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Abstract

Recent research highlights the significance of in-
corporating density modeling into clustering pro-
cedures. While the Sum-Product Networks’ ability
to compactly represent mixture models has been
long noticed, their potential for modal clustering
remains largely unexplored. This paper explores
the use of Gaussian Sum-Product Networks for
semi-parametric density-based clustering via mode
association. To associate points to modes, we make
use of a recently developed efficient EM-style al-
gorithm. We perform image segmentation exper-
iments to evaluate the (dis)advantages of modal
clustering using such models.

1 INTRODUCTION

Clustering plays a pivotal role in data analysis, by which
means one can discover segments of homogeneous examples
(e.g., similar online purchases), detect outliers and anoma-
lies, fill-in missing values, etc.

Most clustering methods take a distance or dissimilarity
function as input, and segment data so as to minimize intra-
cluster distance and maximize inter-cluster distance [Aggar-
wal and Reddy, 2018]. The most prominent example is the
k-means algorithm [MacQueen, 1967]. More recently, an
increasing number of researchers have emphasized the im-
portance of more explicitly incorporating density modeling
into clustering procedures [Carlsson and Mémoli, 2013].

Mixture models form an expressive class of density models,
capable of approximating any well-behaved density. A mix-
ture model can be used for clustering either by associating
each point to a component, or by associating each point to
a mode. The former approach should be favored when one
has reason to believe that the true density aligns with the
assumed latent-variable model [Chacón, 2019]. The latter

is preferred when there is no particular reason to assume a
specific parametric model of data. Note that the modes and
mixture components can differ significantly in number and
location [Améndola et al., 2019].

Sum-Product Networks (SPNs) are a relatively recent class
of deep statistical models that leverage arithmetic circuits
[Darwiche, 2003] to effectively capture context-sensitive
independences and offer reliable and efficient inference,
making them a competitive approach for a wide range of
demanding machine learning tasks [Poon and Domingos,
2011, Llerena and Maua, 2017, Amer and Todorovic, 2016].

While the connection of SPNs and (hierarchical) mixture
models has long been noticed [Peharz et al., 2014, Zhao
et al., 2015], the application of SPNs to clustering remains
relatively unexplored. This in spite of the fact that the
widely-used schema for learning SPNs employs hierarchical
clustering to construct the network’s structure [Gens and
Domingos, 2013, Vergari et al., 2018].

In this paper, we report the first results of our investigation
about the effectiveness of modal clustering using Gaussian
SPNs. We discuss the advantages and difficulties with such
an approach. In particular, we discuss how to employ a
recently developed EM-like algorithm for mode finding in
Gaussian SPNs [Madeira and Mauá, 2022] to perform modal
clustering, and show its application to image segmentation.

2 SUM-PRODUCT NETWORKS

A Sum-Product Network (SPN) is a weighted rooted di-
rected acyclic graph, where each internal is either a sum
node or a product node, and each leaf node corresponds is
a univariate distribution [Gens and Domingos, 2013]. The
edges u → v from a sum node u are associated with weights
w(u, v) ≥ 0, and the remaining edges have weight 1 (usu-
ally omitted). For any node u, we call its scope, denoted
as sc(u), the set of random variables that appear in some
distribution at the leaves of the inducing subgraph.
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An SPN satisfies the properties of decomposability and com-
pleteness, which ensure that certain types of inferences are
tractable. Decomposability states that the scopes of any two
children of a product node are disjoint (i.e., if u is a product
node then sc(v)∪ sc(w) = ∅ for any distinct v, w ∈ ch(u)).
Completeness states that the scopes of children of sum nodes
are identical (i.e., if u is a sum node then sc(v) = sc(w)
for any v, w ∈ ch(u)). We also assume w.l.o.g. that the
sum of the weights of edges from a sum node u is 1, that
is,

∑
v∈ch(u) w(u, v) = 1. Together, those three properties

ensure that the SPN rooted at any node specifies a joint
distribution over its scope. This allow us to refer to nodes
and their distribution functions interchangeably.

