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ABSTRACT

Differentially Private Stochastic Gradient Descent (DPSGD) is widely utilized to
preserve training data privacy in deep learning, which first clips the gradients to a
predefined norm and then injects calibrated noise into the training procedure. Exist-
ing DPSGD works typically assume the gradients follow sub-Gaussian distributions
and design various gradient clipping mechanisms to optimize training performance.
However, recent studies have shown that the gradients in deep learning exhibit a
heavy-tail phenomenon, that is, the tails of the gradient may have infinite variance,
which leads to excessive clipping loss with existing mechanisms. To address this
problem, we propose a novel approach, Discriminative Clipping (DC)-DPSGD,
with two key designs. First, we introduce a subspace identification technique to
distinguish between body and tail gradients. Second, we present a discriminative
clipping mechanism that applies different clipping thresholds for body and tail
gradients separately to reduce the clipping loss. Under the non-convex condition
and heavy-tailed sub-Weibull gradient noise assumption, DC-DPSGD reduces

the empirical risk from Q (logm‘d"(‘)’e*l)(T/é) log%(ﬁ)) to O (log(\/T)) with
heavy-tailed index 6 > 1/2, iterations 7', and high probability 1 — §. Extensive

experiments on five real-world datasets demonstrate that our approach outperforms
three baselines by up to 9.72% in terms of accuracy.

1 INTRODUCTION

DPSGD Abadi et al. (2016), as a mainstream paradigm of privacy-preserving deep learning, has
wide applications in areas such as privacy-preserving recommender systems Liu et al. (2023), face
recognition Tang et al. (2024), and medical diagnosis Meng et al. (2021); Ji et al. (2022). Essentially,
in each iteration of model training, DPSGD clips per-sample gradient under the Ly norm constraint
to obtain the maximum divergence between gradient distributions that differ by only one training
data and adds random noise within rigorous privacy bounds for unbiased gradient estimation.

Most of existing DPSGD works Bu et al. (2024); Xia et al. (2023); Zhang et al. (2023); Zhu &
Blaschko (2023); Koloskova et al. (2023); Li et al. (2022); Fang et al. (2022); Yang et al. (2022)
rely on the assumption that the gradient noise follows a sub-Gaussian distribution to devise effective
clipping strategies. However, recent studies Zhang et al. (2020b); Simsekli et al. (2019; 2020);
Camuto et al. (2021); Barsbey et al. (2021) have shown that SGD gradient noise in deep learning
often exhibit heavy-tailed distributions instead of light-tailed distributions (e.g., sub-Gaussian). This
occurs even when the dataset originates from a light-tailed distribution, the gradients still diverge to a
heavy-tailed distribution with infinite variance Gurbuzbalaban et al. (2021), which may slow down
the convergence rate and impair training performance Li & Liu (2022; 2023); Madden et al. (2020);
Gorbunov et al. (2020). To cope with this problem in SGD, Li & Liu (2023); Wang et al. (2021);
Gorbunov et al. (2020) suggest employing larger clipping thresholds to get rid of the oscillations
caused by heavy-tailed gradients on the training trajectory.

Nevertheless, the clipping operation in DPSGD is closely tied to the magnitude of DP noise added
to the gradients. Setting the clipping threshold too large can lead to a high-dimensional noise
catastrophe Zhou et al. (2021), which negatively impacts model performance and potentially disrupts
the convergence of DPSGD algorithms. Therefore, practitioners need to carefully strike a balance
between injected noise and clipping loss, as illustrated in Figure 1. The left sub-figure shows the
trade-off under the light-tailed assumption. As the clipping threshold increases (i.e., when the red
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Figure 1: The trade-off between clipping loss and noise magnitude under heavy-tailed distributions.

dotted line moves to the right), the clipping loss decreases, but the maximum divergence between
the distributions differing by one clipped gradient increases, leading to more DP noise being added.
While in the right sub-figure, under the same noise magnitude, the slower decay rate of the heavy-
tailed distribution (blue line) will introduce extra clipping loss. Therefore, we aim to investigate
the following key question in this paper: how to design an effective clipping mechanism under the
heavy-tailed assumption to balance the trade-off between clipping loss and DP noise in DPSGD?

Previous clipping mechanisms for DPSGD Bu et al. (2024); Yang et al. (2022); Xia et al. (2023) have
been proposed under the light-tailed assumption, but none of them can be adapted to our problem.
Specifically, Bu et al. (2024); Yang et al. (2022); Xia et al. (2023) focus on small-norm gradients
(i.e., those near the center of the distribution) and normalize them to be around 1. These approaches
reduce the maximum divergence, thereby requiring less noise to be injected. However, they do
not account for heavy-tailed gradients and thus cannot optimize the clipping loss. Another line of
work directly estimates the actual norm of the per-sample gradient and utilizes it as the clipping
threshold to reduce the clipping loss. For instance, Andrew et al. (2021) estimate the true gradient
trajectory by collecting the norms of historical gradients. However, this approach requires knowing
the upper bound of historical norms for adding noise, which is highly uneconomical under heavy-
tailed distributions, as the upper bound for moment generating function (MGF) Vladimirova et al.
(2020) can be immeasurable, making the scale of DP noise unbearable and the expectation bounds
inapplicable. Moreover, due to the constraints of a finite privacy budget, practical private learning
cannot perform indefinite training. Therefore, it is essential to obtain a high probability bound to
ensure algorithm performance with the probabilistic nature of privacy noise on single runs.

In this paper, we present high probability bounds with faster convergence rates for DPSGD and
propose a novel approach, named Discriminative Clipping (DC)-DPSGD, to effectively balance the
trade-off between clipping loss and required DP noise under the heavy-tailed assumption. The key
idea is to utilize different clipping thresholds for the body gradients and tail gradients respectively,
retaining more information from tail gradients that can withstand more severe DP noise. We introduce
two techniques to achieve this goal. First, we design a subspace identification technique to identify
heavy-tailed gradients with high probability guarantees. We note that the body of heavy-tailed
distributions exhibits characteristics similar to those of light-tailed distributions, and the main
difference lies in the decay rate at the tails. Therefore, we extract orthogonal random vectors from
heavy-tailed distributions (e.g., sub-Weibull distribution) to construct a random projection subspace,
and compute the trace of the second moment matrix between gradients and this subspace to distinguish
heavy-tailed gradients. Second, we present a discriminative clipping mechanism, which applies a
large clipping threshold for the identified heavy-tailed gradients and a smaller one for the remaining
light-tailed gradients. We theoretically analyze the choice of the two clipping thresholds and the
convergence of DC-DPSGD with a tighter bound. Our contributions are summarized as follows.

* We propose DC-DPSGD with a subspace identification technique and a discriminative clipping
mechanism to optimize DPSGD under sub-Weibull gradient noise assumption. To our knowledge,
this is the first work to rigorously address heavy tails in DPSGD with high probability guarantees.

* We present a high probability guarantee with best-known rates for the optimization performance
of DPSGD, and improve it to faster rates by DC-DPSGD, which shows that the empirical risk is
reduced from O <log"‘a"<°"’*”(T/5) log”(\/T)> to O (1og(\/T)) with heavy-tailed index 6 > 1/2,
iterations 7', and high probability 1 — ¢, under the non-convex condition.

* We conduct extensive experiments on five real-world datasets, where DC-DPSGD consistently out-

performs three baselines with up to 9.72% accuracy improvements, demonstrating the effectiveness
of our proposed approach.
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2 RELATED WORK

Heavy-tailed noise and high probability bounds. Recently, from the perspective of escaping from
stationary points and Langevin dynamics, the noise in neural networks is more inclined to anisotropic
and non-Gaussian properties Gurbuzbalaban et al. (2021); Simsekli et al. (2019); Gorbunov et al.
(2020); Zhang et al. (2020b), with specific heavy-tailed phenomena discovered and defined in gradient
descent in deep neural networks. Several works focused on heavy-tailed convex optimization in
privacy-preserving deep learning Lowy & Razaviyayn (2023); Wang et al. (2020); Kamath et al.
(2022). Building upon the work of Wang et al. (2020), Kamath et al. (2022) relax the assumption
of Lipschitz condition and sub-Exponential distribution to a more general c-th moment bounded
condition. However, no work has investigated the convergence characteristics of heavy-tailed DPSGD
in non-convex settings. Meanwhile, high probability bounds are more frequently discussed in
optimization properties such as convex and non-convex learning with SGD, but rarely addressed
in the context of private learning. Specifically, with bounded a-th moments assumption, Li & Liu
(2023) provide a high probability theoretical analysis for variants like clipped SGD with momentum
and adaptive step sizes. Nevertheless, these works on optimizing DPSGD rely on expectation bounds,
which are unsuitable for heavy-tailed assumptions.

Projection subspace in DPSGD. DPSGD has gained wide concerns for its detrimental impact on
model accuracy. A series of works leverage projection techniques to improve performance. For
instance, Zhou et al. (2021); Yu et al. (2021a;b) confine DPSGD training dynamics to more compact
and condensed subspaces through projection. While ensuring the fidelity of training data compression,
they decouple the irrelevant relationship between ambient features and DP noise, and reduce the
optimization error of DPSGD under stringent privacy constraints. However, existing works rely on
the assumption that public datasets are available for designing the techniques Golatkar et al. (2022);
Zhou et al. (2021); Yu et al. (2021a); Gu et al. (2023), which is rather strong, especially in sensitive
domains. In contrast, our approach does not rely on any public dataset.

Gradient clipping. Gradient clipping is a widely adopted technique to ensure the sensitivity of
gradients is bounded in both practical implementations and theoretical analysis for DPSGD Chen
et al. (2020); Zhang et al. (2020a; 2022); Andrew et al. (2021); Xiao et al. (2023); Wei et al. (2022);
Koloskova et al. (2023). Since the tuning parameters in the classical Abadi’s clipping function Abadi
et al. (2016) are complex, adaptive gradient clipping schemes have been proposed by Bu et al. (2024);
Yang et al. (2022). These schemes scale per-sample gradients based on their norms. In particular,
gradients with small norms are amplified infinitely. Building upon this, Xia et al. (2023) control the
amplification of gradients with small norms in a finite manner. However, no work has specifically
optimized gradient clipping under the heavy-tailed assumption of DPSGD. Due to the scale of noise
required to achieve differential privacy, trivial clipping methods and analysis are not applicable.

3 PRELIMINARIES

3.1 NOTATIONS

Let D be a private dataset, which consists of n training data S = {z1, ..., 2, } with a sample domain
Z drawn i.i.d. from the underlying distribution %. Since { is unknown and inaccessible in practice,
we minimize the following empirical risk in a differentially private manner:

1 n
Ls(w)i=—%  Uw,z), (1)
where the objective function £(-) : (w C W,Z) — R is possible non-convex and W C R?
represents the model parameter space. Then, we denote V/ as the gradient of ¢ with respect to w.
Furthermore, we introduce several notations regarding the projection subspace. Let V;, € R4*k
denote k-dimensional random projection sampled from heavy-tailed distributions. The empirical
second moment of V,T' V¢ is given by V,' V¢V (T V.. The total variance in the empirical projection
subspace is generally measured by the trace of the second moment denoted as tr(VkT VINITV).

DPSGD lies in strict mathematical definitions Dwork et al. (2006); Abadi et al. (2016) and compo-

sition theorems Kairouz et al. (2015); Mironov (2017); Dong et al. (2022). Definition 3.1 gives a
formal definition of differential privacy (DP).
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Definition 3.1 (Differential Privacy). A randomized algorithm M is (e, d)-differentially private if
for any two neighboring datasets D, D’ differ in exactly one data point and any event Y, we have

P(M(D) eY) <exp(e)-P(M(D') €Y) +4, 2)

where € is the privacy budget and ¢ is a small probability.

3.2 ASSUMPTIONS

A substantial amount of research has shown that even on the simplest MNIST dataset, gradient descent
exhibits heavy-tailed behavior Gurbuzbalaban et al. (2021), allowing our theoretical framework to
center around a state-of-the-art heavy-tailed distribution, sub-Weibull distribution Vladimirova et al.
(2020), which generalizes the sub-Gaussian and sub-Exponential families to potentially heavier-tailed
ones. Sub-Weibull distributions are characterized by a positive tail index 6, with § = % represents
sub-Gaussian distributions, # = 1 represents heavy-tailed sub-Exponential distributions, and 6 > 1

represents heavier-tailed ones.

Assumption 3.1 (Sub-Weibull Gradient Noise). Conditioned on the iterates, we make an assumption
that the gradient noise VE(w;) — VL(wy) satisfies E[V{(w;) — VL(w,)] = 0 and |VE(w;) —
VL(wy)||2 ~ subWeibull(, K) for some positive K, such that § > %, and have

Eqlexp((||V¢(wt) — VL(w,) |2/ K)?)] < 2.

Assumption 3.1 is a relaxed version of gradient noise following sub-Gaussian distributions, that is
E¢fexp((||VE(wi) — VL(wy)|l2/K)?)] < 2, which means that finding upper bounds for moment
generating function (MGF) under Assumption 3.1 is impracticable by standard tools Vladimirova
et al. (2020). Thus, the truncated tail theory Bakhshizadeh et al. (2023) and martingale difference
inequality Madden et al. (2020) play a crucial role in our analysis.

Assumption 3.2 (3-Smoothness). The loss function { is 3-smooth, for any w¢, w, € RY, we have
IVl(we) = Ve(w)l2 < Bllwe — will2.

Assumption 3.3 (G-Bounded). For any w € R? and per-sample z, there exists positive real numbers
G > 0, and the expectation gradient satisfies

IVL(w)[l3 < G.

Assumption 3.2 is widely used in optimization literature Foster et al. (2018); Zhou et al. (2021); Li &
Liu (2022) and is essential for ensuring the convergence of gradients to zero Li & Orabona (2020).
Compared to the bounded stochastic gradient assumption Zhou et al. (2021); Li & Liu (2022; 2023),
ie., |Vl Wy, 2)||3 < G, Assumption 3.3 is milder, with our results being more applicable.

