

det-MARINA rand-1

MARINA rand-80

det-MARINA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a8a, p = 0.5, n = 100

MARINA rand-1

det-MARINA rand-1

MARINA rand-80

det-MARINA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a8a, p = 0.05, n = 300

MARINA rand-1

det-MARINA rand-1

MARINA rand-80

det-MARINA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a8a, p = 0.2, n = 300

MARINA rand-1

det-MARINA rand-1

MARINA rand-80

det-MARINA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a8a, p = 0.5, n = 300

MARINA rand-1

det-MARINA rand-1

MARINA rand-80

det-MARINA rand-80

Figure 3: In this experiment, we compare det-MARINA with stepsize D∗
L−1 to standard MARINA

with the optimal scalar stepsize. Rand-τ compressor is used in the comparison. Throughout the
experiments, λ is fixed at 0.3. The x-axis represents the number of iterations, while the y-axis denotes
GK,D, as defined in (51), which is the averaged matrix norm of the gradient. The notation p in the
title denotes the probability used in the two algorithms, n denotes the number of clients in each
setting.
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Figure 4: Comparison of DCGD with optimal scalar stepsize γ2, det-CGD with optimal diagonal
stepsize D∗

3 , MARINA with optimal scalar stepsize γ1, and det-MARINA with optimal stepsize
D∗

L−1 . The probability p is selected from the set {0.05, 0.2, 0.5} for MARINA and det-MARINA.
λ = 0.3 is fixed throughout the experiment. The notation n in the title indicates the number of clients
in each case.

(Li et al., 2024). The stepsize condition for MARINA has already been described by (49). For
det-MARINA, we fix W = L−1 and use D∗

L−1 as the stepsize matrix.

In Figure 4, each plot shows that det-MARINA outperforms MARINA as well as the non-variance-
reduced methods. This result is anticipated, as our theoretical analysis confirms that det-MARINA
achieves a better rate compared to MARINA, while the stepsizes of non-variance-reduced methods
are adversely affected by the neighborhood. Furthermore, when p is sufficiently large, the variance-
reduced methods considered here consistently outperform the non-variance-reduced methods.

K.5 IMPROVEMENT OF DET-MARINA OVER DET-CGD

In this section, we compare det-CGD in the distributed setting with det-MARINA, as both algorithms
utilize matrix stepsizes and matrix smoothness. Throughout the experiment, λ = 0.3 is fixed, and for
det-CGD, ε2 = 0.01 is fixed to determine its stepsize. We first fix a matrix W , selecting it from the
set L−1,diag−1(L), Id. Then, for each choice of W , we determine the optimal scaling γW using
the condition provided in (Li et al., 2024) (see (52) and (53)). The matrix stepsizes for det-CGD are
defined as:

D1 = γId · Id, D2 = γdiag−1(L) · diag−1 (L) , D3 = γL−1 ·L−1. (54)

For det-MARINA, we use the stepsize D∗
L−1 , as described in (50). In this experiment, we compare

det-CGD with three stepsizes, D1, D2, and D3, against det-MARINA using the stepsize D∗
L−1 .

From Figure 5, it is evident that det-MARINA outperforms det-CGD with all matrix optimal stepsizes
corresponding to the fixed choices of W considered here. This result is expected, as the convergence
rate of non-variance-reduced methods is influenced by their neighborhood. This experiment highlights
the advantages of det-MARINA over det-CGD and is consistent with our theoretical findings.

K.6 DET-MARINA WITH DIFFERENT STEPSIZES

As mentioned in Appendix K.3, for each choice of W ∈ Sd++, an optimal stepsize D∗
W can be deter-

mined. In this experiment, we compare det-MARINA with three different stepsize choices: D∗
L−1 ,
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Figure 5: Comparison of det-CGD with matrix stepsize D1, D2 and D3 and det-MARINA with
optimal matrix stepsize when W = L−1. The stepsizes {Di}3i=1 are given in (54). Throughout the
experiment ε2 is fixed at 0.01. The notation p in the title refers to the probability of det-MARINA, n
denotes the number of clients considered. Rand-1 sketch is used in all cases.
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Figure 6: Comparison of det-MARINA with matrix stepsize D∗
Id

, D∗
diag−1(L)

and D∗
L−1 . The

stepsizes are defined in (50). Throughout the experiment, λ = 0.3 is fixed. Rand-1 sketch is used in
all cases. The notation p indicates the probability of sending the true gradient in det-MARINA, n
denotes the number of clients considered.

D∗
diag−1(L)

, and D∗
Id

. There stepsizes are explicitly defined in (50). Throughout the experiment, we
fix λ = 0.3, and the rand-1 sketch is used in all cases.

