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Abstract

Modern deep learning models are notoriously001
opaque, which has motivated the development002
of methods for interpreting how deep models003
predict. This goal is usually approached with at-004
tribution method, which assesses the influence005
of features on model predictions. As an expla-006
nation method, the evaluation criteria of attri-007
bution methods is how accurately it reflects the008
actual reasoning process of the model (faithful-009
ness). Meanwhile, since the reasoning process010
of deep models is inaccessible, researchers de-011
sign various evaluation methods to demonstrate012
their arguments. However, some crucial logic013
traps in these evaluation methods are ignored in014
most works, causing inaccurate evaluation and015
unfair comparison. This paper systematically016
reviews existing methods for evaluating attri-017
bution scores and summarizes the logic traps018
in these methods. We further conduct exper-019
iments to demonstrate the existence of each020
logic trap. Through both theoretical and ex-021
perimental analysis, we hope to increase atten-022
tion on the inaccurate evaluation of attribution023
scores. Moreover, with this paper, we suggest024
stopping focusing on improving performance025
under unreliable evaluation systems and start-026
ing efforts on reducing the impact of proposed027
logic traps.028

1 Introduction029

The opaqueness of deep models has grown in tan-030

dem with their power (Doshi-Velez and Kim, 2017),031

which has motivated efforts to interpret how these032

black-box models work (Sundararajan et al., 2017;033

Belinkov and Glass, 2019). Post-hoc explana-034

tion aims to explain a trained model and reveal035

how the model arrives at a decision (Jacovi and036

Goldberg, 2020; Molnar, 2020). This goal is usu-037

ally approached with attribution method, which038

assesses the influence of features on model pre-039

dictions as shown in Figure 1. Recent years have040

witnessed an increasing number of attribution meth-041

ods being developed. For example, Erasure-based042

method calculate attribution scores by measuring 043

the change of output after removing target features 044

(Li et al., 2016; Feng et al., 2018; Chen et al., 2020); 045

Gradient-based method uses gradients to study the 046

influence of features on model predictions (Sun- 047

dararajan et al., 2017; Wallace et al., 2019; Hao 048

et al., 2020); Meanwhile, these methods also re- 049

ceived much scrutiny, arguing that the generated 050

attribution scores are fragile or unreliable (Alvarez- 051

Melis and Jaakkola, 2018; Pruthi et al., 2019; Wang 052

et al., 2020; Slack et al., 2020). 053

Figure 1: An example of attribution explanations, which
assesses the influence of each token on the predictions
of a binary sentiment classification task. The saturation
of the colors signifies the magnitude of the influence.

