
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ROUTEFINDER: TOWARDS FOUNDATION MODELS FOR
VEHICLE ROUTING PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper introduces ROUTEFINDER, a comprehensive foundation model frame-
work to tackle different Vehicle Routing Problem (VRP) variants. Our core idea is
that a foundation model for VRPs should be able to represent variants by treating
each as a subset of a generalized problem equipped with different attributes. We
propose a unified VRP environment capable of efficiently handling any attribute
combination. The ROUTEFINDER model leverages a modern transformer-based
encoder and global attribute embeddings to improve task representation. Addi-
tionally, we introduce two reinforcement learning techniques to enhance multi-
task performance: mixed batch training, which enables training on different vari-
ants at once, and multi-variant reward normalization to balance different reward
scales. Finally, we propose efficient adapter layers that enable fine-tuning for new
variants with unseen attributes. Extensive experiments on 48 VRP variants show
ROUTEFINDER achieves competitive results. Our code is openly available.

1 INTRODUCTION

Vehicle Routing Problems (VRPs) are an important class of Combinatorial Optimization (CO) prob-
lems that have received much attention in Operations Research (OR) and Computer Science. Since
the VRP is an NP-hard problem, finding an optimal solution by exhaustively exploring the solu-
tion space is often computationally expensive and impractical for large instances. Instead, heuristic
methods that quickly generate good (but possibly suboptimal) solutions are commonly used. The OR
community has developed many heuristics over the year, including the well-known Lin-Kernighan-
Helsgaun (LKH) heuristic (Helsgaun, 2017), Fast Iterated Local Optimization (FILO) (Accorsi &
Vigo, 2021; 2024) and Hybrid Genetic Search (HGS) (Vidal, 2022; Wouda et al., 2024). While these
algorithms are state-of-the-art on a range of VRP variants, they often require careful consideration of
the problem specifics, algorithm parameters, and computational resources to achieve the best results,
and thus require considerable expert knowledge to be applied in practice.

Recently, Neural Combinatorial Optimization (NCO) approaches have been developed to solve CO
problems. By leveraging deep learning, these approaches seek to learn and generalize from data,
potentially providing more flexible and scalable solutions (Kool et al., 2019; Hottung & Tierney,
2019; Kwon et al., 2020; Kim et al., 2022; Berto et al., 2024; Hottung et al., 2024). In this way,
optimization problems essentially become data science problems, making them more accessible.

Similar to how the developments in natural language processing have resulted in Large Language
Models (LLMs), research efforts in solving CO problems through machine learning are also trending
toward foundation models (Liu et al., 2024c; Ye et al., 2024a; Liu et al., 2024a; Zhou et al., 2024).
However, despite the recent progress made in learning VRP variants, there is a lack of a unified
approach that can effectively tackle a wide range of tasks without needing high-quality labeled
datasets, which is crucial for real-world impact. Such an approach would additionally provide a
platform for effectively finetuning unseen variants (Lin et al., 2024). A foundation model for VRPs
would have important implications in terms of cost savings for companies and organizations as it
can be easily adapted to new business requirements (constraints) outside of the training distribution.

In this work, we introduce ROUTEFINDER, a comprehensive foundation model framework for solv-
ing VRPs. We summarize our key contributions, including problem formulation, modeling, training,
and finetuning, as follows:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

• We introduce a general framework to solve different VRP variants via a unified VRP envi-
ronment that can handle any number of attributes.

• We propose a modern Transformer-based architecture and introduce Global Attribute Em-
beddings to enable the model to better understand and differentiate between VRPs.

• We introduce two novel reinforcement learning techniques, Mixed Batch Training and
Multi-Variant Reward Normalization, to ensure stable and effective training across mul-
tiple VRP variants.

• We present Efficient Adapter Layers, a lightweight yet powerful mechanism for finetuning
pre-trained ROUTEFINDER models to tackle new variants with unseen attributes.

We evaluate ROUTEFINDER through extensive experiments on 48 VRP variants, assessing the im-
pact of each novel component on performance. ROUTEFINDER significantly outperforms recent
multi-task learning models by reducing optimality gaps by more than 10% across all variants.

2 RELATED WORKS

Neural combinatorial optimization for VRPs NCO has emerged as a pivotal solution approach
for VRPs and other CO problems, leveraging advancements in machine learning and neural network
architectures (Bengio et al., 2021; Peng et al., 2021; Mazyavkina et al., 2021; Bogyrbayeva et al.,
2022). The seminal work of Vinyals et al. (2015) using pointer networks paved the way to apply
these techniques to CO problems, where they now routinely find near-optimal solutions for VRPs
through further developments by Bello et al. (2016) and Nazari et al. (2018). Subsequent inno-
vations, including the transformer-based encoder with self-attention of Kool et al. (2019), POMO
(Kwon et al., 2020) and Sym-NCO (Kim et al., 2022), have significantly enhanced solution genera-
tion and improvement strategies for VRPs. These advancements have been complemented by novel
training algorithms, including learning with (partial) problem re-encoding at each step (Bdeir et al.,
2022; Drakulic et al., 2024; Luo et al., 2024a;b) and population-based approaches (Grinsztajn et al.,
2024; Hottung et al., 2024; Chalumeau et al., 2024).

