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ABSTRACT

Differentially Private Stochastic Gradient Descent (DPSGD) is widely utilized to
preserve training data privacy in deep learning, which first clips the gradients to a
predefined norm and then injects calibrated noise into the training procedure. Exist-
ing DPSGD works typically assume the gradients follow sub-Gaussian distributions
and design various gradient clipping mechanisms to optimize training performance.
However, recent studies have shown that the gradients in deep learning exhibit a
heavy-tail phenomenon, that is, the tails of the gradient may have infinite variance,
which leads to excessive clipping loss with existing mechanisms. To address this
problem, we propose a novel approach, Discriminative Clipping (DC)-DPSGD,
with two key designs. First, we introduce a subspace identification technique to
distinguish between body and tail gradients. Second, we present a discriminative
clipping mechanism that applies different clipping thresholds for body and tail
gradients separately to reduce the clipping loss. Under the non-convex condition
and heavy-tailed sub-Weibull gradient noise assumption, DC-DPSGD reduces
the empirical risk from O

(
logmax(0,θ−1)(T/δ) log2θ(

√
T )

)
to O

(
log(

√
T )

)
with

heavy-tailed index θ > 1/2, iterations T , and high probability 1 − δ. Extensive
experiments on five real-world datasets demonstrate that our approach outperforms
three baselines by up to 9.72% in terms of accuracy.

1 INTRODUCTION

DPSGD Abadi et al. (2016), as a mainstream paradigm of privacy-preserving deep learning, has
wide applications in areas such as privacy-preserving recommender systems Liu et al. (2023), face
recognition Tang et al. (2024), and medical diagnosis Meng et al. (2021); Ji et al. (2022). Essentially,
in each iteration of model training, DPSGD clips per-sample gradient under the L2 norm constraint
to obtain the maximum divergence between gradient distributions that differ by only one training
data and adds random noise within rigorous privacy bounds for unbiased gradient estimation.

Most of existing DPSGD works Bu et al. (2024); Xia et al. (2023); Zhang et al. (2023); Zhu &
Blaschko (2023); Koloskova et al. (2023); Li et al. (2022); Fang et al. (2022); Yang et al. (2022)
rely on the assumption that the gradient noise follows a sub-Gaussian distribution to devise effective
clipping strategies. However, recent studies Zhang et al. (2020b); Simsekli et al. (2019; 2020);
Camuto et al. (2021); Barsbey et al. (2021) have shown that SGD gradient noise in deep learning
often exhibit heavy-tailed distributions instead of light-tailed distributions (e.g., sub-Gaussian). This
occurs even when the dataset originates from a light-tailed distribution, the gradients still diverge to a
heavy-tailed distribution with infinite variance Gurbuzbalaban et al. (2021), which may slow down
the convergence rate and impair training performance Li & Liu (2022; 2023); Madden et al. (2020);
Gorbunov et al. (2020). To cope with this problem in SGD, Li & Liu (2023); Wang et al. (2021);
Gorbunov et al. (2020) suggest employing larger clipping thresholds to get rid of the oscillations
caused by heavy-tailed gradients on the training trajectory.

Nevertheless, the clipping operation in DPSGD is closely tied to the magnitude of DP noise added
to the gradients. Setting the clipping threshold too large can lead to a high-dimensional noise
catastrophe Zhou et al. (2021), which negatively impacts model performance and potentially disrupts
the convergence of DPSGD algorithms. Therefore, practitioners need to carefully strike a balance
between injected noise and clipping loss, as illustrated in Figure 1. The left sub-figure shows the
trade-off under the light-tailed assumption. As the clipping threshold increases (i.e., when the red
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Figure 1: The trade-off between clipping loss and noise magnitude under heavy-tailed distributions.

dotted line moves to the right), the clipping loss decreases, but the maximum divergence between
the distributions differing by one clipped gradient increases, leading to more DP noise being added.
While in the right sub-figure, under the same noise magnitude, the slower decay rate of the heavy-
tailed distribution (blue line) will introduce extra clipping loss. Therefore, we aim to investigate
the following key question in this paper: how to design an effective clipping mechanism under the
heavy-tailed assumption to balance the trade-off between clipping loss and DP noise in DPSGD?

Previous clipping mechanisms for DPSGD Bu et al. (2024); Yang et al. (2022); Xia et al. (2023) have
been proposed under the light-tailed assumption, but none of them can be adapted to our problem.
Specifically, Bu et al. (2024); Yang et al. (2022); Xia et al. (2023) focus on small-norm gradients
(i.e., those near the center of the distribution) and normalize them to be around 1. These approaches
reduce the maximum divergence, thereby requiring less noise to be injected. However, they do
not account for heavy-tailed gradients and thus cannot optimize the clipping loss. Another line of
work directly estimates the actual norm of the per-sample gradient and utilizes it as the clipping
threshold to reduce the clipping loss. For instance, Andrew et al. (2021) estimate the true gradient
trajectory by collecting the norms of historical gradients. However, this approach requires knowing
the upper bound of historical norms for adding noise, which is highly uneconomical under heavy-
tailed distributions, as the upper bound for moment generating function (MGF) Vladimirova et al.
(2020) can be immeasurable, making the scale of DP noise unbearable and the expectation bounds
inapplicable. Moreover, due to the constraints of a finite privacy budget, practical private learning
cannot perform indefinite training. Therefore, it is essential to obtain a high probability bound to
ensure algorithm performance with the probabilistic nature of privacy noise on single runs.

In this paper, we present high probability bounds with faster convergence rates for DPSGD and
propose a novel approach, named Discriminative Clipping (DC)-DPSGD, to effectively balance the
trade-off between clipping loss and required DP noise under the heavy-tailed assumption. The key
idea is to utilize different clipping thresholds for the body gradients and tail gradients respectively,
retaining more information from tail gradients that can withstand more severe DP noise. We introduce
two techniques to achieve this goal. First, we design a subspace identification technique to identify
heavy-tailed gradients with high probability guarantees. We note that the body of heavy-tailed
distributions exhibits characteristics similar to those of light-tailed distributions, and the main
difference lies in the decay rate at the tails. Therefore, we extract orthogonal random vectors from
heavy-tailed distributions (e.g., sub-Weibull distribution) to construct a random projection subspace,
and compute the trace of the second moment matrix between gradients and this subspace to distinguish
heavy-tailed gradients. Second, we present a discriminative clipping mechanism, which applies a
large clipping threshold for the identified heavy-tailed gradients and a smaller one for the remaining
light-tailed gradients. We theoretically analyze the choice of the two clipping thresholds and the
convergence of DC-DPSGD with a tighter bound. Our contributions are summarized as follows.

• We propose DC-DPSGD with a subspace identification technique and a discriminative clipping
mechanism to optimize DPSGD under sub-Weibull gradient noise assumption. To our knowledge,
this is the first work to rigorously address heavy tails in DPSGD with high probability guarantees.

• We present a high probability guarantee with best-known rates for the optimization performance
of DPSGD, and improve it to faster rates by DC-DPSGD, which shows that the empirical risk is
reduced from O

(
logmax(0,θ−1)(T/δ) log2θ(

√
T )

)
to O

(
log(

√
T )

)
with heavy-tailed index θ > 1/2,

iterations T , and high probability 1− δ, under the non-convex condition.
• We conduct extensive experiments on five real-world datasets, where DC-DPSGD consistently out-

performs three baselines with up to 9.72% accuracy improvements, demonstrating the effectiveness
of our proposed approach.
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2 RELATED WORK

Heavy-tailed noise and high probability bounds. Recently, from the perspective of escaping from
stationary points and Langevin dynamics, the noise in neural networks is more inclined to anisotropic
and non-Gaussian properties Gurbuzbalaban et al. (2021); Simsekli et al. (2019); Gorbunov et al.
(2020); Zhang et al. (2020b), with specific heavy-tailed phenomena discovered and defined in gradient
descent in deep neural networks. Several works focused on heavy-tailed convex optimization in
privacy-preserving deep learning Lowy & Razaviyayn (2023); Wang et al. (2020); Kamath et al.
(2022). Building upon the work of Wang et al. (2020), Kamath et al. (2022) relax the assumption
of Lipschitz condition and sub-Exponential distribution to a more general α-th moment bounded
condition. However, no work has investigated the convergence characteristics of heavy-tailed DPSGD
in non-convex settings. Meanwhile, high probability bounds are more frequently discussed in
optimization properties such as convex and non-convex learning with SGD, but rarely addressed
in the context of private learning. Specifically, with bounded α-th moments assumption, Li & Liu
(2023) provide a high probability theoretical analysis for variants like clipped SGD with momentum
and adaptive step sizes. Nevertheless, these works on optimizing DPSGD rely on expectation bounds,
which are unsuitable for heavy-tailed assumptions.

Projection subspace in DPSGD. DPSGD has gained wide concerns for its detrimental impact on
model accuracy. A series of works leverage projection techniques to improve performance. For
instance, Zhou et al. (2021); Yu et al. (2021a;b) confine DPSGD training dynamics to more compact
and condensed subspaces through projection. While ensuring the fidelity of training data compression,
they decouple the irrelevant relationship between ambient features and DP noise, and reduce the
optimization error of DPSGD under stringent privacy constraints. However, existing works rely on
the assumption that public datasets are available for designing the techniques Golatkar et al. (2022);
Zhou et al. (2021); Yu et al. (2021a); Gu et al. (2023), which is rather strong, especially in sensitive
domains. In contrast, our approach does not rely on any public dataset.

Gradient clipping. Gradient clipping is a widely adopted technique to ensure the sensitivity of
gradients is bounded in both practical implementations and theoretical analysis for DPSGD Chen
et al. (2020); Zhang et al. (2020a; 2022); Andrew et al. (2021); Xiao et al. (2023); Wei et al. (2022);
Koloskova et al. (2023). Since the tuning parameters in the classical Abadi’s clipping function Abadi
et al. (2016) are complex, adaptive gradient clipping schemes have been proposed by Bu et al. (2024);
Yang et al. (2022). These schemes scale per-sample gradients based on their norms. In particular,
gradients with small norms are amplified infinitely. Building upon this, Xia et al. (2023) control the
amplification of gradients with small norms in a finite manner. However, no work has specifically
optimized gradient clipping under the heavy-tailed assumption of DPSGD. Due to the scale of noise
required to achieve differential privacy, trivial clipping methods and analysis are not applicable.

3 PRELIMINARIES

3.1 NOTATIONS

Let D be a private dataset, which consists of n training data S = {z1, ..., zn} with a sample domain
Z drawn i.i.d. from the underlying distribution P. Since P is unknown and inaccessible in practice,
we minimize the following empirical risk in a differentially private manner:

LS(w) :=
1

n

∑n

i=1
ℓ(w, zi), (1)

where the objective function ℓ(·) : (w ⊆ W,Z) → R is possible non-convex and W ⊆ Rd

represents the model parameter space. Then, we denote ∇ℓ as the gradient of ℓ with respect to w.
Furthermore, we introduce several notations regarding the projection subspace. Let Vk ∈ Rd×k

denote k-dimensional random projection sampled from heavy-tailed distributions. The empirical
second moment of V T

k ∇ℓ is given by V T
k ∇ℓ∇ℓTVk. The total variance in the empirical projection

subspace is generally measured by the trace of the second moment denoted as tr(V T
k ∇ℓ∇ℓTVk).

DPSGD lies in strict mathematical definitions Dwork et al. (2006); Abadi et al. (2016) and compo-
sition theorems Kairouz et al. (2015); Mironov (2017); Dong et al. (2022). Definition 3.1 gives a
formal definition of differential privacy (DP).
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Definition 3.1 (Differential Privacy). A randomized algorithm M is (ϵ, δ)-differentially private if
for any two neighboring datasets D, D′ differ in exactly one data point and any event Y , we have

P(M(D) ∈ Y ) ≤ exp(ϵ) · P(M(D′) ∈ Y ) + δ, (2)

where ϵ is the privacy budget and δ is a small probability.

3.2 ASSUMPTIONS

A substantial amount of research has shown that even on the simplest MNIST dataset, gradient descent
exhibits heavy-tailed behavior Gurbuzbalaban et al. (2021), allowing our theoretical framework to
center around a state-of-the-art heavy-tailed distribution, sub-Weibull distribution Vladimirova et al.
(2020), which generalizes the sub-Gaussian and sub-Exponential families to potentially heavier-tailed
ones. Sub-Weibull distributions are characterized by a positive tail index θ, with θ = 1

2 represents
sub-Gaussian distributions, θ = 1 represents heavy-tailed sub-Exponential distributions, and θ > 1
represents heavier-tailed ones.

Assumption 3.1 (Sub-Weibull Gradient Noise). Conditioned on the iterates, we make an assumption
that the gradient noise ∇ℓ(wt) − ∇L(wt) satisfies E[∇ℓ(wt) − ∇L(wt)] = 0 and ∥∇ℓ(wt) −
∇L(wt)∥2 ∼ subWeibull(θ,K) for some positive K, such that θ ≥ 1

2 , and have

Et[exp((∥∇ℓ(wt)−∇L(wt)∥2/K)
1
θ )] ≤ 2.

Assumption 3.1 is a relaxed version of gradient noise following sub-Gaussian distributions, that is
Et[exp((∥∇ℓ(wt) − ∇L(wt)∥2/K)2)] ≤ 2, which means that finding upper bounds for moment
generating function (MGF) under Assumption 3.1 is impracticable by standard tools Vladimirova
et al. (2020). Thus, the truncated tail theory Bakhshizadeh et al. (2023) and martingale difference
inequality Madden et al. (2020) play a crucial role in our analysis.

Assumption 3.2 (β-Smoothness). The loss function ℓ is β-smooth, for any wt,w
′
t ∈ Rd, we have

∥∇ℓ(wt)−∇ℓ(w′
t)∥2 ≤ β∥wt −w′

t∥2.

Assumption 3.3 (G-Bounded). For any w ∈ Rd and per-sample z, there exists positive real numbers
G > 0, and the expectation gradient satisfies

∥∇L(wt)∥22 ≤ G.

Assumption 3.2 is widely used in optimization literature Foster et al. (2018); Zhou et al. (2021); Li &
Liu (2022) and is essential for ensuring the convergence of gradients to zero Li & Orabona (2020).
Compared to the bounded stochastic gradient assumption Zhou et al. (2021); Li & Liu (2022; 2023),
i.e., ∥∇ℓ(wt, zi)∥22 ≤ G, Assumption 3.3 is milder, with our results being more applicable.

4 HEAVY-TAILED DPSGD WITH HIGH PROBABILITY BOUNDS

To analyze the performance degradation of DPSGD and the imperative of discriminative clipping in
heavy-tailed scenarios, we first present the current optimal optimization error of DPSGD Yang et al.
(2022); Bu et al. (2024); Zhou et al. (2021) on expectation bounds and the representative heavy-tailed
results with high probability bounds in Table 1. Most works with expectation bounds rely on the
assumption of light-tailed distributions, rough clipping analysis, or additional conditions, and cannot
be adapted to heavy-tailed DPSGD. Moreover, while high probability bounds are widely adopted in
the domain of SGD, applying them to DPSGD is challenging due to the additional unbounded privacy
noise introduced by DPSGD. This makes it difficult to provide empirical guidance for determining
the clipping threshold under rigorous theoretical guarantees. To fill this gap, we analyze the high
probability bound for classical DPSGD on the gradients of empirical risks, denoted as ∥∇LS(wt)∥2,
under the heavy-tailed sub-Weibull assumption, as stated in Theorem 4.1. Consequently, we can use
this theorem to establish the relationship between the clipping threshold and the heavy tail index.