As an explanation method, the evaluation crite- 054

ria of attribution methods should be how accurately 055

it reflects the true reasoning process of the model 056

(faithfulness), not how convincing it is to humans 057

(plausibility) Jacovi and Goldberg (2020). Mean- 058

while, since the reasoning process of deep models 059

is inaccessible, researchers design various evalu- 060

ation methods to support their arguments, some 061

of which appear valid and are widely used in the 062

research field. For example, meaningful perturba- 063

tion is used for making comparison in many works 064

(Samek et al., 2016; Chen et al., 2018; DeYoung 065

et al., 2019; Chen et al., 2020; Kim et al., 2020). 066

The philosophy of meaningful perturbation is sim- 067

ple, i.e., modifications to the input instances, which 068

are in accordance with the generated attribution 069

scores, can bring about significant differences to 070

model predictions if the attribution scores are faith- 071

ful to the target system. 072

However, some crucial logic traps existing in 073

these evaluation methods are ignored in most 074

works, causing inaccurate evaluation and unfair 075

1



comparison. For example, we found that we can076

manipulate the evaluation results when using mean-077

ingful perturbation to make comparisons: by choos-078

ing the modification strategy, we can assign any079

of the three candidate attribution methods as the080

best method. The neglect of these traps has dam-081

aged the community in many aspects: First, the082

existence of logic traps will lead to an inaccurate083

evaluation and unfair comparison, making the con-084

clusions unreliable; Second, the wide use of eval-085

uation metrics with logic traps brings pressure to086

newly proposed works, requiring them to compare087

with other works using the same metrics; Last, the088

over-belief in existing evaluation metrics encour-089

ages efforts to propose more accurate attribution090

methods, notwithstanding the evaluation system is091

unreliable.092

In this paper, we systematically review existing093

methods for evaluating attribution scores and cate-094

gorize them into classes. We summarize the logic095

traps in these methods and further conduct experi-096

ments to demonstrate the existence of each logical097

trap. Though strictly accurate evaluation metrics098

for attribution methods might be a “unicorn” which099

will likely never be found, we should not just ig-100

nore logic traps in existing evaluation methods and101

draw conclusions recklessly. Through both theoret-102

ical and experimental analysis, we hope to increase103

attention on the inaccurate evaluation of attribu-104

tion scores. Moreover, with this paper, we suggest105

stopping focusing on improving performance under106

unreliable evaluation systems and starting efforts107

on reducing the impact of proposed logic traps.108

2 Evaluation Methods and109

Corresponding Logic Traps110

2.1 Part I111

Evaluation 1: Using Human Annotated Expla-112

nations As the Ground Truth113

Evaluation 1 verifies the validity of the attribu-114

tion scores by comparing them with the human115

problem-solving process. In this evaluation, works116

(e.g., Murdoch et al. (2018); Kim et al. (2020); Sun-117

dararajan et al. (2017)) often give examples con-118

sistent with human understandings to demonstrate119

the superiority of their proposed method. For ex-120

ample, as shown in Table 1, Murdoch et al. (2018)121

shows heat maps for a yelp review generated by122

different attribution techniques. They argue that123

the proposed method: Contextual decomposition,124

is better than others because only it can identify125

‘favorite’ as positive and ‘used to be’ as negative, 126

which is consistent with human understandings. 127

Method Heat Map
Leave One Out used to be my favorite
Integrated gradients used to be my favorite
Contextual decomposition used to be my favorite
Legend: Very Negative Negative Neutral Positive Very Positive

Table 1: Heat maps for a portion of a yelp review gen-
erated by different attribution techniques. The example
and results are taken from Murdoch et al. (2018).

Furthermore, resorting to human-annotated ex- 128

planations, works can also evaluate attribution 129

methods quantitatively in evaluation 1. For exam- 130

ple, the SST-2 (Socher et al., 2013) corpus provides 131

not only sentence-level labels, but also five-class 132

word-level sentiment tags ranging from very nega- 133

tive to very positive. Thus, many works (Lei et al., 134

2016; Li et al., 2016; Tsang et al., 2020; Kim et al., 135

2020) perform quantitative evaluation of attribution 136

scores by comparing them with the word-level tags 137

in SST-2. 138

139

Logic Trap 1: The decision-making process of 140

neural networks is not equal to the decision- 141

making process of humans. 142

First, we cannot completely deny the rationality 143

of evaluation 1. Since many attribution methods 144

work without any human-annotated information, 145

such as erasure-based and gradient-based methods, 146

the similarity between human-annotated explana- 147

tions and generated attribution scores can be seen 148

as drawing from the reasoning process of target 149

models. However, since the deep model often rely 150

on unreasonable correlations, even when producing 151

correct predictions, attribution scores preposterous 152

to humans may reflect the reasoning process of the 153

deep model faithfully. Thus we cannot deny the 154

validity of an attribution score through its inconsis- 155

tency to human-annotated explanations and cannot 156

use human-annotated explanations to conduct a 157

quantitative evaluation. 158

159

Experiment 1: 160

In experiment 1, we give an example to demon- 161

strate that the model might rely on correlations 162

inconsistent with human understandings to get 163

the prediction: though trained with questions, a 164

question-answering model could maintain the same 165

prediction for a large ratio of samples when the 166

question information is missing, which is obviously 167
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different from humans.168

We experiment on RACE (Lai et al., 2017), a169

large-scale question-answering dataset. As shown170

in Table 2, RACE requires the model to choose the171

right answer from candidate options according to172

the given question and document.173

Document: “...Many people optimistically thought industry
awards for better equipment would stimulate the production
of quieter appliances. It was even suggested that noise from
building sites could be alleviated ...”