4 HEAVY-TAILED DPSGD WITH HIGH PROBABILITY BOUNDS

To analyze the performance degradation of DPSGD and the imperative of discriminative clipping in
heavy-tailed scenarios, we first present the current optimal optimization error of DPSGD Yang et al.
(2022); Bu et al. (2024); Zhou et al. (2021) on expectation bounds and the representative heavy-tailed
results with high probability bounds in Table 1. Most works with expectation bounds rely on the
assumption of light-tailed distributions, rough clipping analysis, or additional conditions, and cannot
be adapted to heavy-tailed DPSGD. Moreover, while high probability bounds are widely adopted in
the domain of SGD, applying them to DPSGD is challenging due to the additional unbounded privacy
noise introduced by DPSGD. This makes it difficult to provide empirical guidance for determining
the clipping threshold under rigorous theoretical guarantees. To fill this gap, we analyze the high
probability bound for classical DPSGD on the gradients of empirical risks, denoted as ||V Lg(w¢)||2,
under the heavy-tailed sub-Weibull assumption, as stated in Theorem 4.1. Consequently, we can use
this theorem to establish the relationship between the clipping threshold and the heavy tail index.

Theorem 4.1 (Convergence of Heavy-tailed DPSGD). Under Assumptions 3.1 and 3.2, let w be
the iterate produced by DPSGD with learning rate n; = —. Suppose that T = O(—=2—),

VT® \/dlog(1/8)
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Table 1: Summary of state-of-the-art optimization results under non-convex conditions, where

‘symmetry’ means the gradient noise ¢ satisfies P(¢) = P(—¢), and log(-) := log™®> (0= (),
Measure ‘ Method ‘ DPSGD ‘ SGD ‘ Assumption ‘ Clipping
o/ d1og(T]5
Yang etal. (2022) | O M X bounded v
- (ne)t variance
=}
s Vd d
< P I o
g Bu et al. (2024) (0] ( e [0} (C/T) symmetry v
>
H Zhou et al. (2021) 0 <£> X public subspace X
ne
o ~ . o
Madden et al. (2020) x 0 ( v log(T\)/I%g (1/9) , los(T/ %)g(l/ %) ) heavy tails X
2001 /8 -
. Li & Liu (2022) X o) <1°° (I%k’gm 4 los@/ %’g 1/9) ) heavy tails X
E
2 Li & Liu (2022) x o (108"(T/0)10g(T) | 10" (T) log(T/3) heavy tail v
[ vy tails
& VT VT Y
on
= Our log(T/9) log™ (V'T) .
DPSGD 0 (111 log? (T/5) - (o heavy tails v
Our O ( dilogi(T/6) - (p w +(1- p)(lOg( T>)) heavy tails v
DC-DPSGD s (ne)* (ne)

T > 1, and ¢ = max (4K log? (VT), 39K log’ (2/0)), where d is the number of model parameters.
For any ¢ € (0, 1), with probability 1 — §, we have:

T

1 _ dilog* (T/d
7 2 min {[|VLs(wi) 2. [|VLs (wi) 3} < O ée)y)log(T/é)log(T/é) log”(VT) |,
t=1 N——\——— tail probability clipping
privacy
where 1og(T/8) := log™®*(®0=D (/).

Proof. The proof is provided in Appendix B due to space limitations. O

In Theorem 4.1, we divide the optimization bound on the gradients of empirical risks into privacy
error, high probability tail error, and clipping error. Overall, we can derive that, as 6 ascends, the

optimization performance of DPSGD gradually deteriorates, because both lég(T /0) (appearing when
6 > 1) and log%(\/f) increase. Next, we compare our heavy-tailed DPSGD result to existing works.

* Compared to existing DPSGD with expectation bounds. Our work achieves the current
optimal results for classical DPSGD based on weaker assumptions and is extensible to
heavy-tailed scenarios. When 6 = % (i.e., light-tailed scenarios), the convergence bound
becomes Q(d 1 log% (T/6)1og(VT)/(ne)2). It aligns with the current optimal expectation
bounds of DPSGD, i.e., O({/dlog(1/5)/(ne)?) in Yang et al. (2022), except for an extra
high probability term log(T'/6) log(+v/T), while excluding the requirements of bounded
variance, symmetric gradients Bu et al. (2024), and public data Zhou et al. (2021).

* Compared to existing SGD with high probability bounds. Our high probability term
demonstrates improved performance in terms of clipping error. Specifically, the dependency
on the confidence parameter 1/ is logarithmic, similar to the optimal high probability
bounds for SGD Li & Liu (2022; 2023); Madden et al. (2020), as shown in Table 1.
Moreover, suppose VT = (ne)2/{/dlog(1/§), our DPSGD result can be transformed
to O(log(T'/)log(T/6)log®® (v/T)//T), improving the clipping error from log’*! (1)
in Li & Liu (2022) to log®* (v'T).

To our knowledge, we are the first to use the high probability bound as a measure to analyze the
optimization performance in heavy-tailed DPSGD.
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Tail-aware clipping mechanism. We can further observe from Theorem 4.1 that the theoretical value
of c is positively correlated to 6, which means the ideal clipping threshold should scale up as the
heavy tail index 6 increases. Otherwise, the convergence bound may become sub-optimal and even
collapse. Intuitively, using existing empirical guidance for clipping threshold under the heavy-tailed
assumption will cause higher clipping losses for tailed gradients with larger Ly norms. This motivates
us to design a tail-aware clipping mechanism to improve the performance of DPSGD.

5 DISCRIMINATIVE CLIPPING DPSGD

In this section, we present our approach DC-DPSGD that effectively handles heavy-tailed gradients
with a novel tail-aware clipping mechanism, as illustrated in Figure 2. The rationale is to divide
gradients following a heavy-tailed sub-Weibull distribution into two parts: light body and heavy
tail, and employ different clipping thresholds for the two parts respectively, where a small clipping
threshold is applied for light body and a larger one for heavy tail to mitigate the extra clipping loss.

Specifically, DC-DPSGD consists of two steps. In the first step, we propose a subspace identification
technique to distinguish gradients from light body and heavy tail in a privacy-preserving way. To
satisfy differential privacy, noise with scale oy, is added to this step (Section 5.1). In the second step,
we present a discriminative clipping method that utilizes different clipping thresholds for the two
parts and adds DP noise with scale o4y, for privacy preservation (Section 5.2). For a fair comparison
to existing DPSGD works, the total privacy budget allocated by DC-DPSGD to ¢, and €4, must
be equal to the privacy budget € in DPSGD variants, i.e., € = €, + €qp. Algorithm 1 presents the
detailed steps of DC-DPSGD, and Theorem 5.1 gives its privacy guarantee.

Theorem 5.1 (Privacy Guarantee). There exist constants my and mo such that for any €, < mq ¢*T,
. .. Tq?In Tq?In L
€ap < m1g*T and § > 0, the noise multiplier o2, = % and oﬁp = % over T
tr dp

iterations, where q = %, and DC-DPSGD is (ey; + €ap, 0)-differentially private.

Proof. According to the results of trace sorting, we apply two clipping thresholds for gradient
perturbation, making it essential to reanalyze the unified privacy guarantees of our composition
mechanism. Due to space limitations, we defer the proof to Appendix C for more details. O

5.1 SUBSPACE IDENTIFICATION

We note that the heavy tail index 6 reflects the per-sample gradient norm, which means samples
drawn from heavier-tailed distributions are more likely to exhibit larger Lo norms, and their subspace
eigenvectors differ from those of light-tailed distributions. Due to the high-dimensional nature of
gradients, their normalized versions act as mutually orthogonal eigenvectors Wainwright (2019).
By measuring the similarity between the empirical normalized gradients and the underlying heavy-
tailed subspace, a higher similarity indicates closer alignment with the heavy tail, while a lower
similarity implies the light body. Given that the normalized gradients retain directional information
with bounded sensitivity Ls norm (equal to 1), this allows for bypassing the unbounded norm of
heavy-tailed gradients and identifying different responses of gradients in the heavy-tailed subspace.

Specifically, we first construct a projection matrix composed of k& random orthogonal unit vectors
[v1, ..., vg] consistent with heavy-tailed sub-Weibull distributions (6 > %), and then divide gradients

Light body [Step 1: Subspace Identification Y4 Step 2: Discriminative Clipping )
== Heavy tail Light-tailed Small clipping I I
P(x) Projected trace o distribution threshold | [
X : )
A N D S {11 Add noise
an B S S Large clippin; with &gp
I ] ° b e \Heavy-tailed threshold | |
e Sort with &, Won // \
x: Gradien
I
. O\ J

Figure 2: Overview of DC-DPSGD.
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Algorithm 1 Discriminative Clipping DPSGD

Input: Private batch size B, heavy-tailed ratio p, heavy-tailed clipping threshold ¢y, light-tailed clip-
ping threshold ¢, learning rate 7, and subspace dimension k.

1: Initialize w( randomly.

2: for e € Epochs E do

3:  Initialize V; j, to None.

4:  for ¢ € Iterations T" do

5: Take a random batch B with sampling ratio B/n and g;(z;) = V{(wy, 2;).

6: Extract orthogonal vectors [vy, ..., vx] from sub-Weibull distributions and construct projec-

. . T 1 k T
tion subspace with Vthtk =z Zi:l v;0;

7: Normalize per-sample gradient §;(z;) = g¢(2:)/]18:(2:)]]-

8: Calculate the trace \"; of the projected second moment VtTk &:(2)81 (i) Vi k.
9: Perturb traces X?L = A", + N(0, 02) and identify top-pB based on sorted ng
10: Discriminative clipping: clip per-sample gradient and add noise with ¢; and cs.

tail 5
For heavy tail: g%!(z;) = gt*il(z;) /max(1, 18 G2 C(I:’:” ) + N0, ciod,Ta)
ody .

For light body: g>°% (2 ) = g7V (z;)/max(1, M) + N(O0, C%U(%p]:[d)
11: Weighted average g, = (ZZ | giell(zy) + P B ghedy, l))
12: Update w; 11 = Wy — 1:8;.
13:  end for
14: end for

into the light body or heavy tail region according to the projected trace A{"; = V', &:(2:)&7 (i) Vi.ks
where the larger \}; indicates a higher similarity between the gradient and the projection subspace,
and V;x V5 = £ 3%  w;f is the approximated second moment. To estimate the utility of the
identification, we need to bound the skewing between the empirical second moment and the population
second moment, i.e., |ViVl — E[ViVil]||2. It is worth noting that in line 9 of Algorithm 1, as the
publicly available traces are sorted to identify the top p% heavy-tailed gradients, which may expose
intrinsic preferences, extra noise is injected. According to Ahlswede-Winter Inequality Wainwright
(2019), we analyze the error of subspace skewing in a high probability form.

Theorem 5.2 (Subspace Skewing for Identification). Assume that the empirical second moment
matrix M = VkaT € RIXd with VkTVk = I, approximates the population second moment matrix

M = ViViT = Evea[ViViTL A = te(VTge(20)&T (2:) Vi) and N = tr(VT g (z)&7 (i) Vi),

for any gradient g;(z;) that satisfies |&:(2;)|2 = 1, ¢f* ~ N(0, o), with probability 1 — 6., — 0y

Alog (2d/5,) +_mw@'log%(l/atr)
k dz

IAF = A+ Gl <

)

where 0,,, 0ty € (0, 1) are introduced by concentration inequalities and DP noise respectively.

By comparing the magnitudes log (2d/d,,)/k and log? (1/8;)/d? in Theorem 5.2, it is evident that
the first term dominates since d >> k (please refer to Appendix D for more discussion). Thus, the
error is negligible when k is large, indicating that the gradients can be correctly identified with high
probability, guaranteed by 1 — 4/,,, where 8/, = d¢; + G-

5.2 DISCRIMINATIVE CLIPPING

Assuming that the gradients are classified into the correct heavy tail and light body regions, we then
apply two different clipping thresholds (denoted as c¢; and c») in our discriminative clipping method
for the tail and body gradients, respectively. This way, we can reduce tail gradients’ clipping losses
and obtain faster DPSGD convergence, according to the analysis in Section 4.

Specifically, the tail probability P(|X| > z) = exp (—I(x)) Vx > 0 of the sub-Weibull variables
X ~ subW (0, K) exhibits two different behaviors: (1) Light body: for small x values, the tail
rate capturing function I(x) decays like a sub-Gaussian tail. (2) Heavy tail: for z greater than the
normal convergence region, i.e., T > Tmax 1$ a large deviation region, its decay is slower than that
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of the normal distribution, where x,,x is a mathematical inflection point related to the population
variance of underlying distributions Bakhshizadeh et al. (2023). Existing literature has studied the
first region in the optimization analysis for DPSGD Bu et al. (2024); Yang et al. (2022); Xia et al.
(2023); Cheng et al. (2022); Xiao et al. (2023); Sha et al. (2023), but they overlook the heavy-tailed
behavior for the second region. In this paper, we not only study the optimization performance of
each region, but also combine the two regions with discriminative clipping thresholds. To construct a
clear convergence boundary for the two regions in heavy-tailed scenarios, we generalize the sharp
heavy-tailed concentration Bakhshizadeh et al. (2023) and sub-Weibull Freedman inequality Madden
et al. (2020) to truncate the theoretical distribution and find the optimal clipping threshold for each
region. As a result, we have the following theorem.