Theorem 4.1 (Convergence of Heavy-tailed DPSGD). Under Assumptions 3.1 and 3.2, let wt be
the iterate produced by DPSGD with learning rate ηt = 1√

T
. Suppose that T = O( nϵ√

d log(1/δ)
),
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Table 1: Summary of state-of-the-art optimization results under non-convex conditions, where
‘symmetry’ means the gradient noise ξ satisfies P(ξ) = P(−ξ), and ˆlog(·) := logmax(0,θ−1)(·).

Measure Method DPSGD SGD Assumption Clipping
E

xp
ec

ta
tio

n

Yang et al. (2022) O

(
4
√
d log(T/δ)

(nϵ)
1
2

)
✕

bounded
variance ✓

Bu et al. (2024) O

(√
d

nϵ

)
O
(

d
4
√
T

)
symmetry ✓

Zhou et al. (2021) O
(

k

nϵ

)
✕ public subspace ✕

H
ig

h
pr

ob
ab

ili
ty

Madden et al. (2020) ✕ O

(√
log(T ) logθ(1/δ)√

T
+

ˆlog(T/δ) log(1/δ)√
T

)
heavy tails ✕

Li & Liu (2022) ✕ O

(
log2θ(1/δ) log(T )√

T
+

ˆlog(T/δ) log(1/δ)√
T

)
heavy tails ✕

Li & Liu (2022) ✕ O
(
logθ(T/δ) log(T )√

T
+

log2θ+1(T ) log(T/δ)√
T

)
heavy tails ✓

Our
DPSGD O

(
d

1
4 log

5
4 (T/δ) ·

ˆlog(T/δ) log2θ(
√
T )

(nϵ)
1
2

)
heavy tails ✓

Our
DC-DPSGD O

(
d

1
4 log

5
4 (T/δ) ·

(
p
ˆlog(T/δ) log2θ(

√
T )

(nϵ)
1
2

+ (1− p)(
log(

√
T )

(nϵ)
1
2

)
))

heavy tails ✓

T ≥ 1, and c = max
(
4K logθ(

√
T ), 39K logθ(2/δ)

)
, where d is the number of model parameters.

For any δ ∈ (0, 1), with probability 1− δ, we have:

1

T

T∑
t=1

min
{
∥∇LS(wt)∥2, ∥∇LS(wt)∥22

}
≤ O

d
1
4 log

1
4 (T/δ)

(nϵ)
1
2︸ ︷︷ ︸

privacy

log(T/δ) ˆlog(T/δ)︸ ︷︷ ︸
tail probability

log2θ(
√
T )︸ ︷︷ ︸

clipping

 ,

where ˆlog(T/δ) := logmax(0,θ−1)(T/δ).

Proof. The proof is provided in Appendix B due to space limitations.

In Theorem 4.1, we divide the optimization bound on the gradients of empirical risks into privacy
error, high probability tail error, and clipping error. Overall, we can derive that, as θ ascends, the
optimization performance of DPSGD gradually deteriorates, because both ˆlog(T/δ) (appearing when
θ > 1) and log2θ(

√
T ) increase. Next, we compare our heavy-tailed DPSGD result to existing works.

• Compared to existing DPSGD with expectation bounds. Our work achieves the current
optimal results for classical DPSGD based on weaker assumptions and is extensible to
heavy-tailed scenarios. When θ = 1

2 (i.e., light-tailed scenarios), the convergence bound
becomes O(d

1
4 log

5
4 (T/δ) log(

√
T )/(nϵ)

1
2 ). It aligns with the current optimal expectation

bounds of DPSGD, i.e., O( 4
√
d log(1/δ)/(nϵ)

1
2 ) in Yang et al. (2022), except for an extra

high probability term log(T/δ) log(
√
T ), while excluding the requirements of bounded

variance, symmetric gradients Bu et al. (2024), and public data Zhou et al. (2021).
• Compared to existing SGD with high probability bounds. Our high probability term

demonstrates improved performance in terms of clipping error. Specifically, the dependency
on the confidence parameter 1/δ is logarithmic, similar to the optimal high probability
bounds for SGD Li & Liu (2022; 2023); Madden et al. (2020), as shown in Table 1.
Moreover, suppose

√
T = (nϵ)

1
2 / 4
√
d log(1/δ), our DPSGD result can be transformed

to O(log(T/δ) ˆlog(T/δ) log2θ(
√
T )/

√
T ), improving the clipping error from log2θ+1(T )

in Li & Liu (2022) to log2θ(
√
T ).

To our knowledge, we are the first to use the high probability bound as a measure to analyze the
optimization performance in heavy-tailed DPSGD.
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Tail-aware clipping mechanism. We can further observe from Theorem 4.1 that the theoretical value
of c is positively correlated to θ, which means the ideal clipping threshold should scale up as the
heavy tail index θ increases. Otherwise, the convergence bound may become sub-optimal and even
collapse. Intuitively, using existing empirical guidance for clipping threshold under the heavy-tailed
assumption will cause higher clipping losses for tailed gradients with larger L2 norms. This motivates
us to design a tail-aware clipping mechanism to improve the performance of DPSGD.

5 DISCRIMINATIVE CLIPPING DPSGD

In this section, we present our approach DC-DPSGD that effectively handles heavy-tailed gradients
with a novel tail-aware clipping mechanism, as illustrated in Figure 2. The rationale is to divide
gradients following a heavy-tailed sub-Weibull distribution into two parts: light body and heavy
tail, and employ different clipping thresholds for the two parts respectively, where a small clipping
threshold is applied for light body and a larger one for heavy tail to mitigate the extra clipping loss.

Specifically, DC-DPSGD consists of two steps. In the first step, we propose a subspace identification
technique to distinguish gradients from light body and heavy tail in a privacy-preserving way. To
satisfy differential privacy, noise with scale σtr is added to this step (Section 5.1). In the second step,
we present a discriminative clipping method that utilizes different clipping thresholds for the two
parts and adds DP noise with scale σdp for privacy preservation (Section 5.2). For a fair comparison
to existing DPSGD works, the total privacy budget allocated by DC-DPSGD to ϵtr and ϵdp must
be equal to the privacy budget ϵ in DPSGD variants, i.e., ϵ = ϵtr + ϵdp. Algorithm 1 presents the
detailed steps of DC-DPSGD, and Theorem 5.1 gives its privacy guarantee.

Theorem 5.1 (Privacy Guarantee). There exist constants m1 and m2 such that for any ϵtr ≤ m1q
2T ,

ϵdp ≤ m1q
2T and δ > 0, the noise multiplier σ2

tr =
m2Tq2 ln 1

δ

ϵ2tr
and σ2

dp =
m2Tq2 ln 1

δ

ϵ2dp
over T

iterations, where q = B
n , and DC-DPSGD is (ϵtr + ϵdp, δ)-differentially private.

Proof. According to the results of trace sorting, we apply two clipping thresholds for gradient
perturbation, making it essential to reanalyze the unified privacy guarantees of our composition
mechanism. Due to space limitations, we defer the proof to Appendix C for more details.

5.1 SUBSPACE IDENTIFICATION

We note that the heavy tail index θ reflects the per-sample gradient norm, which means samples
drawn from heavier-tailed distributions are more likely to exhibit larger L2 norms, and their subspace
eigenvectors differ from those of light-tailed distributions. Due to the high-dimensional nature of
gradients, their normalized versions act as mutually orthogonal eigenvectors Wainwright (2019).
By measuring the similarity between the empirical normalized gradients and the underlying heavy-
tailed subspace, a higher similarity indicates closer alignment with the heavy tail, while a lower
similarity implies the light body. Given that the normalized gradients retain directional information
with bounded sensitivity L2 norm (equal to 1), this allows for bypassing the unbounded norm of
heavy-tailed gradients and identifying different responses of gradients in the heavy-tailed subspace.

Specifically, we first construct a projection matrix composed of k random orthogonal unit vectors
[v1, ..., vk] consistent with heavy-tailed sub-Weibull distributions (θ > 1

2 ), and then divide gradients

Figure 2: Overview of DC-DPSGD.
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Algorithm 1 Discriminative Clipping DPSGD
Input: Private batch size B, heavy-tailed ratio p, heavy-tailed clipping threshold c1, light-tailed clip-
ping threshold c2, learning rate ηt and subspace dimension k.

1: Initialize w0 randomly.
2: for e ∈ Epochs E do
3: Initialize Vt,k to None.
4: for t ∈ Iterations T do
5: Take a random batch B with sampling ratio B/n and gt(zi) = ∇ℓ(wt, zi).
6: Extract orthogonal vectors [v1, ..., vk] from sub-Weibull distributions and construct projec-

tion subspace with Vt,kV
T
t,k = 1

k

∑k
i=1 viv

T
i .

7: Normalize per-sample gradient ĝt(zi) = gt(zi)/∥gt(zi)∥.
8: Calculate the trace λtr

t,i of the projected second moment V T
t,kĝt(zi)ĝ

T
t (zi)Vt,k.

9: Perturb traces λ̃tr
t,i = λtr

t,i + N(0, σ2
tr) and identify top-pB based on sorted λ̃tr

t,i.
10: Discriminative clipping: clip per-sample gradient and add noise with c1 and c2.

For heavy tail: gtail
t (zi) = gtail

t (zi)/max(1,
∥gtail

t (zi)∥2

c1
) + N(0, c21σ2

dpId)

For light body: gbody
t (zi) = gbody

t (zi)/max(1,
∥gbody

t (zi)∥2

c2
) + N(0, c22σ2

dpId)

11: Weighted average g̃t =
1
B

(∑pB
i=1 g

tail
t (zi) +

∑(1−p)B
i=1 gbody

t (zi)
)

.
12: Update wt+1 = wt − ηtg̃t.
13: end for
14: end for

into the light body or heavy tail region according to the projected trace λtr
t,i = V T

t,kĝt(zi)ĝ
T
t (zi)Vt,k,

where the larger λtr
t,i indicates a higher similarity between the gradient and the projection subspace,

and Vt,kV
T
t,k = 1

k

∑k
i=1 viv

T
i is the approximated second moment. To estimate the utility of the

identification, we need to bound the skewing between the empirical second moment and the population
second moment, i.e., ∥VkV

T
k − E[VkV

T
k ]∥2. It is worth noting that in line 9 of Algorithm 1, as the

publicly available traces are sorted to identify the top p% heavy-tailed gradients, which may expose
intrinsic preferences, extra noise is injected. According to Ahlswede-Winter Inequality Wainwright
(2019), we analyze the error of subspace skewing in a high probability form.
Theorem 5.2 (Subspace Skewing for Identification). Assume that the empirical second moment
matrix M = VkV

T
k ∈ Rd×d with V T

k Vk = Ik approximates the population second moment matrix
M̂ = V̂kV̂

T
k = EVk∼P[VkV

T
k ], λtr

t,i = tr(V T
k ĝt(zi)ĝ

T
t (zi)Vk) and λ̂tr

t = tr(V̂ T
k ĝt(zi)ĝ

T
t (zi)V̂k),

for any gradient ĝt(zi) that satisfies ∥ĝt(zi)∥2 = 1, ζtrt ∼ N(0, σ2
tr), with probability 1− δm − δtr:

|λtr
t,i − λ̂tr

t + ζtrt | ≤ 4 log (2d/δm)

k
+

m2

√
B log

1
2 (1/δtr)

d
1
2

,

where δm, δtr ∈ (0, 1) are introduced by concentration inequalities and DP noise respectively.

By comparing the magnitudes log (2d/δm)/k and log
1
2 (1/δtr)/d

1
2 in Theorem 5.2, it is evident that

the first term dominates since d ≫ k (please refer to Appendix D for more discussion). Thus, the
error is negligible when k is large, indicating that the gradients can be correctly identified with high
probability, guaranteed by 1− δ′m, where δ′m = δtr + δm.

5.2 DISCRIMINATIVE CLIPPING

Assuming that the gradients are classified into the correct heavy tail and light body regions, we then
apply two different clipping thresholds (denoted as c1 and c2) in our discriminative clipping method
for the tail and body gradients, respectively. This way, we can reduce tail gradients’ clipping losses
and obtain faster DPSGD convergence, according to the analysis in Section 4.

Specifically, the tail probability P(|X| > x) = exp (−I(x)) ∀x > 0 of the sub-Weibull variables
X ∼ subW (θ,K) exhibits two different behaviors: (1) Light body: for small x values, the tail
rate capturing function I(x) decays like a sub-Gaussian tail. (2) Heavy tail: for x greater than the
normal convergence region, i.e., x ≥ xmax is a large deviation region, its decay is slower than that
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of the normal distribution, where xmax is a mathematical inflection point related to the population
variance of underlying distributions Bakhshizadeh et al. (2023). Existing literature has studied the
first region in the optimization analysis for DPSGD Bu et al. (2024); Yang et al. (2022); Xia et al.
(2023); Cheng et al. (2022); Xiao et al. (2023); Sha et al. (2023), but they overlook the heavy-tailed
behavior for the second region. In this paper, we not only study the optimization performance of
each region, but also combine the two regions with discriminative clipping thresholds. To construct a
clear convergence boundary for the two regions in heavy-tailed scenarios, we generalize the sharp
heavy-tailed concentration Bakhshizadeh et al. (2023) and sub-Weibull Freedman inequality Madden
et al. (2020) to truncate the theoretical distribution and find the optimal clipping threshold for each
region. As a result, we have the following theorem.
Theorem 5.3 (Convergence of Discriminative Clipping). Under Assumptions 3.1, 3.2 and 3.3,
let wt be the iterate produced by DC-DPSGD with T = O( nϵ√

d log(1/δ)
), T ≥ 1 and ηt = 1√

T
.

Define ˆlog(T/δ) := logmax(0,θ−1)(T/δ), Γ(x) :=
∫∞
0

tx−1e−tdt, a = 2 if θ = 1
2 , a = (4θ)2θe2 if

θ ∈ ( 12 , 1], and a = (22θ+1 + 2)Γ(2θ + 1) + 23θΓ(3θ+1)
3 if θ > 1, for any δ ∈ (0, 1):

(i). In the heavy tail region:
suppose that c1 = max

(
4θ2K logθ(

√
T ), 4θ33K logθ(2/δ)

)
, with probability 1− δ,

1

T

T∑
t=1

min
{
∥∇LS(wt)∥2, ∥∇LS(wt)∥22

}
≤ O

(
d

1
4 log

5
4 (T/δ) ˆlog(T/δ) log2θ(

√
T )

(nϵ)
1
2

)
.

(ii). In the light body region:
suppose that c2 = max

(
2
√
2aK log

1
2 (
√
T ), 33

√
2aK log

1
2 (2/δ)

)
, with probability 1− δ,

1

T

T∑
t=1

min
{
∥∇LS(wt)∥2, ∥∇LS(wt)∥22

}
≤ O

(
d

1
4 log

5
4 (T/δ) log(

√
T )

(nϵ)
1
2

)
.

Proof. We provide a proof sketch below and defer the full proof to Appendix E. In DC-DPSGD, the
convergence bounds for the two regions correspond to c1 and c2, respectively. First, we optimize
the theoretical tools by transforming the concentration inequalities for the sum of sub-Weibull
random variables X into two-region versions distinguished by the tail probability P(|X| > x),
namely sub-Gaussian tail decay rate exp(−x2) and heavy-tailed decay rate exp(−x1/θ), θ > 1

2 .
Then, we analyze the high probability bounds for the gradient noise of DPSGD in each region.
In the heavy tail region, we make the inequality P(∥gt − ∇LS(wt)∥2 > c1) ≤ 2exp(−c

1/θ
1 )

hold and derive the dependence of factor logθ(1/δ) for c1. In the light body region, we have
P(∥gt − ∇LS(wt)∥2 > c2) ≤ 2exp(−c22), resulting in the factor log1/2(1/δ) of c2. Next, we
investigate the high probability error on the unbounded DPSGD privacy noise using Gaussian
distribution properties. Finally, we integrate the results regarding gradient noise and privacy noise to
determine the optimal clipping thresholds for both regions and achieve faster convergence rates for
the optimization performance.