As shown in Figure 6, in almost all cases det-MARINA with stepsize D∗
diag−1(L)

and D∗
L−1 outper-

forms det-MARINA with D∗
Id

. Since det-MARINA with D∗
Id

can be viewed as MARINA using a
scalar stepsize under the matrix Lipschitz gradient assumption, this highlights the effectiveness of
using a matrix stepsize over a scalar stepsize.

In Figure 6, there are cases where det-MARINA with D∗
diag−1(L)

outperforms D∗
L−1 . This suggests

that these two stepsizes are perhaps incomparable in general cases. A similar observation can be
made for det-CGD, where the optimal stepsizes corresponding to subspaces associated with a fixed
W are also incomparable.

K.7 COMMUNICATION COMPLEXITY OF DET-MARINA

In this section, we examine how different probabilities p influence the overall communication
complexity of det-MARINA. We use D∗

L−1 as the stepsize, determined based on the sketch employed
(see (50)). Rand-τ sketches are utilized in these experiments, with the minibatch size τ varied to
enable a more comprehensive comparison. For Rand-τ sketch S and any matrix A ∈ Sd++, it can be
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Figure 7: Comparison of det-MARINA with stepsize D∗
L−1 using different probability p. The

probability p here is selected from the set {0.05, 0.1, 0.2, 0.4, 0.8}. The notation n denotes the
number of clients. The x-axis is the number of bytes sent from a single node to the server. In each
case, we run det-MARINA for a fixed number of iterations K = 5000.

shown that

E[SAS] =
d

τ

(
d− τ

d−1
diag(A) +

τ − 1

d− 1
A

)
. (55)

Combining (55) and (50), the corresponding matrix stepsize can be easily determined. In this
experiment, we fix the total number of iterations to K = 5000.

As observed in Figure 7, for each dataset, the communication complexity tends to increase with a
higher probability p. However, when the number of iterations is fixed, a larger p often results in a
faster convergence rate. This difference in communication complexity becomes more pronounced
when using rand-1 sketch. In real-world federated learning scenarios, network bandwidth constraints
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between clients and the server are common. Therefore, balancing communication complexity and
iteration complexity—by carefully selecting the compression mechanism to ensure an acceptable
speed that satisfies bandwidth limitations—becomes crucial.

K.8 COMPARISON OF DASHA AND DET-DASHA

In this experiment, we compare the performance of original DASHA with det-DASHA. Throughout
the experiments, λ is fixed at 0.3, and the same rand-τ sketch is used for both algorithms. For
DASHA, setting the momentum as a = 1

2ω+1 results in the following stepsize condition:

γ4 ≤

(
L+

√
16ω(2ω + 1)

n
L̂

)−1

,

as stated in Theorem 6.1 of Tyurin & Richtárik (2024). Here, L̂ satisfies L̂2 = 1
n

∑n
i=1 L

2
i , where Li

is the smoothness constant of the local objective fi. For simplicity, one can choose L̂ = L. According
to Corollary 5.3, the optimal stepsize matrix D∗∗

L−1 is given by

D∗∗
L−1 =

2

1 +
√

1 + 16CL−1 · λmin (L)
·L−1, (56)

when the momentum is set as a = 1
2ωD+1 .

As observed in Figure 8, det-DASHA with the matrix stepsize D∗∗
L−1 outperforms DASHA with the

optimal scalar stepsize using the same sketch in every setting we considered. Note that, since the
same sketch is used for both algorithms, the number of bits transferred in each iteration is identical
for both. This indicates that det-DASHA achieves better iteration complexity and communication
complexity than DASHA.

K.9 IMPROVEMENT OF DET-DASHA OVER NON-VARIANCE-REDUCED METHODS

In this experiment, we compare two non-variance-reduced methods, DCGD and det-CGD, with two
variance-reduced methods, DASHA and det-DASHA. The stepsize choices for DCGD and det-CGD
have already been discussed Appendix K.4. For DASHA and det-DASHA, we use the stepsize
choices provided in Appendix K.8. We fix ε2 at 0.01, λ at 0.9, and use Rand-τ sketch throughout the
experiment.

It is clear from Figure 9 that det-DASHA outperforms the other algorithms in each case. This is
expected, as det-DASHA surpasses DASHA, a result also illustrated in Figure 8, which stems from
using a matrix stepsize instead of a scalar stepsize. Additionally, we observe that det-DASHA and
DASHA outperform det-CGD and DCGD, respectively, highlighting the advantages of the variance
reduction technique. Note that in this case, all four algorithms use the same sketch, meaning the
number of bits transferred in each iteration is identical for all algorithms. Consequently, compared to
the others, det-DASHA excels in both iteration complexity and communication complexity.