Theorem 5.3 (Convergence of Discriminative Clipping). Under Assumptions 3.1, 3.2 and 3.3,

. . = ne _ 1
let wy be the iterate produced by DC-DPSGD with T = @(7\/m), T>1andn = .
Define 10g(T/8) := log™>®0=D(T/8) T'(z) := Joo e dt, a = 2if0 = 5, a = (40)%7e? if

0 € (1,1) anda = (22041 + 2)T(20 + 1) + ZLCD 409 5 1, forany 6 € (0,1):
(i). In the heavy tail region:
suppose that ¢; = max (4°2K log? (VT), 433K log0(2/6)), with probability 1 — 9,
d* log* (T/8)log(T/9) log29(ﬁ>>

(ne)

T
1 .
7 2 min{[[VLs(wi)[2, [VLs(wi)[3} < O (
t=1
(ii). In the light body region:
suppose that c; = max (2v/2aK log? (VT),33v2aK log? (2/0)), with probability 1 — 6,
(di log? (T/6) log(\/T)>

(ne)>

T
1 .
T > min{|[VLs(w)|a, [VLs(w:)[3} < O

t=1

Proof. We provide a proof sketch below and defer the full proof to Appendix E. In DC-DPSGD, the
convergence bounds for the two regions correspond to ¢; and co, respectively. First, we optimize
the theoretical tools by transforming the concentration inequalities for the sum of sub-Weibull
random variables X into two-region versions distinguished by the tail probability P(|X| > ),
namely sub-Gaussian tail decay rate exp(—z?) and heavy-tailed decay rate exp(—z'/%), § > 1.
Then, we analyze the high probability bounds for the gradient noise of DPSGD in each region.
In the heavy tail region, we make the inequality P(||g: — VLs(w¢)|l2 > ¢1) < 2eXp(—ci/0)
hold and derive the dependence of factor 10g9(1 /9) for ¢;. In the light body region, we have
P(llg: — VLs(we)|l2 > ¢2) < 2exp(—c2), resulting in the factor log'/?(1/8) of c,. Next, we
investigate the high probability error on the unbounded DPSGD privacy noise using Gaussian
distribution properties. Finally, we integrate the results regarding gradient noise and privacy noise to
determine the optimal clipping thresholds for both regions and achieve faster convergence rates for
the optimization performance. O

From Theorem 5.3, we can observe that when gradients fall into the light body region, our result does
not contain the heavy-tailed index 6, implying that the optimization performance is not affected by 6
and always converges with respect to the light-tailed sub-Gaussian rate. When the gradients are in
the heavy-tailed region, the convergence will be the same as that of classical heavy-tailed DPSGD,
which becomes deteriorated as # increases. In summary, compared to existing optimization results
that fully rely on the heavy-tailed index 6 Li & Liu (2022); Madden et al. (2020), our DC-DPSGD
bound only increases with 6 for partial gradients (i.e., heavy-tailed gradients), leading to improved
optimization performance, notably when 6 > 1/2.

5.3 UNIFORM BOUND FOR DC-DPSGD

Notice that in the subspace identification method, we use the trace of the second moment to approxi-
mate the population variance of projected gradients, and the approximation error is bounded by a
high probability of 1 — 4/, in Theorem 5.2. Thus, we can analyze the convergence by combining
Theorems 5.2 and 5.3 to derive the uniform bound for Algorithm 1, as stated in Theorem 5.4.
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Theorem 5.4 (Uniform Bound for DC-DPSGD). Given Assumptions 3.1, 3.2 and 3.3, we can obtain
that for any &' € (0, 1), with probability 1 — §' and Cy, := ZZ;I min{||VLs(w)||3, [VLs(w¢)| 2}

d’ log® (T/8)log(T/3) 1og29(ﬁ)> +(1-p)xO (di log (T/9) log<ﬁ>>

(ne)? (ne)s

Guﬁp*@<

where p is the ratio of heavy-tailed gradients, 10g(T/8) = log™* (0= (T/§), §' = &+, with &',
being the error of subspace identification, and & being the convergence probability of DC-DPSGD.

Theorem 5.4 indicates that the optimization performance of DC-DPSGD is composed of p-weighted
average bounds, where the heavy-tailed convergence rate merely accounts for a portion of p, with
the rest made up of the light body rate. Therefore, our bound minimizes the dependency on 6 from
log(T'/8) log®® (VT) to log(v/T') with high probability (1 — p) * (1 — §'), which is tighter than heavy-
tailed DPSGD (Theorem 4.1). According to the statistical properties Vershynin (2018); Wainwright
(2019), approximately 5%-10% of data points fall into the tail in practice, that is, p € [5%, 10%].

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Datasets and models. We evaluate DC-DPSGD on five real-world datasets, including MNIST,
FMNIST, CIFAR10, ImageNette Deng et al. (2009) for image classification, and E2E Dusek et al.
(2020) for natural language generation. Moreover, we use two heavy-tailed versions: namely
CIFARI10-HT Cao et al. (2019) (a heavy-tailed version of CIFAR10) and ImageNette-HT (modified
on Park et al. (2021)) to evaluate the performance under heavy tail assumption.

For MNIST and FMNIST, we use a two-layer CNN model. For CIFAR10 and CIFAR10-HT,
we fine-tune SImCLRV2 pre-trained by unlabeled ImageNet and ResNeXt-29 pre-trained by CI-
FAR100 Tramer & Boneh (2021) with a linear classifier, respectively. For ImageNette and ImageNette-
HT, we adopt the same setting as Bu et al. (2024) and ResNet9 without pre-train. For E2E, we use
a transformer-based GPT-2 model (163 million parameters) and fine-tune it with the dataset. We
evaluate image classification tasks using accuracy that measures the portion of correct predictions,
and natural language generation tasks using the BLEU score Papinesi (2002) that measures the quality
of generated data with a modified n-gram precision score.

Baselines. We compare DC-DPSGD with three differentially private baselines: DPSGD with Abadi’s
clipping Abadi et al. (2016), Auto-S/NSGD Bu et al. (2024); Yang et al. (2022), DP-PSAC Xia et al.
(2023), and a non-private baseline: non-DP (e = c0).

Implementation details. We set c; = 0.1, B = 128, and n = 0.1 for MNIST and FMNIST. For
CIFARI10, we set co = 0.1, B = 256, and = 1. For ImageNette, we set co = 0.15, 7 = 0.0001 and
B = 1000. For E2E, we adopt the DPAdam optimizer and use the same settings as Li et al. (2022),
where co = 0.1. By default, we set ¢; = 10 * o, and heavy-tailed ratio p is 10%. We implement
per-sample clipping in DPSGD by BackPACK Dangel et al. (2020) and allocate the privacy budget
equally according to € = €trteq, -

6.2 EFFECTIVENESS EVALUATION

Table 2 summarizes the comparison results between DC-DPSGD and baselines. We observe that on
normal datasets, DC-DPSGD outperforms DPSGD, Auto-S, and DP-PSAC by up to 4.57%, 5.42%,
and 4.99%, respectively. While on heavy-tailed datasets, the corresponding improvements are 8.34%,
9.72%, and 9.55%. The reason is that our approach places a larger clipping threshold for heavy-tailed
gradients, thereby preserving more information about them and improving accuracy. Moreover,
we demonstrate the trajectories of training accuracy in Figure 3, indicating that the optimization
performance of DC-DPSGD is superior to existing clipping mechanisms.

We then evaluate the effects of four parameters on test accuracy, including the subspace-k, the
allocation of privacy budget ¢, the heavy tail index sub-Weibull-6, and the heavy tail ratio p, with
other parameters kept at default. The results are shown in Table 3. We can see that the test accuracy
increases with the value of k, which aligns with the theoretical analysis that the trace error is related
to O(1/k) and has a small impact on the results. For the allocation of privacy budget between e, and
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Table 2: Effectiveness comparison between DC-DPSGD and baselines.

Dataset DP Accuracy % or BLEU %
) (e,9) DPSGD | Auto-S | DP-PSAC | Ours | non-DP
MNIST (8,1e7%) | 97.6540.09 | 97.5540.16 | 97.67+0.06 | 98.72+0.02 | 99.10+0.02
FMNIST (8,1e7%) | 83.2340.10 | 82.3840.15 | 82.81+0.18 | 87.80+0.47 | 89.95+0.32
CIFAR10 (8,1e7%) | 93.314:0.01 | 93.2840.06 | 93.30+0.03 | 94.05+0.11 | 94.624+0.03
CIFAR10 4,1e7%) | 93.064-0.09 | 93.0840.06 | 93.11+0.08 | 93.42+0.14 | 94.6240.03
ImageNette (8,1e™%) | 66.8140.42 | 65.574+0.85 | 65.68+1.71 | 69.29+0.19 | 71.67+0.49
CIFAR10-HT (8,1e7%) | 57.984:0.59 | 58.30+0.61 | 57.99+0.58 | 62.57+1.03 | 71.7440.65
ImageNette-HT (8, 1e™%) | 25.36£1.71 | 23.9842.00 | 24.154+1.99 | 33.70+£0.91 | 39.914+1.46
E2E (full fine-tune) 8,1e7%) 63.189 63.600 63.627 65.380 69.463
E2E (LoRA fine-tune) | (8,1e~%) 63.389 63.518 63.502 64.150 69.692
Table 3: Effects of parameters on test accuracy.
Dataset | Subspace-k | €ur + €dp | Sub-Weibull-6 | Tail Ratio-p
‘ None 100 200 ‘ 2+6 4+4 6+2 ‘ 172 1 2 ‘ 5% 10%  20%

CIFAR10 93.07 93.82 94.05 | 93.92 94.05 93.37 | 93.88 93.99 94.05 | 93.90 94.05 93.63
CIFARIO-HT | 57.27 61.60 62.57 | 62.54 62.57 60.07 | 61.58 62.28 62.57 | 61.12 62.57 61.70

€dp, we find that a balanced allocation strategy can mitigate excessive noise caused by a one-sided
small privacy budget. For subspace distribution, since the ‘HT’ dataset is extracted through sub-
Exponential distributions, the gradient exhibits a heavier tail phenomenon. Therefore, the accuracy
increases as f becomes larger. For the tail ratio, p = 10% achieves better results. If p is too low, it
fails to mitigate clipping loss, while if p is too large, it could introduce additional noise.

Large clipping threshold c; =10 *c, Large clipping threshold ¢; =100 *c;
Optimization Trajectory during Training

g CXNOY 83.88 90.05 93.33 89.79 -90 5 t:PavicN 90.33 93.31 90.32 89.95 -92

97.5 Poees e pee peataETas: ~ ~
e o @) © -90
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o025 s S @
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Figure 3: Optimization perfor-
mance during CIFAR10 Training. Figure 4: Test accuracy heatmap on CIFAR10 with c;, ¢ and 7.

6.3 GUIDANCE FOR THE LARGE CLIPPING THRESHOLD

We now validate our empirical guidance for the clipping threshold in Theorem 5.3. The results in
Figure 4 indicate that the optimal ratio is approximately c¢; ~ 10cy. We note that when ¢; = 100c3,
the maximum performance declines noticeably, and when ¢; = co, it corresponds to classical
DPSGD. From a theoretical perspective, given § = le=5, /B = 0.04, and 6 ~ 2 (following Gur-
buzbalaban et al. (2021)), we can obtain ¢; = @(loge(l/é)), which is /125 times larger than
co = O(og?(1/6)), that is, ¢; = log®?(1/6)cs, i.e., ¢ &~ 10cs. In conclusion, the optimal
clipping threshold aligns with our empirical guidance.

7 CONCLUSION

In this paper, we propose a novel approach DC-DPSGD under the heavy-tailed assumption, which
effectively reduces extra clipping loss in the heavy-tailed region. We rigorously analyze the high
probability bound of the classic heavy-tailed DPSGD under non-convex conditions and obtain results
matching the expectation bounds. Furthermore, we sharpen the weighted average optimization
performance of DC-DPSGD. Extensive experiments on five real-world datasets demonstrate that DC-
DPSGD outperforms three state-of-the-art clipping mechanisms.

10
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A PRELIMINARIES

A random variable X called a sub-Weibull random variable with tail parameter § and scale factor K,
which is denoted by X ~ subW (6, K'). We next introduce the equivalent properties and theoretical
tools of sub-Weibull distributions.

A.1 PROPERTIES

Definition A.1 (Sub-Weibull Equivalent Properties Vladimirova et al. (2020)). Let X be a random
variable and 0 > 0, and there exists some constant K1, Ko, K3, K4 depending on 0. Then the
following characterizations are equivalent:

1. The tails of X satisfy
3K, > 0 such that P(|X| > t) < 2exp(—(t/K1)?),vt > 0.

2. The moments of X satisfy
3Ky > 0 such that | X ||, < Kop®,Vk > 1.

3. The moment generating function (MGF) of | X |% satisfies
3K > 0 such that Elexp((AX|)?)] < exp((AK3)?),VA € (0,1/K3).

4. The MGF of | X|# is bounded at some point,
3K, > 0 such that Elexp((| X|/K4)?)] < 2.

A.2 THEORETICAL TOOLS

Based on the properties of sub-Weibull variables, we have the following high probability bounds and
concentration inequalities for heavier tails as theoretical tools. Besides, We define I, norm as ||||,, for
any p > 1.

Lemma A.1. Let a variable X ~ subW (0, K), for any 6 € (0, 1), then with probability (1 — ) we
have

IX| < K log” (2/9).

