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ABSTRACT

The estimation of causal effects in observational research fundamentally relies
on proper adjustment for confounding variables. As such, identifying relevant
confounders from the data is an important preliminary task. Although numerous
data-driven techniques have been suggested for confounder selection in conven-
tional exposure-outcome analyses, such methodologies are absent in causal medi-
ation analysis, which entails identifying the effects within the exposure-mediator-
outcome framework. This paper presents a Bayesian framework for confounder
selection in mediation analysis via Bayesian additive regression trees (BART). We
specify separate models for the exposure, mediator, and outcome, and introduce
a common sparsity-inducing prior on their selection probability vectors. This en-
ables identification of covariates that are jointly important across all models (that
is, potential confounders). Furthermore, we introduce a novel criterion for con-
founder selection in the context of mediation analysis and establish that satisfac-
tion of this criterion ensures the validity of the sequential ignorability assumption
under certain conditions. The proposed method demonstrates consistently strong
performance across a range of simulation scenarios, offering a practical approach
for confounder selection in high-dimensional mediation analysis.

1 INTRODUCTION

Causal inference is a critical framework for identifying and understanding the underlying causes of
observable events or outcomes, and it is widely applied in fields such as social science and health re-
search. In observational studies, accurate estimation of causal effects requires careful adjustment for
confounding variables that simultaneously influence both the exposure and the outcome. To address
this challenge, various methods and assumptions have been proposed, including matching methods
(Rosenbaum, 1989; Stuart, 2010; Rosenbaum, 2020), structural models (Sobel, 1996; Robins et al.,
2000; Pearl, 2012), nonparametric approaches (Benkeser et al., 2017; Kennedy, 2019), and Bayesian
inference frameworks (Hill, 2011; Li et al., 2023), among others.

The number of potential confounding variables to consider increases with the size of the data. In
such cases, identifying an appropriate subset of confounders is an important first step before apply-
ing causal inference methods. A great deal of research has been conducted on confounder selection
methodologies. Loh & Vansteelandt (2021) proposed a method to identify an optimal set of con-
founders based on covariates included in propensity score models, with the aim of achieving stable
causal effect estimates. Hagstrom (2018) proposed using Markov and Bayesian networks to select
confounders. Shortreed & Ertefaie (2017) introduced the outcome-adaptive LASSO technique to
select appropriate confounders for inclusion in propensity score models. Shi et al. (2019) used neu-
ral networks to identify confounders relevant to both propensity score and outcome models. Wang
et al. (2012), Lefebvre et al. (2014), and Wang et al. (2015) developed Bayesian inference methods
for selecting variables for propensity score and outcome models.

When a mediator lies on the causal pathway between an exposure and an outcome, mediation anal-
ysis decomposes the total effect into direct and indirect effects, offering insight into causal mecha-
nisms. Unlike standard causal analyses that adjust for confounders between treatment and outcome,
mediation analysis must address three sets of confounders: those affecting the treatment-mediator
(A − M ), treatment-outcome (A − Y ), and mediator-outcome (M − Y ) relationships, as shown
in Figure 1. To address these challenges, several assumptions and methodological frameworks have
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been proposed; detailed discussions can be found in Robins & Greenland (1992); Imai et al. (2010b);
Pearl (2022).

Figure 1: Directed acyclic graph (DAG) for mediation
analysis. The red solid path (through the mediator M )
denotes the indirect effect and the blue solid path de-
notes the direct effect. Dashed lines explain confound-
ing relationships among A,M and Y .

In mediation analysis, selecting an appropri-
ate set of confounders from a high-dimensional
pool of candidate covariates is an crucial pre-
liminary step. This task is particularly impor-
tant and must be conducted with great care,
as confounding bias can arise simultaneously
across three distinct relationships. In gen-
eral, confounders are selected based on do-
main knowledge or prior studies. However, to
our knowledge, data-driven confounder selec-
tion methods specifically tailored for mediation
analysis have not yet been thoroughly explored.

In this research, we developed new criteria for
confounder selection specifically designed for
mediation analysis. These criteria guide the
identification of confounder sets that align with
standard identification assumptions, such as se-
quential ignorability, especially in the presence
of high-dimensional covariates. Building on
these criteria, we propose a data-driven con-
founder selection method based on a Bayesian
decision tree framework. Specifically, we use separate Bayesian additive regression trees (BART)
priors on the treatment, mediator, and outcome models. We also impose a common prior on the
variable selection probabilities across these models. This structure helps identify variables that are
consistently important across all three models, which are the confounders.

1. We develop explicit confounder selection criteria grounded in the mediation analysis frame-
work and aligned with key identification assumptions, especially when high-dimensional
covariates are present.

2. We present a novel Bayesian methodology for data-driven confounder selection and show
that it enhances the precision of causal effect estimation.

Related work. Vander Weele & Shpitser (2011) and VanderWeele (2019) proposed criteria for
confounder selection in standard causal analyses focused on treatment–outcome relationships. How-
ever, in mediation analysis-where confounding must be addressed across three distinct causal path-
ways (as illustrated in Figure 1)-clear and explicit criteria for confounder selection have yet to be
established. We seek to address this gap. Our work also extends the approach introduced by Kim
et al. (2023), who applied Bayesian additive regression trees (BART; Chipman et al. (2010)) with a
common prior on selection probabilities to identify confounders in treatment-outcome analyses. In
contrast, we develop a method based on Bayesian causal mediation forests, a variant of Bayesian
causal forests (Hahn et al., 2020), to jointly model the treatment, mediator, and outcome. By impos-
ing a common prior across these three models, our method promotes confounder identification and
helps more accurate estimation of causal effects.

2 NOTATION AND ESTIMANDS

Beyond estimating causal effect sizes, causal mediation analysis provides insight into the underly-
ing mechanisms by decomposing the total effect of an exposure (A) on an outcome (Y ) into distinct
components (Imai et al., 2010a; VanderWeele, 2015). As shown in Figure 1, the total effect is parti-
tioned into an indirect effect (red), which operates through a mediator (M ), and a direct effect (blue),
which captures the influence of A on Y not mediated by M . This decomposition enables attribution
of the outcome variation to specific causal pathways, offering a more granular understanding of the
relationship between A and Y . Let Ai, Mi, and Yi denote the observed exposure, mediator, and out-
come, respectively, for individual i, and let Xi be P -dimensional vector of pre-treatment covariates.
In the potential outcomes framework (Rubin, 1974), Mi(a) denote the potential mediator value that
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would be observed for subset i under exposure level a, and Yi(a,m) denotes the potential outcome
under exposure a and mediator value m. Under the extended Stable Unit Treatment Value Assump-
tion (SUTVA) for mediation (Forastiere et al., 2016) which assumes (1) no interference between
units and (2) no multiple versions of treatment, the observed variables can be expressed in terms of
potential outcomes as: Mi = Mi(Ai), Yi = Yi(Ai,Mi(Ai)).

A key challenge in mediation analysis is identifying unobserved potential outcomes such as Mi(1−
Ai), Yi(1 − Ai,Mi(1 − Ai)), and the cross-world quantity Yi(a,Mi(a

′)) for a ̸= a′. Imai et al.
(2010b) address this using the sequential ignorability assumption:

{Yi(a
′,m),Mi(a)} ⊥ Ai | Xi = x, (1)

Yi(a
′,m) ⊥ Mi(a) | Ai = a,Xi = x, (2)

for all a, a′ ∈ {0, 1}, along with positivity 0 < Pr(Ai = a | Xi = x), 0 < p(Mi(a) = m | Ai =
a,Xi = x) for all m ∈ M and x ∈ X .

In the DAG (Fig. 1), Assumption Eq. (1) requires adjustment for exposure-mediator and exposure-
outcome confounders (e.g., X1, X2), while Assumption Eq. (2) pertains to mediator-outcome con-
founders unaffected by exposure (e.g., X3). A unified criterion for selecting covariates satisfying
both remains underexplored; we address this in the next section.

Under these assumptions, Yi(a,Mi(a
′)) is identifiable. For units with covariates Xi = x, we define:

ζ(x) = E[Yi(1,Mi(1)) | Xi = x]− E[Yi(1,Mi(0)) | Xi = x],

δ(x) = E[Yi(1,Mi(0)) | Xi = x]− E[Yi(0,Mi(0)) | Xi = x].

Here, ζ(x) denotes the indirect effect, representing the effect mediated through Mi, while δ(x)
denotes the direct effect, not operating through the mediator. Their sum yields the total effect, and
averaging over Xi gives the marginal direct and indirect effects.