Given an SPN S, we denote the value of its distribution
at a configuration x of its scope X by S(x). This value is
obtained inductively as follows. The value of a leaf node
is the value of the corresponding distribution. The value of
an internal model is ⊕v∈ch(u)w(u, v)Sv(x), where ⊕ is the
operation of node u (sum or product) and Sv is the SPN
rooted at v.

Consider a subgraph T of an SPN S. We say that T is
an induced tree if it can be constructed inductively, start-
ing from the root of S, and then including all children of
product nodes and exactly one child of any sum node. An
induced tree T is a tree-shaped SPN (i.e., satisfies decom-
posability and completeness) whose distribution is given
by T (x) =

∏
u→v∈T w(u, v)

∏
j Tj(x), where Tj is the

SPN/distribution of the leaf of T whose scope is Xj (note:
T has exactly n such leaves/variables).

Assume an ordering T 1, . . . , T τ of the induced trees
of S, and let wi =

∏
u→v∈T i w(u, v) be the product

of the weights in the i-th induced tree. Then, S(x) =∑τ
i=1 wiT

i(x) for any configuration x of the scope, where
T i(x) =

∏n
j=1 T

i
j (x) is the product of the values of the

univariate distributions at the leaves for Xj = xj . Thus,
induced trees provide an interesting representation of SPNs
as a finite mixture model [Zhao et al., 2016], one where
each induced tree represents a different component.

In this study, our emphasis lies on SPNs with Gaussian
distributions assigned to their leaves, known as Gaussian
SPNs (or GSPNs, for short). For such models, the result-
ing induced tree representation corresponds to a Gaussian
Mixture Model (GMM), one where the variables in each
component T i are uncorrelated and have mean σki

and
variance σ2

ki
.

3 MODAL CLUSTERING IN GSPNS

In modal clustering, data points are segmented by associ-
ating each point to a mode of a density model, usually by
means of some hill-climbing strategy. Hence, to employ
Gaussian SPNs for such intent one needs a method that
identifies (some of) its modes.

3.1 FINDING MODES

Li et al. [2007] developed the Modal EM, an EM-style
method that finds a mode of a GMM p(x) =

∑τ
k wkp

k(x)
by hill-climbing from a given starting point x(0). The
method alternates the following two steps until convergence:

E-step: Let qk =
wkp

k(x(r))
p(x(r))

, for k = 1, · · · , τ .

M-step: Compute x(r+1) = argmaxx
∑τ

k qk log p
k (x) .

The direct application of the above algorithm to SPNs is
intractable due to the high number of components (given by
its number of induced trees). To overcome that limitation,
Madeira and Mauá [2022] adapted Modal EM to exploit the
recursive character of GSPNs. Their algorithm repeatedly
obtains a configuration x(r+1) from a configuration x(r) by:

x
(r+1)
i =

∑τ
k

µki

σ2
ki

wkT
k
(
x(r)

)
∑τ

k
1

σ2
ki

wkT k
(
x(r)

) . (1)

The equation above is computed by traversing the network
from the leaves to the root, taking time Θ(n|S|) per iteration,
where n is the number of random variables and |S| is the
number of nodes in the SPN.

Notably, the updates in Equation 1 coincide with the fixed-
point iterative scheme proposed by Carreira-Perpiñán [2000]
for finding modes of GMMs. In turn, this iterative scheme
can be seen as a generalized version of the famous Mean-
Shift algorithm Chacón [2019].

3.2 ON THE NUMBER OF CLUSTERS

In modal clustering, the number of clusters corresponds to
the number of modes in the model (and not to the number
of components). A precise characterization of the relation
of number of modes m(d, k) as a function of the number of
components k and dimensionality d is still an open problem.
Améndola et al. [2019] showed that m(d, k) ≥

(
k
d

)
+ k for

d, k ≥ 2,. Additionally, they established that the number of
non-degenerate stationary points of a d-dimensional GMM
with k components is bounded above by 2d+(

k
2)(5 + 3d)k.

These bounds suggest that the number of modes can vary
greatly inside a class of mixture models of same complexity.

We note that in SPNs the number of components (k) is not
usually specified and is rather induced from data.