Question: What was the author’s attitude towards the industry
awards for quieter?
Options: A. suspicious B. positive

C. enthusiastic D. indifferent

Table 2: An sample taken from RACE dataset.

We first train a model with BERTbase (De-174

vlin et al., 2018) as encoder1 with questions, and175

achieve 65.7% accuracy on the development set.176

Then, we replace the development set questions177

with empty strings and feed them into the trained178

model. Surprisingly, the trained MRC model main-179

tained the original prediction on 64.0% of the test180

set samples (68.4% on correctly answered samples181

and 55.4% on wrongly answered samples). More-182

over, we analyze the model confidence change in183

these unchanged samples, where the probability on184

the predicted label is used as the confidence score.185

As shown in Figure 2, most of the samples have186

confidence decrease smaller than 0.1, demonstrat-187

ing question information are not essential for the188

model to get predictions in these samples.189

Figure 2: Confidence decrease in unchanged samples.

Since question information is usually crucial190

for humans to answer the question, attribution191

scores faithfully reflect the reasoning process of192

this model may be inconsistent with human annota-193

tions. Thus, it is improper to use human-annotation194

1Our implementations of experiment 1 and exper-
iment 2 are based on the Huggingface’s transformer
model hub (https://github.com/huggingface/
transformers), and we use its default model architectures
without change for corresponding tasks.

explanations as the ground truth to evaluate attribu- 195

tion methods. 196

2.2 Part II 197

198

Evaluation 2: Evaluation Based on Meaningful 199

Perturbation 200

Most existing methods for quantitatively evalu- 201

ating attribution scores can be summarized as eval- 202

uations based on meaningful perturbation. The 203

philosophy of meaningful perturbation is simple, 204

i.e., modifications to the input instances, which are 205

in accordance with the generated attribution scores, 206

can bring about significant differences to the tar- 207

get model’s predictions if the attribution scores are 208

faithful to the target model. 209

For example, Samek et al. (2016); Nguyen 210

(2018); Chen and Ji (2020) use the area over the 211

perturbation curve (AOPC) (Samek et al., 2016) 212

as evaluation metrics. Specifically, given the attri- 213

bution scores of a set of features, AOPC(k) modi- 214

fies the top k% features and calculates the average 215

change in the prediction probability as follows, 216

AOPC(K) =
1

N

N∑
i=1

{
p(ŷ|xi)− p(ŷ|x̃(k)i )

}
217

where ŷ is the predicted label, N is the number of 218

examples, p(ŷ|) is the probability on the predicted 219

class, and x̃(k)i is modified sample. Higher AOPCs 220

is better, which means that the features chosen by 221

attribution scores are more important; Feng et al. 222

(2018); Petsiuk et al. (2018); Kim et al. (2020) use 223

area under the curve (AUC) to evaluate attribution 224

scores. As shown in Figure 3, AUC plots a pre- 225

diction probability curve about modified feature 226

numbers where features are modified in order of 227

attribution scores. The argument is if attribution 228

scores are faithful, then the curve will drop rapidly, 229

resulting in a small area under a curve. 230

Figure 3: AUC evaluation metric. The smaller area
under the curve, the better the result.
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Besides these works, a lot of works (Shrikumar231