3 MEDIATION SPECIFIC CONFOUNDER SELECTION CRITERION

Confounder selection is fundamental to causal inference. While domain-driven selection is com-
mon, it becomes impractical in high-dimensional settings, prompting the development of formal
criteria for exposure-outcome analyses. Notable examples include: (a) the pretreatment criterion,
which adjusts for all covariates measured prior to treatment; (b) the common cause criterion, which
adjusts only for variables affecting both exposure and outcome; (c) the disjunctive cause criterion,
which includes any variable that is a cause of the exposure, the outcome, or both; (d) in addition,
the recommendation to exclude instrumental variables to avoid Z-bias amplificationVanderWeele
(2019).

However, these criteria are not designed for causal structures involving a mediator. To our knowl-
edge, no formal criterion has been proposed for selecting confounders in mediation analysis. We
address this gap by introducing a novel criterion that explicitly incorporates the mediator and sup-
ports identification under the sequential ignorability assumption.
Definition 1 (Mediation Disjunctive Cause Criterion). A covariate set C satisfies the mediation
disjunctive cause criterion if it includes all variables that are direct causes of at least one of the
following: the exposure A, the mediator M , or the outcome Y , excluding any variable that functions
solely as an instrument-i.e., causes A but not M or Y given A, or causes M but not Y given M .

This criterion generalizes the traditional disjunctive cause criterion by accounting for the mediator
M . Based on this definition, we establish the following result:
Theorem 1. Suppose the set of observed pre-treatment covariates includes at least one direct cause
for each backdoor path among A, M , and Y . Then, there exists some subsets C that satisfy the
mediation disjunctive cause criterion and are sufficient for the sequential ignorability assumptions
in Eqs. (1) and (2).

The proof is provided in the Appendix. In essence, if the high-dimensional data include sufficient
covariates to d-separate all backdoor paths among exposure, mediator, and outcome (Pearl, 2009),
then some valid adjustment sets C can be constructed to satisfy sequential ignorability. In the next
section, we propose a data-driven method to identify one of the possible sets C that satisfy the
mediation disjunctive cause criterion by favoring a sparse set of covariates.
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4 BART FOR CAUSAL MEDIATION ANALYSIS

To identify confounders in high-dimensional mediation settings, we adopt a Bayesian nonparametric
approach based on Bayesian Additive Regression Trees (BART) (Chipman et al., 2010). BART
models the outcome as a sum over T regression trees:

Yi = f(Xi) + ϵi, ϵi ∼ N (0, σ2), f(Xi) =

T∑
t=1

g(Xi; Tt,Mt),

where each g(·) is a regression tree with structure Tt and terminal node parameters Mt. Each tree
comprises internal nodes consisting of splitting rules of the form Xj < c, where Xj is a selected
splitting variable from the pool. Trees are typically shallow and act as weak learners. BART updates
tree structures via Bayesian backfitting (Hastie & Tibshirani, 2000), iteratively modifying each tree
based on residuals from the others. Tree updates randomly apply one of four alterations: grow,
prune, change, or swap. In grow and change steps, splitting variables are drawn according to a
probability vector s = (s1, . . . , sP ) over the P covariates. While a uniform prior is common for s,
sparsity-inducing priors improve variable selection (Linero, 2018). We adopt a symmetric Dirichlet
prior: s ∼ Dir

(
α
P , . . . , α

P

)
, which yields a simple conjugate update and encourages concentrated

variable selection, promoting the identification of key confounders.

4.1 OBSERVED DATA MODEL FOR MEDIATION

Extending the BART framework, we model the exposure, mediator, and outcome as follows:

Pr(Ai = 1) = Φ {µ(Xi)} , (3)

Mi = µM (Xi) + τM (Xi)Ai + ϵi, ϵi ∼ N (0, σ2
M ), (4)

Yi = µY (Xi) + τY (Xi)Ai + τ ′Y (Xi)Mi + ηi, ηi ∼ N (0, σ2
Y ), (5)

where Φ(·) denotes the standard normal CDF. Independent BART priors are placed on all functions:
µ, µM , τM , µY , τY , τ

′
Y .

The mediator model Eq. (4) follows the Bayesian Causal Forest (BCF) of Hahn et al. (2020), where
τM (x) captures the conditional effect of exposure on the mediator, and µM (x) adjusts for con-
founding. The outcome model Eq. (5) builds on the Bayesian Causal Mediation Forest (BCMF)
of Ting & Linero (2025), with τY (x) representing the conditional direct effect ζ(x), and the prod-
uct τ ′Y (x) · τM (x) corresponding to the conditional indirect effect δ(x). The functions µY (x) and
µM (x) serve as prognostic terms to reduce confounding in the outcome model. For prognostic func-
tions, we use a relatively large number of trees (e.g., 200) to capture complex covariate relationships
and mitigate bias. For modifier functions (τM , τY , τ

′
Y ), we use fewer trees (e.g., 20) with priors that

shrink toward homogeneity, discouraging unnecessary variable inclusion.

Regularization Induced Confounding Hahn et al. (2020) proposed augmenting the BART prior
for the prognostic function in BCF with estimated propensity scores to mitigate regularization-
induced confounding, i.e., bias introduced by regularization in predictive models. In the context of
mediation, Ting & Linero (2025) similarly addressed this issue, also referred to as prior dogmatism
(Linero, 2024), by introducing clever covariates m̂ai for a ∈ {0, 1} into the outcome model. The
modified mediator and outcome models incorporating these bias-reducing covariates are:

Mi = µM (Xi, π̂i) + τM (Xi)Ai + ϵi, (6)

Yi = µY (Xi, π̂i, m̂0i, m̂1i) + τY (Xi)Ai + τ ′Y (Xi)Mi + ηi, (7)

where π̂i = Ê(Ai | Xi) is the estimated propensity score, and m̂ai = Ê(Mi | Ai = a,Xi) are the
estimated conditional expectations of the mediator under each treatment level.

4.2 JOINT CONFOUNDER SELECTION VIA REPARAMETERIZED BART PRIORS

To perform confounder selection across the exposure, mediator, and outcome models in Eqs.(3),
(6), and (7), we propose a unified approach linking the prognostic functions µ, µM , and µY . Each
function is modeled with a BART prior, where internal nodes split on covariates drawn according
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to a selection probability vector s. By assigning a common sparsity-inducing Dirichlet prior to the
selection probabilities, we jointly identify covariates that are consistently important for confounding
adjustment-i.e., true confounders.

In models Eqs. (6) and (7), additional variables (π̂i, m̂0i, m̂1i) are included as inputs, each with
associated selection probabilities: sπ for the mediator model, and sπ, sm0, sm1 for the outcome
model. As such, the three models involve distinct but overlapping selection vectors: sA, sM , sY ,
making a naı̈ve prior specification nontrivial.

We resolve this by reparameterizing all three vectors in terms of a common selection vector sY =
s = (s1, . . . , sP , sπ, sm0, sm1), and defining:

sA =

(
s1

1− (sπ + sm0 + sm1)
, . . . ,

sP
1− (sπ + sm0 + sm1)

)
,

sM =

(
s1

1− (sm0 + sm1)
, . . . ,

sP
1− (sm0 + sm1)

,
sπ

1− (sm0 + sm1)

)
,

sY = (s1, . . . , sP , sπ, sm0, sm1).

This reparameterization leverages the neutrality property of the Dirichlet distribution. We impose
the prior s ∼ Dir(α/(P +3), . . . , α/(P +3)), which induces consistent sparsity across all models.

Given this formulation, the posterior update of s is proportional to:

Q =

T∏
t=1

 ∏
b∈T µ

t

sjb
1− (sπ + sm0 + sm1)

·
∏

c∈T µM
t

sjc
1− (sm0 + sm1)

·
∏

e∈T µY
t

sje


×

(sπsm0sm1)
α/(P+3)−1 ·

P∏
j=1

s
α/(P+3)−1
j

 , (8)

where T µ
t , T µM

t , and T µY

t denote the sets of internal nodes used in trees associated with µ, µM ,
and µY , respectively. In the Appendix, Algorithm 1 outlines the posterior sampling procedure. This
sparsity-inducing prior encourages the selection of a minimal subset among the multiple possible
covariate sets C that satisfy the mediation disjunctive cause criterion. Specifically, it tends to identify
the variables with the strongest signals along backdoor paths, and as a result, selects direct causes
rather than upstream ancestors. We present an empirical experiment demonstrating this behavior in
Appendix F (Table A2 and Figure A4).

5 THEORETICAL PROPERTIES

Let D = {(Ai,Mi, Yi,Xi)}Ni=1 denote the observed dataset, where Ai is the exposure, Mi the
mediator, Yi the outcome, and Xi = (Xi1, . . . , XiP ) is a P -dimensional vector of covariates.
Theorem 2 (Consistency of Confounder Selection). Assume models for exposure A, mediator M ,
and outcome Y are correctly specified, and let C be one of the covariate sets satisfying the mediation
disjunctive cause criterion. Suppose P is fixed and the Dirichlet concentration parameter satisfies
α = O(N−γ) for some γ > 0, with α/P ≪ 1. Then, as N → ∞, for any ϵ ↓ 0,

P (sj > ϵ | D) →
{
1, Xj ∈ C,
0, Xj /∈ C,

where sj denotes the posterior selection probability for Xj , and D denotes the observed data.