From Theorem 5.3, we can observe that when gradients fall into the light body region, our result does
not contain the heavy-tailed index θ, implying that the optimization performance is not affected by θ
and always converges with respect to the light-tailed sub-Gaussian rate. When the gradients are in
the heavy-tailed region, the convergence will be the same as that of classical heavy-tailed DPSGD,
which becomes deteriorated as θ increases. In summary, compared to existing optimization results
that fully rely on the heavy-tailed index θ Li & Liu (2022); Madden et al. (2020), our DC-DPSGD
bound only increases with θ for partial gradients (i.e., heavy-tailed gradients), leading to improved
optimization performance, notably when θ > 1/2.

5.3 UNIFORM BOUND FOR DC-DPSGD

Notice that in the subspace identification method, we use the trace of the second moment to approxi-
mate the population variance of projected gradients, and the approximation error is bounded by a
high probability of 1 − δ′m in Theorem 5.2. Thus, we can analyze the convergence by combining
Theorems 5.2 and 5.3 to derive the uniform bound for Algorithm 1, as stated in Theorem 5.4.
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Theorem 5.4 (Uniform Bound for DC-DPSGD). Given Assumptions 3.1, 3.2 and 3.3, we can obtain
that for any δ′ ∈ (0, 1), with probability 1− δ′ and Cu :=

∑T
t=1 min{∥∇L̂S(wt)∥22, ∥∇L̂S(wt)∥2}:

Cu ≤ p ∗O

(
d

1
4 log

5
4 (T/δ) ˆlog(T/δ) log2θ(

√
T )

(nϵ)
1
2

)
+ (1− p) ∗O

(
d

1
4 log

5
4 (T/δ) log(

√
T )

(nϵ)
1
2

)
,

where p is the ratio of heavy-tailed gradients, ˆlog(T/δ) = logmax(0,θ−1)(T/δ), δ′ = δ′m+δ, with δ′m
being the error of subspace identification, and δ being the convergence probability of DC-DPSGD.

Theorem 5.4 indicates that the optimization performance of DC-DPSGD is composed of p-weighted
average bounds, where the heavy-tailed convergence rate merely accounts for a portion of p, with
the rest made up of the light body rate. Therefore, our bound minimizes the dependency on θ from
ˆlog(T/δ) log2θ(

√
T ) to log(

√
T ) with high probability (1−p)∗ (1−δ′), which is tighter than heavy-

tailed DPSGD (Theorem 4.1). According to the statistical properties Vershynin (2018); Wainwright
(2019), approximately 5%-10% of data points fall into the tail in practice, that is, p ∈ [5%, 10%].

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Datasets and models. We evaluate DC-DPSGD on five real-world datasets, including MNIST,
FMNIST, CIFAR10, ImageNette Deng et al. (2009) for image classification, and E2E Dušek et al.
(2020) for natural language generation. Moreover, we use two heavy-tailed versions: namely
CIFAR10-HT Cao et al. (2019) (a heavy-tailed version of CIFAR10) and ImageNette-HT (modified
on Park et al. (2021)) to evaluate the performance under heavy tail assumption.

For MNIST and FMNIST, we use a two-layer CNN model. For CIFAR10 and CIFAR10-HT,
we fine-tune SimCLRv2 pre-trained by unlabeled ImageNet and ResNeXt-29 pre-trained by CI-
FAR100 Tramer & Boneh (2021) with a linear classifier, respectively. For ImageNette and ImageNette-
HT, we adopt the same setting as Bu et al. (2024) and ResNet9 without pre-train. For E2E, we use
a transformer-based GPT-2 model (163 million parameters) and fine-tune it with the dataset. We
evaluate image classification tasks using accuracy that measures the portion of correct predictions,
and natural language generation tasks using the BLEU score Papinesi (2002) that measures the quality
of generated data with a modified n-gram precision score.

Baselines. We compare DC-DPSGD with three differentially private baselines: DPSGD with Abadi’s
clipping Abadi et al. (2016), Auto-S/NSGD Bu et al. (2024); Yang et al. (2022), DP-PSAC Xia et al.
(2023), and a non-private baseline: non-DP (ϵ = ∞).

Implementation details. We set c2 = 0.1, B = 128, and η = 0.1 for MNIST and FMNIST. For
CIFAR10, we set c2 = 0.1, B = 256, and η = 1. For ImageNette, we set c2 = 0.15, η = 0.0001 and
B = 1000. For E2E, we adopt the DPAdam optimizer and use the same settings as Li et al. (2022),
where c2 = 0.1. By default, we set c1 = 10 ∗ c2, and heavy-tailed ratio p is 10%. We implement
per-sample clipping in DPSGD by BackPACK Dangel et al. (2020) and allocate the privacy budget
equally according to ϵ = ϵtr+ϵdp

.

6.2 EFFECTIVENESS EVALUATION

Table 2 summarizes the comparison results between DC-DPSGD and baselines. We observe that on
normal datasets, DC-DPSGD outperforms DPSGD, Auto-S, and DP-PSAC by up to 4.57%, 5.42%,
and 4.99%, respectively. While on heavy-tailed datasets, the corresponding improvements are 8.34%,
9.72%, and 9.55%. The reason is that our approach places a larger clipping threshold for heavy-tailed
gradients, thereby preserving more information about them and improving accuracy. Moreover,
we demonstrate the trajectories of training accuracy in Figure 3, indicating that the optimization
performance of DC-DPSGD is superior to existing clipping mechanisms.

We then evaluate the effects of four parameters on test accuracy, including the subspace-k, the
allocation of privacy budget ϵ, the heavy tail index sub-Weibull-θ, and the heavy tail ratio p, with
other parameters kept at default. The results are shown in Table 3. We can see that the test accuracy
increases with the value of k, which aligns with the theoretical analysis that the trace error is related
to O(1/k) and has a small impact on the results. For the allocation of privacy budget between ϵtr and

9
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Table 2: Effectiveness comparison between DC-DPSGD and baselines.

Dataset DP
(ϵ, δ)

Accuracy % or BLEU %
DPSGD Auto-S DP-PSAC Ours non-DP

MNIST (8,1e−5) 97.65±0.09 97.55±0.16 97.67±0.06 98.72±0.02 99.10±0.02
FMNIST (8,1e−5) 83.23±0.10 82.38±0.15 82.81±0.18 87.80±0.47 89.95±0.32
CIFAR10 (8,1e−5) 93.31±0.01 93.28±0.06 93.30±0.03 94.05±0.11 94.62±0.03
CIFAR10 (4,1e−5) 93.06±0.09 93.08±0.06 93.11±0.08 93.42±0.14 94.62±0.03

ImageNette (8,1e−4) 66.81±0.42 65.57±0.85 65.68±1.71 69.29±0.19 71.67±0.49
CIFAR10-HT (8,1e−5) 57.98±0.59 58.30±0.61 57.99±0.58 62.57±1.03 71.74±0.65

ImageNette-HT (8,1e−4) 25.36±1.71 23.98±2.00 24.15±1.99 33.70±0.91 39.91±1.46

E2E (full fine-tune) (8,1e−5) 63.189 63.600 63.627 65.380 69.463
E2E (LoRA fine-tune) (8,1e−5) 63.389 63.518 63.502 64.150 69.692

Table 3: Effects of parameters on test accuracy.

Dataset Subspace-k ϵtr + ϵdp Sub-Weibull-θ Tail Ratio-p
None 100 200 2+6 4+4 6+2 1/2 1 2 5% 10% 20%

CIFAR10 93.07 93.82 94.05 93.92 94.05 93.37 93.88 93.99 94.05 93.90 94.05 93.63
CIFAR10-HT 57.27 61.60 62.57 62.54 62.57 60.07 61.58 62.28 62.57 61.12 62.57 61.70

ϵdp, we find that a balanced allocation strategy can mitigate excessive noise caused by a one-sided
small privacy budget. For subspace distribution, since the ‘HT’ dataset is extracted through sub-
Exponential distributions, the gradient exhibits a heavier tail phenomenon. Therefore, the accuracy
increases as θ becomes larger. For the tail ratio, p = 10% achieves better results. If p is too low, it
fails to mitigate clipping loss, while if p is too large, it could introduce additional noise.
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Figure 3: Optimization perfor-
mance during CIFAR10 Training.
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6.3 GUIDANCE FOR THE LARGE CLIPPING THRESHOLD

We now validate our empirical guidance for the clipping threshold in Theorem 5.3. The results in
Figure 4 indicate that the optimal ratio is approximately c1 ≈ 10c2. We note that when c1 = 100c2,
the maximum performance declines noticeably, and when c1 = c2, it corresponds to classical
DPSGD. From a theoretical perspective, given δ = 1e−5, η/B = 0.04, and θ ≈ 2 (following Gur-
buzbalaban et al. (2021)), we can obtain c1 = O(logθ(1/δ)), which is

√
125 times larger than

c2 = O(log1/2(1/δ)), that is, c1 = log3/2(1/δ)c2, i.e., c1 ≈ 10c2. In conclusion, the optimal
clipping threshold aligns with our empirical guidance.

7 CONCLUSION

In this paper, we propose a novel approach DC-DPSGD under the heavy-tailed assumption, which
effectively reduces extra clipping loss in the heavy-tailed region. We rigorously analyze the high
probability bound of the classic heavy-tailed DPSGD under non-convex conditions and obtain results
matching the expectation bounds. Furthermore, we sharpen the weighted average optimization
performance of DC-DPSGD. Extensive experiments on five real-world datasets demonstrate that DC-
DPSGD outperforms three state-of-the-art clipping mechanisms.
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A PRELIMINARIES

A random variable X called a sub-Weibull random variable with tail parameter θ and scale factor K,
which is denoted by X ∼ subW (θ,K). We next introduce the equivalent properties and theoretical
tools of sub-Weibull distributions.

A.1 PROPERTIES

Definition A.1 (Sub-Weibull Equivalent Properties Vladimirova et al. (2020)). Let X be a random
variable and θ ≥ 0, and there exists some constant K1,K2,K3,K4 depending on θ. Then the
following characterizations are equivalent:

1. The tails of X satisfy

∃K1 > 0 such that P(|X| > t) ≤ 2exp(−(t/K1)
1
θ ),∀t > 0.

2. The moments of X satisfy

∃K2 > 0 such that ∥X∥p ≤ K2p
θ,∀k ≥ 1.

3. The moment generating function (MGF) of |X| 1θ satisfies

∃K3 > 0 such that E[exp((λ|X|) 1
θ )] ≤ exp((λK3)

1
θ ),∀λ ∈ (0, 1/K3).

4. The MGF of |X| 1θ is bounded at some point,

∃K4 > 0 such that E[exp((|X|/K4)
1
θ )] ≤ 2.

A.2 THEORETICAL TOOLS

Based on the properties of sub-Weibull variables, we have the following high probability bounds and
concentration inequalities for heavier tails as theoretical tools. Besides, We define lp norm as ∥∥p, for
any p ≥ 1.
Lemma A.1. Let a variable X ∼ subW (θ,K), for any δ ∈ (0, 1), then with probability (1− δ) we
have

|X| ≤ K logθ (2/δ).

Proof. Let K1 = K in Definition A.1, and take t = K logθ (2/δ), then the inequality holds with
probability 1− δ.

Lemma A.2 (Vladimirova et al. (2020); Madden et al. (2020)). Let X1, ..., Xn are subW (θ,Ki)
random variables with scale parameters K1, ...Kn. ∀x ≥ 0, we have

P(|
n∑

i=1

Xi| ≥ x) ≤ 2exp(−(
x

g(θ)
∑n

i=1 Ki
)

1
θ )

where g(θ) = (4e)θ for θ ≤ 1 and g(θ) = 2(2eθ)θ for θ ≥ 1.
Lemma A.3 (Sub-Weibull Freedman Inequality Madden et al. (2020)). Let (Ω,F, (Fi),P) be a
filtered probability space. Let (ξi) and (Ki) be adapted to (Fi). Let n ∈ N, then ∀i ∈ [n], assume
Ki−1 ≥ 0, E[ξi|Fi−1] = 0, and E[exp((|ξi|/Ki−1)

1
θ )|Fi−1] ≤ 2 where θ ≥ 1/2. If θ > 1/2,

assume there exists (mi) such that Ki−1 ≤ mi.

if θ = 1/2, let a = 2, then ∀x, β ≥ 0, α > 0, and λ ∈ [0, 1
2α ],

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and

k∑
i=1

aK2
i−1 ≤ α

k∑
i=1

ξi + β
} ≤ exp(−λx+ 2λ2β), (3)
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and ∀x, β, λ ≥ 0,

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and

k∑
i=1

aK2
i−1 ≤ β

} ≤ exp(−λx+
λ2

2
β). (4)

If θ ∈ ( 12 , 1], let a = (4θ)2θe2 and b = (4θ)θe. ∀x, β ≥ 0, and α ≥ bmaxi∈[n]mi, and λ ∈ [0, 1
2α ],

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and

k∑
i=1

aK2
i−1 ≤ α

k∑
i=1

ξi + β
} ≤ exp(−λx+ 2λ2β), (5)

and ∀x, β ≥ 0, and λ ∈ [0, 1
bmaxi∈[n]mi

],

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and

k∑
i=1

aK2
i−1 ≤ β

} ≤ exp(−λx+
λ2

2
β). (6)

If θ > 1, let δ ∈ (0, 1). Let a = (22θ+1 + 2)Γ(2θ + 1) + 23θΓ(3θ + 1)/3 and b = 2 log n/δ
θ−1,

where Γ(x) =
∫∞
0

tx−1e−tdt. ∀x, β ≥ 0, α ≥ bmaxi∈[n]mi, and λ ∈ [0, 1
2α ],

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and

k∑
i=1

aK2
i−1 ≤ α

k∑
i=1

ξi + β
} ≤ exp(−λx+ 2λ2β) + 2δ, (7)

and ∀x, β ≥ 0, and λ ∈ [0, 1
bmaxi∈[n]mi

],

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and

k∑
i=1

aK2
i−1 ≤ β

} ≤ exp(−λx+
λ2

2
β) + 2δ. (8)

Lemma A.4 (Zhang (2005)). Let z1, ..., zn be a sequence of randoms variables such that zk may
depend the previous variables z1, ..., zk−1 for all k = 1, ..., n. Consider a sequence of functionals
ξk(z1, ..., zk), k = 1, ..., n. Let σ2

n =
∑n

k=1 Ezk [(ξk − Ezk [ξk])
2] be the conditional variance.

Assume |ξk − Ezk [ξk]| ≤ b for each k. Let ρ ∈ (0, 1] and δ ∈ (0, 1). With probability at least 1− δ
we have

n∑
k=1

ξk −
n∑

k=1

Ezk [ξk] ≤
ρσ2

n

b
+

b log 1
δ

ρ
. (9)

Lemma A.5 (Cutkosky & Mehta (2020)). For any vector g ∈ Rd, ⟨g/∥g∥2,∇LS(w)⟩ ≥
∥∇LS(w)∥2

3 − 8∥g−LS(w)∥2

3 .
Lemma A.6 (Madden et al. (2020)). If X ∼ subW (θ,K), then E[|Xp|] ≤ 2Γ(pθ + 1)Kp ∀p > 0.
In particular, E[X2] ≤ 2Γ(2θ + 1)K2.