Despite this progress, challenges remain in the form of requiring manual tuning for inductive bias,
the need for problem-specific models, and lack of generalization, which impact deployment and gen-
eralizability (Liu et al., 2023; Thyssens et al., 2023). The field has also explored non-autoregressive
solution construction methods that allow for better generalization, such as predicting promising
edges (Joshi et al., 2020; Fu et al., 2021; Kool et al., 2022; Sun & Yang, 2024), improvement meth-
ods iteratively refining solutions through local adjustments or sequential rewriting (Hottung & Tier-
ney, 2019; Ma et al., 2021; 2022; 2024), and test-time adaptation methods (Hottung et al., 2021;
Choo et al., 2022) which allow for solution improvement given larger time budgets. Recent works
additionally explore alternative ways of solving VRPs, such as learning heuristics for Ant Colony
Optimization (Ye et al., 2024b; Kim et al., 2024) and divide-and-conquer methods (Kim et al., 2021;
Li et al., 2021; Hou et al., 2022; Ye et al., 2024c; Chen et al., 2024; Zheng et al., 2024).

Multi-task learning for VRPs In this work, we develop a unified VRP solver that can be gen-
eralized to any number of VRP variants. This issue of generalization has garnered much attention
recently. Wang & Yu (2023) introduces a multi-armed bandit method that solves several VRP vari-
ants with limited training budgets. Lin et al. (2024) proposes training a backbone model (i.e., deep
layers) for VRPs that can then be adapted via low-dimensional layers such as linear projections to
fine-tune different problems efficiently. Drakulic et al. (2024) propose a multi-task model for CO
problems trained via supervised learning, akin to LLMs. Jiang et al. (2024a) introduce UNCO, a
method to transfer different problems to the embedding space via textual description through an
LLM; however, UNCO still falls short in terms of performance compared to state-of-the-art NCO
methods. Most related to this work are the works of Liu et al. (2024a) and Zhou et al. (2024), which
use attribute composition (Ruis et al., 2021) to achieve (zero-shot) generalization on several VRP
variants. Liu et al. (2024a) builds on the Reinforcement-Learning-based POMO (Kwon et al., 2020),
on top of which Zhou et al. (2024) employ a mixture-of-experts model to improve generalization.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 PRELIMINARIES

3.1 VEHICLE ROUTING PROBLEMS

We first formulate the Capacitated VRP (CVRP), the base of several more complex VRPs. The
CVRP is formulated on a graph G = (N,E), where N = {0, . . . ,m − 1,m, . . . ,m + n − 1}
represents the set of nodes, with Nd = {0, . . . ,m − 1} denoting the m depots (with the classic
CVRP having a single depot, i.e., m = 1) and the Nc = {m, . . . ,m + n − 1} denoting the n
customers. Each customer i ∈ Nc has a demand qi. The edges E connect pairs of nodes, and each
edge (i, j) ∈ E has a travel cost cij (e.g., distance or travel duration). A fleet of vehicles, each
with a capacity Q, departs from the depot to serve each of the customers exactly once and returns,
with the objective of minimizing the total travel cost. Following Vidal et al. (2014), we consider

Open routes (O)

< L

0.2

0.1

0.3

0.1

0.2
0.1

Duration limits (L)Time windows (TW)

0.1

0.2
0.4

0.5

0.3

Linehaul demands (C) Backhaul demands (B) Mixed backhaul (MB)

Depot Customer Linehaul Backhaul Feasible route Customer time window

sd:0.5

sd:1.2

sd:0.7

sd:0.2
sd:0.3sd:0

sd:0.2 Service duration

<latexit sha1_base64="3DsdrsOQ3l8lsdKN9DOtlI63R7Q=">AAAB9HicdVDLSgMxFM3UV62vqktdBIvgapiptdZdwY3LFuwDOkPJpJk2NMlMk0yhDP0ONy4UcevHuPNvTKcVVPTAhcM593LvPUHMqNKO82Hl1tY3Nrfy24Wd3b39g+LhUVtFicSkhSMWyW6AFGFUkJammpFuLAniASOdYHy78DtTIhWNxL2excTnaChoSDHSRvI9lXAYQ4+RCWz2iyXHvnLcm+oldGwnQ0ZqbrkG3ZVSAis0+sV3bxDhhBOhMUNK9Vwn1n6KpKaYkXnBSxSJER6jIekZKhAnyk+zo+fw3CgDGEbSlNAwU79PpIgrNeOB6eRIj9RvbyH+5fUSHdb8lIo40UTg5aIwYVBHcJEAHFBJsGYzQxCW1NwK8QhJhLXJqWBC+PoU/k/aZdut2pVmpVQ/XcWRByfgDFwAF1yDOrgDDdACGEzAA3gCz9bUerRerNdla85azRyDH7DePgH3t5F6</latexit>X
p Q