The consistency is also guaranteed under the asymptotic growth condition P = O(Nγ) with a
properly controlled Dirichlet concentration parameter α. The proof is provided in Appendix B.
Corollary 1 (Consistency of Confounder Selection in High-Dimensional Settings (P > N )). As-
sume models for exposure A, mediator M , and outcome Y are correctly specified, and let C be one
of the covariate sets satisfying the mediation disjunctive cause criterion. Further, suppose the num-
ber of covariates grows at the rate P = O(Nγ) for some γ > 1 while the Dirichlet concentration
parameter either grows more slowly than P or decreases. Then, for any ϵ ↓ 0, as N → ∞

P (sj > ϵ | D) →
{
1, Xj ∈ C,
0, Xj /∈ C,
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Proof. This proof requires only one modification from the proof of Theorem 2. Specifically, when
α grows at most at the rate of O(Nβ), it can be shown that P (sj > ϵ|D) shrinks polynomially with
α/(P + 3) = O(Nβ/Nγ) where β < γ. The cases where α is fixed or decays are straightforward.

Definition 2. Let δ(x) and ζ(x) denote the true conditional indirect and direct effects given X = x,
respectively. Let δ̂(x) and ζ̂(x) represent their corresponding posterior expectations under the
observed data model. The total error is defined as

∆total = sup
x∈X

|δ̂(x)− δ(x)|+ sup
x∈X

|ζ̂(x)− ζ(x)|.

Definition 3. Let S represent any subset of {X1, X2, . . . , XP }. Define a neighborhood of a certain
set C as

Nϵ(C) = {S : d(S, C) < ϵ},
where d(S, C) is a distance metric, measuring the number of incorrect inclusions or exclusions in
S relative to C such as d(S, C) = |S \ C| + |C \ S|, and ϵ ≥ 0 controls the allowable “error” in
selecting confounders.

Theorem 3 (Posterior Consistency of Mediation Effects). Suppose the following conditions hold:

1. The models for the mediator and outcome are correctly specified.

2. The posterior distribution over the selected adjustment set S concentrates around a set C
that satisfies the mediation disjunctive cause criterion, i.e., for any fixed ϵ > 0,

P (S ∈ Nϵ(C) | D) → 1 as N → ∞.

3. The mappings from the regression functions (fM , fY ) to (δ(x), ζ(x)) are Lipschitz contin-
uous with respect to the sup-norm. That is, there exists a constant L > 0 such that:

|δ1(x)− δ2(x)|+ |ζ1(x)− ζ2(x)| ≤ L · (∥fM,1 − fM,2∥∞ + ∥fY,1 − fY,2∥∞) ,

for all x ∈ X , and any pair (fM,1, fY,1), (fM,2, fY,2) obtained from BART posteriors for
the mediator and outcome models, respectively, under confounder adjustment sets S1, S2.

Then, for any ϵ > 0,
P (∆total > ϵ | D) → 0 as N → ∞.

The proof is provided in the appendix.

Remark: Theorem 2 and Corollary 1 show that the posterior distribution of the selection proba-
bilities, which drive confounder inclusion during the model updates for the exposure, mediator,
and outcome, concentrates around sets that satisfy the mediation disjunctive cause criterion. This
ensures that, asymptotically, the selected variables capture all necessary pathways for causal adjust-
ment. Building on this, Theorem 3 demonstrates that, under mild regularity conditions, the posterior
estimates of the indirect and direct effects converge to the corresponding true effects. These re-
sults collectively establish a principled link between posterior confounder selection and valid causal
inference in mediation analysis.

6 EXPERIMENTS

We evaluated the performance of the proposed model across a range of simulation scenarios with
P = 100 covariates X and a sample size of N = 250. Among these, the first five covariates X1–X5

were designated as true confounders. The simulation settings were designed to assess performance
under diverse conditions, including heterogeneous treatment effects, non-linear mediator and out-
come relationships, the presence of instrumental variables, and the inclusion of non-confounding
predictors. The scenarios are summarized as follows: Scenario 1: Heterogeneous effects; non-
linear mediator and outcome models, Scenario 2: Heterogeneous effects; non-linear models with
two additional predictors in the outcome model, Scenario 3: Heterogeneous effects; non-linear
models with two instrumental variables in the exposure model, Scenario 4: Heterogeneous effects;
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non-linear models with two instrumental variables in the mediator model, Scenarios 5 & 6: High-
dimensional settings (P = 500 > N ) and (P = 2000 > N ); otherwise identical to Scenario
2, Scenario 7: Low-dimensional setting (P = 20); otherwise identical to Scenario 2. Detailed
specifications of the data-generating mechanisms for each scenario are provided in the Appendix.

To evaluate the performance of our proposed model (Bayesian causal mediation forest with con-
founder selection; BCMF-CS), we compare it against three baselines: (1) BCMF: A variant of
our model based on Eqs. (6) and (7), using uniform (non-sparse) priors for each BART selection
probability vector. (2) DCMF: A variant that assigns independent sparsity-inducing Dirichlet priors
to each model component but does not enforce joint confounder selection. (3) LSEM: A classical
linear structural equation model (Baron & Kenny, 1986; MacKinnon & Dwyer, 1993) fit with 5
true confounders and 5 additional covariates, to provide a slight advantage to LSEM, which lacks
variable selection capability. BCMF follows the framework of Ting & Linero (2025) for heteroge-
neous mediation but assumes the confounder set is known a priori. DCMF extends this by allowing
independent variable selection across models, while BCMF-CS introduces joint selection via a com-
mon prior. LSEM provides a parametric baseline for comparison. All methods are evaluated over
S = 200 simulation replicates. Full specifications are provided in the Appendix.

We evaluate performance along two dimensions: effect estimation and confounder selection. For
effect estimation, we report bias, absolute bias, mean squared error (MSE), and coverage, com-
puted under heterogeneous effect settings. Each metric is computed per unit within a replicate and
then averaged over S = 200 replicates. For example, the bias for the indirect effect is given by
Bias = 1

S

∑S
s=1

{
1
n

∑n
i=1

(
ζ(Xi)− ζ̂(Xi)

)}
. Confounder selection is evaluated using true posi-

tive rate (TPR), false positive rate (FPR), positive predictive value (PPV), and F1 score. A variable
is considered selected if its posterior inclusion probability (PIP) exceeds 0.5(Barbieri & Berger,
2004), and comparisons are made against the ground truth separately for the exposure, mediator,
and outcome models.

Table 1 reports the results for effect estimation. Across all scenarios, BCMF-CS consistently
achieves superior performance in estimating causal effects. While DCMF shows similar per-
formance in some scenarios, its accuracy notably deteriorates in Scenarios 2 and 3 when non-
confounding predictors or instruments are introduced. In these settings, BCMF-CS outperforms
DCMF in terms of absolute bias, MSE, and coverage. These improvements stem from BCMF-CS’s
ability to accurately identify true confounders.

Table A4 (Appendix H) summarizes confounder selection performance. Competing models such
as BCMF and DCMF do not effectively select variables for the exposure model (A), resulting in
lower performance in this component. Even in the mediator (M ) and outcome (Y ) models (more
directly tied to effect estimation) BCMF-CS consistently outperforms all baselines across evaluation
metrics.

Figures A2 and A3 (Appendix H) display posterior inclusion probabilities under Scenarios 2 and
4, which involve additional outcome predictors and mediator instruments, respectively. BCMF-
CS reliably selects true confounders with high probability while suppressing irrelevant variables.
Notably, in Figure A3, the exclusion of instrumental variables X8 and X9 from the outcome model
illustrates BCMF-CS’s ability to respect the mediation disjunctive cause criterion.

Sensitivity Analysis and Additional Experiments To assess robustness to prior settings (particu-
larly the number of trees) we conducted a sensitivity analysis based on Scenario 1. The main exper-
iments (Table 1) used 200 trees for prognostic functions (µ, µM , µY ) and 20 for modifier functions
(τY , τ ′Y ); for comparison, we also tested 100 and 50 trees. Results in Table A1 show stable perfor-
mance once a sufficient number of trees is used, consistent with Chipman et al. (2010). We further
conducted additional analyses (Table A2 and Figure A4): (1) sensitivity to the Dirichlet concentra-
tion parameter, (2) the impact of unmeasured confounding, (3) the effect of model misspecification,
and (4) identification of direct causes under multiple ancestors in the backdoor path.