4 IMAGE SEGMENTATION

As a preliminary investigation of the effectiveness of modal
clustering with GPSNs, we performed some experiments
with image segmentation of two images, shown in Figure 1.

2



(a) (b)

Figure 1: (a) Easter Bunny. (b) Tarsila do Amaral’s The
Family.

Table 1: SPNs Learned for Segmentation (Easter Bunny).

Parameter s Nodes Height Clusters

20,000 13 3 6
15,000 19 3 7
10,000 25 3 10

5,000 50 5 31
2,000 132 5 68

500 528 7 398
200 1,267 9 676

We obtained datasets of 5 variables by considering the RGB
intensity values and x and y locations of each pixel in the
image. This resulted in 200 × 144 = 28, 800 data points
(instances) for Easter Bunny and 200× 158 = 31, 600 for
The Family. The datasets were then used to learn GSPNs
from data, using the LearnSPN implementation provided by
the SPFlow library.1 Instance splitting was performed using
GMM clustering, while variable splitting was accomplished
using the Randomized Dependence Coefficient [Lopez-Paz
et al., 2013]. We compared our implementation of Modal
EM clustering with k-means clustering, as implemented by
the scikit-learn library.2

We experimented with different GSPNs by varying the mini-
mum number of instances required for slicing in the learning
process (s). Tables 1 and 2 show the number of nodes, net-
work height and the number of clusters (modes) obtained
for each GSPN as we vary s. One sees the great dependence
between those quantities, as well as the quick increase in
the number of modes.

The images were segmented by coloring each pixel accord-
ing to the average color of the pixels in its same cluster,
considering a cluster to be formed by points which converge
to the same mode. Figures 2 and 3 display a visual compari-
son of image segmentation by GSPNs and by the k-means
algorithm, where k is set to the number of clusters identified
by Modal EM in GSPNs trained with different hyperpa-
rameters. One can note that GSPN seemingly delivers a
worse segmentation than k-means, while taking much more
compute. We conjecture that GSPN’s worse performance is

1Available at github.com/SPFlow/SPFlow.
2Available at scikit-learn.org.

Table 2: SPNs Learned for Segmentation (The Family).

Parameter s Nodes Height Clusters

20,000 13 3 4
15,000 25 3 5
10,000 31 3 8
5,000 61 3 19
2,000 163 3 43

500 603 7 187
200 1,504 7 555

GSPN k-means

s = 20000
k = 6

s = 10000
k = 10

s = 2000
k = 68

s = 500
k = 398

Figure 2: Image Segmentation of Easter Bunny.

due to a lack of fit to the model, which could be mitigated
by changing the structure learning algorithm, performing
fine-tuning of parameters or even using k-means solution as
a initial model for refinements.

To conclude, we note that GSPN modal clustering can de-
liver inferences that standard clustering techniques such as
k-means cannot, such as coping with missing values, detect-
ing outliers by probability threshold and scaling up easily
to more complex and high-dimensional domains.

5 CONCLUSIONS

In this paper, we have presented an initial exploration of
modal clustering using SPNs. Our experiments have high-
lighted the significant influence of the hyperparameters used
to learn the SPN on the resulting number of modes in the
model, underscoring the crucial role of parameter selection
in achieving desired clustering outcomes.

Furthermore, our findings have demonstrated the applica-
bility of clustering techniques for SPN model analysis. The
number of modes in a density distribution serves as an indi-
cator of the complexity of the underlying model, providing
valuable insights into its representation capabilities.
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GSPN k-means

s = 20000
k = 4

s = 10000
k = 8

s = 5000
k = 19

s = 500
k = 187

Figure 3: Image Segmentation of The Family.

While image segmentation may not be the optimal applica-
tion domain for SPNs, our results have shown satisfactory
performance comparable to the widely-used k-means algo-
rithm. However, visually, we observed that image segmen-
tation using k-means with k equivalent to the number of
modes in the SPN yields more detailed segmentation results.

We acknowledge that there is ample room for future work,
particularly in exploring the application of modal clustering
in various domains beyond image segmentation. These di-
rections can contribute to expanding the understanding and
utility of SPNs in clustering tasks across diverse fields.
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