Proof. Let K1 = K in Definition A.1, and take ¢ = K log? (2/6), then the inequality holds with
probability 1 — 4. O

Lemma A.2 (Vladimirova et al. (2020); Madden et al. (2020)). Let X1, ..., X,, are subW (0, K;)
random variables with scale parameters K1, ...K,. Vx > 0, we have

" x
P Xi| > z) < 2exp(—(——=n—~+
(‘; | ) ( (9(9)Z¢:1Ki)
where g(0) = (4¢)? for < 1 and g(0) = 2(2¢0)? for 6 > 1.
Lemma A.3 (Sub-Weibull Freedman Inequality Madden et al. (2020)). Ler (2, F,(F;),P) be a
filtered probability space. Let (&;) and (K;) be adapted to (#;). Let n € N, then Vi € [n], assume
Ki_1 > 0, E[&]F_1] = 0, and Elexp((|&]/Ki—1)%)|Fi—1] < 2 where § > 1/2.1If 0 > 1/2,

assume there exists (m;) such that K;_1 < m,.

if0 =1/2 leta=2, thenVx,3 >0, a>0,and \ € [0, 5~],

) 2a

D=

)

k k k
P U {Zfl >z and ZaKf_l < aZfi + ﬂ} < exp(—Az + 2)%3), 3)
i=1 i=1

ken] =1
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and vz, 5,2 >0,

]P’U{

ke[n]  i=1

M»

)\2
>z and ZaKZ-{l < B} < exp(—Az + ?6) 4

If0 € (3,1, let a = (40)?°¢? and b = (40)%e. Y, B > 0, and o > bmax;e[n,ymi, and X € [0, 5],

P U {Z§Z>mand ZaKz 1<azgl+6} < exp(—Az +2)%3), %)

keln]  i=1

andVz,3 >0, and \ € [0, 7———]

7 bmax;epym;

P U {Z@ >z and ZaKZ-{l < B} < exp(—Az + %26) (6)

keln]  i=1

Ifo > 1, let 5 € (0,1). Let a = (22041 +2)T'(20 + 1) + 2%°T'(30 + 1)/3 and b = 2logn/8’*,

where T'(z) = [ t*"te ™ dt. Vo, > 0, o > bmax;e[,ym;, and A € [0, 5],

P U {Zfzzxand ZaKZ 1<a251+5} <exp(—Az +2X%3) +20, (7)
ken] =1

andVx,B > 0, and X € [0 L

7 bmax;en)mi ]’

2

k k
P U {Z@ > x and ZGKZ‘271 Sﬁ} Sexp(—)\x—k%ﬁ)—i-%. (8)
i i=1

Lemma A.4 (Zhang (2005)). Let 21, ..., z, be a sequence of randoms variables such that zj, may
depend the previous variables z1, = Zk—l for all k=1,.. n Consider a sequence of functionals
k(21 ey 28), k =1,..,n Let o2 = Y} _ | E., [(& — E.,[¢])?] be the conditional variance.
Assume \fk —E., [fk“ < b for each k. Let p € (0,1] and § € (0,1). With probability at least 1 — §
we have

1
Z&rZE% &l < ”“ blopg‘s ©

Lemma A.5 (Cutkosky & Mehta (2020)). For any vector g € RY, (g/|gll2, VLs(w)) >
HVLS?’(W)Hz _ SHE*L?;G(W)Hz.

Lemma A.6 (Madden et al. (2020)). If X ~ subW (6, K), then E[|X?|] < 20(p0 + 1)K ¥p > 0.
In particular, E[X?] < 2I'(20 + 1) K2.

Lemma A.7 (Bakhshizadeh et al. (2023)). Suppose X1, ..., X, 2 X are independent and identically
distributed random variables whose right tails are captured by an increasing and continuous function
I : R — R2% with the property I(x) = Q(z) as x — oo. Let X* = XH(X <L), Sn,=Y" X
and ZV = XL — E[X]. Define Tmax := sup{z > 0: z < nv(mz,n) 221, then

mx

exp(—c,nl(mz)) + mexp(—I(max)), if T > Tmax,

P(Sy — E[Sm] > mz) < ma? mad, .. (1)
exp(— no(maze . n)

— ) + mexp(— if0 <2 < Tmax,
QU(me‘max, 77) ) ( nv(mmmaXa 77) )7 e

(10)

where ¢, = 1 — % andv(L,n) = E[(Z%)21(Z* < 0) + (Z1)? exp(nI(LL)ZL)]I(ZL >
0)],v8 € (0,1].
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Lemma A.8 (Bakhshizadeh et al. (2023)). Consider the same settings as the ones in Lemma A.7.
Assume E[X;] = 0, then ¥Vt > 0 we have

mt?

m) + exp(—nmax{ci, %}I(mt)) +mexp(—I(mt)).  (11)

P(S,, > mt) < exp(—

Lemma A.9 (Ahlswede-Winter Inequality). Let Y be a random, symmetric, positive semi-definite
dd matrix such that |E[Y]||2 < 1. Suppose ||Y |2 < R for some fixed scalar R > 1. Let Y1, ..., Yy,
be independent copies of Y (i.e., independently sampled matrix with the same distribution as Y ). For
any i € (0, 1), we have

1 m
B = 3V~ Bl > ) < 24 exp(—mp?/4R).
=1

A.3 NOTATIONS

Table 4: Summary of notations

Definition of Notations

w the model parameter
d the dimension of model parameters
z the training sample

n the sample size
B the batch sample size

l the loss function

D

DD’ the neighboring datasets
€dp the privacy budget for differential privacy
Er the privacy budget for preserving traces
Odp the noise multiplier for differential privacy
Oy the noise multiplier for preserving traces
Vi k-dimensional the random projection vector
K the variance-related positive constant
VL(w;) k-dimensional the random projection vector
T the iterations of training
Nt the learning rate in ¢ iteration
0 the heavy tail index
p the ratio of heavy tail
AL the empirical trace of the sample
5\? the population trace for dividing heavy tail or light body
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B CONVERGENCE OF HEAVY-TAILED DPSGD

Theorem B.1 (Convergence of Heavy-tailed DPSGD). Under Assumptions 3.1 and 3.2, let w; be
the iterate produced by Algorithm DPSGD with T’ = @(m) T>1 andn = ﬁ Define
og

1
63, = my TIEE LW g — Land K < Gay, then ¢ = max (4K log”(VT), %22(1/5)).
If0 = L and K > 6qp, then ¢ = max (4Klog9(\/f),39K10g%(2/5))_ Ifo >

L1, then ¢ =
3
max (4K log? (VT), 20K log’ (2/0)). For any § € (0,1), with probability 1 — 8, we have

3 Lo (/66 (T/8) loa®
%ZIHiII{HVLS(Wt)H% IVLs(we)|3} < (O)(d log* (1'/6)log(1T'/0) log (\/T))’

] (ne)%

where 10g(T/8) := log™*>(®0=1 (1/5),

Proof. We consider two cases: VLg(w;) < ¢/2 and VLg(w;) > ¢/2. To simplify notation, we
omit the subscript of privacy parameters throughout, such as €qp,.

We first consider the case VLg(w;) < ¢/2.

1
LS(Wt+1) - LS(Wt) < <Wt+1 — Wy, VLS(Wt)> + §5||Wt+1 - WtH2 (12)
1
< —mi(8: + G VEs(we)) + 580 |18, + Gl?
= (8 — Ei[g] + Ei[g,] — VLs(wWi), VLs(wWe)) — ne(Ce, VLs(Wy))

VLI + S A I + 3B + B (s, o
= —1(8; — Bi[g:), VLs(We)) — i (Be[g,] — VLs(We), VLs (W) — 0e(Ce, Vs (We))

1 _ 1 —
= e[ VLs(wo)|* + 58zl + 5Bz lIC ] + Bni (&, o)

Considering all T iterations, we get

T T
Yl VLs(wo)|? < Ls(wi) = Ls(ws) + %577 c® + Z SBNGI* + Zﬂm 8 Gt)

t=1 t=1 t=1
Eq.1 Eq.2
T T
—Zm G, VLs(wy)) Z g, — Ei[g,). VLs(W1)) Z (Ei[g,] — VLs(wy), VLs(w))
Eq.3 Eq.4 Eq.5

13)

For Eq.1, Eq.2 and Eq.3, since (; ~ N(0,coq4plq), according to sub-Gaussian properties and
Lemma A.2, with probability at least 1 — §, we have

T

T
Z SO NG* < 28Kelog(2/8) Y _n?
t=1

)—‘

T
Tc?B? log (2/9) Z 9
————)

< 2Bmaed (14)
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Also, with probability at least 1 — J, we get

T
DB (8 G < Z B llg MG
t=1

~

< 3" 2BcK/elog? (2/8)}

t=1

P T
<28 /eszdM Z 2. (15)
ne

Due to VLg(w;) < ¢/2, for the term — ZtT=1 1 (Ce, VLg(wy)), with probability at least 1 — J, we
have

T T
= (G, VEs(we)) <Y mel| Gl Vs (wi)|
t=1 =1
T
<3 2eK Velog? (2/8)n,
t=1
i 2Blog( 2/(5 a
<2\/em 5 Z (16)
Since E;[—n, (g, — E¢[8,], VLs(w,))] = 0, the sequence (—n; (g, — [ ., VLg(wy)),t € N)isa
martingale difference sequence. Applying Lemma A.4, we define & = —n:(g, — E:[g,], VLs(w:))
and have
&l < me(8ill2 + 1Ec[&,]12) IV Ls (we)ll2 < mec. (17)

Applying E;[(&; — Ei&)?] < E¢[€2], we have

T
D E(& - Ei&y)? Z tllg, — Eelg I3V Ls (we)|3]
t=1 t=1
T
<4c®y | VLs(wo)ll3- (18)
t=1
Then, with probability 1 — d, we obtain

T 2T 2 2 2
Z& < pic thl ZtﬂvaS(Wt)”Q + nc 105(1/5). (19)
t

Next, to bound term Eq.5, we have

T
> m(Bi[g,] — VLs(wi), VLs(wi)) < Zﬁt |Ei[g,] — VLs(wy)|3 + Zm [V Ls(we)|l3-
t 1

Setting a; = g, |,>c and by = HHgt_VLS(Wt)H2>%’ for term ||E,[g,] — VLs(wy)||2, we have
IE:[g:] — VLs(wi)ll2 = [|Ee[(8; — gt)au]ll2
c
= [[Be[(ge (7= — Dadlll2
I8¢l

< Et[n(gt(@ -

Ei(lllgell2 — clac]

Eillllgellz = [V Ls(wi)l|2]at]
< Et[lllgt — VLs(wi)|[2]a:]
< Eiflllge — VLs(We)ll2|b:]

< \/Edlllg: — VLs(wo)lBEb2. 20)
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Applying Lemma A.6, we get E¢[||g; — VLg(wy)||3] < 2K?T(260 + 1). Then, for term E;b7, with
sub-Weibull properties and probability 1 — § we have

Eb} = P(lg: — VLs(wi)ll2 > 5) < 2exp(~(;7)¥) @

So, we get formula.(20) as

VEdlg — VIs(we) [3ED < 2\/K2F(29 + Dexp(—(772))- (22)
Thus, for Eq.5, with probability 1 — T'6 we finally obtain
T
D ne(Eelg] — VLs(we), VLs(wy))
— i |
< 2K°T(20 + 1) ;meXp (4K )?) ZmIIVLs(Wt)Hg (23)

Combining Eq.1-5 with the inequality (10), with probability 1 — 46 — 1T'6, we have

T T T
1 Tc?B?log?(2/6)
2 2 2
;UtHVLS(Wt)HQ < Lg(w1) — Ls(ws) + ; 55771:0 +2Pmae dT z::
T T
2Blog(2/9) 2Blog(2/5 2log (1/68
+28y/emyTd DB/ / Z +24/emyTd 2280 ;ge( [ 5, 4 e o8 (1/9) Opg( /%)
=1 t=1
4pc® 3o M|V Ls(we) 3 3
n ¢ 177i62 N2 4 9R2r (20 4 1)exp(— )7) Znt—i— ZlntHVLS(Wt)Hz
t=1 t
(24)
Setting p = 15, T = @(m) and n; = \F,we have
1< 9 1.5 d%chng%(Q/é)
1 > mllVLs(we)ll3 < Ls(wi) — Ls(ws) + 38¢ +20mae —
t=1
di®Blog?(2/5 1647 log? (1/6
+2B\/em2w\/oﬁgf(/)JrZ,/echzBlogé@M) 0 46\/0%4( /9)
+2K2T(20 + 1)exp(—(&)%)ﬁ. (25)
Eq.6

Then, we pay attention to term Eq.6. If ¢ — 0, then exp(—(3 K) ) — 1 and v/T will dominate term
Eq.6. We know that in classical DPSGD, a small c is regarded as the clipping threshold guide, which
will cause the variance term Eq.6 to dominate the entire bound. For this, we will provide guidance on
the clipping values of DPSGD under the heavy-tailed assumption.

Let exp(—(&)%) f’ then we have ¢ > 4K log?(v/T). So, we obtain

dzc2B? log (2/0)

ne

T
> il VLs(wi)[13 < 4(Ls(w1) — Ls(ws)) + 286> + 83mae
=1

64dic? log% (1/6)
Ve

d%c2Blog%(2/§)

+ 8B \/emz N + 8y/emac? Blog? (2/6) + +8K2T(20+ 1).

(26)
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Multiplying % on both sides, we get

d3c2B?log? (2/5)

T
\% S IV Ls (w3 < % <4<Ls<wl> — Ls(ws)) + 266 + 8mae
t=1

ne

dic®Blog?(2/6 L 64d7 2 logd (1/6
+88+/emq \/?% (2/9) + 8y/emac?Blog? (2/6) + \/% (1/9)

Taking ¢ = 4K log?(v/T), due to T > 1, we achieve

1 & , _ A(Ls(wi) — Lg(wg)) = 8K2I'(260 + 1)
ﬁ;ntHVLS(Wt)HQ < \/T + \/T
16K210g% (v'T) log(2/5) d? B2 log? (2/6)
+ Wi <2B + SBmzeT

+85\/em2d43%05>n:(2/5> + 8/emzBlog™*(2/5) +

log® (vT) log(1/8) di log3 <1/5>

VT

log® (VT) log(1/)d log? (1 < /6)
N

Dueto £ 571, [VLs(we)|3 < <= S{, el VLs(wy)

IN

O(

)

ﬁ

< of

).

%, we have

T 1. 26 2
1 dilog® (v/T)logi (1/6)
= VLs(w)||2 <O ,
T ; IVLs(wi)ll5 < O e )
with probability 1 — 7§ — 44.
By substitution, with probability 1 — §, we get
T 1 20 5
1 dlog® (v/T)log® (T/6
L3 VL (w3 < o( e VD oeTT/0),
et (ne)2

Secondly, we consider the case VLg(w;) > ¢/2.
1
Ls(wWer1) = Ls(wi) < (Weps — wy, VLs(We)) + 5 B[ wegr — well3

_ 1 _
< 8+ G Vs (W) + 5 80|18, + Gz

| ——
Eq.7 Eq.8

N

+ 8K?T'(20 + 1)) .