Lemma A.7 (Bakhshizadeh et al. (2023)). Suppose X1, ..., Xm
d
= X are independent and identically

distributed random variables whose right tails are captured by an increasing and continuous function
I : R → R≥0 with the property I(x) = O(x) as x → ∞. Let XL = XI(X ≤ L), Sm =

∑m
i=1 Xi

and ZL := XL − E[X]. Define xmax := sup{x ≥ 0 : x ≤ ηv(mx, η) I(mx)
mx }, then

P(Sm − E[Sm] > mx) ≤


exp(−cxηI(mx)) +mexp(−I(mx)), if x ≥ xmax,

exp(− mx2

2v(mxmax, η)
) +mexp(− mx2

max(η)

ηv(mxmax, η)
), if 0 ≤ x ≤ xmax,

(10)

where cx = 1− ηv(mx,η)I(mx)
2mx2 and v(L, η) = E

[
(ZL)2I(ZL ≤ 0) + (ZL)2 exp(η I(L)

L ZL)I(ZL >

0)
]
,∀β ∈ (0, 1].
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Lemma A.8 (Bakhshizadeh et al. (2023)). Consider the same settings as the ones in Lemma A.7.
Assume E[Xi] = 0, then ∀t ≥ 0 we have

P(Sm > mt) ≤ exp(− mt2

2v(mt, η)
) + exp(−ηmax{ct,

1

2
}I(mt)) +mexp(−I(mt)). (11)

Lemma A.9 (Ahlswede-Winter Inequality). Let Y be a random, symmetric, positive semi-definite
dd matrix such that ∥E[Y ]∥2 ≤ 1. Suppose ∥Y ∥2 ≤ R for some fixed scalar R ≥ 1. Let Y1, ..., Ym

be independent copies of Y (i.e., independently sampled matrix with the same distribution as Y ). For
any µ ∈ (0, 1), we have

P(∥ 1

m

m∑
i=1

Yi − E[Yi]∥2 > µ) ≤ 2d · exp(−mµ2/4R).

A.3 NOTATIONS

Table 4: Summary of notations

Definition of Notations

w the model parameter
d the dimension of model parameters
z the training sample
n the sample size
B the batch sample size
ℓ the loss function

D D′ the neighboring datasets
ϵdp the privacy budget for differential privacy
ϵtr the privacy budget for preserving traces
σdp the noise multiplier for differential privacy
σtr the noise multiplier for preserving traces
Vk k-dimensional the random projection vector
K the variance-related positive constant

∇L(wt) k-dimensional the random projection vector
T the iterations of training
ηt the learning rate in t iteration
θ the heavy tail index
p the ratio of heavy tail
λtr
t,i the empirical trace of the sample
λ̂tr
t the population trace for dividing heavy tail or light body

3



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B CONVERGENCE OF HEAVY-TAILED DPSGD

Theorem B.1 (Convergence of Heavy-tailed DPSGD). Under Assumptions 3.1 and 3.2, let wt be
the iterate produced by Algorithm DPSGD with T = O( nϵ√

d log(1/δ)
), T ≥ 1, and ηt =

1√
T

. Define

σ̂2
dp := m2

Tdc2B2 log(1/δ)
n2ϵ2 . If θ = 1

2 and K ≤ σ̂dp, then c = max
(
4K logθ(

√
T ), 19K log

1
2 (1/δ)

12

)
.

If θ = 1
2 and K ≥ σ̂dp, then c = max

(
4K logθ(

√
T ), 39K log

1
2 (2/δ)

)
. If θ > 1

2 , then c =

max
(
4K logθ(

√
T ), 20K logθ(2/δ)

)
. For any δ ∈ (0, 1), with probability 1− δ, we have

1

T

T∑
t=1

min
{
∥∇LS(wt)∥2, ∥∇LS(wt)∥22

}
≤ O(

d
1
4 log

5
4 (T/δ) ˆlog(T/δ) log2θ(

√
T )

(nϵ)
1
2

),

where ˆlog(T/δ) := logmax(0,θ−1)(T/δ).

Proof. We consider two cases: ∇LS(wt) ≤ c/2 and ∇LS(wt) ≥ c/2. To simplify notation, we
omit the subscript of privacy parameters throughout, such as ϵdp.

We first consider the case ∇LS(wt) ≤ c/2.

LS(wt+1)− LS(wt) ≤ ⟨wt+1 −wt,∇LS(wt)⟩+
1

2
β∥wt+1 −wt∥2 (12)

≤ −ηt⟨gt + ζt,∇LS(wt)⟩+
1

2
βη2t ∥gt + ζt∥2

= −ηt⟨gt − Et[gt] + Et[gt]−∇LS(wt),∇LS(wt)⟩ − ηt⟨ζt,∇LS(wt)⟩

− ηt∥∇LS(wt)∥2 +
1

2
βη2t ∥gt∥2 +

1

2
βη2t ∥ζt∥2 + βη2t ⟨gt, ζt⟩

= −ηt⟨gt − Et[gt],∇LS(wt)⟩ − ηt⟨Et[gt]−∇LS(wt),∇LS(wt)⟩ − ηt⟨ζt,∇LS(wt)⟩

− ηt∥∇LS(wt)∥2 +
1

2
βη2t ∥gt∥2 +

1

2
βη2t ∥ζt∥2 + βη2t ⟨gt, ζt⟩

Considering all T iterations, we get

T∑
t=1

ηt∥∇LS(wt)∥2 ≤ LS(w1)− LS(wS) +

T∑
t=1

1

2
βη2t c

2 +
T∑

t=1

1

2
βη2t ∥ζt∥2︸ ︷︷ ︸
Eq.1

+

T∑
t=1

βη2t ⟨gt, ζt⟩︸ ︷︷ ︸
Eq.2

−
T∑

t=1

ηt⟨ζt,∇LS(wt)⟩︸ ︷︷ ︸
Eq.3

−
T∑

t=1

ηt⟨gt − Et[gt],∇LS(wt)⟩︸ ︷︷ ︸
Eq.4

−
T∑

t=1

ηt⟨Et[gt]−∇LS(wt),∇LS(wt)⟩︸ ︷︷ ︸
Eq.5

(13)

For Eq.1, Eq.2 and Eq.3, since ζt ∼ N(0, cσdpId), according to sub-Gaussian properties and
Lemma A.2, with probability at least 1− δ, we have

T∑
t=1

1

2
βη2t ∥ζt∥2 ≤ 2βK2e log(2/δ)

T∑
t=1

η2t

≤ 2βm2ed
Tc2B2 log2(2/δ)

n2ϵ2

T∑
t=1

η2t . (14)
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Also, with probability at least 1− δ, we get
T∑

t=1

βη2t ⟨gt, ζt⟩ ≤
T∑

t=1

βη2t ∥gt∥∥ζt∥

≤
T∑

t=1

2βcK
√
e log

1
2 (2/δ)η2t

≤ 2β
√
em2Td

c2B log(2/δ)

nϵ

T∑
t=1

η2t . (15)

Due to ∇LS(wt) ≤ c/2, for the term −
∑T

t=1 ηt⟨ζt,∇LS(wt)⟩, with probability at least 1− δ, we
have

−
T∑

t=1

ηt⟨ζt,∇LS(wt)⟩ ≤
T∑

t=1

ηt∥ζt∥∥∇LS(wt)∥

≤
T∑

t=1

2cK
√
e log

1
2 (2/δ)ηt

≤ 2
√

em2Td
c2B log(2/δ)

nϵ

T∑
t=1

ηt. (16)

Since Et[−ηt⟨gt −Et[gt],∇LS(wt)⟩] = 0, the sequence (−ηt⟨gt −Et[gt],∇LS(wt)⟩, t ∈ N) is a
martingale difference sequence. Applying Lemma A.4, we define ξt = −ηt⟨gt − Et[gt],∇LS(wt)⟩
and have

|ξt| ≤ ηt(∥gt∥2 + ∥Et[gt]∥2)∥∇LS(wt)∥2 ≤ ηtc
2. (17)

Applying Et[(ξt − Etξt)
2] ≤ Et[ξ

2
t ], we have

T∑
t=1

Et[(ξt − Etξt)
2] ≤

T∑
t=1

η2tEt[∥gt − Et[gt]∥22∥∇LS(wt)∥22]

≤ 4c2
T∑

t=1

η2t ∥∇LS(wt)∥22. (18)

Then, with probability 1− δ, we obtain
T∑

t=1

ξt ≤
ρ4c2

∑T
t=1 η

2
t ∥∇LS(wt)∥22
ηtc2

+
ηtc

2 log (1/δ)

ρ
. (19)

Next, to bound term Eq.5, we have
T∑

t=1

ηt⟨Et[gt]−∇LS(wt),∇LS(wt)⟩ ≤
1

2

T∑
t=1

ηt∥Et[gt]−∇LS(wt)∥22 +
1

2

T∑
t=1

ηt∥∇LS(wt)∥22.

Setting at = I∥gt∥2>c and bt = I∥gt−∇LS(wt)∥2>
c
2

, for term ∥Et[gt]−∇LS(wt)∥2, we have

∥Et[gt]−∇LS(wt)∥2 = ∥Et[(gt − gt)at]∥2
= ∥Et[(gt(

c

∥gt∥2
− 1)at]∥2

≤ Et[∥(gt(
c

∥gt∥2
− 1)at∥2]

≤ Et[|∥gt∥2 − c|at]
≤ Et[|∥gt∥2 − ∥∇LS(wt)∥2|at]
≤ Et[|∥gt −∇LS(wt)∥2|at]
≤ Et[|∥gt −∇LS(wt)∥2|bt]

≤
√

Et[∥gt −∇LS(wt)∥22]Etb2t . (20)
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Applying Lemma A.6, we get Et[∥gt −∇LS(wt)∥22] ≤ 2K2Γ(2θ + 1). Then, for term Etb
2
t , with

sub-Weibull properties and probability 1− δ we have

Etb
2
t = P(∥gt −∇LS(wt)∥2 >

c

2
) ≤ 2exp(−(

c

4K
)

1
θ ) (21)

So, we get formula.(20) as√
Et[∥gt −∇LS(wt)∥22]Etb2t ≤ 2

√
K2Γ(2θ + 1)exp(−(

c

4K
)

1
θ ). (22)

Thus, for Eq.5, with probability 1− Tδ we finally obtain

T∑
t=1

ηt⟨Et[gt]−∇LS(wt),∇LS(wt)⟩

≤ 2K2Γ(2θ + 1)

T∑
t=1

ηtexp(−(
c

4K
)

1
θ ) +

1

2

T∑
t=1

ηt∥∇LS(wt)∥22. (23)

Combining Eq.1-5 with the inequality (10), with probability 1− 4δ − Tδ, we have

T∑
t=1

ηt∥∇LS(wt)∥22 ≤ LS(w1)− LS(wS) +

T∑
t=1

1

2
βη2t c

2 + 2βm2ed
Tc2B2 log2(2/δ)

n2ϵ2

T∑
t=1

η2t

+ 2β
√
em2Td

c2B log(2/δ)

nϵ

T∑
t=1

η2t + 2
√

em2Td
c2B log(2/δ)

nϵ

T∑
t=1

ηt +
ηtc

2 log (1/δ)

ρ

+
4ρc2

∑T
t=1 η

2
t ∥∇LS(wt)∥22
ηtc2

+ 2K2Γ(2θ + 1)exp(−(
c

4K
)

1
θ )

T∑
t=1

ηt +
1

2

T∑
t=1

ηt∥∇LS(wt)∥22.

(24)

Setting ρ = 1
16 , T = O( nϵ√

d log(1/δ)
) and ηt =

1√
T

, we have

1

4

T∑
t=1

ηt∥∇LS(wt)∥22 ≤ LS(w1)− LS(wS) +
1

2
βc2 + 2βm2e

d
1
2 c2B2 log

3
2 (2/δ)

nϵ

+ 2β
√
em2

d
1
4 c2B log

1
2 (2/δ)√

nϵ
+ 2

√
em2c

2B log
1
2 (2/δ) +

16d
1
4 c2 log

5
4 (1/δ)√

nϵ

+ 2K2Γ(2θ + 1)exp(−(
c

4K
)

1
θ )
√
T︸ ︷︷ ︸

Eq.6

. (25)

Then, we pay attention to term Eq.6. If c → 0, then exp(−( c
4K )

1
θ ) → 1 and

√
T will dominate term

Eq.6. We know that in classical DPSGD, a small c is regarded as the clipping threshold guide, which
will cause the variance term Eq.6 to dominate the entire bound. For this, we will provide guidance on
the clipping values of DPSGD under the heavy-tailed assumption.

Let exp(−( c
4K )

1
θ ) ≤ 1√

T
, then we have c ≥ 4K logθ(

√
T ). So, we obtain

T∑
t=1

ηt∥∇LS(wt)∥22 ≤ 4(LS(w1)− LS(wS)) + 2βc2 + 8βm2e
d

1
2 c2B2 log

3
2 (2/δ)

nϵ

+ 8β
√
em2

d
1
4 c2B log

1
2 (2/δ)√

nϵ
+ 8

√
em2c

2B log
1
2 (2/δ) +

64d
1
4 c2 log

5
4 (1/δ)√

nϵ
+ 8K2Γ(2θ + 1).

(26)
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Multiplying 1√
T

on both sides, we get

1√
T

T∑
t=1

ηt∥∇LS(wt)∥22 ≤ 1√
T

(
4(LS(w1)− LS(wS)) + 2βc2 + 8βm2e

d
1
2 c2B2 log

3
2 (2/δ)

nϵ

+8β
√
em2

d
1
4 c2B log

1
2 (2/δ)√

nϵ
+ 8

√
em2c

2B log
1
2 (2/δ) +

64d
1
4 c2 log

5
4 (1/δ)√

nϵ
+ 8K2Γ(2θ + 1)

)
.

(27)

Taking c = 4K logθ(
√
T ), due to T ≥ 1, we achieve

1√
T

T∑
t=1

ηt∥∇LS(wt)∥22 ≤ 4(LS(w1)− LS(wS))√
T

+
8K2Γ(2θ + 1)√

T

+
16K2 log2θ(

√
T ) log(2/δ)√
T

(
2β + 8βm2e

d
1
2B2 log

1
2 (2/δ)

nϵ

+8β
√
em2

d
1
4B log−

1
2 (2/δ)√

nϵ
+ 8

√
em2B log−

1
2 (2/δ) +

64d
1
4 log

1
4 (1/δ)√
nϵ

)

≤ O(
log2θ(

√
T ) log(1/δ)√
T

· d
1
4 log

1
4 (1/δ)√
nϵ

)

≤ O(
log2θ(

√
T ) log(1/δ)d

1
4 log

1
4 (1/δ)√

nϵ
). (28)

Due to 1
T

∑T
t=1 ∥∇LS(wt)∥22 ≤ 1√

T

∑T
t=1 ηt∥∇LS(wt)∥22, we have

1

T

T∑
t=1

∥∇LS(wt)∥22 ≤ O(
d

1
4 log2θ(

√
T ) log

5
4 (1/δ)

(nϵ)
1
2

), (29)

with probability 1− Tδ − 4δ.

By substitution, with probability 1− δ, we get

1

T

T∑
t=1

∥∇LS(wt)∥22 ≤ O(
d

1
4 log2θ(

√
T ) log

5
4 (T/δ)

(nϵ)
1
2

). (30)

Secondly, we consider the case ∇LS(wt) ≥ c/2.

LS(wt+1)− LS(wt) ≤ ⟨wt+1 −wt,∇LS(wt)⟩+
1

2
β∥wt+1 −wt∥22

≤ −ηt⟨gt + ζt,∇LS(wt)⟩︸ ︷︷ ︸
Eq.7

+
1

2
βη2t ∥gt + ζt∥22︸ ︷︷ ︸

Eq.8

(31)

We have discussed term Eq.8 in the above case, so we focus on Eq.7 here. Setting s+t = I∥gt∥2≥c and
s−t = I∥gt∥2≤c.