Computational Efficiency. Figure A1 summarizes the runtime of BCMF-CS based on 10,000
MCMC iterations executed on a Mac Studio (Apple M1, 128 GB RAM). We varied the number
of observations N and covariates P , using the tree configuration described in the Appendix. The
runtime scales moderately with N , while remaining largely unaffected by P , reflecting the sparsity-
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Table 1: Results (bias, absolute bias, mean squared error, and coverage) for different scenarios:
Scenario 1 (base), Scenario 2 (with two predictors), Scenarios 3 and 4 (with two instruments in
exposure and mediator models, respectively), Scenario 5 (N < P = 500), Scenario 6 (N < P =
2000), and Scenario 7 (P = 20). Results are reported separately for the direct effect (DE) and
indirect effect (IE).

BIAS Abs.BIAS MSE Coverage
Scenario Method DE IE DE IE DE IE DE IE

(1)

BCMF-CS 0.048 -0.024 0.172 0.248 0.056 0.167 0.99 0.90
BCMF 0.128 0.016 0.308 0.447 0.179 0.415 0.92 0.69
DCMF 0.023 -0.001 0.170 0.338 0.052 0.259 0.98 0.76
LSEM 1.091 0.213 1.100 1.075 1.438 1.717 0.19 0.39

(2)

BCMF-CS -0.029 0.039 0.431 0.469 0.303 0.429 0.77 0.64
BCMF 0.069 0.133 0.712 0.856 0.737 1.159 0.62 0.17
DCMF -0.073 0.120 0.782 0.814 0.936 1.108 0.53 0.22
LSEM 1.038 0.212 1.075 1.072 1.629 1.709 0.52 0.38

(3)

BCMF-CS -0.038 0.038 0.308 0.488 0.167 0.454 0.77 0.59
BCMF -0.028 0.123 0.599 0.839 0.464 1.123 0.52 0.17
DCMF -0.098 0.119 0.704 0.811 0.785 1.096 0.47 0.22
LSEM 0.928 0.158 0.947 1.047 1.121 1.649 0.54 0.39

(4)

BCMF-CS -0.014 0.036 0.144 0.390 0.050 0.323 0.94 0.72
BCMF 0.019 0.110 0.464 0.763 0.307 0.969 0.70 0.31
DCMF -0.011 0.031 0.211 0.434 0.133 0.411 0.87 0.67
LSEM 0.945 0.196 0.960 1.069 1.149 1.704 0.53 0.39

(5)

BCMF-CS -0.016 -0.021 0.087 0.332 0.022 0.234 0.99 0.80
BCMF 0.217 0.035 0.402 0.993 0.463 1.596 0.85 0.18
DCMF -0.012 0.001 0.437 0.617 0.553 0.808 0.73 0.49
LSEM 1.024 0.265 1.041 1.169 1.357 2.056 0.54 0.44

(6)

BCMF-CS -0.058 0.031 0.058 0.429 0.004 0.345 1.00 0.62
BCMF 0.186 0.144 0.358 1.105 0.422 1.787 0.82 0.06
DCMF -0.122 0.132 0.878 1.004 0.956 1.486 0.36 0.02
LSEM 0.944 0.067 1.104 1.062 1.820 1.765 0.52 0.34

(7)

BCMF-CS 0.001 -0.008 0.267 0.444 0.149 0.379 0.87 0.69
BCMF 0.215 0.038 0.402 0.988 0.451 1.583 0.86 0.19
DCMF -0.017 -0.007 0.397 0.583 0.485 0.749 0.76 0.53
LSEM 1.011 0.272 1.030 1.169 1.342 2.051 0.55 0.43

inducing prior’s effectiveness in focusing computation on relevant covariates. Overall, the method
achieves practical scalability for moderate to large datasets.

7 REAL APPLICATION: AIDS CLINICAL TRIALS GROUP STUDY 175

The ACTG175 study (Hammer et al., 1996) is a randomized clinical trial evaluating antiretroviral
therapies for HIV-positive patients, specifically comparing zidovudine alone, didanosine alone, and
their combination. The dataset, available in the R package speff2trial, includes 2,139 patients
and 27 variables. We define the outcome (Y ) as CD4 T cell count at 95± 5 weeks and the mediator
(M ) as CD4 count at 20±5 weeks. The binary exposure (A) distinguishes zidovudine only (A = 0)
from the other regimens (A = 1). In addition, 15 pretreatment covariates (e.g., age, weight) are
included, as detailed in the Appendix.

Figure 2 (left) displays estimated individual total, direct, and indirect effects. Direct effects exhibit
limited heterogeneity, whereas indirect effects are clearly stratified by race (black circles: white; red
triangles: non-white), suggesting that race contributes to heterogeneity in mediated pathways but
not in direct effects. Figure 2 (right) shows posterior inclusion probabilities (PIPs) for confounders
across the exposure, mediator, and outcome models. Two variables-baseline CD4 count (cd40) and
prior antiretroviral duration (preanti)-are consistently selected (PIP = 1). Given the randomized
design, exposure-mediator and exposure-outcome confounding is minimal, so these covariates most
likely adjust for mediator–outcome confounding.
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Figure 2: Results based on the ACTG175 dataset. (Left) Estimated individual total, direct, and indirect effects,
ordered by patient ID. Red triangles represent non-white patients; black circles represent white patients. (Right)
Posterior inclusion probabilities of potential confounders in the exposure, mediator, and outcome models.

It is important to note that although the mediator serves as a short-term proxy for the outcome,
long-term effects (e.g., over a 75-week period) can still emerge, particularly depending on exposure
status. Because the indirect effect reflects both the A → M and M → Y pathways, it may account
for only part of the total effect when the A → M association is weak, even if the M → Y associ-
ation is strong. Consequently, a direct effect may also be present. Similar delayed responses have
been documented in prior studies (see Guidelines for the Use of Antiretroviral Agents in Adults and
Adolescents With HIV, https://clinicalinfo.hiv.gov/).

8 LIMITATIONS AND FUTURE DIRECTIONS

In this study, we propose a Bayesian nonparametric approach for identifying confounders neces-
sary for mediation analysis in potentially high-dimensional settings and for estimating individual
(heterogeneous) direct and indirect effects. Specifically, we build on Bayesian additive regression
trees by employing a variant known as the Bayesian causal mediation forest. By assigning a com-
mon sparsity-inducing prior to the selection probability vectors governing the prognostic functions
of each model, proposed method identifies pretreatment covariates that are commonly used across
models (i.e., the confounders). We establish theoretical properties for the proposed method, includ-
ing posterior consistency of the confounder selection procedure, and demonstrate strong empirical
performance across diverse simulation settings.

Formal criteria for confounder selection in mediation analysis are scarce. We introduce the media-
tion disjunctive cause criterion and show that it guarantees the sequential ignorability assumption,
which is key to identifying mediation effects. This requires observing at least one direct cause for
each backdoor path, an assumption that is strong but often plausible in high-dimensional settings
with rich covariate information.

Another limitation of our study is its focus on the single-mediator setting. Extending the method
to multiple or sequential mediators, which frequently arise in practice, is an important direction
for future work. That said, the core algorithm extends naturally: in Appendix H we show how
the model adapts to the case of multiple mediators (two mediators) and provide results from a toy
example. Developing a fully general approach remains as future work.
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ETHICS STATEMENT (OPTIONAL)

This study does not involve human subjects and does not present any potentially harmful insights,
methodologies, or applications. Furthermore, it does not raise issues related to potential conflicts
of interest or sponsorship, discrimination, bias or fairness, privacy or security, legal compliance, or
research integrity.

REPRODUCIBILITY STATEMENT (OPTIONAL)

To ensure reproducibility of our study, we provide details in the Appendix that could not be fully in-
cluded in the main manuscript. Specifically, we report the complete parameter and hyperparameter
settings (Appendix C), present pseudocode to clearly illustrate how the method operates (Appendix
D), and describe the data-generating processes for all examined experiments to facilitate replica-
tion of our results (Appendix E). In addition, we supply detailed proofs in Appendices A and B to
establish the validity of the theorems stated in the main text.
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A APPENDIX

APPENDIX A: PROOF OF THEOREM 1

Theorem 1. Suppose the set of observed pre-treatment covariates includes at least one direct cause
for each backdoor path among A, M , and Y . Then, there exists some subsets C that satisfy the
mediation disjunctive cause criterion and are sufficient for the sequential ignorability assumptions
in Eqs. (1) and (2).

Proof. Let C⋆ denote a set of high-dimensional pre-treatment covariates that includes at least one
direct cause for each backdoor path between the exposure A and the mediator M , and also includes
direct causes of M that do not lie on A−M backdoor paths. Let C ⊆ C⋆ be the subset consisting
of variables that are causes of A, M , or both. Since high-dimensional pretreatment covariate set C⋆

contains at least one direct cause that lies on each backdoor path between A and M , there exists a set
W ⊂ C⋆ such that W blocks all backdoor paths from A to M . Then, by Theorem 1 in Vander Weele
& Shpitser (2011), C does also block all backdoor paths from A to M and thus M(a) ⊥ A | C.
Similarly, other conditional independence relationships can be shown based on the covariate set
C.