et al., 2017; Chen et al., 2018; Nguyen, 2018; DeY-232

oung et al., 2019; Chen et al., 2020; Hao et al.,233

2020; Jiang et al., 2021) use similar metrics to per-234

form evaluation and comparisons. The main differ-235

ence between evaluation metrics in these works is236

the difference in the modification strategy. For ex-237

ample, to evaluate word-level attribution scores for238

SST-2, Chen et al. (2020) uses deleting tokens as239

modification while Kim et al. (2020) uses replacing240

tokens with tokens sampled from the distribution241

inferred by BERT.242

243

Logic Trap 2: Using an attribution method as244

the ground truth to evaluate the target attribu-245

tion method.246

Evaluation methods based on meaningful per-247

turbation can be seen as an attribution method248

too. For example, AOPC(k), which assesses the249

importance of k% features, can be seen as an at-250

tribution method calculating an attribution score251

for k% features. Specifically, when using deleting252

tokens as modification and narrowing the k% to253

one token, AOPC(k) degenerates into the basic at-254

tribution method: leave-one-out (Li et al., 2016).255

Thus, evaluation 2 uses an attribution method as256

the ground truth to evaluate the target attribution257

method, which measures the similarity between258

two attribution methods instead of faithfulness.259

Since meaningful perturbation assesses the im-260

portance of features by calculating output change261

after modifications, its results are mainly depend on262

how to conduct the modifications, which means dif-263

ferent modification strategies might lead to differ-264

ent evaluation results. Evaluation 2 is widely used265

to compare attribution methods in the research field.266

Accordingly, the neglect of logic trap 2 has led to267

a high risk of unfair comparisons and unreliable268

conclusions.269

270

Experiment 2:271

In experiment 2, we give an example of unfair272

comparisons in evaluation 2: the more similar the273

target attribution method to the modification strat-274

egy, the better the evaluation results. Specifically,275

by modifying the modification strategies in APOC276

and AUC, we can assign any of the three candidate277

attribution methods as the best method. We con-278

duct experiments on on widely used SST-2 task of279

the GLUE benchmark (Wang et al., 2018)), and280

use BERTbase as encoder to build the target model1281

(achieve 86.4% accuracy). 282

Figure 4: The overview of LOO, Marg and HEDGE.

Attribution Methods We experiment with three 283

attribution methods: leave-one-out (LOO) (Li et al., 284

2016), HEDGE (Chen et al., 2020) and Marg (Kim 285

et al., 2020). The schemes of these attribution meth- 286

ods are shown in Figure 4, LOO assign attribu- 287

tion scores to the target word ‘good’ by deleting 288

it from the sentence and observing change in the 289

model predictions; Marg marginalizes the target 290

word ‘good’ out considering the likelihoods of all 291

candidate words, which uses BERT to measure the 292

likelihoods of candidate words to replace the target 293

word; HEDGE builds hierarchical explanations by 294

recursively detecting the weakest interactions and 295

then dividing large text spans into smaller ones. 296

HEDGE assign attribution scores to spans by using 297

’[PAD]’ token to replace other words in a sentence 298

and measuring how far the prediction is to the pre- 299

diction boundary. 300

301

Evaluation metrics and Results We first eval- 302

uate three attribution methods with metrics drawn 303

from Marg and HEDGE papers. Marg uses AUC 304

as evaluation metrics and modifies words by gradu- 305

ally replacing them with a token sampled from the 306

distribution inferred by BERT, denoted as AUCrep; 307

HEDGE uses AOPC as evaluation metrics and mod- 308

ifies words by deleting them directly, denoted as 309

AOPCdel. Both papers modify 20% of words in 310

the sentence. The results are shown in Table 3. As 311

shown in Table 3, Marg performs best in AUCrep 312

while LOO performs best in AOPCdel. Since the 313

modification strategy of AOPCdel is consistent with 314
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Method/Metric AOPCdel ↑ AUCrep ↓ AOPCrep ↑ AUCdel ↓ AOPCpad ↑ AUCpad ↑
LOO 0.541 0.666 0.378 0.526 0.935 0.896
HEDGE 0.466 0.702 0.324 0.638 0.978 0.984
Marg 0.477 0.617 0.391 0.588 0.928 0.874

Table 3: Evaluation results of three attribution methods. ↑ / ↓ refers to higher / lower scores are better. del, rep,
and pad refer to different modification strategies in the evaluation metrics.