− ηt⟨gt + ζt,∇LS(wt)⟩

= −ηt⟨
cgt

∥gt∥2
s+t + gts

−
t ,∇LS(wt)⟩ − ηt⟨ζt,∇LS(wt)⟩. (32)

Applying Lemma A.5 to term −ηt⟨ cgt

∥gt∥2
s+t ,∇LS(wt)⟩, we have

−ηt⟨
cgt

∥gt∥2
s+t ,∇LS(wt)⟩ ≤ −cηts

+
t ∥∇LS(wt)∥2

3
+

8cηt∥gt −∇LS(wt)∥2
3

≤ −cηt(1− s−t )∥∇LS(wt)∥2
3

+
8cηt∥gt −∇LS(wt)∥2

3
. (33)
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For term −ηt⟨gts
−
t ,∇LS(wt)⟩, we obtain

−ηt⟨gts
−
t ,∇LS(wt)⟩ = −ηts

−
t (⟨gt −∇LS(wt),∇LS(wt)⟩+ ∥∇LS(wt)∥22)

≤ −ηts
−
t (−∥gt −∇LS(wt)∥2∥∇LS(wt)∥2 + ∥∇LS(wt)∥22)

≤ ηt∥gt −∇LS(wt)∥2∥∇LS(wt)∥2 −
c

2
ηts

−
t ∥∇LS(wt)∥2

≤ ηt∥gt −∇LS(wt)∥2∥∇LS(wt)∥2 −
c

3
ηts

−
t ∥∇LS(wt)∥2. (34)

According to Lemma A.1, with probability at least 1− δ, we have

∥gt −∇LS(wt)∥2 ≤ K logθ(2/δ), (35)

then we get

−ηt⟨gts
−
t ,∇LS(wt)⟩ ≤ K logθ(2/δ)∥∇LS(wt)∥2 −

c

3
ηts

−
t ∥∇LS(wt)∥2, (36)

and

−ηt⟨
cgt

∥gt∥2
s+t ,∇LS(wt)⟩ ≤ −cηt(1− s−t )∥∇LS(wt)∥2

3
+

8cηtK logθ(2/δ)

3
. (37)

Using Lemma A.2 to term −
∑T

t=1 ηt⟨ζt,∇LS(wt)⟩, with probability at least 1− δ, we have

−
T∑

t=1

ηt⟨ζt,∇LS(wt)⟩ ≤ 4
√
em2Td

cB log(2/δ)

nϵ

T∑
t=1

ηt∥∇LS(wt)∥2. (38)

So, combining formula.(35), formula.(37) and formula.(38) with term Eq.7, with probability at least
1− 2δ − Tδ, we obtain

−
T∑

t=1

ηt⟨gt + ζt,∇LS(wt)⟩ ≤ −
T∑

t=1

cηt
3

∥∇LS(wt)∥2 +
T∑

t=1

8cηtK logθ(2/δ)

3

+K logθ(2/δ)

T∑
t=1

ηt∥∇LS(wt)∥2 + 4
√

em2Td
cB log(2/δ)

nϵ

T∑
t=1

ηt∥∇LS(wt)∥2

≤ −
T∑

t=1

cηt
3

∥∇LS(wt)∥2 + (
19

3
K logθ(2/δ) + 4

√
em2Td

cB log(2/δ)

nϵ
)

T∑
t=1

ηt∥∇LS(wt)∥2.

(39)

Next, considering all T iterations and term Eq.8 with σ̂2
dp := dc2σ2

dp = m2
Tdc2B2 log(1/δ)

n2ϵ2 and
probability 1− 4δ − Tδ, we have

(
c

3
− 19

3
K logθ(2/δ)− 4

√
eσ̂dp log

1
2 (1/δ))

T∑
t=1

ηt∥∇LS(wt)∥2 ≤ LS(w1)− LS(wS)

+ (2βm2ed
Tc2B2 log2(2/δ)

n2ϵ2
+ 2β

√
em2Td

c2B log(2/δ)

nϵ
+

1

2
βc2)

T∑
t=1

η2t . (40)
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If θ = 1
2 and K ≥ σ̂dp, let c

3 ≥ 39
3 K log

1
2 (2/δ), i.e. c ≥ 39K log

1
2 (2/δ), taking c =

39K log
1
2 (2/δ), T = O( nϵ√

d log(1/δ)
) and ηt =

1√
T

, we have

T∑
t=1

ηt∥∇LS(wt)∥2 ≤ 3

K log
1
2 (2/δ)

(LS(w1)− LS(wS))

+
3
∑T

t=1 η
2
t

K log
1
2 (2/δ)

(
2βm2ed

Tc2B2 log2(2/δ)

n2ϵ2
+ 2β

√
em2Td

c2B log(2/δ)

nϵ
+

1

2
βc2
)

≤
LS(w1)− LS(wS) + 2βeσ̂2

dp log(2/δ) + 2βc
√
eσ̂dp log

1
2 (2/δ) + 392

2 βK2 log(2/δ)

1
3K log

1
2 (2/δ)

≤ 3(LS(w1)− LS(wS))

K log
1
2 (2/δ)

+ 6βeK log
1
2 (2/δ) + 6β

√
e log

1
2 (2/δ) + 3β

(39)2

2
K log

1
2 (2/δ).

(41)

Thus, with probability 1− 4δ − Tδ, we have

1

T

T∑
t=1

∥∇LS(wt)∥2 ≤ 1√
T

T∑
t=1

ηt∥∇LS(wt)∥2 ≤ O(
log

1
2 (1/δ)√
T

) = O(
log

1
2 (1/δ)d

1
4 log

1
4 (1/δ)√

nϵ
),

implying that with probability 1− δ, we have

1

T

T∑
t=1

∥∇LS(wt)∥2 ≤ O(
d

1
4 log

3
4 (T/δ)√
nϵ

). (42)

If θ = 1
2 and K ≤ σ̂dp, that is, c ≥ 19 log

1
2 (1/δ)K
12 , thus there exists T = O( nϵ√

d log(1/δ)
), T ≥ 1 and

ηt =
1√
T

that we obtain

T∑
t=1

ηt∥∇LS(wt)∥2 ≤ 1
√
eσ̂dp log

1
2 (1/δ)

(LS(w1)− LS(wS))

+

∑T
t=1 η

2
t√

eσ̂dp log
1
2 (1/δ)

(
2βm2ed

Tc2B2 log2(2/δ)

n2ϵ2
+ 2β

√
em2Td

c2B log(2/δ)

nϵ
+

1

2
βc2
)

≤ 1
√
eσ̂dp log

1
2 (1/δ)

(LS(w1)− LS(wS))

+

∑T
t=1 η

2
t√

eσ̂dp log
1
2 (1/δ)

(
2βeσ̂2

dp log(2/δ) + 2β
√
eσ̂dp log

1
2 (2/δ) +

272

2
βeσ̂2

dp log(2/δ)

)
≤ LS(w1)− LS(wS)

K log
1
2 (2/δ)

+ 2βeK log
1
2 (2/δ) + 2β

√
e log

1
2 (2/δ) + β

(27)2

2
K log

1
2 (2/δ). (43)

Therefore, with probability 1− 4δ − Tδ, we have

1

T

T∑
t=1

∥∇LS(wt)∥2 ≤ O(
log

1
2 (1/δ)d

1
4 log

1
4 (1/δ)√

nϵ
),

then, with probability 1− δ, we have

1

T

T∑
t=1

∥∇LS(wt)∥2 ≤ O(
d

1
4 log

3
4 (T/δ)√
nϵ

). (44)
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If θ > 1
2 , then term logθ(2/δ) dominates the left-hand inequality, i.e. 19

3 K logθ(2/δ) ≥
4
√
eσ̂dp log

1
2 (1/δ). Let c

3 ≥ 20
3 K logθ(2/δ), T = O( nϵ√

d log(1/δ)
) and ηt =

1√
T

, we obtain

T∑
t=1

ηt∥∇LS(wt)∥2 ≤ 3

K logθ(2/δ)
(LS(w1)− LS(wS))

+
3
∑T

t=1 η
2
t

K logθ(2/δ)

(
2βm2ed

Tc2B2 log2(2/δ)

n2ϵ2
+ 2β

√
em2Td

c2B log(2/δ)

nϵ
+

1

2
βc2
)

≤ 3(LS(w1)− LS(wS))

K logθ(2/δ)
+

192

24
βK logθ(2/δ) + 190βK logθ(2/δ) + 3β(20)2K logθ(2/δ).

(45)

Consequently, with probability 1− δ, we have

1

T

T∑
t=1

∥∇LS(wt)∥2 ≤ O(
logθ(T/δ)d

1
4 log

1
4 (T/δ)√

nϵ
). (46)

Integrating the above results, when ∇LS(wt) ≥ c/2 we have

1

T

T∑
t=1

∥∇LS(wt)∥2 ≤ O(
d

1
4 logθ+

1
4 (T/δ)√
nϵ

), (47)

with probability 1− δ and θ ≥ 1
2 .

To sum up, covering the two cases, we ultimately come to the conclusion with probability 1 − δ,
T = O( nϵ√

d log(1/δ)
), T ≥ 1, and ηt =

1√
T

1

T

T∑
t=1

min
{
∥∇LS(wt)∥2, ∥∇LS(wt)∥22

}
≤ O(

d
1
4 logθ+

1
4 (T/δ)

(nϵ)
1
2

) +O(
d

1
4 log2θ(

√
T ) log

5
4 (T/δ)

(nϵ)
1
2

)

≤ O(
d

1
4 log

5
4 (T/δ)

(
logθ−1(T/δ) + log2θ(

√
T )
)

(nϵ)
1
2

)

≤ O(
d

1
4 log

5
4 (T/δ) ˆlog(T/δ) log2θ(

√
T )

(nϵ)
1
2

), (48)

where ˆlog(T/δ) = logmax(0,θ−1)(T/δ). If θ = 1
2 and K ≤ σ̂dp, then

c = max
(
4K logθ(

√
T ), 19K log

1
2 (1/δ)

12

)
. If θ = 1

2 and K ≥ σ̂dp, then c =

max
(
4K logθ(

√
T ), 39K log

1
2 (2/δ)

)
. If θ > 1

2 , then c = max
(
4K logθ(

√
T ), 20K logθ(2/δ)

)
.

The proof of Theorem 4.1 is completed.
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C PRIVACY GUARANTEE

We provide the complete privacy guarantee proof of Theorem 5.1 for our differential private mecha-
nism M ′: Subsample◦TraceSorting (TS)◦GradientPerturbation (GP). The specific proof process is as
follows, and our proof comprehensively encompasses mechanism M ′:

• TraceSorting: We prove that TraceSorting is (ϵtr, δtr)-DP.
• TraceSorting◦GradientPerturbation: We prove that based on the results of TraceSort-

ing, with two different clipping threshold, the unified composition of TraceSorting and
GradientPerturbation is (ϵtr + ϵdp, δ)-DP, where δ = δtr + δdp.

• Subsample◦TraceSorting◦GradientPerturbation: We prove that, under the premise of
subsampling, the privacy amplification effect remains valid for our composition mechanism.

(1) Firstly, we show the TS with Gaussian noise here is (ϵtr, δtr)-DP and follow the proof of Report
Noisy Argmax (RNA) in Claim 3.9 Dwork et al. (2014) to clarify that.

Proof. Our trace sorting is to choose traces ranked from 1 to pB. To prove that this process satisfies
differential privacy (DP), we need to demonstrate that the method of Report i-th Noisy Argmax for
any i ∈ Z+ and i ∈ (0,m] is (ϵtr, δtr)-DP, where m is sample size. Fix the neighboring datasets
D = D′ ∪ {a}. Let λ, respectively λ′, denote the vector of traces when the dataset is D, respectively
D′. We have discussed the default L2 sensitivity is 1 and use two properties:

1. Monotonicity of Traces. For all j ∈ [m], λj ≥ λ
′

j ;

2. Lipschitz Property. For all j ∈ [m], 1 + λ
′

j ≥ λj .

Fix any i ∈ [m]. We will bound from above and below the ratio of the probabilities that i is selected
with D and with D′. Fix r+−i, a set from Gauss(1/ϵtr)m−i used for all the noisy traces greater than
the i-th trace. Defines r−−i, a set from Gauss(1/ϵtr)i−1 used for all the noisy traces less than the i-th
trace. We will argue for each r−i = r+−i ∪ r−−i independently. We use the notation P[i | ξ] to mean
the probability that the output of the Report Noisy Max algorithm is i, conditioned on ξ.

We first argue that P[i | D, r−−i] ≤ eϵtrP[i | D′, r−−i] + δtr. Define

r∗ = min
ri

: λi + ri > λj + rj ∀j ∈ arg(r−−i).

Note that, having fixed r−−i, i will be the output (the i-th argmax noisy trace) when the dataset is D if
and only if ri ≥ r∗. We have, for all j ∈ arg(r−−i):

λi + r∗ > λj + rj

⇒ (1 + λ
′

i) + r∗ ≥ λi + r∗ > λj + rj ≥ λ
′

j + rj

⇒ λ
′

i + (r∗ + 1) > λ
′

j + rj .

Thus, if ri ≥ r∗ + 1, then the i-th trace will be the i-th maximum on one side when the dataset is D′

and the noise vector is (ri, r−−i). The probabilities below are over the choice of ri ∼ Gauss(1/ϵtr),
then with probability 1− δtr:

P[ri ≥ 1 + r∗] ≥ e−ϵtrP[ri ≥ r∗] = e−ϵtrP[i | D, r−−i]

⇒ P[i | D′, r−−i] ≥ P[ri ≥ 1 + r∗] ≥ e−ϵtrP[ri ≥ r∗] = e−ϵtrP[i | D, r−−i],

which, after multiplying through by eϵtr and adding probability δ for P[r∗ − ri ≥ 1] ≤ δtr, yields
what we wanted to show:

P[i | D, r−−i] ≤ eϵtrP[i | D′, r−−i] + δtr.

Then, we argue that P[i | D, r+−i] ≤ eϵtrP[i | D′, r+−i] + δtr. Define

r∗ = max
ri

: λi + ri < λj + rj ∀j ∈ arg(r+−i).

11
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Note that, having fixed r+−i, i will be the output (the i-th argmax noisy trace) when the dataset is D if
and only if ri ≤ r∗. We have, for all j ∈ arg(r+−i):

λi + r∗ < λj + rj

⇒ λ
′

i + r∗ ≤ λi + r∗ < λj + rj ≤ (λ
′

j + 1) + rj

⇒ λ
′

i + (r∗ − 1) < λ
′

j + rj .

Thus, if ri ≤ r∗−1, then the i-th trace will be the i-th maximum on the other side when the dataset is
D′ and the noise vector is (ri, r+−i). The probabilities below are over the choice of ri ∼ Gauss(1/ϵtr),
with probability 1− δtr, and we have:

P[ri ≤ r∗ − 1] ≥ e−ϵtrP[ri ≤ r∗] = e−ϵtrP[i | D, r+−i]

⇒ P[i | D′, r+−i] ≥ P[ri ≤ r∗ − 1] ≥ e−ϵtrP[ri ≤ r∗] = e−ϵtrP[i | D, r+−i].

After multiplying through by eϵtr and adding probability δtr for P[ri − r∗ ≥ −1] ≤ δ, we get:

P[i | D, r+−i] ≤ eϵtrP[i | D′, r+−i] + δtr.

Overall, combing the both cases with δtr = 2δtr, we have
eϵtr(P[i | D′, r+−i] + P[i | D′, r−−i]) + δtr ≥ P[i | D, r+−i] + P[i | D, r−−i]

eϵtrP[i | D′, r−i] + δtr ≥ P[i | D, r−i],

more precisely, we can explicitly bound δtr to O( 1
pB ) by refering to Zhu & Wang (2020).

Using the same approach, we can prove that
eϵtrP[i | D, r−i] + +δtr ≥ P[i | D′, r−i].

Thus, TraceSorting with Gaussian noise satisfies (ϵtr, δtr)-DP.