0.1

0.2

0.4
0.5

0.3

Multi-depots (MD)

Figure 3.1: VRP attributes. Linehaul demands (C), backhaul demands (B), time windows (TW), and multi-
depot (MD) are node attributes, whereas open routes (O), duration limits (L), and mixed backhaul (MB) mode
are global attributes. Attribute combinations can define new VRP variants.

a collection of VRP variants that each consist of one or more attributes, resulting in a rich set of
routing problems with practical relevance. Each of these variants offers a unique generalization task
for ROUTEFINDER. Table A.1 in the provides a list of all 48 VRP variants we consider in this paper.
We divide the attributes we consider into node attributes, global attributes, and edge attributes.
Node attributes are specific to the depot and customer nodes and local to specific nodes, such as
(linehaul) demands, backhaul demands, and time windows. Global attributes represent structural
aspects of the problem as a whole, e.g., open vs. closed routes, distance limits, and the type of
backhaul. In this work, the relevant edge attribute we consider is the cost of each edge, representing
a distance. Fig. 3.1 describes the attributes modeled in this work.

NODE ATTRIBUTES

Demand and Vehicle Capacity (C) [q ∈ [0, Q]]: Every customer i ∈ Nc has a linehaul demand
qi that needs to be served using vehicles with a homogeneous fixed capacity Q > 0. The total
customer demand in the vehicle must not exceed its capacity at any point of the route.

Backhauls (B) [p ∈ [0, Q]]: Backhauls generalize demand to also account for return shipments.
Customers are either linehaul or backhaul customers. Linehaul customers require delivery of a
demand qi that needs to be transported from the depot to customer i (as in the CVRP), whereas
backhaul customers need a pickup of an amount pi that is transported from the client back to the
depot. It is possible for vehicles to serve a combination of linehaul and backhaul customers in a
single route, but then any linehaul customers must precede the backhaul customers in the route. An
application with returnable bottles is presented in Ropke & Pisinger (2006): full bottles need to be
delivered from the depot to customers, while empty bottles are returned to the depot via backhaul.

Time Windows (TW) [e, s, l ∈ [0, T]3]: Every customer i ∈ Nc has a time window [ei, li] during
which service must begin. Service takes si time. The depot has a time window [e0, l0] = [0, T], and
a service duration of s0 = 0. Vehicles must reach node i before the end of its time window at li, but
any early arrivals must wait at the node location until time ei before service may start.

Multi-depot (MD) [m > 1]: Generalizes single-depot (m = 1) variants as CVRP with multiple
starting nodes m > 1 from which vehicles can their start their tour. Each vehicle must return to its
start depot. This variant requires decisions about depot-customer assignments, making the problem
more realistic for organizations operating from multiple facilities (Karakatič & Podgorelec, 2015).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

GLOBAL ATTRIBUTES

Open Routes (O) [o ∈ {0, 1}]: Vehicles are not required to return to the depot after serving all
customers. Open routes can be found in applications with third-party drivers, who are often only
compensated until they have completed their last delivery (Li et al., 2007).

Duration Limits (L) [l ∈ [0, L]]: Imposes a limit on the total travel duration (or length) of each
route, balancing the workload across vehicles. This limit is uniformly applied to all routes.

Mixed Backhauls (MB) [µ ∈ {0, 1}]: Relaxes the strict precedence constraint of linehaul cus-
tomers preceding backhaul customers: with mixed backhauls, linehaul, and backhaul customers
may be mixed along a route in any configuration. The vehicle’s capacity must, of course, still be
respected at any point along the route. Since both the current carried linehaul and backhaul demand
need to be tracked for each vehicle, this variant requires careful planning.

3.2 LEARNING NEURAL SOLVERS FOR VRPS

Solving VRPs using Autoregressive Sequence Generation Autoregressive (AR) methods ad-
dress CO problems by constructing solutions sequentially. The process begins with encoding the
problem instance x (e.g., node and global attributes) using a trainable encoder fθ that maps x to an
embedding h = fθ(x). The solution a is then decoded based on h through a series of actions, where
each action determines the next step in the solution based on the current partial sequence. This is
achieved using a decoder gθ. The encoding and decoding process can be formalized as follows:

at ∼ gθ(at|at−1, ..., a0,h), (1a)

πθ(a|x) ≜
T−1∏

t=1

gθ(at|at−1, ..., a0,h), (1b)

where a = (a1, ..., aT) represents a feasible solution to the CO problem, T denotes the steps in
solution construction, and πθ is the stochastic solver mapping problem instance x to a solution a.