APPENDIX B: PROOFS OF THEOREMS 2 AND 3

In Section 5, we stated several theoretical properties of the proposed method. This appendix provides
detailed proofs of those results.

Theorem 2 (Posterior Consistency of Confounder Selection). Assume models for exposure Ai, me-
diator Mi, and outcome Yi are correctly specified, and let C be one the covariate sets satisfying the
mediation disjunctive cause criterion. Suppose P is fixed and the Dirichlet concentration parameter
satisfies α = O(N−γ) for some γ > 0, with α/P ≪ 1. Then, as N → ∞, for any ϵ ↓ 0,

P (sj > ϵ | D) →
{
1, Xj ∈ C,
0, Xj /∈ C.

Proof. For the asymptotic consistency, we first examine the posterior probability of selecting a vari-
able under the Dirichlet prior s ∼ Dir

(
α

P+3

)
. The posterior selection probability is represented

as

P (sj > ϵ | D) =
RjP (sj > ϵ)

RjP (sj > ϵ) + P (sj ≤ ϵ)
,

where Rj =
L(D | sj>ϵ)
L(D | sj≤ϵ) is the likelihood ratio comparing models with a higher versus lower proba-

bility of including the j-th covariate. The terms P (sj > ϵ) and P (sj ≤ ϵ) depend on the Dirichlet
prior specification.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

For Xj ∈ C (i.e., a direct cause of A, M , or Y ), exclusion of Xj leads to a substantial increase
in residual variance in at least one model. Under standard Gaussian likelihood assumptions, the
log-likelihood ratio can be represented as

logRj = log
L(D | Xj inclusion)
L(D | Xj exclusion)

= −N

2
log

σ2
j,1

σ2
j,0

− 1

2

N∑
i=1

[
(yi − ŷi,1)

2

σ2
j,1

− (yi − ŷi,0)
2

σ2
j,0

]
.

where σ2
j,0 and σ2

j,1 are the total residual variances from the exposure, mediator and outcome models
excluding and including Xj , respectively. By assuming 1

N

∑
i(yi − ŷi,1)

2 → σ2
j,1 and 1

N

∑
i(yi −

ŷi,0)
2 → σ2

j,0 as N → ∞,

logRj → −N

2
log

σ2
j,1

σ2
j,0

− N

2

(
σ2
j,1

σ2
j,1

−
σ2
j,0

σ2
j,0

)
= −N

2
log

σ2
j,1

σ2
j,0

.

Since σ2
j,1 < σ2

j,0,

logRj = −N

2
log

σ2
j,1

σ2
j,0

= O(N) ⇛ Rj = exp(O(N)).

For Xj /∈ C, trivially, Rj ≈ 1 (no variance improvement).

Since the selection probabilities s are drawn from a Dirichlet prior, the marginal distribution of each
component follows a Beta distribution sj ∼ Beta

(
α

P+3 , α− α
P+3

)
. The cumulative probability

near zero for a single component is approximated by

P (sj ≤ ϵ) =
Γ(α)

Γ
(

α
P+3

)
Γ
(
α− α

P+3

) ∫ ϵ

0

s
α

P+3−1

j (1− sj)
α− α

P+3−1 dsj

=
Γ(α)

Γ
(

α
P+3

)
Γ
(
α− α

P+3

) (1 + o(1))
ϵ

α
P+3

α
P+3

(
∵ (1− sj)

α− α
P+3−1 → 1 as ϵ → 0

)
.

Using the asymptotic behavior of the Gamma function near zero (the Laurent expansion of gamma
function), Γ(α) ≈ 1

α as α → 0 and Γ
(
α− α

P+3

)
≈ Γ(α) since α/(P + 3) is small relative to α,

the probability of being non-trivially positive becomes:

P (sj > ϵ) ≈ 1− Γ(α)
P+3
α Γ(α)

(1 + o(1))
ϵ

α
P+3

α
P+3

= 1− ϵ
α

P+3 (1 + o(1)) =
α

P + 3
| ln(ϵ)|+O

(
α2

(P + 3)2

)
.

For Xj ∈ C, since Rj grows exponentially asN → ∞ while P (sj > ϵ) shrinks polynomially with
α = O(N−γ) for some 0 < γ < 1 in

P (sj > ϵ | D) =
RjP (sj > ϵ)

RjP (sj > ϵ) + P (sj ≤ ϵ)
,

the exponential growth in Rj dominates over the shrinking prior as N → ∞, yielding

P (sj > ϵ | D) → 1.

For Xj /∈ C, since Rj ≈ 1

P (sj > ϵ | D) ≈ P (sj > ϵ)

P (sj > ϵ) + P (sj ≤ ϵ)
.

Since P (sj > ϵ) = O
(

α
P+3

)
and P (sj ≤ ϵ) = 1−O

(
α

P+3

)
, we obtain

P (sj > ϵ | D) = O

(
α

P + 3

)
.
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Thus, under the assumption α = O(N−γ),

P (sj > ϵ | D) = O

(
1

Nγ

)
→ 0.

Theorem 3 (Posterior Consistency of Mediation Effects). Suppose the following conditions hold:

1. The models for the mediator and outcome are correctly specified.

2. The posterior distribution over the selected adjustment set S concentrates around a set C
that satisfies the mediation disjunctive cause criterion, i.e., for any fixed ϵ > 0,

P (S ∈ Nϵ(C) | D) → 1 as N → ∞.

3. The mappings from the regression functions (fM , fY ) to (δ(x), ζ(x)) are Lipschitz contin-
uous with respect to the sup-norm (uniform convergence). That is, there exists a constant
L > 0 such that:

|δ1(x)− δ2(x)|+ |ζ1(x)− ζ2(x)| ≤ L · (∥fM,1 − fM,2∥∞ + ∥fY,1 − fY,2∥∞) ,

for all x ∈ X , and any pair (fM,1, fY,1), (fM,2, fY,2) obtained from BART posteriors for
the mediator and outcome models, respectively, under confounder adjustment sets S1, S2.

Then, for any ϵ > 0,
P (∆total > ϵ | D) → 0 as N → ∞.

Proof. First, note that the posterior estimates of mediation effects at any x are defined by integrating
over the posterior distribution:s:

δ̂(x) =

∫
δ(x; fM , fY )Π(dfM , dfY | D), ζ̂(x) =

∫
ζ(x; fM , fY )Π(dfM , dfY | D),

where the posterior distribution Π(dfM , dfY | D) is a mixture over adjustment sets S:

Π(dfM , dfY | D) =
∑

S⊆{1,...,P}

Π(dfM , dfY | D,S) · P (S | D).

Thus, we express the posterior error explicitly as:

∆total = sup
x

∣∣∣∣∣∑
S

P (S | D)(δ̂(x;S)− δ(x))

∣∣∣∣∣+ sup
x

∣∣∣∣∣∑
S

P (S | D)(ζ̂(x;S)− ζ(x))

∣∣∣∣∣
Then, we split the posterior sum over S into two disjoint parts:

(1) Adjustment sets S ∈ Nϵ(C)
By Assumption 2, such sets differ only slightly from the true confounder set C. Because the models
are correctly specified, the regression functions (fM , fY ) trained on these nearly-correct S will be
uniformly close to those trained on the true C, in the sup-norm sense. Formally, for such S,

∥f (S)
M − f

(C)
M ∥∞ → 0, ∥f (S)

Y − f
(C)
Y ∥∞ → 0 as N → ∞,

by posterior consistency of BART under correct model specification and near-correct covariate ad-
justment. Then, by Lipschitz continuity (Assumption 3), we obtain:

sup
x

|δ(S)(x)− δ(x)|+ sup
x

|ζ(S)(x)− ζ(x)| → 0.

Since the posterior concentrates on such S as N → ∞, the contribution to ∆posterior from this region
vanishes.

(2) Adjustment sets S /∈ Nϵ(C)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

For these sets, by Assumption (2),

P (S /∈ Nϵ(C) | D) → 0.

Even if the pointwise error supx |δ(S)(x)− δ(x)| or supx |ζ(S)(x)− ζ(x)| is non-negligible (due to
confounder omission or overfitting), the posterior weight on such S is exponentially small.

Therefore, the total posterior probability that such S dominate the posterior expectation vanishes:∑
S /∈Nϵ(C)

P (S | D) · sup
x

|δ̂(x;S)− δ(x)| → 0.

Therefore, for any ϵ > 0, we conclude:

P (∆total > ϵ | D) → 0 as N → ∞.