27)

64d7% log (1/5)

(28)

(29)

(30)

&1V

We have discussed term Eq.8 in the above case, so we focus on Eq.7 here. Setting s;” = Ig,||o>c and

5 = ljgyfla<e-

— (8 + G, VLg(wy))

c _
= =1 Hg%ﬁ si + g5y, VLs(Wy)) — i (Ce, VDs(Wy)).

Applying Lemma A.5 to term —; (85" ¥V Lg(wy)), we have

llg: H

enesy [[VLs(wy)ll2 n 8cnillgr — VLs(we)ll2
3 3

T

TSt VEs(w) < -
t

e = s )IVLs(wi)lla |, 8enellge = VLs (W)

= 3 3

(32)

(33)

)
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For term —;(g:s; , VLs(w;)), we obtain

—mi(ges; , VLs(wy)) = —nesy (8 — VLs(wy), VLs(wi)) + [|[VLs(we)|3)
< —mesy (—llge — VLS(Wt)||2||VLS(Wt)||2 + IVLs(w)|3)

< millge = VLs(wi)ll2[VLs(we)ll2 — 77fo IVLs(wy)ll2

C —
< mellge = VLs(Wo)ll2lVLs(we)llz = gmsy [VLs(we)ll2. - G4)

According to Lemma A.1, with probability at least 1 — J, we have

lge = VLs(wi)ll2 < Klog”(2/9), (35)
then we get
—ne(gesy s VLs(wi)) < Klog®(2/6)|VLs(we)|l2 — 77t8t [VLs(we)ll2, (36)
and
c ene(1 — s )|[|[VLs(w 8cn, K log? (2/6
By < DIV Es(wls | SonKlog’2/8) o
¢l 3 3
Using Lemma A.2 to term — Zthl 1:(Ct, VLg(wy)), with probability at least 1 — §, we have
a c¢Blog(2/4) d
—> ne(C, VLs(wy)) < 4/emyTd—— == > el VLs(we) 2. (38)
t=1 t=1

So, combining formula.(35), formula.(37) and formula.(38) with term Eq.7, with probability at least
1 —26 — T6, we obtain

T

T
- Zm@ + ¢, VLs(wy)) < — Z [VLs(we)ll2 + Z

t=1 t=1 t=1

ey 8en, K log” (2/6)

3

T

T
cBlog(2/6
+ K10g(2/0) S mlIVLs (wo)l + 4/emnTd B S L
t=1 t=1

” T
19 Blog(2/0
<3 YT L) + (5 K g (2/0) + 4/emaTd ) S 9 L)
t=1

t=1
(39)

2 2
Next, considering all T iterations and term Eq.8 with &ﬁp = chggp = mg%gg(l/é) and

probability 1 — 46 — T'0, we have

19 , d
(g - §K10g0(2/5) — 4y/ebaplog? (1/6)) > mil|VLs(wi)lla < Ls(wi1) — Ls(ws)
t=1
22 T
+ (2Bmae ch B log (2/0) +25\/70 Blog 2/6) 1 Z (40)
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If o = % and K > &qp, let & > 2 Klog?(2/6), ie. ¢ > 39K log?(2/d), taking ¢ =
ne 1
7@)(\/@) and 7, = —=, we have

T
3
VL —)(L —L
;m“ s(wi)ll2 < Klogh (2/6)( s(wi) — Ls(ws))
32? L2 (ZBmzech2B2log (2/5) ©opJamaTal Blos2/9) Blog (2/6) 1 C)
Klog?(2/5) "3
Lg(wyi) — Lg(ws) + Qﬁe&gp log(2/0) + 2Bc/ebap logé (2/6) + %BKQ log(2/4)

LK log® (2/6)
3(Ls(w1) — Ls(ws))
Klog (2/9)

IN

+ 6BeK log? (2/8) + 68/elog? (2/5)+3,3( 9" k1o og? (2/9).
41)

Thus, with probability 1 — 46 — T3, we have

T T 1 1 1 1
1 1 log2(1/0) log2(1/6)d7 log®(1/6)
— E VLg(w < — E VLg(w <0 =0 ,
thl || S( t)”Q— \/Tt:lntH S( t)HQ— ( \/T ) ( \/7’% )
implying that with probability 1 — §, we have
T
1 di log (T/96)
l L <o /9 42
72 IVEs(will < 0522, @)
1
. . . 191log? (1/8)K
If§ =1 and K < 6qp, thatis, ¢ > —5-2/2% thus there exists T = @(m) T >1and

N = ﬁ that we obtain

T
1
tz::lntHVLS(Wt)\b < m(LS(WI) — Ls(ws))

S 1nt (2 ch232 log (2/6) 42 C Blog 2/5) 1 2)
* Jerulogt (173 N i ‘
R —

Vedaplog? (1/6)
% (266&31) log(2/8) + 28+v/e€Gap log? (2/0) + 2—72&3&31) 1og(2/6))
" Vebaplogh (170) 2
< Ls(wi) — Ls(ws)
Klog (2/6)

(Ls(w1) — Ls(ws))

+28eK log? (2/5) + 28/elog? (2/5) + B (2;) Klog}(2/5).  (43)

Therefore, with probability 1 — 45 — T'0, we have

log? (1/8)d7 log? (1/6)
\ﬁ

LI
fZHVLS(Wf,)HQS@( ):

then, with probability 1 — J, we have

di log? (T/95)
ne

| T
T D IVLs(wi)ll2 < O )- (44)

t=1
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If 6 > J, then term log”(2/6) dominates the left-hand inequality, ie. 12Klog’(2/6) >

4\/eGap log%(l/é). Let § > 2OKlog (2/0), T = O( )and 1, = \F’ we obtain

(1/5)

T

3
;nt”VLS(Wt)H? < W(LS(Wl) — Lg(ws))

3N 2 ( Tc2B21og?(2/6) c Blog *Blog(2/0) , 1 2)
4 2et=l (g d——— 5= + 26 em
Klog’(2/5) fmae p 3

3(Ls(wi) — Ls(ws)) | 192
ST Kodys Tk log?(2/8) + 1908K log? (2/8) + 38(20)° K log” (2/5).

(45)

Consequently, with probability 1 — d, we have

= ET: IV Ls(we)2 < @(log (T/8)d* log* (T/9)

T & e ) (40)

Integrating the above results, when V Lg(w;) > ¢/2 we have

dt log?t 1 (T/5)

e ) (47)

T

1

T Z [V Ls(we)ll2 < O(
=1

with probability 1 — § and 6 > 1

To sum up, covering the two cases, we ultimately come to the conclusion with probability 1 — 4,

_ ne — 1
T =0( dlog(l/é)),Tzl,andnt—ﬁ
T 1. gyl 1. 99 s
1 , d log?t1(T/§ di log® (vV/T)log® (T/6
LS wmin (VL) . [V Ls(w0) 3} < O T/ | ofiloe (VT) o8 (T/0),
T (ne)2 (ne)2
o (d% log® (T/6) (log® (T /5) + log® (VT)) )
B (ne)z
di log® (T/6)log(T/8) log?® (VT
<0 g (T/0)] (l/) g™ ( )), 48)
(ne)2
where log(T/6) = log™™®=Y(1/5).  1f 6 = 1 and K < Gap, then
c = max(4Kloga(ﬁ),%;(w). If ¢ = L and K > 6q4p, then c

max (ZJIKloge(\/T)7 39K log%(2/6)). If 0 > 1, then ¢ = max (Zlelogg(\/T)7 20K log? ( /6)).
O

The proof of Theorem 4.1 is completed.

10
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C PRIVACY GUARANTEE

We provide the complete privacy guarantee proof of Theorem 5.1 for our differential private mecha-
nism M’: SubsampleoTraceSorting (TS)oGradientPerturbation (GP). The specific proof process is as
follows, and our proof comprehensively encompasses mechanism M

* TraceSorting: We prove that TraceSorting is (€, 0t )-DP.

* TraceSortingoGradientPerturbation: We prove that based on the results of TraceSort-
ing, with two different clipping threshold, the unified composition of TraceSorting and
GradientPerturbation is (e, + €qp, d)-DP, where 6 = ¢, + dap.

* SubsampleoTraceSortingoGradientPerturbation: We prove that, under the premise of
subsampling, the privacy amplification effect remains valid for our composition mechanism.

(1) Firstly, we show the TS with Gaussian noise here is (€, dt, )-DP and follow the proof of Report
Noisy Argmax (RNA) in Claim 3.9 Dwork et al. (2014) to clarify that.

Proof. Our trace sorting is to choose traces ranked from 1 to pB. To prove that this process satisfies
differential privacy (DP), we need to demonstrate that the method of Report i-th Noisy Argmax for
any i € Z* and i € (0,m] is (€, 6, )-DP, where m is sample size. Fix the neighboring datasets
D = D" U {a}. Let \, respectively X', denote the vector of traces when the dataset is D, respectively
D’. We have discussed the default Lo sensitivity is 1 and use two properties:

1. Monotonicity of Traces. For all j € [m], \; > )\;-;
2. Lipschitz Property. For all j € [m], 1 + )\;- > Aj.

Fix any ¢ € [m]. We will bound from above and below the ratio of the probabilities that i is selected
with D and with D’. Fix r*, a set from Gauss(1/e;,)™ % used for all the noisy traces greater than

—1°
the i-th trace. Defines r_;, a set from Gauss(1/e;,)*~! used for all the noisy traces less than the i-th

trace. We will argue for each r_; = r*, Ur~, independently. We use the notation P[i | £] to mean
the probability that the output of the Report Noisy Max algorithm is ¢, conditioned on &.
We first argue that P[i | D,r",] < efPli | D', r~,] + 0. Define

r*=min: X\, +r; > N+ Vj€arg(rZ;).
Ti

Note that, having fixed r_,, 4 will be the output (the i-th argmax noisy trace) when the dataset is D if
and only if r; > r*. We have, for all j € arg(r:i):
i+t > Aj 1
S (LN F 2N > N b 2Ny
= A+ (rF 4 1) >)\;-+rj.

Thus, if r; > r* + 1, then the i-th trace will be the i-th maximum on one side when the dataset is D’
and the noise vector is (r;, 7_,). The probabilities below are over the choice of r; ~ Gauss(1/ey,),
then with probability 1 — dy,:
Plr; > 1+7r"] > e “Plr; > r*| = e P | D,r_}]
=Pli| D' rZ,] >Plr; >1+7r"] > e Plr; >r*| =e Pl | D,r_,],

which, after multiplying through by ef, and adding probability ¢ for P[r* — r; > 1] < 6, yields
what we wanted to show:

Pli| D,r=,) < e Pli| D', r=,] + bt
Then, we argue that P[i | D,r",] < e§,P[i | D’,r",] + &;,. Define

r*=max: A\ +r; <\ +r; Vj€ arg(TJ—rz’)‘
7

11
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Note that, having fixed r;, i will be the output (the i-th argmax noisy trace) when the dataset is D if
and only if ; < r*. We have, for all j € arg(rfi):
N +rt< /\j +r;
SN+ <At <X < (1) 4y
= A4 (rF—1) <A;+rj.
Thus, if r; < r* — 1, then the ¢- th trace will be the i-th maximum on the other side when the dataset is

D’ and the noise vector is (;,7",). The probabilities below are over the choice of r; ~ Gauss(1 /e, ),
with probability 1 — d,, and we have:

Plr; <r* —1] > e “Plr; <7r*] = e “P[i | D,rT}]
=Pl | D\ rt]>Pr <r*—1]>e P <r*] =e Pl | D,r",].

After multiplying through by e, and addlng probability d;, for Plr; — r* > —1] < §, we get:
Pli| D,r2) < e Pli| D', rEy] + 6

Overall, combing the both cases with d;, = 26, we have

e (Pli | D', r L]+ Pli| D' rZy)) + 0w > Pli| D,rl) +Pli | D,rZ)]

eBli | D',r_i] + 6 > Bli | D,r_],

more precisely, we can explicitly bound d;, to (O)( ) by refering to Zhu & Wang (2020).

Using the same approach, we can prove that

e P[i | D,r_g] + +8 > Pli | D', r_s).

Thus, TraceSorting with Gaussian noise satisfies (€, ¢, )-DP.

(2) Secondly, we prove the unified composition of TraceSortingoGradientPerturbation is (e, +
€dp, 0)-DP. Based on the results of TraceSorting, we employ two different clipping thresholds for
GradientPerturbation.

Proof. We define the clipping threshold vector c for per-sample gradient by TraceSorting, for example,
with B = 3 and p = 1/3, if heavy tailed indicator A = [1, 0, 0] then ¢ = [c1, ¢z, ¢c2].
P[M (D) = Y] = P[TraceSorting=index i« AND GP|D]
oo
= / P[i| D, r_;] - P[GP with heavy tailed samples i|dr

BeD

/ / [i|D,r_;] Z g; +¢;¢;) =Y|c|drd¢

/ / 1D, 7] - PLF(D) = Y] - PIC = ¢;¢;/ Bldrd¢ = *,

where r ~ Gauss(1/e,) and ( ~ Gauss(1/eqp). We define f(-) = GradientDiscent and Af =
| £(D) = f(D)||2 = §(pBc1 + (1 — p)Beg) = pey + (1 — p)ea. With 1 — (8 + dap), we have
BeD'

* 7/ / exp(eq)P[i| D', r_;] Z g; +¢;¢;) =Y|c|drd¢

= /00 /00 exp(eq)P[i| D, r_;] - P[f(D') + ¢;¢;/B =Y + Afl|c)drd¢

oo

/ exp(en P -] IF(D) = V] PIC = 6,/ = AfildrC

oo

IA

/ - / explea)P[i| D', r_i] - I[f(D') = Y] - expleap)P[C = e;¢;/ Blc]drdc

oo

< exp(€tr + €ap)P[M (D) = Y],

12
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where we have taken into account the randomness of ¢ through r with A, then the first inequality
comes from TraceSorting satisfying DP, and the penultimate inequality is derived from the basic
Gaussian-based DP mechanism. Thus, define § = dy; + d4p, TraceSortingoGradientPerturbation is
(€tr + €ap,0)-DP. O

(3) Thirdly, we provide the proof that privacy amplification with subsampling still holds with the
mechanism M: TraceSortingoGradientPerturbation.