Training VRP Solvers via Reinforcement Learning The solver πθ can be trained using either
supervised learning (SL) or reinforcement learning (RL). This paper focuses on RL due to its ability
to train solvers independent of optimal solutions. Under the RL framework, the training objective
for neural combinatorial optimization solvers is defined as:

θ∗ = argmax
θ

[
Ex∼P (x)

[
Ea∼πθ(a|x)[R(a,x)]

]]
, (2)

where P (x) is the distribution of problem instances, and R(a,x) represents the reward (i.e., the
negative cost), associated with the solution a for the given x. The above training problem can be
tackled using various RL algorithms such as REINFORCE and its modern variants (Sutton et al.,
1999; Kool et al., 2019; Kwon et al., 2020).

4 THE ROUTEFINDER RECIPE

ROUTEFINDER leverages attribute composition from Liu et al. (2024a); Zhou et al. (2024) to solve
multiple VRP variants. Attribute composition treats different variants of the VRP as combinations
of fundamental attributes from Section 3.1, using a common network to learn their representations.
We go one step further than previous works and consider different combinations of attributes within
training batches (see Section 4.3.1). Fig. 4.1 provides an overview of ROUTEFINDER’s architecture.

4.1 UNIFIED VRP ENVIRONMENT

In previous works proposing multi-task learning across VRP variants, like MTPOMO (Liu et al.,
2024a) and MVMoE (Zhou et al., 2024), the training scheme samples an instance variant (CVRP,
VRPTW, etc.) out of the set of available variants during training. Every instance within that batch,
therefore, is of the same problem category. This can, however, bias the optimization at each gradient
step toward a specific task, potentially hindering stable and effective training for a foundation model.
We thus propose to learn across problems throughout training and include problem instances of
various attributes within each training batch.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Mixed Batch Training

CVRPB

OVRPLTW

OVRPBMLTW

C TW BO L

...
C TW BO L

C TW BO L

Node
Attributes

Global
Attributes

Encoder

Node Embedding

Global Embedding Encoder Layers

Decoder

CVRPB

OVRPBMLTW
...

Hidden States

Context

CVRPB

OVRPBMLTW
...

Context
Embedding

Decoder
Layers

Action Probabilities

Unified VRP
Environment

+ EAL

+ EAL

+ EAL

+ EAL...

...

CVRPB

OVRPBMLTW
...

Actions

...
reset() step()

N×

Policy
CVRPB

OVRPBMLTW
...

Solutions

...

...

...

done

CVRPB
OVRPBMLTW

OVRPLTW

Rewards

...

Normalized Rewards

Multi-task
Reward Normalization

CVRPB OVRPLTW OVRPBMLTW

...

Figure 4.1: Overview of ROUTEFINDER. The unified VRP environment is used for generating data and per-
forming rollouts (Section 4.1). Our Transformer-based encoder (Section 4.2.1) is employed to process node
and global embeddings (Section 4.2.2) of problem instances. During training, we sample multiple variants in
the same batch (Section 4.3.1) whose multi-task reward is then normalized (Section 4.3.2). Efficient Adapter
Layers (EAL) can be employed for efficient fine-tuning to new variants (Section 4.4).

We define an environment capable of modeling all of the previously discussed VRP attributes (see
Section 3.1) simultaneously, essentially building an MDOVRPMBLTW environment: a multi-depot
open route vehicle routing problem with linehauls, (mixed) backhauls, distance limit, and time win-
dows. The environment supports subsets of the MDOVRPMBLTW defining other VRP variants,
i.e., some attributes can be “turned off.” For example, if an instance does not have time window
constraints, the time windows attribute of each customer is set to [0,∞], rendering them irrelevant
during solution construction. In this way, all attributes characterizing a VRP variant can simply
be turned “on” and “off”, allowing us to model up to 48 different problem types with one single
environment. This approach can be easily extended – for instance, by including different location
sampling mechanisms and new constraints – allowing for even more future problem variants to be
modeled with the same environment.

4.2 MODEL

4.2.1 TRANSFORMER-BASED ARCHITECTURE

The ROUTEFINDER transformer encoder architecture, shown in Fig. 4.2, introduces key
enhancements to the standard Attention Model (AM) from Kool et al. (2019), which
is the de-facto standard in recent works (Liu et al., 2024a; Zhou et al., 2024).