LOO, and that of AUCrep is most similar to Marg,315

the evaluation results are consistent with the infer-316

ence in logic trap 2: the more similar the target317

evaluated method to the modification strategy, the318

better the evaluation results.319

320

Manipulate Evaluation Results We further321

conduct ablation experiments by changing the322

modification strategies in AOPCdel and AUCrep.323

Concretely, we switched perturbing strategy in324

AOPCdel and AUCrep and get new evaluation met-325

rics: AOPCrep and AUCdel. As shown in Table326

3, different from the initial results, Marg performs327

best in APOC metric while LOO performs best in328

AUC metric. The opposite results demonstrate that329

evaluation results mainly depend on the modifica-330

tion strategies, and we can manipulate evaluation331

results by changing them. Moreover, we note that332

HEDGE performs worst in all four evaluation met-333

rics. Thus, we further customize the modification334

strategy to HEDGE’s advantage: padding unim-335

portant features according to the attribution scores,336

denoted as AOPCpad and AUCpad. Not surpris-337

ingly, results in Table 3 show that HEDGE perform338

best in customized metrics.339

340

Summarization Because of the existence of341

logic trap 2, we can manipulate the evaluation re-342

sults in evaluation 2 by changing the modification343

strategies, assigning any of the three candidate attri-344

bution methods as the best method. In fact, because345

we cannot simply assign a modification strategy as346

faithful, we should not use evaluation 2 to quanti-347

tatively evaluate attribution scores and make com-348

parisons. Since the wide use of evaluation 2, the349

neglect of logic trap 2 has negatively impacted the350

research field for a long time. First, it brings a risk351

of unfair comparisons: works can customize eval-352

uation metrics to their advantage and thus achieve353

the best performance. Second, the wide use of354

evaluation 2 also brings pressure to new proposed355

works, forcing them to make comparisons to others356

in such evaluation.357

2.3 Part III 358

359

Evaluation 3: Disprove Attribution Methods 360

by Examining the Consistency of Attribution 361

Scores 362

In this evaluation, works evaluate attribution 363

methods by examining the consistency of attribu- 364

tion scores for similar inputs. The philosophy of 365

Evaluation 3 is that semantically similar inputs 366

which share the same model predictions should 367

have similar attribution scores if the attribution 368

method is reliable. Evaluation 3 is often used to 369

disprove the effectiveness of attribution methods 370

by searching for counterexamples. 371

For example, ExplainFooler (Sinha et al., 2021) 372

attacks Integrated Gradients and (Sundararajan 373

et al., 2017) and LIME (Sundararajan et al., 2017), 374

which are two popular attribution methods in NLP, 375

by searching adversarial sentences with different 376

attribution scores. As shown in Figure 5, these ad- 377

versarial sentences are semantically similar to the 378

original sentence and share the same model pre- 379

dictions. However, the attribution scores of these 380

sentences are very different from that of the origi- 381

nal sentence. Sinha et al. (2021) observes the rank 382

order correlation drops by over 20% when less 383

than 10% of words are changed on average and 384

thus draws the conclusion that Integrated Gradients 385

and LIME are fragile. 386

Figure 5: Examples taken from ExplainFooler (Sinha
et al., 2021), which attacks attribution methods by
searching adversarial sentences with different attribu-
tion scores. attack num refers to the number of replaced
words.

A lot of works (Alvarez-Melis and Jaakkola, 387

2018; Kindermans et al., 2019; Ghorbani et al., 388
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2019; Ding and Koehn, 2021; Sinha et al., 2021)389