Proof. We use B C {1,...,n} to denote the identities of the B-subsampled samples from D =
{#1,...,2n}. Note that the randomness of M’ includes both the randomness of the random sample B
and the random coins of M. Let D (or D) be a subsample from D (or D’). Let Y be an arbitrary
output range. For convenience, define ¢ = B/n.

To show (g(e“=T¢» — 1), ¢5)-DP, we have to bound the ratio with D’ = D U i

PIM'(D)=Y]—q¢6 _¢P[M(Dp) =Y |i€ B+ —-qPM(Dp)=Y|i¢ B]—q6
PM'(D") = Y] qP[M(Dp) =Y |i€ Bl + (1 - qP[M(Dp) =Y [ i ¢ B

etrtedp _ . ..
by ed(¢ ?=1). For convenience, define the quantities:

C =P[M(Dg) =Y |ic B
C'=P[M(D);) =Y |i€ B
E=PM(Dp) =Y |i¢ B|=B[M(Dy) =Y | i ¢ B]

‘We can rewrite the ratio as:
PIM'(D)=Y]-q6 qC+(1—q)E —qd
PM'(D') =Y] o qC' + (1-qFE

Now we use the fact that, by (¢, +€dp, §)-DP, C' < e T¢de min{C’, E}+4. The rest s a calculation:

qC + (1= q)E — g6 < g(e™ " min{C", E} +6) + (1 — q)E — ¢6
= q(min{C’, E} + (e“**e — )min{C’", E} +6)+ (1 —q)E — ¢6
< q(min{C’", E} + (ef*t» — 1)min{C’, E} +6) + (1 — q)E — ¢
< q(C" + (e —1)(qC" + (1= q)E) +8) + (1 = q)E — ¢d
< q(C" + (e —1)(qC" + (1 = q)E) +68) + (1 — q)E
< (L+ g™ —1))(qC" + (1 — q) B).

Thus, we have:

P[M'(D) = Y] — ¢6

curteap PM(D) = Y]
Py =v] =T D oy =y

PM(D") =Y]’

and we can derive the simpler conclusion (O(gey + geqp), O(gd))-DP for mechanism M’, i.e
SubsampleoTraceSortingoGradientPerturbation is (O(geqr + geap ), O(5))-DP. Furthermore, accord-
ing to RenyiDP Mironov (2017) and tCDP Bun et al. (2018), we can calculate the corresponding noise

. \/Tlog(1/s . .. . . .
multiplier oty ap = @(%‘g(/)) with € = €, €qp for the composition of iterations in model
training. O

To sum up, Theorem 5.1 is proven.

13
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D SUBSPACE SKEWING FOR IDENTIFICATION

Theorem D.1 (Subspace Skewing for Identification). Assume that the empirical second moment
matrix M = Vj, VkT € RIX4 with VkT Vi, = Ik approximates the population second moment matrix

M = ViViT = Evna[ViViTL A = (VT ge(20)&T (2:) Vi) and N = tr(VT g (z)&7 (i) Vi),
for any gradient §;(z;) that satisfies ||g;(z;)||2 = 1, (¥ ~ N(0, 02,), with probability 1 — 6,, — 4,
we have

4log (24/,,) , mav/Blog? (1/6,)

R E y

N

Proof. For simplicity, we abbreviate g;(z;) as g;. Due to the Fact.1, VIV, = Tand VTV, = I, we
omit subscripts of expectation and have

AL — AN = (Vi gegl Vi) — (Vi g8] V)|
= IV &ll3 — 1V 2]
= [IIVaVi"&l13 — VA Vi &3]
< IViVi'g: — ViVi &3
< IViVi = ViVl I el (49)
To bound E||V;, VI — Vi V7|12, we need to bound the gap between the sum of the random positive
semidefinite matrix M := V;V;T = 1 5% w07 and the expectation M := V;, V;I' = E[V;,V/].

Due to ||v;]|2 = 1, we can easily get
1 1 &
1212 =1 > vl < z > llviv! 2
i=1 i=1

L
— T, T
= SUPg g p=1 7, E T Vv T
i=1

k
1
= SUD,. oy 3 D (i)
=1

k
> llzlalloillz
=1

<

==

(50
Thus, |M||2 < 1and |EM]||2 = ||M - P(M)]|2 < 1 because of P(M) < 1.
Then, according to Ahlswede-Winter Inequality with R = 1 and m = k, we have for any p € (0,1)

N —ku?
P(IM = N> > 1) < 2 exp(—15), )

where d is dimension of gradients. The inequality shows that the bounded spectral norm of random
matrix || M]||, concentrates around its expectation with high probability 1 — 2d - exp(—ku?/4).

Since ||M||2 € [0,1] and |[EM |5 € [0,1], | M — M ||, is always bounded by 1. Therefore, for x> 1,
|[M — M]|2 > u holds with probability 0. So that for any p > 0, we have

N log 2d
B(|[M = M2 > 2/ ="=p) < exp(—p?). (52)

Based on the inequality above, with probability 1 — 4,,,, we have

log? (2d/0,,)
N

| M — M|y < 2 (53)

14
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Next, considering that we have implicitly normalized the term ||&; |3 by the threshold 1, the upper
bound of ||g;||3 is 1. As a result, we obtain

I = A< VeV = VT 3 3
< ViVl = VaViT|13

< ||M - M|}
< %ﬁwm) (54)

with probability 1 — d,,.

Due to the shared random subspace of per-sample gradient, the exposed trace may pose potential
privacy risks. Thus, we add the noise that satisfies differential privacy to the trace A%, i.e. A!Y, + (I*.
The upper bound of the trace for per-sample gradient is limited to 1, because we normalize perisample
gradient in advance. So, the sensitivity in differential privacy can be regarded as 1, which in fact
means (f* ~ N(0,021;). Then, applying Gaussian properties, with probability 1 — &,, — &, we
have

IAFG = A G < A = AL+ 16

4log (2d /0., 1
< o8 CUon) 4 o 10} 2/510). (55)
Regarding to oy, = —2Y——8/% VTBlog(l/é), we take T' as Bt to maintain consistency with the

nétr /dlog(1/6)

context and have

4log (24/0,) mavBlog (1/6)
k d%,/netr

_ 4log (2d/3,,) | myV/Blog* (1/d)

- k dz

A = A G <

b

where the last inequality holds due to 7" > 1.

Intuitively, the conclusion tells us that, since /\ﬁf'i is a constant, the scale o, [l; of noise added is actually
small compared to the noise o4,l4 added to gradients, where the latter has a tricky dependence on the

4log(2d/ém)
k

dimension space d. Concretely, comparing the first term , we observe that in the second

1
%, the model parameter d >> k, we concerned in private learning and coupled

with noise scale, is in the denominator, which is far better than the factor log(d) in the numerator of
4log (2d/Sm)
k

term

the first term. Therefore the term will dominate the error of subspace skewing, and we
can control this part of the error by adopting a larger k.

In conclusion, for the per-sample trace, there is a high probability 1 — 4/, where 8!, = 0., + Strs
that we can accurately identify heavy-tailed samples within a finite and minor error dependent on the
factor O().

O

The proof of Theorem 5.2 is completed.

15
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E CONVERGENCE OF DISCRIMINATIVE CLIPPING

Theorem E.1 (Convergence of Discriminative Clipping). Under Assumptions 3.1, 3.2 and 3.3, let
w be the iterate produced by Algorithm Discriminative Clipping DPSGD withT' = @(m)
og

T>1andn = i. Define 1og(T/8) = log™™>(®0=1(1/5), 63, = mgw a=2if

0=1/2,a= (49)29 2ifo € (1/2,1] and a = (2291 +2)I'(20 +1) + QF(# if0 > 1, for any
6 € (0,1), with probability 1 — §, then we have:

(i). In the heavy tail region (c = c1):

d* log? (T/(S)log(T/(S) log?® (VT)
(ne)?

T
1 .
7 2 min {[VLs(wi)|2, [VLs(wi)[3} < O
1 1
()10 = 5 and K < Gay, then c; = max (4Klogf(@),%§2“/‘”). 2) 16 =1
and K > Gqp, then ¢; = max (4K log? (VT), 33v/2aK log? (2/6)). (3) If 0 > L, then ¢ =
max (492K log? (VT), 17K log9(2/(5)).

(ii). In the light body region (c = c3):

L3 wrin {19 L o) o [V L o) [} < @ L1082/ IV,

t=1 (ne)

Nl

(1) If K < 6ap, then ¢; = max (2v/2aK log? (vVT), %gj(l/‘”) (2) If K > Gap, then
o = max (2v2aK log% (VT),33v2aK log% (2/9)).

Proof. We review two cases in Discriminative Clipping DPSGD: VLg(w;) < ¢/2 and VLg(w;) >
¢/2. To simplify notation, we write eq, as €, omitting the subscript throughout.

Firstly, in the case VLg(w;) < ¢/2:

Ls(winn) — Ls(w) < (wern — wi, VEs(w) + 3 Bllwea — w?
< —n (8, — E¢[8,], VLs(wy)) — ne(Ee[g,] — VLS(Wt) VLgs(w¢)) —ne(G, VLs(Wy))

1 _ _
=l VLs(wo)I* + 5 8m; & * + 5677?\\Ct||2 + Bni (8, o)
Applying the properties of Gaussian tails and Lemma A.2 to (;, Lemma A.4 to term Zthl (g, —
E.[g,], VLs(w;)), with probability 1 — 40, we have

T T

T
1 Tc?B?log?(2/6)
;WtHVLS(Wt)Hg < Lg(wi) — Ls(ws) + Z 5@7?02 + 25m28dT z::
c?Blog(2/6) c?Blog(2/d clog (1/8
1 25/ B1o8C) Zt+2\/7 GITUE S (/)
t=1
4pc? VLs(w
LS 1;“(':2 sw)ll Zm E([E,) — VLs(wi), VLs(w)) . (56)
t
Eq.9
We will consider a truncated version of term Eq.9 in the following. Similarly,
T
> m(Bi[g,] — VLs(wi), VLs(wi)) < ZTlt |Ei[g,] — VLs(wy)|3 + Zm [V Ls(we)|l3-
=1

16
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For term [|[E¢[g,] — VLs(w:)l|2, we also define a; = Ijg,,>c and by = Ijg, vLs(w,)|.>¢» and
have

18] — VLs(wo)llz = |E:l(E, — go)arlll
< Etm(gt(w)atnﬂ
< Eflllgll2 — |VLs(wa)ola]

< Eiflllge = VLs(we)|[2[b¢]

< VEdllg: — VLs(wo)|BIEb. (57)

Due to E[g; — VLg(w;)] = 0, applying Lemma A.7 and A.8 with

m=1

sup {v(L,n)} = aK?
n€(0,1]

nl(x)

1

aK?

Tmax =
1
ct € [5,

1
5"

In the light body region, i.e. £ > Zpax, We have
P(llge — VLs(wy)|l2 > z) < exp(—cenl (z)) + exp(—1(z))
1
< exp(=71(2)) + exp(~1(z))

’[7:

1
< 2exp(—71(x)). (58)
Then, in the heavy tail region, i.e. 0 < x < T ax, the inequality
z? Toax (1)
P(|lge — VLs(wt)[l2 > 2) < exp(—5——) + mexp(—— 2"~
' ! 20(Zmax, 1) NV(Lmax; 1)
2
T
< 2exp(————
B eXp( 2U(zmaxa77)
22

holds.
Therefore, when 0 < x < x,.x, We have the follow-up truncated conclusions:

If6 = %, Va > 0 and a = 2, we have the following inequality with probability at least 1 — §
lgr = VLs(wi)ll2 < 2K log? (2/9).
If 0 € (3,1], leta = (40)*"€2, we have the following inequality with probability at least 1 — &

lge — VLs(wi)ll2 < v2e(46)" K log? (2/).

F0 > 1, leta = (22041 4 2)T(20 + 1) + ZECD e have the following inequality with
probability at least 1 — ¢

230T(360 4 1)
3

g — VELs(woll> < ﬁ(zml +2)0(20+1) + K log* (2/9).

17
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When z > 2y, let I(z) = (z/K)#, V0 € (3, 1], with probability at least 1 — 4, then we have

lge = VLs(wi)llz < 4°K log” (2/6).

Apply the truncated corollary above, when 0 < < xy,«, We have

E[llg: — VLs(wi)|2] < V20K (60)

and with probability 1 — §,

Cc

2v/2aK

where a = 2if 0 = 1/2, a = (40)%¢2 if § € (1/2,1] and a = (2261 4 2)[(20 + 1) + 2 LG0+D
if 6 > 1.

)%) (61)

&
Eib; = P(lge — VLs(wi)ll2 > 5) < 2exp(—(

When & > xy,ax, the inequalities
Ei(llge — VLs(wo)2] < 4°K (62)

and

1 1
Eb} = B(lg: — VLs(wi)l2 > 5) < 2exp(~ (572)) (63)

hold with probability 1 — 6, where 6 > 1.
Thus, with probability 1 — T'§, we get

T T 1 T
;ma&[@t] — VLs(wt), VLs(wy)) < 2ak° ;mexp(—(2 \/;LGK)Q) +5 ;ntuws(wau%,
(64)

when 0 < < Tmax.

With probability 1 — T'd, we obtain

T T T
— 1 C |1 1
S n{Edlg] — VLs(we), VLs(wn)) < 47K 3 mexp(— (o)) + 3 S VEs(wo)l3
t=1 t=1 t=1
(65)
when = > Tpax.
By setting p = 1—16, T = @(\/ﬁ) and n; = ﬁ with probability 1 — 46 — 7', we have
og
1 & 9 1.5 dz 2 B2 log%(2/5)
£ 2o VLSl < L) = Es(ws) + 556+ 2mae =
+ zﬁm—diCQB log* (2/9) , 2. /emac® Blog®(2/6) + 16d+c? o (1/9)
2 \/ne 2 & V/ne
T
¢
20K? exp(—(——=——)?), if0 <2z < Zmax,
;m PG ) <z <
+Eq.10 (66)

T
1 ¢
429K2 (=
; mexp(— (5

1 .
4 )9)3 ifx Z Tmax-

Let the term Eq.10 < %, and we have ¢ > 2v/2aK log%(\/f) if0 < 2 < Zyax and ¢ >

492K 1og9(\/T) if £ > Tmax.