Multi-Head Attention

Norm

Feed Forward

Norm

RMS Norm

Multi-Head Attention

RMS Norm

Feed Forward
SwiGLU

N× N×

Attention Model RouteFinder Transformer

Figure 4.2: Attention model structure v.s.
ROUTEFINDER transformer structure.

Firstly, the ROUTEFINDER transformer encoder employs
RMS (Root Mean Square) normalization (Zhang & Sen-
nrich, 2019), improving stability and training speed by
reducing the impact of outliers. Secondly, we transition
from post-norm to pre-norm in transformer layers, apply-
ing normalization before the residual connections, which
enhances gradient flow and promotes faster convergence
(Jiang et al., 2024b). Thirdly, ROUTEFINDER uses a Feed
Forward SwiGLU, (Shazeer, 2020), an extension of the
Gated Linear Unit (GLU) (Dauphin et al., 2017), instead
of the AM’s ReLU-based feed-forward network, enhanc-
ing the model’s capacity to capture complex relationships
in the data. Finally, we employ FlashAttention (Dao et al.,
2022; Dao, 2023) in the Multi-Head Attention layer of all
models to enhance overall performance. These improve-
ments build on recent advances in foundation models in areas such as language modeling and biol-
ogy (Dubey et al., 2024; Nguyen et al., 2024), aiming to create a robust foundation model for VRPs
building on modern architectures. Further details on modeling are provided in Appendix B.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.2.2 GLOBAL ATTRIBUTE EMBEDDINGS

Global attributes as outlined in Section 3.1 are essential for modeling VRPs; for instance, given
an open (O) attribute, the solver may find optimal routes that do not necessarily loop back to the
starting depot. Previous multi-task learning models for VRPs (Liu et al., 2024a; Zhou et al., 2024)
project such features on the shallow decoder as dynamic features. However, such a design can be
suboptimal since the deep transformer layers carry out most of the learning and, importantly, can
enable effective attribute mixing, which is essential in understanding a (new) problem. We thus
design Global Attribute Embeddings for effective problem representation, which incorporate prob-
lem variants and help the deep layers understand which problem is being faced. Global attributes
ϕ0, . . . , ϕk are projected via a projection layer:

h0
g = fθ([ϕ0, . . . , ϕk]), fθ : Rk → Rd (3)

into d-dimensional space. Given our unified VRP representation, some attributes, such as the du-
ration limit l for unconstrained VRPs, might be ∞. Such attributes are padded as 0s before being
processed by the deep transformer layers. We highlight the significance of Global Attribute Em-
beddings in Appendix D.6, where an analysis of the t-SNE latent space (Van der Maaten & Hinton,
2008) provides insights into their interpretability and importance.

4.3 TRAINING

4.3.1 VARIANT SAMPLING FOR MIXED BATCH TRAINING

Optimizing a neural solver for tackling multiple tasks requires careful consideration of its training
scheme, which needs to be robust against different variant distributions. We introduce a flexible
approach which we coin Mixed Batch Training (MBT) to efficiently reuse a single dataset to generate
multiple problem variants, optimizing data storage and processing capabilities. We observe that the
MDOVRPMBLTW problem variant is the most general problem variant we study in this paper and
can be used to generate any of the other variants by selectively removing the (O), (B), (L), or (TW)
attributes; for zero-shot generalization and few-shot learning, we additionally sample with the multi-
depots (MD) and mixed backhaul (MB) attributes and obtain the MDOVRPMBLTW. Let X be a
dataset of MDOVRPMBLTW problem instances, and let V be the set of attributes, where each
attribute ν ∈ V is associated with a sampling probability pν . For each instance x ∈ X , we can
write x((11)ν∈V) to conveniently express using indicator functions 11 for each attribute ν ∈ V that
the instance x is equipped with ν. The sampling procedure of MBT can be defined as follows:

Xsubsampled = {x((1rand(0,1)<pν
)ν∈V)}x∈X ,

where rand(0, 1) draws an independent sample from U [0, 1]. For example, to sample uniformly
across all problem variants, we could set pν = 1

2 for each ν ∈ V . MBT is flexible and scalable,
capable of adapting to any problem where different constraints or features might be selectively
activated or deactivated. Fig. 4.3 provides an overview of MBT.

Without Mixed Batch Training With Mixed Batch Training

Optimal Optimal
CVRP

VRPTW

OVRPB

…

CVRP
VRPTW

OVRPB

…

…

…

Figure 4.3: [Left] Training without MBT may lead to instability since at each step the optimization is biased
toward a single task. [Right] Training ROUTEFINDER with MBT allows for more stable training.