use evaluation 3 to examine the validity of exist-390

ing attribution methods. For example, Ghorbani391

et al. (2019) argues that interpretations of neural392

networks are fragile by showing that systematic per-393

turbations can lead to different interpretations with-394

out changing the label; Alvarez-Melis and Jaakkola395

(2018) argues that a crucial property that attribu-396

tion methods should satisfy is robustness to local397

perturbations of the input.398

399

Logic Trap 3: The change in attribution scores400

maybe because the model reasoning process401

is really changed rather than the attribution402

method is unreliable.403

When solving similar samples like those shown404

in Figure 5, humans tend to use similar reasoning405

methods. However, deep models are not as robust406

enough as humans and often rely on unreasonable407

correlations. Semantically similar texts often cause408

different reasoning processes in deep models. For409

example, it is well known that deep models are vul-410

nerable to adversarial samples (Goodfellow et al.,411

2014; Papernot et al., 2016). By deliberately adding412

some subtle interference that people cannot detect413

to the input sample, the target model will give a dif-414

ferent prediction with high confidence. The success415

in adversarial attacks on deep models demonstrates416

similar inputs for humans can share very different417

reasoning processes in deep models.418

The main difference between attribution-419

attacking methods and model-attacking is that420

attribution-attacking methods require the model421

to give the same prediction for adversarial samples.422

However, giving the same prediction is very weak423

to constraint model reasoning because deep mod-424

els have compressed the complicated calculation425

process into limited classes in the prediction. For426

example, there is always half probability of giving427

the same prediction for a binary classification task428

even with totally random reasoning. Thus, it is no429

surprise that attribution-attacking methods can find430

adversarial samples which share the same predic-431

tion label to the original sample yet have different432

attribution scores.433

The logic trap in evaluation 3 is that the change434

in attribution scores may be because the model rea-435

soning process is really changed rather than the436

attribution method is unreliable. As shown in Fig-437

ure 6. (b), an attribution method should generate438

different attribution scores for the original and ad-439

Figure 6: We use lines connecting inputs and outputs
to represent the model reasoning process. (a) is a suc-
cessful attack on the target model while (b) might be
regarded as a successful attack on attribution methods,
falling into the logic trap 3.

versarial samples if it faithfully reflects the model 440

reasoning. However, it will be regarded as fragile 441

or unreliable in evaluation 3. Unfortunately, exist- 442

ing works ignore this logic trap and propose various 443

methods to attack attribution methods. Since the 444

high susceptibility of deep models to adversarial 445

samples, not surprisingly, all of these works get the 446

same conclusion: existing attribution methods are 447

fragile or unreliable. 448

449

Experiment 3: 450

In experiment 3, we demonstrate that deep mod- 451

els can assign the same label to semantically similar 452

samples yet use different reasoning. We experi- 453

ment on widely used SST-2 and MNLI tasks of 454

the GLUE benchmark (Wang et al., 2018)). MNLI 455

requires the model to predict whether the premise 456

entails the hypothesis, contradicts it, or is neutral. 457

458

Model Since the attribution methods are defaulted 459

as unreliable in evaluation 3, we cannot use existing 460

attribution methods to judge whether the model rea- 461

soning is different. To solve the problem, we use 462

a two-stage model framework, where the model 463

first extracts a subset of inputs and gives predic- 464

tion based only on the subset information. This 465

way, we can observe whether the model reasoning 466

is changed from the chosen subset, i.e., different 467

subsets means the model chooses to use different 468

information to make the final decision. 469

The overview of our model is shown in Figure 470

7. To guarantee that only the subset information 471
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Figure 7: The overview of the model scheme, which
consists of two components: extractor and classifier.
Only the information of the selected subset can pass to
the classifier.