18
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In the light body region that 0 < x < @,y by taking co = ¢ = 2v/2aK log% (\/T) we achieve

i tIVLs(we)|3 < 4(Ls(wi) — Ls(ws)) | 2aK>

VT 4 VT T
8aK?log(v/T)log(2/5) di log# (2/6)
+ T (26—F8ﬁnmeB2(~ﬂu:)2
%Sﬂyﬂ”n2d4lgk5%;%2/6)FSVﬁﬂnzBlog_;(2/5)%64di%3%i(1/6)>
log(v'T) log(1/8) d log? (1/6)
=0T Ve
§®(log(\ﬁ)c\l4ﬁ Z(1/5)) 67)

In the heavy tail region that 2 > Zpax, by taking ¢; = ¢ = 4°2K log? (v/T') we achieve

L 4(Ls(wi) — Lg(ws))  2aK2
g 1|V Ls(we)||3 < 7 7
420+1 1620 (/T) log(2/6) ,,d%1ogT(2/8) .,
+ JT <2[3 + 88moeB (T)

di Blog~%(2/5)

, 64d1 log® (1/5
48y o 8 e Blog (2/0) + W )>

V/ne
log® (V'T) log(1/5) . dt log™ (1/8)

<O )

VT V/ne
20 1. 3
- @Xlog (Vif)dzjog (1/5)). 68)

Secondly, we pay extra attention to the bound in the case VLg(w;) > ¢/2.

1
Ls(Wit1) — Ls(wi) < (Wip1 — Wy, VLg(Wy)) + §5||Wt+1 - w3

_ 1 _
< (g + G, VLs(wy)) +§ﬁ77t2Hgt + G I3 (69)

Eq.11

We revisit term Eq.11 in the case and also set 5,7 = Lig,o>c and sy = Ijig,jjo<c-

—1:(8; + G, VLs(wy)) = < St + g5, VLs(wy)) — 1:(Ge, VLs(wy)). (70
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For term — Zthl n(gts; , VLs(wy)), we obtain
T T

= melgesy , VLs(Wi)) = = > mis; ({8 — VLs(wi), VLs(we)) + [|VLs(wy)[[3)
=1 =1

< _stt gt — VLs(wi), VLs(w)) stt IVLs(w)l3
t=1 tc lT

s - ;m%(& = VLs(we), VLs(we)) - 5 ;mS{HVLS(Wt)H%
T o

< —;ms[(gt = VLs(w¢), VLs(wy)) ~3 ;mSHWLS(Wt)H%-

Eq.12

(71)

Let consider the term Eq.12. Since E;[n:s; (g — VLs(w:), VLs(w;))] = 0, the sequence
(—mes; (gt —V Lg(wy), VLs(wy)),t € N) is a martingale difference sequence. In addition, the term

— VLg(wy) is a subW (0, K) random variable, thus we apply sub-Weibull Freedman inequality
with Lemma A.3 and concentration inequality with Lemma A.7 and A.8 to bound it.

In Lemma A.3, Define
o(L,n) = E[(X* - E[X])’I(X" <E[X]))] +E[(X" - E[X])®exp (n(X* — E[X]))I(X" > E[X])],

and make 3 = kv(L,n), then we have sup, . {kv(L,n)} = aZleKf based on
Lemma A.7 and A.8 in Bakhshizadeh et al. (2023) and obtain

<U {Zfl 2 kz and ZGKE 1 < 5}) < exp(—Akz + )\;B)
keN i=1
2

= exp(—Akz + kv(L, n)%) (72)

Subsequently, we define the inflection point Zyax = %a Zle K 22 and have

1. In the light body region where x > xyax, We choose L = kxr and A = %, that is
_ nl(kz)

TGy = vihesy = ko - Then the inequality achieves
2 n*I° (kx)
U {Z& > kx and ZaKZ 1 < B} < exp(—nl(kx) + v(L,n)W)
keN =1
I(k
< exp(-n(kr)(1 —v(L, )5 "2)))
< exp(—ne, I (k)
1
< exp(—5nl(kz)), (73)
where ¢, = 1 — W and the last inequality holds due to ¢, > 3.
2. In the heavy tail region where * < Zyax, We choose L = kxpax and A = U(f ) <
% — ”IéL). Then, we get

ka? ka?
<kLeJN { ;gz = firand ZGKE L= 6}> = eXp(_U(Lm) * 2v(L,77))

kx?

2v(L,n)

< exp(— ). (74)
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Implementing the above inferences and propositions with

& = ne(gt — VLs(wy), VLs(wy))

— > msi (g — VLs(wy), VLs(W))

i=1

Ki 1 = K| VLs(wy)l|2

my = KG
k=T
n=1/2
Ifo = Va > 0 and a = 2, when & < x5 We have the following inequality with probability at

least 1 )

T

— > " msy (g — VLs(wi), VLs(w,)) < v/2T0(L,7) log? (1/6)

t=1

T

QQZKf log? (1/5)

t=1

IN

T
<2, |3 K2 VLs(w,)|3log? (1/9)

t=1

T

<2KG,| Y n}log?(1/0), (75)
t=1
when & > Zyax, with I(T2) = (Tz/ Y., K;)?, we have
T T
_ 11 1
= sy (g — VLs(Wi), VLg(wy)) < 42 T > Kilog?(1/6)
t=1 t=1
KG ,
< 24§;—j£:7h10g5(1/5). (76)

If € (3,1, leta = (40)*€2, when & < @yax we have the following inequality with probability at
least 1 — &

T T

= " msi (g — VLs(wi), VLs(wi)) < 4|20y K7 log?(1/6)
t=1 t=1

<V2(40)°eKG Z” log? (1/6), (77)

=1
when & > iy, let I(Tx) = (Tz/ 3, K;)7, V0 € (3, 1], then we have

T 9 T
D g Vis(w), Vis(w) < 7 3 Kilog! (1)

t=1

49K

Zm@lw (78)
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If0 > 1,leta = (220+1 + 2)I'(20 + 1) + %, when 2 < 2. We have the following
inequality with probability at least 1 — 36

T
QaZKf log%(l/é)

t=1

- stt_ (gt — VLs(w¢), VLg(wy)) <

230T(36 4 1)
3

< \/2(229+1 +2)T(20+ 1) + KG .| 2 log?(1/0), (79)

t=1

when 2 > Zpay, let I(Ta) = (Tz/ Y1, Ki)#, V0 > 1, then we have

T T
_ 40 1
_ E NSy (8 — VLg(wi), VLg(wy)) < T ;:1 Kylog2(1/6)

t=1

PKG &
< —— > _mlog’(1/0). (80)

t=1

To continue the proof, employing Lemma A.5 in term —n; {78t | 57,V Ls(w;)) and covering all T

iterations, we have

Z

lgt Hz

T + T B
st, VLs(wy)) < _ e s IIVEs(We)llz | 8¢y mellge — VLs(Wi)ll2

— 3 3
T _
e (1= 5 )[[VLs(we) |2
- 3
16 32,y millge — VLs (W) [ol| VLs (wi)
+ 3 . 81)
With the truncated corollaries above, we have
1. If 0 < z < xyax, with probability at least 1 — 35
T _
1- VL
S (Bt (o)) < — et L= 5DV Lsowo)l
2"\ g[I, 3
2K log? (2/0), ifg =1,
T 1
16 el VEs(Wollz | v/2e(40)° K log? (2/9), ifo e (3,1],
3
2301(30 + 1
\/2(220+1 +2)T(20 + 1) + #Klogéﬂ/d) if0 > 1.
(82)
2. If x > zpax and 0 > 1 with probability at least 1 — 39
~ g ey (1= s)|[VELs(wi)|l2
_ Z <|| T e ,VLS(wt)> < — — 3
1 L
+ 6215:1 nt”v S(Wt)||249K10g0(2/6) (83)

3

Then, according to Lemma A.1, combining the truncated results of — Zle 1:(8es; , VLg(wy)) and
— S (B Teols s, VLs(wy)), we have the inequality:
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1. If 0 < z < xyax, With probability at least 1 — 36 — T

et el VLs(we)2
3

2KG\[SL, n?log* (1/6), ito =1,

T
= > me(g,, VLs(wr)) < —
t=1

T 1 .
N V2(40)9e KG\/>,_ n? log? (1/6), if 0 € (3,1],
230T(30 + 1) a ,
2(22041 £ 2)0(20 4+ 1) + ————KG | > n?log?(1/5) iff > 1.
t=1
2K log? (2/5), if6 =3,
16X ml VEs (w2 ) v/2e(46)° K log? (2/5), itoe (L1,

3

230T(30 4 1)

\/2(229+1 + 220 +1) + Klog?(2/8) if6 > 1.

3

(84)
2. If & > &pax and 0 > 1, with probability at least 1 — 36 — T'§
T T T
¢ n||VLg(w 1 KG
_Znt<gt7VLS(Wt)> < — Zt-l ]tH S( t)HQ + Znt10g0(1/5)
t=1 3 T t=1
16" L

3

Therefore, we refer to formula.(12) and formula.(13), and apply Lemma A.2 due to ¢, ~ N(0, cogply).
Then, to simplify the notation, we define 63, = dc*oj . With 63, = mgw and
probability 1 — 65 — 79, if 0 < z < xyax, We have

c 16 )

(3 — 5 ok log? (2/0) — 4v/ebap log* (1/8)) 3 mil| VLs(wi)ll2 < Ls(wi) — Ls(ws)

Te2B?log?(2/5) 2B log(2/4) 1 )
—|—(2,6m2dc og(/ +25\/7c og/ Z

(86)
if ¢ < Tmax, We have
c 16 , )
(3 - 5K log”(2/6) — 4v/e6aplog? (1/6)) > mil|VLs(wy)ll2 < Ls(w1) — Ls(ws)
t=1
Tc2B2%1o 2/0) 2Blo (2/9) 1 L
+ (2maca LTIy fer e Blos(2/0) 3
n2e? P
87

where a = 2if 0 = 1/2, a = (40)¢? if § € (1/2,1] and a = (220+1 4 2)[(20 + 1) 4 2 LE0+D
if 6 > 1.

Afterwards,
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1. In case of light body, when 0 < = < Zpax and 6 > 1:

If K > Gqp, let § > 23 \/2aKlog (2/6), T = @(w) and n; = \F’ we obtain

r 3 8V2aKG\/ Y21 1} log? (1/9)
;ntHVLs(Wt)HQ < —\/%K log? (20) (Ls(w1) — Ls(wg)) + N log% 2/9)
3N n? - Tc232log (2/6) 2B10g *Blog(2/0) 1 52
" RaK log? (2/9) (2’8 2ed Ve T3’ )
< 3s(w) = Ls(ws)) 3\/%KG10%‘5(1/5)
T V2aK log? (2/5) V2aK log? (2/6)
| 6Bea® K log(2/9) 65\[\@Klog (2/6) 35(33\/%K10g%(2/5))2 58)
V2aK 1og%(2/5) V2aK log? (2/6) 2v2aK log? (2/8)

Therefore, with probability at least 1 — 6 — 7', we have
T
1 di log (1/9)
— VL <O(——=">),
7 22 IVEs(wl < 02225
then, with probability 1 — §, we have

T 3 %
L3 9L (w2 < oL T,

2 < e (89)

If K < 6qp, let § > 9y/ebqp log%(l/d), that is, ¢ > 27\/edqp 1og%(1/6), thus there exists
— _ ne _ 1 .
T =0 dlog(l/a))’ T > 1landn, = = that we obtain

T 1 \/QaKG\/Zlentzlog%(l/é)
IV Ls(we)|ls € ———————(Ls(w1) — Ls(w :

2 sl ey o) e e )
23:1772

2 P2 2
+ ==L <25erdTCBlog(2/5+2B\/7 Blog /) 1, 02>
Vebaplog?(1/6) +3

LS(Wl) Ls(ws) V2aKG KD ) @ ) )
\[Udplog (2/9) \[Udp + 2BeK log? (2/5)-1—26\[1 g2 (2/5)+ﬂ K log? (2/5).

(90)
Therefore, with probability 1 — 65 — 70, we have
lzT:HVL (wi)|l2 <O M)
T t:1 S t)2 = \/ﬁ ;
then, with probability 1 — §, we have
log (7'/9)
= VLs( <O(——————= 91
tzlll s(wi)l2 < ( \/E )- On

2. In case of heavy tail, when = > Ty ax:
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If0 =3 and K > Gap, let & > ‘5‘3\/2aKlog (2/6), T = O(

- 1
(1/5)) and 7y = 7 We
obtain
a 3 3V2aK G\ Y[, 7 log? (1/9)
Do mllVLs(w)ls € ——————(Ls(w1) - Ls(ws)) + T
=1 V2aK log?(2/9) V2aK log? (2/6)
Tc*B?log”(2 c*Blog(2 1
3Zt 177t (26m2€d C Og ( /6 +2B\/7 Og /6) - 02>
\/ﬁKlog (2/9) 2
< 3(Ls(wW1) = Ls(ws)) n 3v2aK G log? (1/6)
- \/%Klog%(Z/é) V2aK log%(2/5)
| 68ea®K?log(2/6) | 65/ev2aK log? (2/6) | 36(33v20K log? (2/6))? ©2)
V2aK log? (2/6) V2aK log? (2/5) 2v2aK log? (2/6)
Therefore, with probability at least 1 — 66 — T, we have
1 < d¥ log1(1/6)
=Y IIVLs(wi)ll2 < O(——="=),
T Ve
then, with probability 1 — J, we have
1 & di log®(T/5)
72 IVLs(wo)ll2 < O(——="). (93)
T2 Ve
If§ =1 and K < 6qp, thatis, c > %g;(w thus there exists T = Q(——2-), T > 1
dlog(1/8)
and 7, = ﬁ that we obtain
T 1 V2aK G\ 1, n? log? (1/0)
> il VLg(wi)ll2 € —————(Ls(w1) — Ls(ws)) + - T
=1 Vebap log(1/9) Vebap log?(1/6)
Zthl n;

2 2
N ! <2ﬁm2 ch B? log (2/9) +25\/7 Blog (2/6) 1 Be >
Vedaplog?(1/0) n? 2

LS(W1) Ls(Ws) V20K G K logk - @ ) )
S e logl@)s) | Vesay T Peklogt (2/0) T 2B elog? $(2/6) + p5 - K log* (2/0).