4.3.2 MULTI-TASK REWARD NORMALIZATION

As explained in Section 3.2, the objective for RL-based NCO solvers is to maximize the expected
reward. However, in multi-task learning settings, different problems can yield rewards on different
scales. To counteract potential biases during learning, we propose to apply reward normalization
per problem variant. We implement four normalization techniques to calculate the normalized re-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

wards r
(k)
norm,t for all problem variants k ∈ {1, ...,K} at training steps t ≥ 1: 1) subtraction of the

simple mean reward, 2) division through the simple mean reward, 3) subtraction of the exponen-
tially smoothed mean, and 4) division through the exponentially smoothed mean. We calculate the
average reward r̂

(k)
t up to training step t using the average batch reward r̄

(k)
t at training step t (see

Appendix C.1). The simple mean reward at step t is calculated as:

r̂
(k)
t =

(
(t− 1) · r̂(k)t−1 + r̄

(k)
t

)
/t, t ≥ 1. (4)

For the exponential moving average we set r̂(k)1 = r̄
(k)
1 and calculate the values for t > 1 based on

Hunter (1986) using a smoothing factor α:
r̂
(k)
t = (1− α) · r̂(k)t−1 + α · r̄(k)t , 0 < α < 1, t > 1. (5)

The normalized rewards 1)—4) can be calculated from the original rewards r
(k)
t according to

r
(k)
norm,t = r

(k)
t − r̂

(k)
t and r

(k)
norm,t = r

(k)
t /|r̂(k)t | for subtraction and division variants, respectively.

Let ξ(a,x) = r
(k)
norm(a,x) be a function calculating the normalized reward for instance x that addi-

tionally maps instance x to variant k. The multi-task reward-normalized gradient becomes:

∇θJ(θ) ≈
1

N

N∑

i=1

ξ(ai,x)− 1

N

N∑

j=1

ξ(aj ,x)

∇θ log pθ(a

i|x), (6)

i.e., we employ the REINFORCE loss function with the POMO (Kwon et al., 2020) shared mean
baseline (right side of the parenthesis) to improve convergence, where both the reward and the shared
baseline are normalized by ξ to calculate the policy gradient’s advantage.

4.4 EFFICIENT ADAPTER LAYERS: FINETUNING TO UNSEEN ATTRIBUTES

Previous multi-task learning works (Liu et al., 2024a; Zhou et al., 2024) train in an environment
of single-attribute VRP variants and, using compositionality (Ruis et al., 2021), achieve promis-
ing results on zero-shot generalization to VRP variants combining these individual attributes. In
ROUTEFINDER, we go a step further and investigate how to efficiently generalize our pre-trained
foundation model to variants with unseen attributes outside of the training set. Lin et al. (2024)
propose pretraining a backbone model, on top of which specific Adapter Layers (AL) can be ap-
plied for more efficient finetuning to new problems – with the rationale being that the backbone
(i.e., the encoder layers) may capture transferable knowledge. However, doing so excludes previ-
ous information accumulated in the projection layers from the raw attribute features to the hidden
space, complicating optimization. For instance, if the first two out of k dimensions encoded the Eu-
clidean locations of nodes as (x, y), re-initializing a new adapter layer from scratch will eliminate
such transferable knowledge. Therefore, we propose Efficient Adapter Layers (EAL), an effective
approach to learning few-shots for VRP foundation models.

Consider a linear projection layer W ∈ Rk×d as the original weight matrix for the projection from
the raw attribute to latent space, where k is the number of attributes and d is the hidden dimension.
In this work, for simplicity, we consider unbiased linear projections to the latent space. This can be
readily extended to general affine projections using a bias term. To accommodate l new attributes,
EAL augments W with zeros. The new matrix W′ ∈ R(k+l)×d can be written as:

W′⊤ =

[
W
0

]⊤
=

w00 · · · w0k 0 · · · 0

...
. . .

...
...

. . .
...

wd0 · · · wdk 0 · · · 0

k l

d

where 0 ∈ Rl×d is a matrix of zeros. The augmented matrix W′ retains the original k attributes
and adds l new attributes, which are initialized to zero. Doing so does not affect the model for
seen attributes like AL does, as the new l dimensions are "muted" until fine-tuning on new variants
occurs, enabling new attributes to be included in any part of the model via EAL as shown in Fig. 4.1.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5 EXPERIMENTS

In this section, we empirically demonstrate the state-of-the-art performance of ROUTEFINDER in
extensive experiments1. We address the following research questions:

(RQ1) Does ROUTEFINDER outperform state-of-the-art foundation models for routing problems
on many different VRP variants?

(RQ2) How do the novel components of ROUTEFINDER contribute to its performance?
(RQ3) Is the proposed EAL effective in ROUTEFINDER finetuning to unseen VRP variants?