(2) Secondly, we prove the unified composition of TraceSorting◦GradientPerturbation is (ϵtr +
ϵdp, δ)-DP. Based on the results of TraceSorting, we employ two different clipping thresholds for
GradientPerturbation.

Proof. We define the clipping threshold vector c for per-sample gradient by TraceSorting, for example,
with B = 3 and p = 1/3, if heavy tailed indicator λ = [1, 0, 0] then c = [c1, c2, c2].

P[M(D) = Y ] = P[TraceSorting=index i AND GP|D]

=

∫ ∞

−∞
P[i|D, r−i] · P[GP with heavy tailed samples i]dr

=

∫ ∞

−∞

∫ ∞

−∞
P[i|D, r−i] · P[

1

B
(

B∈D∑
j

gj + cjζj) = Y |c]drdζ

=

∫ ∞

−∞

∫ ∞

−∞
P[i|D, r−i] · P[f(D) = Y |c] · P[ζ = cjζj/B]drdζ = ∗,

where r ∼ Gauss(1/ϵtr) and ζ ∼ Gauss(1/ϵdp). We define f(·) = GradientDiscent and ∆f =
∥f(D)− f(D′)∥2 = 1

B (pBc1 + (1− p)Bc2) = pc1 + (1− p)c2. With 1− (δtr + δdp), we have

∗ =

∫ ∞

−∞

∫ ∞

−∞
exp(ϵtr)P[i|D′, r−i] · P[

1

B
(

B∈D′∑
j

gj + cjζj) = Y |c]drdζ

=

∫ ∞

−∞

∫ ∞

−∞
exp(ϵtr)P[i|D′, r−i] · P[f(D′) + cjζj/B = Y +∆f |c]drdζ

=

∫ ∞

−∞

∫ ∞

−∞
exp(ϵtr)P[i|D′, r−i] · I[f(D′) = Y ] · P[ζ = cjζj/B −∆f |c]drdζ

≤
∫ ∞

−∞

∫ ∞

−∞
exp(ϵtr)P[i|D′, r−i] · I[f(D′) = Y ] · exp(ϵdp)P[ζ = cjζj/B|c]drdζ

≤ exp(ϵtr + ϵdp)P[M(D′) = Y ],

12
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where we have taken into account the randomness of c through r with λ, then the first inequality
comes from TraceSorting satisfying DP, and the penultimate inequality is derived from the basic
Gaussian-based DP mechanism. Thus, define δ = δtr + δdp, TraceSorting◦GradientPerturbation is
(ϵtr + ϵdp, δ)-DP.

(3) Thirdly, we provide the proof that privacy amplification with subsampling still holds with the
mechanism M : TraceSorting◦GradientPerturbation.

Proof. We use B ⊆ {1, ..., n} to denote the identities of the B-subsampled samples from D =
{z1, . . . , zn}. Note that the randomness of M ′ includes both the randomness of the random sample B
and the random coins of M . Let DB (or D′

B) be a subsample from D (or D′). Let Y be an arbitrary
output range. For convenience, define q = B/n.

To show (q(eϵtr+ϵdp − 1), qδ)-DP, we have to bound the ratio with D′ = D ∪ i:

P[M ′(D) = Y ]− qδ

P[M ′(D′) = Y ]
=

qP[M(DB) = Y | i ∈ B] + (1− q)P[M(DB) = Y | i /∈ B]− qδ

qP[M(D′
B) = Y | i ∈ B] + (1− q)P[M(D′

B) = Y | i /∈ B]

by eq(e
ϵtr+ϵdp−1). For convenience, define the quantities:

C = P[M(DB) = Y | i ∈ B]

C ′ = P[M(D′
B) = Y | i ∈ B]

E = P[M(DB) = Y | i /∈ B] = P[M(D′
B) = Y | i /∈ B]

We can rewrite the ratio as:

P[M ′(D) = Y ]− qδ

P[M ′(D′) = Y ]
=

qC + (1− q)E − qδ

qC ′ + (1− q)E

Now we use the fact that, by (ϵtr+ϵdp, δ)-DP, C ≤ eϵtr+ϵdp min{C ′, E}+δ. The rest is a calculation:

qC + (1− q)E − qδ ≤ q(eϵtr+ϵdp min{C ′, E}+ δ) + (1− q)E − qδ

= q(min{C ′, E}+ (eϵtr+ϵdp − 1)min{C ′, E}+ δ) + (1− q)E − qδ

≤ q(min{C ′, E}+ (eϵtr+ϵdp − 1)min{C ′, E}+ δ) + (1− q)E − qδ

≤ q(C ′ + (eϵtr+ϵdp − 1)(qC ′ + (1− q)E) + δ) + (1− q)E − qδ

≤ q(C ′ + (eϵtr+ϵdp − 1)(qC ′ + (1− q)E) + δ) + (1− q)E

≤ (1 + q(eϵtr+ϵdp − 1))(qC ′ + (1− q)E).

Thus, we have:

P[M ′(D) = Y ]− qδ

P[M ′(D′) = Y ]
≤ q(eϵtr+ϵdp − 1) · P[M(D) = Y ]

P[M(D′) = Y ]
,

and we can derive the simpler conclusion (O(qϵtr + qϵdp),O(qδ))-DP for mechanism M ′, i.e
Subsample◦TraceSorting◦GradientPerturbation is (O(qϵtr + qϵdp),O(δ))-DP. Furthermore, accord-
ing to RenyiDP Mironov (2017) and tCDP Bun et al. (2018), we can calculate the corresponding noise

multiplier σtr,dp = O(
q
√

T log(1/δ)

ϵ ) with ϵ = ϵtr, ϵdp for the composition of iterations in model
training.

To sum up, Theorem 5.1 is proven.

13
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D SUBSPACE SKEWING FOR IDENTIFICATION

Theorem D.1 (Subspace Skewing for Identification). Assume that the empirical second moment
matrix M = VkV

T
k ∈ Rd×d with V T

k Vk = Ik approximates the population second moment matrix
M̂ = V̂kV̂

T
k = EVk∼P[VkV

T
k ], λtr

t,i = tr(V T
k ĝt(zi)ĝ

T
t (zi)Vk) and λ̂tr

t = tr(V̂ T
k ĝt(zi)ĝ

T
t (zi)V̂k),

for any gradient ĝt(zi) that satisfies ∥ĝt(zi)∥2 = 1, ζtrt ∼ N(0, σ2
tr), with probability 1− δm − δtr,

we have

|λtr
t,i − λ̂tr

t + ζtrt | ≤ 4 log (2d/δm)

k
+

m2

√
B log

1
2 (1/δtr)

d
1
2

.

Proof. For simplicity, we abbreviate ĝt(zi) as ĝt. Due to the Fact.1, V T
k Vk = I and V̂ T

k V̂k = I, we
omit subscripts of expectation and have

|λtr
t,i − λ̂tr

t | := |tr(V T
k ĝtĝ

T
t Vk)− tr(V̂ T

k ĝtĝ
T
t V̂k)|

= |∥V T
k ĝt∥22 − ∥V̂ T

k ĝt∥22|
= |∥VkV

T
k ĝt∥22 − ∥V̂kV̂

T
k ĝt∥22|

≤ ∥VkV
T
k ĝt − V̂kV̂

T
k ĝt∥22

≤ ∥VkV
T
k − V̂kV̂

T
k ∥22∥ĝt∥22 (49)

To bound E∥VkV
T
k − V̂kV̂

T
k ∥22, we need to bound the gap between the sum of the random positive

semidefinite matrix M := VkV
T
k = 1

k

∑k
i=1 viv

T
i and the expectation M̂ := V̂kV̂

T
k = E[VkV

T
k ].

Due to ∥vj∥2 = 1, we can easily get

∥M∥2 = ∥1
k

k∑
i=1

viv
T
i ∥2 ≤ 1

k

k∑
i=1

∥vivTi ∥2

= supx:∥x∥2=1

1

k

k∑
i=1

xT viv
T
i x

= supx:∥x∥2=1

1

k

k∑
i=1

⟨x, vi⟩

≤ 1

k

k∑
i=1

∥x∥2∥vi∥2

= 1 (50)

Thus, ∥M∥2 ≤ 1 and ∥EM∥2 = ∥M · P(M)∥2 ≤ 1 because of P(M) ≤ 1.

Then, according to Ahlswede-Winter Inequality with R = 1 and m = k, we have for any µ ∈ (0, 1)

P(∥M − M̂∥2 > µ) ≤ 2d · exp(
−kµ2

4
), (51)

where d is dimension of gradients. The inequality shows that the bounded spectral norm of random
matrix ∥M∥2 concentrates around its expectation with high probability 1− 2d · exp(−kµ2/4).

Since ∥M∥2 ∈ [0, 1] and ∥EM∥2 ∈ [0, 1], ∥M −M̂∥2 is always bounded by 1. Therefore, for µ ≥ 1,
∥M − M̂∥2 > u holds with probability 0. So that for any µ > 0, we have

P(∥M − M̂∥2 > 2

√
log 2d

k
µ) ≤ exp(−µ2). (52)

Based on the inequality above, with probability 1− δm, we have

∥M − M̂∥2 ≤ 2
log

1
2 (2d/δm)√

k
. (53)
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Next, considering that we have implicitly normalized the term ∥ĝt∥22 by the threshold 1, the upper
bound of ∥ĝt∥22 is 1. As a result, we obtain

|λtr
t,i − λ̂tr

t | ≤ ∥VkV
T
k − V̂kV̂

T
k ∥22∥ĝt∥22

≤ ∥VkV
T
k − V̂kV̂

T
k ∥22

≤ ∥M − M̂∥22

≤ 4 log (2d/δm)

k
, (54)

with probability 1− δm.

Due to the shared random subspace of per-sample gradient, the exposed trace may pose potential
privacy risks. Thus, we add the noise that satisfies differential privacy to the trace λtr

t,i, i.e. λtr
t,i + ζtrt .

The upper bound of the trace for per-sample gradient is limited to 1, because we normalize per-sample
gradient in advance. So, the sensitivity in differential privacy can be regarded as 1, which in fact
means ζtrt ∼ N(0, σ2

trI1). Then, applying Gaussian properties, with probability 1 − δm − δtr, we
have

|λtr
t,i − λ̂tr

t + ζtrt | ≤ |λtr
t,i − λ̂tr

t |+ |ζtrt |

≤ 4 log (2d/δm)

k
+ σtr log

1
2 (2/δtr). (55)

Regarding to σtr =
m2

√
TB log(1/δ)

nϵtr
, we take T as nϵtr√

d log(1/δ)
to maintain consistency with the

context and have

|λtr
t,i − λ̂tr

t + ζtrt | ≤ 4 log (2d/δm)

k
+

m2

√
B log

3
4 (1/δtr)

d
1
4
√
nϵtr

≤ 4 log (2d/δm)

k
+

m2

√
B log

1
2 (1/δtr)

d
1
2

,

where the last inequality holds due to T ≥ 1.

Intuitively, the conclusion tells us that, since λtr
t,i is a constant, the scale σtrI1 of noise added is actually

small compared to the noise σdpId added to gradients, where the latter has a tricky dependence on the
dimension space d. Concretely, comparing the first term 4 log(2d/δm)

k , we observe that in the second

term m2

√
B log

1
2 (1/δtr)√
d

, the model parameter d ≫ k, we concerned in private learning and coupled
with noise scale, is in the denominator, which is far better than the factor log(d) in the numerator of
the first term. Therefore the term 4 log (2d/δm)

k will dominate the error of subspace skewing, and we
can control this part of the error by adopting a larger k.

In conclusion, for the per-sample trace, there is a high probability 1 − δ′m, where δ′m = δm + δtr,
that we can accurately identify heavy-tailed samples within a finite and minor error dependent on the
factor O( 1k ).

The proof of Theorem 5.2 is completed.
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E CONVERGENCE OF DISCRIMINATIVE CLIPPING

Theorem E.1 (Convergence of Discriminative Clipping). Under Assumptions 3.1, 3.2 and 3.3, let
wt be the iterate produced by Algorithm Discriminative Clipping DPSGD with T = O( nϵ√

d log(1/δ)
),

T ≥ 1 and ηt =
1√
T

. Define ˆlog(T/δ) = logmax(0,θ−1)(T/δ), σ̂2
dp = m2

Tc2dB2 log(1/δ)
n2ϵ2 , a = 2 if

θ = 1/2, a = (4θ)2θe2 if θ ∈ (1/2, 1] and a = (22θ+1 +2)Γ(2θ+1)+ 23θΓ(3θ+1)
3 if θ > 1, for any

δ ∈ (0, 1), with probability 1− δ, then we have:

(i). In the heavy tail region (c = c1):

1

T

T∑
t=1

min
{
∥∇LS(wt)∥2, ∥∇LS(wt)∥22

}
≤ O(

d
1
4 log

5
4 (T/δ) ˆlog(T/δ) log2θ(

√
T )

(nϵ)
1
2

).

(1) If θ = 1
2 and K ≤ σ̂dp, then c1 = max

(
4K log

1
2 (
√
T ), 16aK log

1
2 (1/δ)

12

)
. (2) If θ = 1

2

and K ≥ σ̂dp, then c1 = max
(
4K log

1
2 (
√
T ), 33

√
2aK log

1
2 (2/δ)

)
. (3) If θ > 1

2 , then c1 =

max
(
4θ2K logθ(

√
T ), 17K logθ(2/δ)

)
.

(ii). In the light body region (c = c2):

1

T

T∑
t=1

min
{
∥∇LS(wt)∥2, ∥∇LS(wt)∥22

}
≤ O(

d
1
4 log

5
4 (T/δ) log(

√
T )

(nϵ)
1
2

).

(1) If K ≤ σ̂dp, then c2 = max
(
2
√
2aK log

1
2 (
√
T ), 16aK log

1
2 (1/δ)

12

)
. (2) If K ≥ σ̂dp, then

c2 = max
(
2
√
2aK log

1
2 (
√
T ), 33

√
2aK log

1
2 (2/δ)

)
.

Proof. We review two cases in Discriminative Clipping DPSGD: ∇LS(wt) ≤ c/2 and ∇LS(wt) ≥
c/2. To simplify notation, we write ϵdp as ϵ, omitting the subscript throughout.

Firstly, in the case ∇LS(wt) ≤ c/2:

LS(wt+1)− LS(wt) ≤ ⟨wt+1 −wt,∇LS(wt)⟩+
1

2
β∥wt+1 −wt∥2

≤ −ηt⟨gt − Et[gt],∇LS(wt)⟩ − ηt⟨Et[gt]−∇LS(wt),∇LS(wt)⟩ − ηt⟨ζt,∇LS(wt)⟩

− ηt∥∇LS(wt)∥2 +
1

2
βη2t ∥gt∥2 +

1

2
βη2t ∥ζt∥2 + βη2t ⟨gt, ζt⟩

Applying the properties of Gaussian tails and Lemma A.2 to ζt, Lemma A.4 to term
∑T

t=1 ηt⟨gt −
Et[gt],∇LS(wt)⟩, with probability 1− 4δ, we have

T∑
t=1

ηt∥∇LS(wt)∥22 ≤ LS(w1)− LS(wS) +

T∑
t=1

1

2
βη2t c

2 + 2βm2ed
Tc2B2 log2(2/δ)

n2ϵ2

T∑
t=1

η2t

+ 2β
√
em2Td

c2B log(2/δ)

nϵ

T∑
t=1

η2t + 2
√

em2Td
c2B log(2/δ)

nϵ

T∑
t=1

ηt +
ηtc

2 log (1/δ)

ρ

+
4ρc2

∑T
t=1 η

2
t ∥∇LS(wt)∥22
ηtc2

−
T∑

t=1

ηt⟨Et[gt]−∇LS(wt),∇LS(wt)⟩︸ ︷︷ ︸
Eq.9

. (56)

We will consider a truncated version of term Eq.9 in the following. Similarly,

T∑
t=1

ηt⟨Et[gt]−∇LS(wt),∇LS(wt)⟩ ≤
1

2

T∑
t=1

ηt∥Et[gt]−∇LS(wt)∥22 +
1

2

T∑
t=1

ηt∥∇LS(wt)∥22.
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For term ∥Et[gt] − ∇LS(wt)∥2, we also define at = I∥gt∥2>c and bt = I∥gt−∇LS(wt)∥2>
c
2

, and
have

∥Et[gt]−∇LS(wt)∥2 = ∥Et[(gt − gt)at]∥2

≤ Et[∥(gt(
c− ∥gt∥2
∥gt∥2

)at∥2]

≤ Et[|∥gt∥2 − ∥∇LS(wt)∥2|at]
≤ Et[|∥gt −∇LS(wt)∥2|bt]

≤
√

Et[∥gt −∇LS(wt)∥22]Etb2t . (57)

Due to E[gt −∇LS(wt)] = 0, applying Lemma A.7 and A.8 with

m = 1

sup
η∈(0,1]

{v(L, η)} = aK2

xmax =
ηI(x)

x
aK2

ct ∈ [
1

2
, 1]

η =
1

2
.