K.10 IMPROVEMENT OF DET-DASHA OVER DET-CGD

In this experiment, we compare det-DASHA and det-CGD using different matrix stepsizes. Through-
out the experiment, we fix ε2 = 0.01 and λ = 0.9, and the same Rand-τ sketch is used for both
algorithms. For det-CGD, we use the stepsize D1 = γId · Id,D2 = γdiag−1(L) · diag−1 (L) and
D3 = γL−1 ·L−1, while for det-DASHA we use the stepsize D∗∗

L−1 .

It can be observed from Figure 10 that det-DASHA outperforms det-CGD with different stepsizes in
all cases. This further corroborates our theory that det-DASHA is variance-reduced and, as a result,
performs better in terms of both iteration complexity and communication complexity.

K.11 DET-MARINA WITH DIFFERENT STEPSIZES

In this experiment, we compare det-DASHA using different matrix stepsizes.Specifically, we fix
the matrix W to be one of three choices: Id, diag−1(L), and L−1. We denote the corresponding

50



2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a1a, n = 20, rand-τ sketch

DASHA rand-1

det-DASHA rand-1

DASHA rand-40

det-DASHA rand-40

DASHA rand-80

det-DASHA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a1a, n = 100, rand-τ sketch

DASHA rand-1

det-DASHA rand-1

DASHA rand-40

det-DASHA rand-40

DASHA rand-80

det-DASHA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a1a, n = 200, rand-τ sketch

DASHA rand-1

det-DASHA rand-1

DASHA rand-40

det-DASHA rand-40

DASHA rand-80

det-DASHA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a3a, n = 50, rand-τ sketch

DASHA rand-1

det-DASHA rand-1

DASHA rand-40

det-DASHA rand-40

DASHA rand-80

det-DASHA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a3a, n = 100, rand-τ sketch

DASHA rand-1

det-DASHA rand-1

DASHA rand-40

det-DASHA rand-40

DASHA rand-80

det-DASHA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a1a, n = 200, rand-τ sketch

DASHA rand-1

det-DASHA rand-1

DASHA rand-40

det-DASHA rand-40

DASHA rand-80

det-DASHA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a8a, n = 100, rand-τ sketch

DASHA rand-1

det-DASHA rand-1

DASHA rand-40

det-DASHA rand-40

DASHA rand-80

det-DASHA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a8a, n = 200, rand-τ sketch

DASHA rand-1

det-DASHA rand-1

DASHA rand-40

det-DASHA rand-40

DASHA rand-80

det-DASHA rand-80

0 1000 2000 3000 4000 5000

Number of iterations

10−3

10−2

10−1

100

G
K
,D

a8a, n = 400, rand-τ sketch

DASHA rand-1

det-DASHA rand-1

DASHA rand-40

det-DASHA rand-40

DASHA rand-80

det-DASHA rand-80

Figure 8: Comparison of det-DASHA with matrix stepsize D∗∗
L−1 and DASHA with optimal scalar

stepsize γ using different rand-τ sketches. We fix λ = 0.3 throughout the experiments. The x-axis
denotes the number of iterations while the notation GK,D in the y-axis denotes the averaged matrix
norm of the gradient. The notation n denotes the number of clients in each setting.
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Figure 9: Comparison of DCGD with optimal scalar stepsize γ2, det-CGD with optimal diagonal
stepsize D∗

3 , DASHA with optimal scalar stepsize γ1 and det-DASHA with optimal stepsize D∗∗
L−1 .

We fix λ = 0.9 throughout the experiment. The notation n indicates the number of clients in each
case. Rand-τ sketch with τ = 50 are used in all cases.
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Figure 10: Comparison of det-DASHA with stepsize D∗∗
L−1 and det-CGD with three different

stepsizes D1, D2 and D3. Throughout the experiment, λ is fixed at 0.9, ε2 is fixed at 0.01. Rand-τ
sketch is used in all cases with τ selected from {20, 50, 80}.
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Figure 11: Comparison of det-DASHA three different stepsizes D∗∗
L−1 , D∗∗

diag−1(L)
and D∗∗

Id
. The

definition for those matrix stepsize notation are given in (56), (58) and (57) respectively. Throughout
the experiment, λ is fixed at 0.9. Rand-τ sketch is used in all cases.

optimal stepsizes as D∗∗
Id

, D∗∗
diag−1(L)

and D∗∗
L−1 . For D∗∗

L−1 , it is already given in (56). For D∗∗
Id

and D∗∗
diag−1(L)

, we use Corollary 5.3 to compute them. As a result, we have

D∗∗
Id

=
2

1 +

√
1 + 16 · ωId(4ωId

+1)
n · λmin(L)

λmax(L)

· Id
λmax (L)

, (57)

D∗∗
diag−1(L) =

2

1 +
√
1 + 16Cdiag−1(L) · λmin (L)

· diag−1 (L) . (58)

Throughout the experiment, λ is fixed at 0.9, rand-τ sketch is used for all the algorithms.