is included in the classifier, we discretely select472

the words and pass words instead of the hidden473

states of the extractor to the classifier. Since gradi-474

ents do not flow through discrete samples, we re-475

sort to HardKuma (Bastings et al., 2019) to jointly476

train the model, which gives support to binary out-477

comes. HardKuma allows for setting the percent-478

age of selected words and is proved more effective479

and stable than REINFORCE (Williams, 1992) in480

such scenarios. We set the selection ratio as 20%481

for SST-2 and 40% for MNLI because larger ra-482

tios will not cause further performance improve-483

ment. Finally, We get 85.6% accuracy on SST-2484

and 66.2/65.5 % accuracy on MNLI-m/mm.485

486

Adversarial Attack Method We use TextFooler487

(Jin et al., 2020) to generate adversarial samples.488

We use the same settings to Jin et al. (2020) to489

guarantee the semantical similarity of adversarial490

samples. The only difference is that we search for491

samples with minimal similarity in the selected sub-492

set instead of the model prediction. We guarantee493

that the model makes the same predictions, which494

is often used as the constraint for model reasoning495

in evaluation 3. We generate adversarial samples496

with 10% and 20% perturbation ratios.497

498

Results We use F1-score to compute the simi-499

larity score between subsets and report the Macro-500

averaging F1-score of the whole development set.501

A lower score is better, reflecting a larger difference502

in selected subsets. Note that since some words in503

original samples are replaced with their synonyms504

in adversarial samples, synonyms are seen as iden-505

tical to their original words when evaluating. We506

evaluate all samples in the SST-2 development set507

and the first 1000 samples in MNLI-m/mm devel- 508

opment sets. The results are shown in Table 4 509

Dataset/Ratio 10% 20%
SST-2 0.32 0.18
MNLI-m/mm 0.43 / 0.52 0.37 / 0.43

Table 4: The similarity scores between selected subsets.
Rato refers to the perturbation ratio used to generate
adversarial samples.

As shown in Table 4, though semantically sim- 510

ilar to the original samples and share the same 511

model predictions, the adversarial samples can 512

have subsets with low similarity to the original 513

subset. Moreover, with a 10% perturbation ratio, 514

31.8% of samples in SST-2 have an adversarial 515

subset with none word overlap with the original 516

subset. This result increases to 50.5% with a 20% 517

perturbation ratio. With no overlap between the 518

two subsets, there is no way we can hypothesis the 519

adversarial samples share similar model reasoning 520

to the original samples. 521

522

Summarization Though evaluation 3 seems rea- 523

sonable, sharing similar semantics and the same 524

model predictions is a weak constraint for similar 525

model reasoning. Thus the change in attribution 526

scores may come from different model reasoning 527

instead of the instability of attribution methods. 528

Because of deep models’ high sensitivity to adver- 529

sarial samples, works resorting to evaluation 3 all 530

get the same conclusion that existing attribution 531

methods are fragile or unreliable. We argue we 532

should find a more strict constraint for model rea- 533

soning first instead of ignoring logic trap 3 and 534

disproving attribution methods recklessly. 535

3 Discussion 536

3.1 Attacking attribution methods by 537

replacing the target model. 538

Besides resorting to methods in evaluation 3, there 539

are works (Jain and Wallace, 2019; Wang et al., 540

2020; Slack et al., 2020) disprove the reliability of 541

attribution methods by replacing the target model 542

which attribution methods should work on. 543

For example, Slack et al. (2020) trains an ad- 544

versarial classifier e(x) to distinguish whether the 545

inputs have been perturbed or not and then uses a 546

different sub-model to process perturbed instances. 547

Specifically, if we want to attack the LOO method, 548

we can build a loo set from the original dataset and 549
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train e(x) in the following form:550