APPENDIX C: PRIOR AND PARAMETER SETTING FOR THE BAYESIAN CAUSAL MEDIATION
FOREST

The priors and parameter settings for the Bayesian causal mediation forest used in the main text are
as follows:

• Number of trees (T ): We used 200 trees for the prognostic functions and 20 trees for the
modifier functions as default settings.

• Tree depth prior: We employed the prior α(1 + d)−β , where α ∈ (0, 1) and β ∈ [0,∞),
for the depth d of each tree. For prognostic functions, we set α = 0.95 and β = 2; for
modifier functions, we used α = 0.5 and β = 2.

• Residual variance prior: The residual variance σ2 for each model followed the prior σ2 ∼
νλ/χ2

ν , with ν = 3. The scale parameter λ was chosen such that P (σ < σ̂) = 0.90, where
σ̂ is a data-driven estimate.

• Tree alteration steps: While the original BART algorithm (Chipman et al., 2010) includes
four tree alteration steps (grow, prune, change, and swap), we omit the swap step based
on prior findings that sufficient mixing is achieved without it (Kapelner & Bleich, 2016).
Hence, trees are updated using only the grow, prune, and change operations.

All other priors and parameter follow the default specifications provided in Chipman et al. (2010).

BCMF model specification. Under Models (3), (6), and (7), the BCMF model assigns independent
discrete uniform priors over selection probabilities for each prognostic function:

sA =
(
sA1 , s

A
2 , . . . , s

A
P

)
∼ discrete uniform(1, P ),

sM =
(
sM1 , sM2 , . . . , sMP , sMπ

)
∼ discrete uniform(1, P + 1),

sY = (sY1 , s
Y
2 , . . . , s

Y
P , s

Y
π , sm0, sm1) ∼ discrete uniform(1, P + 3).

DCMF model specification. Under Models (3), (6), and (7), the DCMF model assigns independent
sparsity-inducing Dirichlet priors over selection probabilities for each prognostic function:

sA =
(
sA1 , s

A
2 , . . . , s

A
P

)
∼ D

(
1

P
, · · · , 1

P

)
,

sM =
(
sM1 , sM2 , . . . , sMP , sMπ

)
∼ D

(
1

P + 1
, · · · , 1

P + 1

)
,

sY = (sY1 , s
Y
2 , . . . , s

Y
P , s

Y
π , sm0, sm1) ∼ D

(
1

P + 3
, · · · , 1

P + 3

)
.

LSEM model specification. This model adopts the classical linear structural equation framework:

Yi(a,m) = β0Y +X⊤
i βY + γ0Y a+ ζ0Y m+ ϵi, ϵi ∼ N (0, σ2

Y ),

Mi(a) = β0M +X⊤
i βM + γ0Ma+ νi, νi ∼ N (0, σ2

M ),

where Xi denotes the vector of covariates included for confounder adjustment.
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APPENDIX D: PSEUDO-ALGORITHM

Algorithm 1 Posterior Computation Algorithm
Require: Posterior samples from the previous iteration:

ϕ⋆ =
[
{(T f

t ,Mf
t ) | t = 1, . . . , Tf ; f ∈ {µ, µM , τM , µY , τY , τ ′

Y }}, σ2
Y , σ2

M , Mmis
]

1: for r = 1, . . . , R do ▷ Repeat for R MCMC iterations
2: for f ∈ {µ, µM , τM , µY , τY , τ ′

Y } do
3: for t = 1, . . . , Tf do
4: for i = 1, . . . , n do
5: Compute residual for observation i in tree t for function f : R

f,(r)
i,−t

6: end for
7: Sample tree structure: T f,(r)

t ∼ p
(
T f
t | Rf,(r)

1,−t , . . . , R
f,(r)
n,−t, σ

2
f

)
8: Sample terminal node parameters: Mf,(r)

t ∼ p
(
Mf

t | T f,(r)
t , R

f,(r)
1,−t , . . . , R

f,(r)
n,−t, σ

2
f

)
9: where σ2

f =


1, if f = µ

σ2
M , if f ∈ {µM , τM}

σ2
Y , otherwise

10: end for
11: end for
12: Sample residual variances:

(σ2
M )(r) ∼ Inv-Gamma

(
aσM +

n

2
, bσM +

1

2

n∑
i=1

(Mi − M̂i)
2

)

(σ2
Y )(r) ∼ Inv-Gamma

(
aσY +

n

2
, bσY +

1

2

n∑
i=1

(Yi − Ŷi)
2

)

13: Update s(r) based on Eq. (8) and the M-H algorithm
14: end for

APPENDIX E: SIMULATION SETUP

In eight different scenarios, P = 100 potential confounders (except for Scenarios 5-7) are indepen-
dently generated from Unif(0, 1) for X1 −X2 and from N(0, 1) for X3 −X100 where only 5 of
them (X1 −X5) are true confounders:

• Scenario 1: Heterogeneous effects with non-linear terms.

P (Ai = 1) = Φ(0.5 + h1(Xi,1) + h2(Xi,2)− 0.5|Xi,3 − 1|+ 1.5Xi,4Xi,5)

Mi ∼ N(µM (Ai,Xi), 0.1
2)

µM (Ai,Xi) = 1.3Ai − 0.5h1(Xi,1) + 0.5h2(Xi,2) + |Xi,3 + 1|+ 1.5Xi,4

− exp(0.3Xi,5)− 1.5Ai|Xi,5 + 0.3|
Yi ∼ N(µY (Ai,Mi,Xi), 0.3

2)

µY (Ai,Mi,Xi) = −Ai + h1(Xi,1) + 1.5h2(Xi,2) + 2|Xi,3 + 1| − 1.5Mi +AiXi,4

+exp(0.5Xi,5)

where Φ(·) denotes the cumulative distribution function of the standard normal distribu-
tion.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• Scenario 2: Heterogeneous effects with non-linear terms with two additional predictors in
Y model.

P (Ai = 1) = Φ(0.5 + h1(Xi,1) + h2(Xi,2)− 0.5|Xi,3 − 1|+ 1.5Xi,4Xi,5)

Mi ∼ N(µM (Ai,Xi), 0.1
2)

µM (Ai,Xi) = 1.3Ai − 0.5h1(Xi,1) + 0.5h2(Xi,2) + |Xi,3 + 1|+ 1.5Xi,4

− exp(0.3Xi,5)− 1.5Ai|Xi,5 + 0.3|
Yi ∼ N(µY (Ai,Mi,Xi), 0.3

2)

µY (Ai,Mi,Xi) = −Ai + h1(Xi,1) + 1.5h2(Xi,2) + 2|Xi,3 + 1| − 1.5Mi + 2Xi,4

+exp(0.5Xi,5)− 0.5Ai|Xi,6| −Ai|Xi,7 + 1|

• Scenario 3: Heterogeneous effects with non-linear terms with two additional instruments
in A model.

P (Ai = 1) = Φ(0.5 + h1(Xi,1) + h2(Xi,2)− 0.5|Xi,3 − 1|+ 1.5Xi,4Xi,5 + 1.5|Xi,6|
−|Xi,7 + 1|)

Mi ∼ N(µM (Ai,Xi), 0.1
2)

µM (Ai,Xi) = 1.3Ai − 0.5h1(Xi,1) + 0.5h2(Xi,2) + |Xi,3 + 1|+ 1.5Xi,4 − exp(0.3Xi,5)

−1.5Ai|Xi,5 + 0.3|
Yi ∼ N(µY (Ai,Mi,Xi), 0.3

2)

µY (Ai,Mi,Xi) = −Ai + h1(Xi,1) + 1.5h2(Xi,2) + 2|Xi,3 + 1| − 1.5Mi + 2Xi,4

+exp(0.5Xi,5)

• Scenario 4: Heterogeneous effects with non-linear terms with two additional instruments
in A model and two additional instruments in M .

P (Ai = 1) = Φ(0.5 + h1(Xi,1) + h2(Xi,2)− 0.5|Xi,3 − 1|+ 1.5Xi,4Xi,5 + 1.5|Xi,6|
−|Xi,7 + 1|)

Mi ∼ N(µM (Ai,Xi), 0.1
2)

µM (Ai,Xi) = 1.3Ai − 0.5h1(Xi,1) + 0.5h2(Xi,2) + |Xi,3 + 1|+ 1.5Xi,4 − exp(0.3Xi,5)

−1.5Ai|Xi,5 + 0.3|+ 0.2|Xi,8| − 0.2|Xi,9|
Yi ∼ N(µY (Ai,Mi,Xi), 0.3

2)

µY (Ai,Mi,Xi) = −Ai + h1(Xi,1) + 1.5h2(Xi,2) + 2|Xi,3 + 1| − 1.5Mi + 2Xi,4

+exp(0.5Xi,5)

• Scenarios 5 & 6: Heterogeneous effects with non-linear terms in high-dimensional settings
(N < P = 500 & N < P = 2000, respectively).