In the light body region, i.e. x ≥ xmax, we have

P(∥gt −∇LS(wt)∥2 > x) ≤ exp(−ctηI(x)) + exp(−I(x))

≤ exp(−1

4
I(x)) + exp(−I(x))

≤ 2exp(−1

4
I(x)). (58)

Then, in the heavy tail region, i.e. 0 ≤ x ≤ xmax, the inequality

P(∥gt −∇LS(wt)∥2 > x) ≤ exp(− x2

2v(xmax, η)
) +mexp(− x2

max(η)

ηv(xmax, η)
)

≤ 2exp(− x2

2v(xmax, η)
)

≤ 2exp(− x2

2aK2
) (59)

holds.

Therefore, when 0 ≤ x ≤ xmax, we have the follow-up truncated conclusions:

If θ = 1
2 , ∀α > 0 and a = 2, we have the following inequality with probability at least 1− δ

∥gt −∇LS(wt)∥2 ≤ 2K log
1
2 (2/δ).

If θ ∈ ( 12 , 1], let a = (4θ)2θe2, we have the following inequality with probability at least 1− δ

∥gt −∇LS(wt)∥2 ≤
√
2e(4θ)θK log

1
2 (2/δ).

If θ > 1, let a = (22θ+1 + 2)Γ(2θ + 1) + 23θΓ(3θ+1)
3 , we have the following inequality with

probability at least 1− δ

∥gt −∇LS(wt)∥2 ≤
√
2(22θ+1 + 2)Γ(2θ + 1) +

23θΓ(3θ + 1)

3
K log

1
2 (2/δ).
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When x ≥ xmax, let I(x) = (x/K)
1
θ , ∀θ ∈ ( 12 , 1], with probability at least 1− δ, then we have

∥gt −∇LS(wt)∥2 ≤ 4θK logθ(2/δ).

Apply the truncated corollary above, when 0 ≤ x ≤ xmax, we have

Et[∥gt −∇LS(wt)∥2] ≤
√
2aK (60)

and with probability 1− δ,

Etb
2
t = P(∥gt −∇LS(wt)∥2 >

c

2
) ≤ 2exp(−(

c

2
√
2aK

)2) (61)

where a = 2 if θ = 1/2, a = (4θ)2θe2 if θ ∈ (1/2, 1] and a = (22θ+1 + 2)Γ(2θ + 1) + 23θΓ(3θ+1)
3

if θ > 1.

When x ≥ xmax, the inequalities

Et[∥gt −∇LS(wt)∥2] ≤ 4θK (62)

and

Etb
2
t = P(∥gt −∇LS(wt)∥2 >

c

2
) ≤ 2exp(−1

4
(

c

2K
)

1
θ ) (63)

hold with probability 1− δ, where θ ≥ 1
2 .

Thus, with probability 1− Tδ, we get

T∑
t=1

ηt⟨Et[gt]−∇LS(wt),∇LS(wt)⟩ ≤ 2aK2
T∑

t=1

ηtexp(−(
c

2
√
2aK

)2) +
1

2

T∑
t=1

ηt∥∇LS(wt)∥22,

(64)

when 0 ≤ x ≤ xmax.

With probability 1− Tδ, we obtain

T∑
t=1

ηt⟨Et[gt]−∇LS(wt),∇LS(wt)⟩ ≤ 42θK2
T∑

t=1

ηtexp(−
1

4
(

c

2K
)

1
θ ) +

1

2

T∑
t=1

ηt∥∇LS(wt)∥22,

(65)

when x ≥ xmax.

By setting ρ = 1
16 , T = O( nϵ√

d log(1/δ)
) and ηt =

1√
T

, with probability 1− 4δ − Tδ, we have

1

4

T∑
t=1

ηt∥∇LS(wt)∥22 ≤ LS(w1)− LS(wS) +
1

2
βc2 + 2βm2e

d
1
2 c2B2 log

3
2 (2/δ)

nϵ

+ 2β
√
em2

d
1
4 c2B log

1
2 (2/δ)√

nϵ
+ 2

√
em2c

2B log
1
2 (2/δ) +

16d
1
4 c2 log

5
4 (1/δ)√

nϵ

+ Eq.10


2aK2

T∑
t=1

ηtexp(−(
c

2
√
2aK

)2), if 0 ≤ x ≤ xmax,

42θK2
T∑

t=1

ηtexp(−
1

4
(

c

2K
)

1
θ ), if x ≥ xmax.

(66)

Let the term Eq.10 ≤ 1√
T

, and we have c ≥ 2
√
2aK log

1
2 (
√
T ) if 0 ≤ x ≤ xmax and c ≥

4θ2K logθ(
√
T ) if x ≥ xmax.
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In the light body region that 0 ≤ x ≤ xmax, by taking c2 = c = 2
√
2aK log

1
2 (
√
T ) we achieve

1√
T

T∑
t=1

ηt∥∇LS(wt)∥22 ≤ 4(LS(w1)− LS(wS))√
T

+
2aK2

√
T

+
8aK2 log(

√
T ) log(2/δ)√
T

(
2β + 8βm2eB

2(
d

1
4 log

1
4 (2/δ)√
nϵ

)2

+8β
√
em2

d
1
4B log−

1
2 (2/δ)√

nϵ
+ 8

√
em2B log−

1
2 (2/δ) +

64d
1
4 log

1
4 (1/δ)√
nϵ

)

≤ O(
log(

√
T ) log(1/δ)√

T
· d

1
4 log

1
4 (1/δ)√
nϵ

)

≤ O(
log(

√
T )d

1
4 log

5
4 (1/δ)√

nϵ
). (67)

In the heavy tail region that x ≥ xmax, by taking c1 = c = 4θ2K logθ(
√
T ) we achieve

1√
T

T∑
t=1

ηt∥∇LS(wt)∥22 ≤ 4(LS(w1)− LS(wS))√
T

+
2aK2

√
T

+
42θ+1 log2θ(

√
T ) log(2/δ)√
T

(
2β + 8βm2eB

2(
d

1
4 log

1
4 (2/δ)√
nϵ

)2

+8β
√
em2

d
1
4B log−

1
2 (2/δ)√

nϵ
+ 8

√
em2B log−

1
2 (2/δ) +

64d
1
4 log

1
4 (1/δ)√
nϵ

)

≤ O(
log2θ(

√
T ) log(1/δ)√
T

· d
1
4 log

1
4 (1/δ)√
nϵ

)

≤ O(
log2θ(

√
T )d

1
4 log

5
4 (1/δ)√

nϵ
). (68)

Secondly, we pay extra attention to the bound in the case ∇LS(wt) ≥ c/2.

LS(wt+1)− LS(wt) ≤ ⟨wt+1 −wt,∇LS(wt)⟩+
1

2
β∥wt+1 −wt∥22

≤ −ηt⟨gt + ζt,∇LS(wt)⟩︸ ︷︷ ︸
Eq.11

+
1

2
βη2t ∥gt + ζt∥22. (69)

We revisit term Eq.11 in the case and also set s+t = I∥gt∥2≥c and s−t = I∥gt∥2≤c.

−ηt⟨gt + ζt,∇LS(wt)⟩ = −ηt⟨
cgt

∥gt∥2
s+t + gts

−
t ,∇LS(wt)⟩ − ηt⟨ζt,∇LS(wt)⟩. (70)
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For term −
∑T

t=1 ηt⟨gts
−
t ,∇LS(wt)⟩, we obtain

−
T∑

t=1

ηt⟨gts
−
t ,∇LS(wt)⟩ = −

T∑
t=1

ηts
−
t (⟨gt −∇LS(wt),∇LS(wt)⟩+ ∥∇LS(wt)∥22)

≤ −
T∑

t=1

ηts
−
t ⟨gt −∇LS(wt),∇LS(wt)⟩ −

T∑
t=1

ηts
−
t ∥∇LS(wt)∥22

≤ −
T∑

t=1

ηts
−
t ⟨gt −∇LS(wt),∇LS(wt)⟩ −

c

2

T∑
t=1

ηts
−
t ∥∇LS(wt)∥22

≤ −
T∑

t=1

ηts
−
t ⟨gt −∇LS(wt),∇LS(wt)⟩︸ ︷︷ ︸

Eq.12

− c

3

T∑
t=1

ηts
−
t ∥∇LS(wt)∥22.

(71)

Let consider the term Eq.12. Since Et[ηts
−
t ⟨gt − ∇LS(wt),∇LS(wt)⟩] = 0, the sequence

(−ηts
−
t ⟨gt−∇LS(wt),∇LS(wt)⟩, t ∈ N) is a martingale difference sequence. In addition, the term

gt −∇LS(wt) is a subW (θ,K) random variable, thus we apply sub-Weibull Freedman inequality
with Lemma A.3 and concentration inequality with Lemma A.7 and A.8 to bound it.

In Lemma A.3, Define

v(L, η) := E
[
(XL − E[X])2I(XL ≤ E[X])

]
+ E

[
(XL − E[X])2 exp

(
η(XL − E[X])

)
I(XL > E[X])

]
,

and make β = kv(L, η), then we have supη∈(0,1]{kv(L, η)} = a
∑k

i=1 K
2
i based on

Lemma A.7 and A.8 in Bakhshizadeh et al. (2023) and obtain

P

(⋃
k∈N

{ k∑
i=1

ξi ≥ kx and

k∑
i=1

aK2
i−1 ≤ β

})
≤ exp(−λkx+

λ2

2
β)

= exp(−λkx+ kv(L, η)
λ2

2
). (72)

Subsequently, we define the inflection point xmax := ηI(kx)
kx a

∑k
i=1 K

2
i and have

1. In the light body region where x ≥ xmax, we choose L = kx and λ = ηI(kx)
kx , that is

x
v(kx,η) ≥

xmax

v(kx,η) =
ηI(kx)

kx . Then the inequality achieves

P

(⋃
k∈N

{ k∑
i=1

ξi ≥ kx and

k∑
i=1

aK2
i−1 ≤ β

})
≤ exp(−ηI(kx) + v(L, η)

η2I2(kx)

2kx2
)

≤ exp(−ηI(kx)(1− v(L, η)
ηI(kx)

2kx2
))

≤ exp(−ηcxI(kx))

≤ exp(−1

2
ηI(kx)), (73)

where cx = 1− ηv(kx,η)I(kx)
2kx2 and the last inequality holds due to cx ≥ 1

2 .

2. In the heavy tail region where x ≤ xmax, we choose L = kxmax and λ = x
v(L,η) ≤

xmax

v(L,η) =
ηI(L)

L . Then, we get

P

(⋃
k∈N

{ k∑
i=1

ξi ≥ kx and

k∑
i=1

aK2
i−1 ≤ β

})
≤ exp(− kx2

v(L, η)
+

kx2

2v(L, η)
)

≤ exp(− kx2

2v(L, η)
). (74)
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Implementing the above inferences and propositions with

ξt = ηt⟨gt −∇LS(wt),∇LS(wt)⟩

Λ := −
T∑

i=1

ηts
−
t ⟨gt −∇LS(wt),∇LS(wt)⟩

Kt−1 = ηtK∥∇LS(wt)∥2
mt = ηtKG

k = T

η = 1/2

If θ = 1
2 , ∀α > 0 and a = 2, when x ≤ xmax we have the following inequality with probability at

least 1− δ

−
T∑

t=1

ηts
−
t ⟨gt −∇LS(wt),∇LS(wt)⟩ ≤

√
2Tv(L, η) log

1
2 (1/δ)

≤

√√√√2a

T∑
t=1

K2
t log

1
2 (1/δ)

≤ 2

√√√√ T∑
t=1

η2tK
2∥∇LS(wt)∥22 log

1
2 (1/δ)

≤ 2KG

√√√√ T∑
t=1

η2t log
1
2 (1/δ), (75)

when x ≥ xmax, with I(Tx) = (Tx/
∑T

i=1 Ki)
2, we have

−
T∑

t=1

ηts
−
t ⟨gt −∇LS(wt),∇LS(wt)⟩ ≤ 4

1
2
1

T

T∑
t=1

Kt log
1
2 (1/δ)

≤ 2
KG

T

T∑
t=1

ηt log
1
2 (1/δ). (76)

If θ ∈ ( 12 , 1], let a = (4θ)2θe2, when x ≤ xmax we have the following inequality with probability at
least 1− δ

−
T∑

t=1

ηts
−
t ⟨gt −∇LS(wt),∇LS(wt)⟩ ≤

√√√√2a

T∑
t=1

K2
t log

1
2 (1/δ)

≤
√
2(4θ)θeKG

√√√√ T∑
t=1

η2t log
1
2 (1/δ), (77)

when x ≥ xmax, let I(Tx) = (Tx/
∑T

i=1 Ki)
1
θ , ∀θ ∈ ( 12 , 1], then we have

−
T∑

t=1

ηts
−
t ⟨gt −∇LS(wt),∇LS(wt)⟩ ≤

4θ

T

T∑
t=1

Kt log
1
2 (1/δ)

≤ 4θKG

T

T∑
t=1

ηt log
θ(1/δ). (78)
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If θ > 1, let a = (22θ+1 + 2)Γ(2θ + 1) + 23θΓ(3θ+1)
3 , when x ≤ xmax we have the following

inequality with probability at least 1− 3δ

−
T∑

t=1

ηts
−
t ⟨gt −∇LS(wt),∇LS(wt)⟩ ≤

√√√√2a

T∑
t=1

K2
t log

1
2 (1/δ)

≤
√
2(22θ+1 + 2)Γ(2θ + 1) +

23θΓ(3θ + 1)

3
KG

√√√√ T∑
t=1

η2t log
1
2 (1/δ), (79)

when x ≥ xmax, let I(Tx) = (Tx/
∑T

i=1 Ki)
1
θ , ∀θ > 1, then we have

−
T∑

t=1

ηts
−
t ⟨gt −∇LS(wt),∇LS(wt)⟩ ≤

4θ

T

T∑
t=1

Kt log
1
2 (1/δ)

≤ 4θKG

T

T∑
t=1

ηt log
θ(1/δ). (80)

To continue the proof, employing Lemma A.5 in term −ηt⟨ cgt

∥gt∥2
s+t ,∇LS(wt)⟩ and covering all T

iterations, we have

−
T∑

t=1

ηt⟨
cgt

∥gt∥2
s+t ,∇LS(wt)⟩ ≤ −

c
∑T

t=1 ηts
+
t ∥∇LS(wt)∥2
3

+
8c
∑T

t=1 ηt∥gt −∇LS(wt)∥2
3

≤ −
c
∑T

t=1 ηt(1− s−t )∥∇LS(wt)∥2
3

+
16
∑T

t=1 ηt∥gt −∇LS(wt)∥2∥∇LS(wt)∥2
3

. (81)

With the truncated corollaries above, we have

1. If 0 ≤ x ≤ xmax, with probability at least 1− 3δ

−
T∑

t=1

ηt⟨
cgt

∥gt∥2
s+t ,∇LS(wt)⟩ ≤ −

c
∑T

t=1 ηt(1− s−t )∥∇LS(wt)∥2
3

+
16
∑T

t=1 ηt∥∇LS(wt)∥2
3



2K log
1
2 (2/δ), if θ = 1

2 ,

√
2e(4θ)θK log

1
2 (2/δ), if θ ∈ ( 12 , 1],√

2(22θ+1 + 2)Γ(2θ + 1) +
23θΓ(3θ + 1)

3
K log

1
2 (2/δ) if θ > 1.