e(x) =

{
f(x), if x ∈ original set

ψ(x), if x ∈ loo set
551

This way, ψ(x), a model irrelevant to model pre-552

dictions, is used when using LOO to calculate attri-553

bution scores, making generated attribution scores554

meaningless. Slack et al. (2020) assert that results555

of perturbation-based attribution methods such as556

LIME and SHAP (Lundberg and Lee, 2017) are557

easily attacked by their method. Similarly, Wang558

et al. (2020) add an extra model to the original559

model, which has uniform outputs but large gradi-560

ents for some particular tokens such as ‘CLS’ in561

BERT. Since the extra model generates uniform562

outputs, it will not affect predictions of the origi-563

nal model. However, the extra model’s gradients564

will add to the original model and thus can confuse565

gradient-based attribution methods.566

3.2 Should We Use Attribution Methods in a567

Black-Box Way?568

The attack methods in Section 3.1 fool the attribu-569

tion methods through designing a special structure570

and require attribution methods to be used in a571

black-box way. In this setting, the attribution meth-572

ods are easily attacked and generate meaningless573

results. However, the question is: as a tool to help574

humans understand how deep models work, is it575

necessary to use attribution methods in a black-box576

way? Take the linear model as an example. The577

linear model is regarded as a white-box model, and578

humans don’t need attribution methods to under-579

stand how it works. However, the understanding580

of a linear model is based on the analysis of its581

calculation process. Meanwhile, the deep model582

is regarded as a black-box model because its cal-583

culation process is too complicated to understand584

for humans, not because its calculation process is585

inaccessible. Thus, we believe there are no com-586

pelling reasons to require attribution methods to be587

used in a black-box way. The attacks in Wang et al.588

(2020); Slack et al. (2020) will fail when humans589

use attribution methods with knowing the model590

structures.591

3.3 Reducing the impact of proposed logic592

traps.593

Since logic traps in existing evaluation methods can594

cause an inaccurate evaluation, we believe reducing595

the impact of these traps is the next question in the596

research field of post-hoc interpretations. In this 597

section, we provide some thoughts for reducing the 598

impact of logic trap 3: 599

The change in attribution scores may be because 600

the model reasoning process is changed rather than 601

the attribution method is unreliable. 602

To reduce the impact of this logic trap, we should 603

try to guarantee the similarity in model reasoning 604

when processing semantically similar inputs. In 605

other words, we hope the target model used to test 606

attribution methods more robustness to adversar- 607

ial samples, which can be conducted through the 608

following ways: 609

1 Enhancing the target model. The success of 610

adversarial attacks on deep models motivates 611

efforts to defend against such attacks. Thus, 612

we can use these defense techniques, such as 613

adversarial training (Tramèr et al., 2017) and 614

randomization (Xie et al., 2017), to enhance 615

the target model and make it more robustness 616

to adversarial samples. 617

2 Excluding predictions with low confidence. 618

The deep model will give a prediction for a 619

sample regardless of whether knowing how 620

to deal with it. The randomness of reason- 621

ing increases with the uncertainty in model 622

decisions (Bella et al., 2010). Thus, we can 623

guarantee the stability of model reasoning by 624

excluding low-confident predictions. For ex- 625

ample, we can resorting to Confidence Cal- 626

ibration techniques (Guo et al., 2017; Seo 627

et al., 2019), which calculate confidence inter- 628

val for a predicted response. 629

3.4 Conclusions 630

The proposed logic traps in existing evaluation 631

methods have been ignored for a long time and neg- 632

atively affected the research field. Though strictly 633

accurate evaluation metrics for evaluating attribu- 634

tion methods might be a “unicorn” which will likely 635

never be found, we should not just ignore these 636

logic traps and draw conclusions recklessly. With a 637

clear statement and awareness of these logic traps, 638

we should reduce the focus on improving perfor- 639

mance under such unreliable evaluation systems 640

and shift it to reducing the impact of proposed 641

logic traps. Moreover, other aspects of the research 642

field should give rise to more attention, such as 643

the applications of attribution scores (denoising 644

data, improving the model performance, etc.) and 645

proposing new explanation forms. 646
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A Experimental Details 840

In this section, we provide the experimental details 841

of our experiments. Moreover, we will release our 842

code and model within two months. 843

A.1 Experiment 1 844

We merged dev-high and dev-middle sets as the 845

development set. As shown in Figure 8, the doc- 846

ument D, question Q, and one of the choices C 847

are concatenated together as the input of model, 848

and we replace the development set questions with 849

empty strings in our experiment. 850

Figure 8: The overview of experiment 1.
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A.2 Experiment 2851

We use the tokenizer of BERT to split the sentence852

into words in experiment 2. We modify 20% of853

words in the sentences in experiment 2. Since the854

word number in a sentence is not necessarily a855

multiple of five, we need to choose between round-856

ing up or down. We use the same setting in code857

of HEDGE, i.e., rounding down. Specifically, we858

modify one word when word number is smaller859

than five.860

A.3 Experiment 3861

Since HardKuma allows for setting the percentage862

of selected words, we first experiment with settings863

ranging from 10% to 100%. The results are shown864

in Figure 9. Under the premise of maintaining865

model performance, we choose the smallest setting866

(20% setting for SST-2 and 40% setting for MNLI).867

We use beam search to find adversarial samples and868

set the maximum reserved sample number to 100.869

Figure 9: Model performance trained in different set-
tings.
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