P (Ai = 1) = Φ(0.5 + h1(Xi,1) + h2(Xi,2)− 0.5|Xi,3 − 1|+ 1.5Xi,4Xi,5 + 1.5|Xi,6|
−|Xi,7 + 1|)

Mi ∼ N(µM (Ai,Xi), 0.1
2)

µM (Ai,Xi) = 1.3Ai − 0.5h1(Xi,1) + 0.5h2(Xi,2) + |Xi,3 + 1|+ 1.5Xi,4 − exp(0.3Xi,5)

−1.5Ai|Xi,5 + 0.3|
Yi ∼ N(µY (Ai,Mi,Xi), 0.3

2)

µY (Ai,Mi,Xi) = −Ai + h1(Xi,1) + 1.5h2(Xi,2) + 2|Xi,3 + 1| − 1.5Mi + 2Xi,4

+exp(0.5Xi,5)

• Scenario 7: Heterogeneous effects with non-linear terms with P = 20.

P (Ai = 1) = Φ(0.5 + h1(Xi,1) + h2(Xi,2)− 0.5|Xi,3 − 1|+ 1.5Xi,4Xi,5 + 1.5|Xi,6|
−|Xi,7 + 1|)

Mi ∼ N(µM (Ai,Xi), 0.1
2)

µM (Ai,Xi) = 1.3Ai − 0.5h1(Xi,1) + 0.5h2(Xi,2) + |Xi,3 + 1|+ 1.5Xi,4 − exp(0.3Xi,5)

−1.5Ai|Xi,5 + 0.3|
Yi ∼ N(µY (Ai,Mi,Xi), 0.3

2)

µY (Ai,Mi,Xi) = −Ai + h1(Xi,1) + 1.5h2(Xi,2) + 2|Xi,3 + 1| − 1.5Mi + 2Xi,4

+exp(0.5Xi,5)
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In Scenarios, the first two variables are included in the models through non-linear functions h1(x) =
(−1)I(x<0) and h2(x) = (−1)I(x≥0) and the remaining covariates are also added either with an
absolute function or with an interaction term.

APPENDIX F: ADDITIONAL SIMULATIONS

F.1. SENSITIVITY ANALYSES

In the main manuscript, we conducted a sensitivity analysis of the prior specification by examining
how performance varies with the number of trees used in the BART priors, and the results are
presented in Table A1. In addition, we aim to further investigate how performance changes with

Table A1: Results (bias, absolute bias, mean squared error, and coverage) for sensitivity analysis
with different numbers of trees.

Numbers of trees in BIAS Abs.BIAS MSE Coverage
prognostic functions DE IE DE IE DE IE DE IE
50 0.046 -0.023 0.158 0.228 0.049 0.158 0.99 0.92
100 0.047 -0.032 0.149 0.228 0.049 0.169 0.98 0.92

respect to different hyper-parameter values.

In our framework, we place a hyper-prior on α using the transformation α/(α+P ) ∼ Beta(0.5, 1).
This allows α to be adaptively tuned during the MCMC process. From our experiments, we observed
that the value of α/P , rather than α itself, plays a pivotal role in controlling the overall sparsity.
Therefore, we believe that as long as either α becomes small or P becomes large, the desired sparsity
level can be achieved. This aligns well with the theoretical condition stated below Theorem 2: “The
consistency is also guaranteed under the asymptotic growth condition P = O(N−γ) with a properly
controlled Dirichlet concentration parameter α.”

We further investigated how sensitive the model is to a fixed α by conducting an additional experi-
ment based on the following scenario:

P (Ai = 1) = σ(−0.3 +Xi,1 − 1.5Xi,2 + 0.8|Xi,3 − 1|+ 0.5Xi,4Xi,5)

Mi ∼ N(µM (Ai,Xi), 0.5
2)

µM (Ai,Xi) = 1 + 0.9Ai +Xi,1 − 0.5Xi,2 + 0.5|Xi,3 − 1|+ 0.5X2
i,4 − sin(Xi,5)

Yi ∼ N(µY (Ai,Mi,Xi), 0.3
2)

µY (Ai,Mi,Xi) = Xi,1 + 1.5Xi,2 + 0.5Xi,3Xi,4 − 0.4X2
i,5 − 1.5Mi +Ai

where Xi,j ∼ N(0, 1) for i = 1, . . . , 250; j = 1, . . . , P with P = 100. With the beta prior,
the posterior mean of α was 1.49, and the posterior standard deviation was 0.22. Given P = 100,
this implies α/P ≈ 0.0149. Now, we fixed α = 5, which results in α/P = 0.05, and examined
the impact on the results. As shown in Table A2 of Appendix F.1, the overall results did not change
substantially. This confirms that the absolute value of α is less critical than maintaining a sufficiently
small ratio α/P ≪ 1, which effectively induces sparsity.

F.2. UNMEASURED CONFOUNDER

Our assumption in Theorem 1 is likely to hold in high-dimensional settings with many observed
covariates. However, we acknowledge that it may be more vulnerable in low-dimensional settings,
where the chance of missing all relevant variables on a backdoor path increases. To further investi-
gate, we empirically examined a violation of this assumption through an additional analysis based
on Scenario 2, in which the true confounder X5 is unmeasured.

As shown in Table A2 of F.2, when the assumption is violated due to an unmeasured confounder,
the absolute bias of the estimated indirect effect (IE) was more than twice as large compared to the
main Scenario 2. and the MSE increased by nearly a factor of four. We also observed a notable drop
in coverage.
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F.3. MODEL MISSPECIFICATION

Given that our model is nonparametric, structural model misspecification is less of a concern. In-
stead, performance degradation is more likely when important variables are excluded (unmeasured).
To assess this, we conducted an additional analysis based on Scenario 2, when a predictive but
non-confounding variable X6 is missing (i.e., outcome-model misspecification).

The results in Table A2 of F.3 show no noticeable difference from those of the main Scenario 2.
That is, when an additional variable is a predictor but not a confounder, its exclusion from the model
(i.e., even if model misspecification occurs) does not significantly impact overall performance. In
contrast, when a true confounder is missing (as discussed in the previous subsection), we observe
substantial performance degradation.

F.4. COMPLEX BACKDOOR PATH

In this subsection, we clarify that our method employs a sparsity-inducing prior for the selection
vector s, which naturally favors smaller confounder sets rather than maximal ones. If Xi affects
downstream variables (A,M , and/or Y ) only through Xj , our method tends to select either Xj or
Xi, typically the one with a stronger marginal effect. In other words, our method prefers to select
direct causes of A, M , and/or Y , rather than general ancestors, when they are sufficient to block
backdoor paths.

To illustrate this behavior empirically, we conducted a new experiment based on the following sce-
nario:

P (Ai = 1) = σ(−0.3 +Xi,1 − 1.5Xi,2 + 0.8|Xi,3 − 1|+ 0.5Xi,4Xi,5)

Mi ∼ N(µM (Ai,Xi), 0.5
2)

µM (Ai,Xi) = 1 + 0.9Ai +Xi,1 − 0.5Xi,2 + 0.5|Xi,9 − 1|+ 0.5X2
i,10 − sin(Xi,11)

Yi ∼ N(µY (Ai,Mi,Xi), 0.3
2)

µY (Ai,Mi,Xi) = Xi,1 + 1.5Xi,2 + 0.5Xi,9Xi,10 − 0.4X2
i,11 − 1.5Mi +Ai

where

• X6 influences both X3 and X9,

• X7 influences both X4 and X10,

• X8 influences both X5 and X11.

The results are provided in Table A2 of F.4 and Figure A4. Our method successfully identified X1,
X2, X9, X10 and X11 as confounders, which are sufficient to block the backdoor paths related to
X6 − X8. This provides strong empirical support that our method identifies a sparse set of direct
causes as confounders.