Hardware All training runs are conducted on NVIDIA A100 GPUs and take between 9 to 48
hours per model. Evaluation runs are conducted on an AMD Ryzen Threadripper 3960X 24-core
CPU with a single RTX 3090 GPU.

Baselines Traditional solvers: We use PyVRP (Wouda et al., 2024), an open-source, state-of-
the-art heuristic VRP solver built on top of HGS-CVRP (Vidal, 2022). PyVRP can solve all VRP
variants considered in this study. We also use Google’s OR-Tools (Perron & Furnon, 2023), an
open-source exact and heuristic solver that relies on constraint programming and is commonly used
in the ML community for its versatility to solve a large number of VRP variants. We use OR-Tools’
guided local search procedure in this work. Both baseline methods solve each instance on a single
CPU core with a time limit of 10 and 20 seconds for instances with 50 and 100 nodes, respectively.
We parallelize traditional solvers across 16 CPU cores as in Kool et al. (2019); Zhou et al. (2024).

Neural solvers: We consider recent multi-task learning baselines for the VRP, including the recent
MTPOMO (Liu et al., 2024a), which is based on POMO (Kwon et al., 2020), and MVMoE (Zhou
et al., 2024), which introduces mixture-of-experts (Fedus et al., 2022) to improve the model per-
formance. ROUTEFINDER variants, denoted as RF in the tables, are trained with all components
proposed in the methodology section. We use Reward Normalization with division through the ex-
ponentially smoothed mean with α = 0.25. We consider three versions of ROUTEFINDER: one
version considering the (MT)POMO encoder (RF-POMO), one with the MVMoE model with four
experts and hierarchical gating (RF-MoE), and one with our modern Transformer-based Encoder
(RF-TE). Further details are available in Appendix B.

Training We follow the setup in Kwon et al. (2020) and the recent works on MTPOMO (Liu et al.,
2024a) and MVMoE (Zhou et al., 2024). Each model is trained for 300 epochs, each containing
100, 000 instances generated on the fly. We use the Adam optimizer (Kingma & Ba, 2015) with a
learning rate of 3×10−4 and batch size of 256. At epochs 270 and 295, the learning rate is multiplied
by 0.1. Note that our setup differs from the one in Liu et al. (2024a) and Zhou et al. (2024) in that
we do not artificially restrict the variants with single attributes (such as only (B) or (TW)), but train
on all available data – similarly to how LLMs are trained on all available data, which is readily
available through our unified VRP environment (more details in Appendix A).

Evaluation For all ML approaches, we roll out greedy solutions using multi-starts and 8× sym-
metric dihedral augmentations of Kwon et al. (2020), resulting in n× 8 solutions per instance.

5.1 (RQ1) MAIN RESULTS

Table 5.1 compares ROUTEFINDER to the previously discussed baselines. We note that
ROUTEFINDER variants consistently outperform other baselines across all variants by more than
10%. While changing the encoder to the MVMoE’s structure (RF-MoE) may slightly improve the
performance in limited settings, this comes with a higher inference cost (around 50% more) due to
the more complex structure of mixture-of-experts. Conversely, the proposed Transformer Encoder
(RF-TE) outperforms baselines in virtually all metrics, including low evaluation latency. Training
and testing for these results are performed on the same uniform location distribution of 50 and 100
nodes; we also include results on large-scale CVRPLIB instances in Appendix D.5. Remarkably,
our ROUTEFINDER does not only improve in distribution performance but can also scale better than
the neural baselines in real-world settings and out-of-distribution attribute values in Appendix D.4.

1We open-source the code at: https://anonymous.4open.science/r/routefinder/

8

https://anonymous.4open.science/r/routefinder/

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5.1: Performance on 1000 test instances of trained VRPs. * represents the best-known solutions.
ROUTEFINDER (RF) models improve gaps up to 20% compared to MVMoE.

Solver n = 50 n = 100 Solver n = 50 n = 100

Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

C
V

R
P

HGS-PyVRP 10.372 * 10.4m 15.628 * 20.8m

V
R

PT
W

HGS-PyVRP 16.031 * 10.4m 25.423 * 20.8m
OR-Tools 10.572 1.907% 10.4m 16.280 4.178% 20.8m OR-Tools 16.089 0.347% 10.4m 25.814 1.506% 20.8m
MTPOMO 10.518 1.411% 2s 15.934 1.988% 7s MTPOMO 16.410 2.364% 1s 26.412 3.873% 7s
MVMoE 10.501 1.242% 2s 15.888 1.694% 9s MVMoE 16.404 2.329% 2s 26.389 3.788% 9s
RF-POMO 10.508 1.314% 2s 15.908 1.826% 7s RF-POMO 16.367 2.094% 1s 26.336 3.575% 7s
RF-MoE 10.499 1.226% 2s 15.876 1.622% 9s RF-MoE 16.389 2.234% 2s 26.322 3.519% 9s
RF-TE 10.504 1.274% 2s 15.857 1.505% 7s RF-TE 16.364 2.077% 1s 26.235 3.178% 7s