.

(82)

2. If x ≥ xmax and θ ≥ 1
2 , with probability at least 1− 3δ

−
T∑

t=1

ηt⟨
cgt

∥gt∥2
s+t ,∇LS(wt)⟩ ≤ −

c
∑T

t=1 ηt(1− s−t )∥∇LS(wt)∥2
3

+
16
∑T

t=1 ηt∥∇LS(wt)∥2
3

4θK logθ(2/δ). (83)

Then, according to Lemma A.1, combining the truncated results of −
∑T

t=1 ηt⟨gts
−
t ,∇LS(wt)⟩ and

−
∑T

t=1 ηt⟨
cgt

∥gt∥2
s+t ,∇LS(wt)⟩, we have the inequality:
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1. If 0 ≤ x ≤ xmax, with probability at least 1− 3δ − Tδ

−
T∑

t=1

ηt⟨gt,∇LS(wt)⟩ ≤ −
c
∑T

t=1 ηt∥∇LS(wt)∥2
3

+



2KG
√∑T

t=1 η
2
t log

1
2 (1/δ), if θ = 1

2 ,

√
2(4θ)θeKG

√∑T
t=1 η

2
t log

1
2 (1/δ), if θ ∈ ( 12 , 1],

√
2(22θ+1 + 2)Γ(2θ + 1) +

23θΓ(3θ + 1)

3
KG

√√√√ T∑
t=1

η2t log
1
2 (1/δ) if θ > 1.

+
16
∑T

t=1 ηt∥∇LS(wt)∥2
3



2K log
1
2 (2/δ), if θ = 1

2 ,

√
2e(4θ)θK log

1
2 (2/δ), if θ ∈ ( 12 , 1],√

2(22θ+1 + 2)Γ(2θ + 1) +
23θΓ(3θ + 1)

3
K log

1
2 (2/δ) if θ > 1.

(84)

2. If x ≥ xmax and θ ≥ 1
2 , with probability at least 1− 3δ − Tδ

−
T∑

t=1

ηt⟨gt,∇LS(wt)⟩ ≤ −
c
∑T

t=1 ηt∥∇LS(wt)∥2
3

+
4θKG

T

T∑
t=1

ηt log
θ(1/δ)

+
16
∑T

t=1 ηt∥∇LS(wt)∥2
3

4θK logθ(2/δ). (85)

Therefore, we refer to formula.(12) and formula.(13), and apply Lemma A.2 due to ζt ∼ N(0, cσdpId).
Then, to simplify the notation, we define σ̂2

dp = dc2σ2
dp . With σ̂2

dp = m2
Tc2dB2 log(1/δ)

n2ϵ2 and
probability 1− 6δ − Tδ, if 0 ≤ x ≤ xmax, we have

(
c

3
− 16

3
aK log

1
2 (2/δ)− 4

√
eσ̂dp log

1
2 (1/δ))

T∑
t=1

ηt∥∇LS(wt)∥2 ≤ LS(w1)− LS(wS)

+ (2βm2ed
Tc2B2 log2(2/δ)

n2ϵ2
+ 2β

√
em2Td

c2B log(2/δ)

nϵ
+

1

2
βc2)

T∑
t=1

η2t

+
√
2aKG

√√√√ T∑
t=1

η2t log
1
2 (1/δ), (86)

if x ≤ xmax, we have

(
c

3
− 16

3
aK logθ(2/δ)− 4

√
eσ̂dp log

1
2 (1/δ))

T∑
t=1

ηt∥∇LS(wt)∥2 ≤ LS(w1)− LS(wS)

+ (2βm2ed
Tc2B2 log2(2/δ)

n2ϵ2
+ 2β

√
em2Td

c2B log(2/δ)

nϵ
+

1

2
βc2)

T∑
t=1

η2t

+
√
2aKG

√√√√ T∑
t=1

η2t log
θ(1/δ), (87)

where a = 2 if θ = 1/2, a = (4θ)2θe2 if θ ∈ (1/2, 1] and a = (22θ+1 + 2)Γ(2θ + 1) + 23θΓ(3θ+1)
3

if θ > 1.

Afterwards,
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1. In case of light body, when 0 ≤ x ≤ xmax and θ ≥ 1
2 :

If K ≥ σ̂dp, let c
3 ≥ 33

3

√
2aK log

1
2 (2/δ), T = O( nϵ√
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Therefore, with probability at least 1− 6δ − Tδ, we have
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then, with probability 1− δ, we have
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If K ≤ σ̂dp, let c
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Therefore, with probability 1− 6δ − Tδ, we have
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then, with probability 1− δ, we have
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2. In case of heavy tail, when x ≥ xmax:
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If θ = 1
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Therefore, with probability at least 1− 6δ − Tδ, we have
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If θ = 1
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Therefore, with probability 1− 6δ − Tδ, we have
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If θ > 1
2 , then term logθ(2/δ) dominates the inequality. Let c
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As a result, with probability 1− δ, we have
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Consequently, integrate the above results on the condition that ∇LS(wt) ≥ c/2.

For light body, we have
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For heavy tail, we have
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with probability 1− δ and θ ≥ 1
2 .

In a word, covering the two cases, we ultimately come to the conclusion with probability 1 − δ,
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where ˆlog(T/δ) = logmax(0,θ−1)(T/δ). If θ = 1
2 and K ≤ σ̂dp, then

c1 = max
(
4θ2K logθ(

√
T ), 16aK log

1
2 (1/δ)

12

)
. If θ = 1

2 and K ≥ σ̂dp, then
c1 = max

(
4θ2K logθ(

√
T ), 33

√
2aK log

1
2 (2/δ)

)
. If θ > 1

2 , then c1 =

max
(
4θ2K logθ(

√
T ), 17K logθ(2/δ)

)
.
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where ˆlog(T/δ) = logmax(0,θ−1)(T/δ). If θ = 1
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The proof of Theorem 5.3 is completed.
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F UNIFORM BOUND FOR DISCRIMINATIVE CLIPPING DPSGD

Theorem F.1 (Uniform Bound for Discriminative Clipping DPSGD). Under Assumptions 3.1, 3.2
and 3.3, combining Theorem 2 and Theorem 3, for any δ′ ∈ (0, 1), with probability 1− δ′, we have
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where δ′ = δ′m + δ, ˆlog(T/δ) = logmax(0,θ−1)(T/δ) and p is ratio of heavy-tailed samples.

Proof. We combine the subspace skewing error (Theorem 5.2) with the optimization bound of
Discriminative Clipping DPSGD (Theorem 5.3) in this section to align with our algorithm outline.
We have already discussed the error of traces in previous chapters and considered the condition of
additional noise that satisfies DP, obtaining an upper bound on the error that depends on the factor
O( 1k ). This conclusion means that, under the high probability guarantee of 1− δ′m, we can accurately
identify the trace of the per-sample gradient with minimal error, and classify gradients into the light
body and heavy tail based on the metric.

Specifically, based on statistical characteristics, approximately 5% -10% of the data will fall into
the tail part. Thus, we select the top p% samples in the trace ranking as the tailed samples, where
p ∈ [5%, 10%]. Although a subsampling strategy is used, uniform sampling does not change the
proportion of tail samples in the batch. Furthermore, based on the relationship between trace and
variance, the pB-th of sorted trace λtr,p

t can be seen as the inflection point xmax of distribution
defined in truncated theories A.7 and A.8, which corresponds to the empirical sample results with
theoretical population variance and the approximation error has bounded in Theorem 5.2. Therefore,
in discriminative clipping DPSGD, we can accurately partition the sample into the heavy-tailed
convergence bound with a high probability of (1 − δ′m) ∗ p, and exactly induce the sample to the
bound of light bodies with a high probability of (1− δ′m) ∗ (1− p), while there is a discrimination
error with probability δ′m. Accordingly, we have
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(102)
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2aK log
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If θ = 1
2 , then Ctail(c1) = Cbody(c2) and δ′m → 0, thus we have

Cu(c1, c2) = Ctail(c1) = O(
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If θ > 1
2 , then Ctail(c1) ≥ Cbody(c2), and we need to proof that Ctail(c1) ≥ Cu(c1, c2), i.e.

Ctail(c1) ≥ Cu(c1, c2)

≥ (1− δ′m) ∗ p ∗ Ctail(c1) + (1− δ′m) ∗ (1− p) ∗ Cbody(c2) + δ′m ∗ |Ctail(c1)− Cbody(c2)|.

By transposition, we have

(1− δ′m)(1− p) ∗ Ctail(c1) + δ′m ∗ Cbody(c2) ≥ (1− δ′m) ∗ (1− p) ∗ Cbody(c2).
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Then, we have

Ctail(c1) ≥ Cbody(c2)−
δ′m

(1− δ′m) ∗ (1− p)
Cbody(c2), (104)

due to δ′m
(1−δ′m)∗(1−p) ≥ 0, it is proved that Ctail(c1) ≥ Cu(c1, c2).

From another perspective, for Cu(c1, c2), with probability 1− δ′m, we have

Cu(c1, c2) = p ∗ Ctail(c1) + ∗(1− p) ∗ Cbody(c2). (105)

In other words, for the formula.(102), we define δ′ = δ′m + δ. Then, with probability 1− δ′, we have

1

T

T∑
t=1

min
{
∥∇LS(wt)∥2, ∥∇LS(wt)∥22

}
≤ p ∗O(

d
1
4 log

5
4 (T/δ) ˆlog(T/δ) log2θ(

√
T )

(nϵ)
1
2

)

+ (1− p) ∗O(
d

1
4 log

5
4 (T/δ) log(

√
T )

(nϵ)
1
2

) (106)

where ˆlog(T/δ) = logmax(0,θ−1)(T/δ).

The proof of Theorem 5.4 is completed.
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G SUPPLEMENTAL EXPERIMENTS

G.1 IMPLEMENTATION DETAILS AND CODEBASE

All experiments are conducted on a server with an Intel(R) Xeon(R) E5-2640 v4 CPU at 2.40GHz
and a NVIDIA Tesla P40 GPU running on Ubuntu. By default, we uniformly set subspace dimension
k = 200, ϵ = ϵtr + ϵdp with ϵtr = ϵdp, p = 10% and sub-Weibull index θ = 2 for any datasets. In
particular, we use the LDAM Cao et al. (2019) loss function for heavy-tailed tasks.

1. MNIST: MNIST has ten categories, 60,000 training samples and 10.000 testing samples.
We construct a two-layer CNN network and replace the BatchNorm of the convolutional
layer with GroupNorm. We set 40 epochs, 128 batchsize, 0.1 small clipping threshold, 1
large clipping threshold, and 1 learning rate.

2. FMNIST: FMNIST has ten categories, 60,000 training samples and 10.000 testing samples.
we use the same two-layer CNN architecture, and the other hyperparameters are the same as
MNIST.

3. CIFAR10: CIFAR10 has 50,000 training samples and 10,000 testing. We set 50 epoch,
256 batchsize, 0.1 small clipping threshold and 1 large clipping threshold with model Sim-
CLRv2 Tramer & Boneh (2021) pre-trained by unlabeled ImageNet. We refer the code for
pre-trained SimCLRv2 to https://github.com/ftramer/Handcrafted-DP.

4. CIFAR10-HT: CIFAR10-HT contains 32×32 pixel 12,406 training data and 10,000 testing
data, and the proportion of 10 classes in training data is as follows: [0:5000, 1:2997,
2:1796, 3:1077, 4:645, 5:387, 6:232, 7:139, 8:83, 9:50]. We train CIFAR10-HT on model
ResNeXt-29 Xie et al. (2017) pre-trained by CIFAR100 with the same parameters as
CIFAR10. We can see pre-trained ResNeXt in https://github.com/ftramer/
Handcrafted-DP and CIFAR10-HT with LDAM-DRW loss function in https://
github.com/kaidic/LDAM-DRW.

5. ImageNette: ImageNette is a 10-subclass set of ImageNet and contains 9469 training
examples and 3925 testing examples. We train on model ResNet-9 He et al. (2016) without
pre-train and set 1000 batchsize, 0.15 small clipping threshold, 1.5 large clipping threshold
and 0.0001 learning rate with 50 runs.

6. ImageNette-HT: We construct the heavy-tailed version of ImageNette by the method in Cao
et al. (2019). ImageNette-HT contains 2345 trainging data and 3925 testing data, which is
difficult to train, and proportion of 10 classes in training data follows: [0:946, 1:567, 2:340,
3:204, 4:122, 5:73, 6:43, 7:26, 8:15, 9:9]. The other settings are the same as ImageNette.
Our ResNet-9 refers to https://github.com/cbenitez81/Resnet9/ with 2.5M
network parameters.

7. E2E: We have conducted experiments on transform-based NLP tasks for the dataset E2E
with BLEU metric and GPT-2 model, which generates natural language from tabular data
in the catering industry. We adopt the DPAdam optimizer and use the same settings as ?,
where small clipping threshold c2 = 0.1 and large clipping threshold c1 = 10 ∗ c2.

Moreover, we open our source code and implementation details for discriminative clipping on the
following link: https://anonymous.4open.science/r/DC-DPSGD-N-25C9/.
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G.2 EFFECTS OF PARAMETERS ON TEST ACCURACY

Due to space limitations, we place the remaining ablation study on MNIST, FMNIST, ImageNette
and ImageNette-HT in Table 5 and Table 6. We acknowledge that since ImageNette-HT has only
2,345 training data, which is one-fifth of ImageNette, it is difficult to support the convergence of the
model. In the future, we will improve this aspect in our work.

Table 5: Effects of parameters on test accuracy with MNIST and FMNIST.

Dataset Subspace-k ϵtr + ϵdp sub-Weibull-θ
None 100 150 200 2+6 4+4 6+2 1/2 1 2

MNIST 98.16 98.48 98.66 98.72 98.78 98.72 98.42 98.61 98.69 98.72
FMNIST 85.78 87.61 87.71 87.80 87.70 87.80 87.26 87.40 87.55 87.80

Table 6: Effects of parameters on test accuracy with ImageNette and ImageNette-HT.

Dataset Subspace-k ϵtr + ϵdp sub-Weibull-θ
None 100 150 200 2+6 4+4 6+2 1/2 1 2

ImageNette 66.08 68.34 69.00 69.29 68.54 69.29 68.12 67.91 68.87 69.29
ImageNette-HT 29.33 31.44 33.17 33.70 34.25 33.70 31.13 33.05 33.37 33.70

To investigate the effect of p, we have added a set of new experiments by varying p ∈ [1%, 20%].
The results are presented in Table 7. We observe that the test accuracy is minimally affected when
p is less than 10%, but shows a negative impact at around 20%. We believe that the proportion of
heavy-tailed samples aligns with statistical expectations. Assigning larger clipping thresholds to more
light-body samples introduces more noise, while conservatively estimating heavy-tails does not fully
exploit the algorithm’s potential.

Table 7: Effects of parameter on p.

Dataset Heavy tail ratio-p
20% 10% 5% 2% 1%

ImageNette 66.82 69.29 68.44 68.45 68.75
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