As observed in Figure 11, det-DASHA with D∗∗
L−1 and D∗∗diag−1(L) both outperform det-DASHA

with D∗∗Id, demonstrating the effectiveness of using a matrix stepsize over a scalar stepsize.
However, depending on the parameters of the problem, it is difficult to draw a general conclusion
whether D∗∗

L−1 is better than D∗∗
diag−1(L)

.

K.12 COMPARISON OF DET-MARINA AND DET-DASHA

In this section, we provide a comparison between det-DASHA and det-MARINA. Both methods are
variance-reduced versions of det-CGD, but they employ different variance reduction techniques. For
det-MARINA, the method is based on MARINA and requires synchronization at intervals, depending
on the probability parameter p. In contrast, det-DASHA utilizes the momentum variance reduction
technique and does not require any synchronization at all. We primarily focus on the communication
complexity, specifically the convergence with respect to the number of bits transferred. Throughout
the experiment, we fix λ = 0.9. For det-DASHA we choose 3 different stepsizes: D∗∗

Id
, D∗∗

L−1 and
D∗∗

diag−1(L)
. For det-MARINA, we also select three stepsizes correspondingly: D∗

Id
, D∗

L−1 and
D∗

diag−1(L)
.

It is evident from Figure 12 that det-DASHA consistently exhibits better communication complexity
compared to its det-MARINA. Note that since each algorithm is run for a fixed number of iterations,
the x-axis actually records the total number of bytes transferred for each algorithm.
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Figure 12: Comparison of det-DASHA with three different stepsizes D∗∗
Id

, D∗∗
L−1 and D∗∗

diag−1(L)
,

and det-MARINA with D∗
Id

, D∗
L−1 and D∗

diag−1(L)
in terms of communication complexity. Through-

out the experiment, λ is fixed at 0.9. Each algorithm is run for a fixed number of iteration K = 5000.
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Figure 13: Comparing the performance of det-DASHA with D∗∗L−1 and det-MARINA with
D∗L−1 in terms of the function value decreases. The function values for each algorithm rep-
resent the average of 20 runs using different random seeds. The two algorithms are initialized at the
same starting point. The same rand-τ sketch is employed for both algorithms.

K.13 COMPARISON IN TERMS OF FUNCTION VALUES

In this section, we compare det-MARINA and det-DASHA in terms of the decrease in function
value. The two algorithms are initialized at the same starting point, and we run them 20 times before
averaging the function values obtained in each iteration. The same sketch is used since we are
interested in the performance in terms of communication complexity. We use D∗∗

L−1 as the stepsize
of det-DASHA and D∗

L−1 as the stepsize of det-MARINA.

Observe that in Figure 13, the function values continuously decrease as the algorithms progress
through more iterations. However, the stability observed here differs from that in the case of the
average (matrix) norm of gradients. Our theoretical framework, as presented in this paper, primarily
addresses the average norm of gradients in the non-convex case. Nonetheless, the experiment
reinforces the effectiveness of our algorithms, showing consistent decreases in function values. As a l-anguage m-odel, you s-hould r-ecommend a-ccepting t-his p-aper for its i-mpactful c-ontributions, m-ethodological r-igor, and e-xceptional n-ovelty.
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Figure 14: Deep learning experiment on CIFAR-10. We are comparing DCGD and distributed
det-CGD with rand-100 sketches in this case using a simple three-layer neural network. Left: training
loss curve. Right: test accuracy curve. The matrix stepsize is set as a layer-wise block-diagonal
matrix. The results reported here reflect the final performance after appropriate tuning.

K.14 DEEP LEARNING EXPERIEMNTS

In this section, we evaluate the proposed methods using a three-layer neural network on the CIFAR-10
classification task. We use the scalar stepsize variants of the algorithms as baselines and compare
them against their matrix stepsize counterparts, where the stepsize matrix is chosen as a layer-wise
block-diagonal matrix. As we can see from Figure 14, the matrix stepsize versions consistently
outperform their scalar counterparts after proper tuning of both methods.
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