Table A2: Results (bias, absolute bias, mean squared error, and coverage) for additional simulation
scenarios (F.1-F.4)

BIAS Abs.BIAS MSE Coverage
Scenario Setting DE IE DE IE DE IE DE IE

F.1 α = 0.5 -0.023 -0.042 0.096 0.173 0.021 0.056 0.99 0.99
F.2 unmeasured confounder 0.052 -0.038 0.426 1.080 0.316 1.878 0.82 0.60
F.3 model misspecification -0.016 0.037 0.421 0.454 0.288 0.408 0.77 0.66
F.4 complex backdoor path -0.016 -0.003 0.059 0.130 0.008 0.032 0.99 0.99

APPENDIX G: ACTG175 DATASET

The ACTG175 dataset, accessible through the R package speff2trial, comprises 27 variables.
Of these, 15 pretreatment variables are identified as potential confounders, with descriptions based
on the package documentation:

• age age in years at baseline
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• wtkg weight in kg at baseline
• hemo hemophilia (0=no, 1=yes)
• homo homosexual activity (0=no, 1=yes)
• drugs history of intravenous drug use (0=no, 1=yes)
• karnof Karnofsky score (on a scale of 0-100)
• oprior non-zidovudine antiretroviral therapy prior to initiation of study treatment (0=no,

1=yes)
• z30 zidovudine use in the 30 days prior to treatment initiation (0=no, 1=yes)
• preanti number of days of previously received antiretroviral therapy race race (0=white,

1=non-white)
• gender gender (0=female, 1=male)
• str2 antiretroviral history (0=naive, 1=experienced)
• strat antiretroviral history stratification (1=‘antiretroviral naive’, 2=‘ > 1 but 52 weeks

of prior antiretroviral therapy’, 3=‘> 52 weeks’)
• symptom symptomatic indicator (0=asymptomatic, 1=symptomatic)
• cd40 CD4Tcell count at baseline

APPENDIX H: EXTENSION TO MULTIPLE MEDIATORS

In practice, multiple mediators may exist. In such settings, researchers can isolate a mediator of
primary scientific interest and interpret the indirect effect as that which is transmitted through this
mediator. Effects transmitted through other paths are typically subsumed into the direct effect. This
practice is also standard in the literature and provides meaningful interpretation even in complex
settings.

That said, we also acknowledge the growing interest in mediation analysis involving multiple media-
tors. While our current theorems focus on the single-mediator case, the proposed model architecture
is extensible. Specifically, building on the framework of Imai & Yamamoto (2013), we adapt our
model to accommodate multiple causally independent mediators (with two mediators in this toy
example) as follows

We construct separate mediator models (Eq. 6) for both mediators, M1 and M2

M1i = µM1
(Xi, π̂i) + τM1

(Xi)Ai + ϵ1i

M2i = µM2
(Xi, π̂i) + τM2

(Xi)Ai + ϵ2i

The outcome model (Eq. 7) is expanded to include four clever covariates derived from the two
mediator models. Both M1 and M2 are included as linear terms in the outcome regression model

Yi = µY (Xi, π̂i, m̂10i, m̂11i, m̂20i, m̂21i) + τY (Xi)Ai + τ ′Y (Xi)M1i + τ ′′Y (Xi)M2i + ηi,

where m̂jai = Ê(Mji | Ai = a,Xi) for j = 1, 2. Separate selection vectors sM1 and sM2 are
defined for the two mediators. The common selection vector s now includes parameters for all four
clever covariates, resulting in a total dimension of P + 5

sA =

(
s1

1− (sπ + sm10 + sm11 + sm20 + sm21)
, · · · , sP

1− (sπ + sm10 + sm11 + sm20 + sm21)

)
sM1 =

(
s1

1− (sm10 + sm11 + sm20 + sm21)
, · · · , sP

1− (sm10 + sm11 + sm20 + sm21)
,

sπ
1− (sm10 + sm11 + sm20 + sm21)

)
sM2 =

(
s1

1− (sm10 + sm11 + sm20 + sm21)
, · · · , sP

1− (sm10 + sm11 + sm20 + sm21)
,

sπ
1− (sm10 + sm11 + sm20 + sm21)

)
sY = (s1, · · · , sP , sπ, sm10, sm11, sm20, sm21).
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To empirically evaluate this extension, we implemented the model in a synthetic setting involving
two causally independent mediators (with 100 potential confounders X ′

is). Specifically, the data-
generating models for the two mediators and the outcome are as follows

P (Ai = 1) = σ(−0.3 +Xi,1 − 1.5Xi,2 + 0.8|Xi,3 − 1|+ 0.5Xi,4Xi,5)

M1i ∼ N(µM1
(Ai,Xi), 0.5

2)

µM1(Ai,Xi) = 1 + 1.2Ai +Xi,1 − 0.5Xi,2 + 0.5|Xi,3 − 1| − 0.5X2
i,4 − sin(Xi,5)

M2i ∼ N(µM2
(Ai,Xi), 0.5

2)

µM2(Ai,Xi) = 1 + 1.5Ai + 0.5Xi,1 −Xi,2 + 0.75|Xi,3 − 1| − 0.4X2
i,4 − sin(Xi,5)

Yi ∼ N(µY (Ai,Mi,Xi), 0.3
2)

µY (Ai,Mi,Xi) = Xi,1 + 1.5Xi,2 + 0.5Xi,3Xi,4 − 0.4X2
i,5 −M1i − 0.7M2i +Ai.

The true indirect effects were set to −2.25 and 1.0, respectively. Table A3 summarizes the result.
These results confirm that the proposed framework can be naturally extended to multiple-mediator

Table A3: Results (bias, absolute bias, mean squared error, and coverage) for the scenario with
multiple mediators (two mediators).

BIAS Abs.BIAS MSE Coverage
DE IE DE IE DE IE DE IE

Multiple 0.302 -0.354 0.315 0.380 0.126 0.202 0.58 0.97

settings without requiring fundamental change to the algorithm structure. As the number of me-
diators increases, variable importance from individual mediator models may dominate the overall
selection probability vector. To address this, we plan to extend the framework to a more general
setting with multiple mediators in future work.
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APPENDIX H: TABLES AND FIGURES

Table A4: Operating characteristics (true positive rate, false positive rate, positive predictive value,
and F1 score) for different scenarios: Scenario 1 (base), Scenario 2 (with two predictors), Scenarios
3 and 4 (with two instruments in exposure and mediator models, respectively), Scenario 5 (N <
P = 500), and Scenario 7 (P = 20). Selection results are reported separately for the treatment
model (A), mediator model (M ), and outcome model (Y ).

TPR FPR PPV F1
Scenario Method A M Y A M Y A M Y A M Y

(1)
BCMF-CS 1 1 1 0.00 0.00 0.00 1 1 1 1 1 1
BCMF 1 1 1 1 0.72 0.98 0.05 0.07 0.05 0.09 0.13 0.09
DCMF 0.44 1 0.82 0.00 0.00 0.00 0.82 1 0.99 0.55 1 0.89

(2)
BCMF-CS 1 1 1 0.01 0.01 0.01 0.83 0.83 0.83 0.91 0.91 0.90
BCMF 1 1 1 1 0.72 0.98 0.05 0.07 0.05 0.09 0.13 0.09
DCMF 0.45 1 0.87 0.01 0.00 0.01 0.85 1 0.77 0.57 1 0.81

(3)
BCMF-CS 1 1 1 0.00 0.00 0.00 1 1 1 1 1 1
BCMF 1 1 1 1 0.72 0.98 0.05 0.07 0.05 0.09 0.13 0.09
DCMF 0.41 1 0.87 0.02 0.00 0.00 0.51 1 0.99 0.45 1 0.93

(4)
BCMF-CS 1 1 1 0.00 0.00 0.00 0.95 0.94 0.95 0.97 0.96 0.97
BCMF 1 1 1 1 0.82 0.97 0.05 0.06 0.05 0.10 0.11 0.10
DCMF 0.41 1 0.99 0.03 0.01 0.00 0.51 0.83 0.99 0.44 0.91 0.99

(5)
BCMF-CS 1 1 1 0.00 0.00 0.00 0.99 1 0.99 0.99 1 0.99
BCMF 0.28 1 0.99 0.01 0.01 0.02 0.76 0.80 0.73 0.43 0.88 0.83
DCMF 0.09 1 0.92 0.00 0.00 0.00 0.92 1 0.99 0.35 1 0.95

(7)
BCMF-CS 1 1 1 0.00 0.00 0.00 0.99 0.99 0.99 0.99 1 0.99
BCMF 0.29 1 0.99 0.01 0.02 0.02 0.79 0.80 0.71 0.45 0.88 0.82
DCMF 0.11 1 0.93 0.00 0.00 0.00 0.91 1 0.99 0.34 1 0.96
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Figure A1: Computational time as a function of the number of observations (N ) and potential
confounders (P ).
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Figure A2: [Scenario 2] Posterior inclusion probabilities (PIP) from three competing methods
(BCMF-CS, BCMF, and DCMF) for the exposure, mediator, and outcome models. The true con-
founders are represented by colored points, while the noise variables are depicted as grey points.
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Figure A3: [Scenario 4] Posterior inclusion probabilities (PIP) from three competing methods
(BCMF-CS, BCMF, and DCMF) for the exposure, mediator, and outcome models. The true con-
founders are represented by colored points, while the noise variables are depicted as grey points.
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Figure A4: [Scenario F.4] Posterior inclusion probabilities (PIP) for the exposure, mediator, and
outcome models under the complex backdoor path structure. The true confounders are represented
by colored points, while the noise variables are depicted as grey points.
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