94
Therefore, with probability 1 — 65 — T'd, we have
1« d¥ log1(1/6)
T tz:; [VLs(we)l2 < @(T)v
then, with probability 1 — J, we have
1 & dt log? (T/6)
T ; [VLs (w2 < Q(T) (95)
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If 6 > 1, then term log (2/6) dominates the inequality. Let & > T Klog’(2/8), T =
@(m) and 7, = \F, we obtain

T 3 3V2aK G/ S n7log?(1/6)
;UtHVLS(Wt”b < m(LS(WI) — Lg(ws)) + V2aK 108" (2/5)

3N n? < Tc*B2log?(2/6) 2310g Blog(2/6) 1 )
+ —\/%K 1og9(2/6) 2[3m26d— + 264/ em 2[30

< 3(Ls(wy) — Ls(ws))

+3G + %BK log? (2/6) + 1368 K log? (2/6) + 38(17)%K log? (2/6).

V2aK log?(2/6)
(96)
As a result, with probability 1 — §, we have
T
1 log?(T/8)d3 log ¥ (T/9)
7 2 IVLs(we)ll2 < O ) O7)
T P \Vne
Consequently, integrate the above results on the condition that VLg(wy) > ¢/2.
For light body, we have
T
1 di log (T/9)
= 2 IVLs(wo)ll> < O(——="), (98)
T P Vne
For heavy tail, we have
T 1 o+1
1 d1log’"1(T/é
72 IV Es(wl < 0(= % 2, 99)

\/ne
with probability 1 — § and § > 1.

In a word, covering the two cases, we ultimately come to the conclusion with probability 1 — 4,
T = @(\/#w),T >landn = %:

1. In the heavy tail region:

T 1. g4l 1. 9 5
1 ) dilog’ " 1(T/§ di log®® (v/T)log*(T/56
> min { [V Ls(w) | [VLs(w) 3} < O AU AR sSCEVES I
ot (ne)2 (ne)2
@(d% log ¥ (T/5)(log®(T/8) + log® (VT) log(T/5)) )
8 (n)®
di log (T/6)lo log?® (VT
< o(d 1o i /)(On()l/(;) og (f)% (100)
€)2

where log(T/8) = logmax(o’e_l)(Tl/é). If # = 1 and K < 6gp, then
¢ = max (492Klog9(ﬁ),%g;(w). If 6 = % and K > &gp, then
¢ = max (42K 1og?(VT),33v2aK log?(2/8)).  If § > L, then ¢ =

max (4°2K log? (VT), 17K log? (2/9)).
2. In the light body region:

d* log1(T/5) d log(v/T) log (T/5)

=3 min {[VLs(wi)z, [V Ls (w3} < O

0 ;
= mor T (ne)? )
@(d% log* (7/6) (log* (7/9) + log(v/T) Ioa(T/4)) )
= (ne)%
) @(d% log# (T/8) log(v/T) ) (101)

- (ne)?
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where log(T/6) = log™™®=U(7/5).  1f 6 = 1 and K < Gap, then
¢y = max (2\/ 2aK loge(\/f), %‘W). If 0 = % and K > Gqp,
then ¢z = max (2\/2aKlog6(\/T)733\/2aK10g%(2/5)). If 6 > 1, then ¢ =

max (2v2aK log’ (VT), 17K log?(2/9)).
O

The proof of Theorem 5.3 is completed.
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F UNIFORM BOUND FOR DISCRIMINATIVE CLIPPING DPSGD

Theorem F.1 (Uniform Bound for Discriminative Clipping DPSGD). Under Assumptions 3.1, 3.2
and 3.3, combining Theorem 2 and Theorem 3, for any §' € (0, 1), with probability 1 — &', we have

d* log* (T/8)log(T/8) log™ (V/T)

T
%Zmin{HVLs(Wt)Hm||VLS(Wt)||§} <p*O( (ne)? )
t=1
+(1—p)« o(Liloe! (iﬁillog(ﬁ) )

where §' = 6!, + 6, 1og(T'/8) = log™*>*0=Y(T/§) and p is ratio of heavy-tailed samples.

Proof. We combine the subspace skewing error (Theorem 5.2) with the optimization bound of
Discriminative Clipping DPSGD (Theorem 5.3) in this section to align with our algorithm outline.
We have already discussed the error of traces in previous chapters and considered the condition of
additional noise that satisfies DP, obtaining an upper bound on the error that depends on the factor
@(%) This conclusion means that, under the high probability guarantee of 1 — 4, we can accurately
identify the trace of the per-sample gradient with minimal error, and classify gradients into the light
body and heavy tail based on the metric.

Specifically, based on statistical characteristics, approximately 5% -10% of the data will fall into
the tail part. Thus, we select the top p% samples in the trace ranking as the tailed samples, where
p € [5%,10%)]. Although a subsampling strategy is used, uniform sampling does not change the
proportion of tail samples in the batch. Furthermore, based on the relationship between trace and
variance, the pB-th of sorted trace )\ir’p can be seen as the inflection point x,,,x of distribution
defined in truncated theories A.7 and A.8, which corresponds to the empirical sample results with
theoretical population variance and the approximation error has bounded in Theorem 5.2. Therefore,
in discriminative clipping DPSGD, we can accurately partition the sample into the heavy-tailed
convergence bound with a high probability of (1 — 4/,,) * p, and exactly induce the sample to the
bound of light bodies with a high probability of (1 — ¢/,,) * (1 — p), while there is a discrimination
error with probability ¢/ . Accordingly, we have

T
1 .
Culer, e2) = > min {|[VLs(wi)l2, [VLs(we)3}

t=1

= (1=10,,) *p* Crait(c1) + (1 = 8,,) * (1 = p) * Cuoay(c2) + 07, * [Crait(€1) — Chody (c2)].
(102)

where Ciai(c1) means the convergence bound of 1 Zthl min {[|VLgs(wy)]l2, [[VLs(w)|13}

when AT > AP e g 1°g%<T/5)(15g)(i/5)IOgQQ‘m)
ne)2

) 1.5
+ S min {[VLs (1)l [V Ls(wn)[§} when 0 < A5 < AP e, Q(ES I/ 0V
with ¢; = 4°2K log? (VT) and ¢ = 2v/2aK log? (VT).

If6 = %, then Ciail(c1) = Chody(c2) and 6,,, — 0, thus we have

d* log1 (T/6)1log(V'T)

(ne)’

, Chody(c2) denotes the bound of

Culct, c2) = Crait(cr) = O( ). (103)

Ifo > %, then Ciaii(c1) > Chody(c2), and we need to proof that Cyair(c1) > Cy(c1, c2), ie.

Crail(c1) > Culcr, c2)
> (1—=10,,) *p* Crani(c1) + (1 = 0,) * (1 — p) * Choay(c2) + 01, * |Crait(c1) — Chody(c2)]-
By transposition, we have

(1= 08;,)(1 = p) * Crair(c1) + 6, * Coody(ca) > (1= 37,) % (1 = p) * Crody(c2)-
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Then, we have

Opm ,
(1—=6)x(1— p)cbody(CQ)a (104)

Gtail(cl) > Gbody (02) -

5’ ..
due to = 2 m=p > 0, it is proved that Ciaj(c1) > Cy(c, c2).
From another perspective, for C,(c1, ¢2), with probability 1 — ¢/, we have

Culer,c2) = p* Cpait(€1) + *(1 — p) * Chody (c2). (105)
In other words, for the formula.(102), we define &' = ¢/, + &. Then, with probability 1 — §’, we have

d* log? (T/5)log(T/6) log™ (VT)

T
%Zmin{HVLs(Wt)Hm||VLS(Wt)||§} <p*0( (ne)? )
t=1 €)2
o p o log4((j;/€(;)élog(\/f)) (106)
where 1og(T/6) = log™®(®0=D (/).
O

The proof of Theorem 5.4 is completed.

29



Under review as a conference paper at ICLR 2025

G SUPPLEMENTAL EXPERIMENTS

G.1 IMPLEMENTATION DETAILS AND CODEBASE

All experiments are conducted on a server with an Intel(R) Xeon(R) E5-2640 v4 CPU at 2.40GHz
and a NVIDIA Tesla P40 GPU running on Ubuntu. By default, we uniformly set subspace dimension
k = 200, € = €4, + €qp With € = €qp, p = 10% and sub-Weibull index 6 = 2 for any datasets. In
particular, we use the LDAM Cao et al. (2019) loss function for heavy-tailed tasks.

1.

MNIST: MNIST has ten categories, 60,000 training samples and 10.000 testing samples.
We construct a two-layer CNN network and replace the BatchNorm of the convolutional
layer with GroupNorm. We set 40 epochs, 128 batchsize, 0.1 small clipping threshold, 1
large clipping threshold, and 1 learning rate.

. FMNIST: FMNIST has ten categories, 60,000 training samples and 10.000 testing samples.

we use the same two-layer CNN architecture, and the other hyperparameters are the same as
MNIST.

. CIFARI10: CIFARI10 has 50,000 training samples and 10,000 testing. We set 50 epoch,

256 batchsize, 0.1 small clipping threshold and 1 large clipping threshold with model Sim-
CLRvV2 Tramer & Boneh (2021) pre-trained by unlabeled ImageNet. We refer the code for
pre-trained SImCLRv2 to https://github.com/ftramer/Handcrafted-DP.

. CIFAR10-HT: CIFAR10-HT contains 32x32 pixel 12,406 training data and 10,000 testing

data, and the proportion of 10 classes in training data is as follows: [0:5000, 1:2997,
2:1796, 3:1077, 4:645, 5:387, 6:232, 7:139, 8:83, 9:50]. We train CIFAR10-HT on model
ResNeXt-29 Xie et al. (2017) pre-trained by CIFAR100 with the same parameters as
CIFAR10. We can see pre-trained ResNeXt in https://github.com/ftramer/
Handcrafted-DP and CIFAR10-HT with LDAM-DRW loss function in https://
github.com/kaidic/LDAM-DRW.

. ImageNette: ImageNette is a 10-subclass set of ImageNet and contains 9469 training

examples and 3925 testing examples. We train on model ResNet-9 He et al. (2016) without
pre-train and set 1000 batchsize, 0.15 small clipping threshold, 1.5 large clipping threshold
and 0.0001 learning rate with 50 runs.

. ImageNette-HT: We construct the heavy-tailed version of ImageNette by the method in Cao

et al. (2019). ImageNette-HT contains 2345 trainging data and 3925 testing data, which is
difficult to train, and proportion of 10 classes in training data follows: [0:946, 1:567, 2:340,
3:204, 4:122, 5:73, 6:43, 7:26, 8:15, 9:9]. The other settings are the same as ImageNette.
Our ResNet-9 refersto https://github.com/cbenitez81/Resnet 9/ with 2.5M
network parameters.

. E2E: We have conducted experiments on transform-based NLP tasks for the dataset E2E

with BLEU metric and GPT-2 model, which generates natural language from tabular data
in the catering industry. We adopt the DPAdam optimizer and use the same settings as ?,
where small clipping threshold ce = 0.1 and large clipping threshold ¢; = 10 * c5.

Moreover, we open our source code and implementation details for discriminative clipping on the
following link: https://anonymous.4open.science/r/DC-DPSGD-N-25C9/.
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G.2 EFFECTS OF PARAMETERS ON TEST ACCURACY

Due to space limitations, we place the remaining ablation study on MNIST, FMNIST, ImageNette
and ImageNette-HT in Table 5 and Table 6. We acknowledge that since ImageNette-HT has only
2,345 training data, which is one-fifth of ImageNette, it is difficult to support the convergence of the
model. In the future, we will improve this aspect in our work.

Table 5: Effects of parameters on test accuracy with MNIST and FMNIST.

Subspace-k €qr + Edp sub-Weibull-6
None\ 100 \ 150 \ 200 2+6 \ 4+4 \ 6+2 172 \ 1 \ 2

MNIST | 98.16 | 98.48 | 98.66 | 98.72 | 98.78 | 98.72 | 98.42 | 98.61 | 98.69 | 98.72
FMNIST | 85.78 | 87.61 | 87.71 | 87.80 | 87.70 | 87.80 | 87.26 | 87.40 | 87.55 | 87.80

Dataset

Table 6: Effects of parameters on test accuracy with ImageNette and ImageNette-HT.

Subspace-k €r + Edp sub-Weibull-6
None\ 100 \ 150 \ 200 2+6 \ 4+4 \ 6+2 172 \ 1 \ 2

ImageNette | 66.08 | 68.34 | 69.00 | 69.29 | 68.54 | 69.29 | 68.12 | 67.91 | 68.87 | 69.29
ImageNette-HT | 29.33 | 31.44 | 33.17 | 33.70 | 3425 | 33.70 | 31.13 | 33.05 | 33.37 | 33.70

Dataset

To investigate the effect of p, we have added a set of new experiments by varying p € [1%, 20%)].
The results are presented in Table 7. We observe that the test accuracy is minimally affected when
p is less than 10%, but shows a negative impact at around 20%. We believe that the proportion of
heavy-tailed samples aligns with statistical expectations. Assigning larger clipping thresholds to more
light-body samples introduces more noise, while conservatively estimating heavy-tails does not fully
exploit the algorithm’s potential.

Table 7: Effects of parameter on p.

‘ Heavy tail ratio-p
‘ 20  10% 5% 2% 1%

ImageNette ‘ 66.82 69.29 68.44 6845 68.75

Dataset
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