O
V

R
P

HGS-PyVRP 6.507 * 10.4m 9.725 * 20.8m

V
R

PL

HGS-PyVRP 10.587 * 10.4m 15.766 * 20.8m
OR-Tools 6.553 0.686% 10.4m 9.995 2.732% 20.8m OR-Tools 10.570 2.343% 10.4m 16.466 5.302% 20.8m
MTPOMO 6.718 3.209% 1s 10.210 4.965% 6s MTPOMO 10.775 1.734% 1s 16.149 2.434% 7s
MVMoE 6.702 2.965% 2s 10.177 4.621% 9s MVMoE 10.751 1.505% 2s 16.099 2.115% 9s
RF-POMO 6.698 2.904% 1s 10.180 4.659% 6s RF-POMO 10.751 1.523% 1s 16.107 2.174% 6s
RF-MoE 6.697 2.886% 2s 10.139 4.229% 9s RF-MoE 10.737 1.388% 2s 16.070 1.941% 9s
RF-TE 6.684 2.687% 1s 10.121 4.055% 6s RF-TE 10.749 1.502% 1s 16.051 1.827% 6s

V
R

PB

HGS-PyVRP 9.687 * 10.4m 14.377 * 20.8m

O
V

R
PT

W

HGS-PyVRP 10.510 * 10.4m 16.926 * 20.8m
OR-Tools 9.802 1.159% 10.4m 14.933 3.853% 20.8m OR-Tools 10.519 0.078% 10.4m 17.027 0.583% 20.8m
MTPOMO 10.033 3.564% 1s 15.082 4.922% 6s MTPOMO 10.668 1.479% 1s 17.420 2.892% 7s
MVMoE 10.005 3.270% 2s 15.023 4.508% 8s MVMoE 10.669 1.492% 2s 17.416 2.872% 10s
RF-POMO 9.996 3.174% 1s 15.016 4.468% 6s RF-POMO 10.657 1.378% 1s 17.391 2.720% 7s
RF-MoE 9.980 3.015% 2s 14.973 4.164% 8s RF-MoE 10.674 1.539% 2s 17.387 2.697% 10s
RF-TE 9.977 2.989% 1s 14.942 3.952% 6s RF-TE 10.652 1.326% 1s 17.327 2.346% 7s

V
R

PB
L

HGS-PyVRP 10.186 * 10.4m 14.779 * 20.8m

V
R

PB
LT

W

HGS-PyVRP 18.361 * 10.4m 29.026 * 20.8m
OR-Tools 10.331 1.390% 10.4m 15.426 4.338% 20.8m OR-Tools 18.422 0.332% 10.4m 29.830 2.770% 20.8m
MTPOMO 10.672 4.697% 1s 15.712 6.251% 7s MTPOMO 18.990 2.128% 1s 30.898 3.624% 7s
MVMoE 10.637 4.354% 2s 15.640 5.758% 9s MVMoE 18.985 2.100% 2s 30.892 3.608% 10s
RF-POMO 10.593 3.942% 1s 15.628 5.695% 6s RF-POMO 18.937 1.851% 1s 30.796 3.284% 7s
RF-MoE 10.575 3.765% 2s 15.541 5.121% 9s RF-MoE 18.957 1.960% 2s 30.808 3.323% 10s
RF-TE 10.578 3.803% 1s 15.528 5.039% 6s RF-TE 18.941 1.877% 1s 30.688 2.923% 7s

V
R

PB
T

W

HGS-PyVRP 18.292 * 10.4m 29.467 * 20.8m

V
R

PL
T

W

HGS-PyVRP 16.356 * 10.4m 25.757 * 20.8m
OR-Tools 18.366 0.383% 10.4m 29.945 1.597% 20.8m OR-Tools 16.441 0.499% 10.4m 26.259 1.899% 20.8m
MTPOMO 18.639 1.878% 1s 30.437 3.285% 7s MTPOMO 16.824 2.823% 1s 26.891 4.368% 7s
MVMoE 18.640 1.883% 2s 30.436 3.281% 9s MVMoE 16.811 2.750% 2s 26.868 4.277% 9s
RF-POMO 18.601 1.670% 1s 30.341 2.961% 7s RF-POMO 16.750 2.382% 1s 26.783 3.948% 7s
RF-MoE 18.616 1.757% 2s 30.341 2.954% 9s RF-MoE 16.777 2.550% 2s 26.774 3.912% 9s
RF-TE 18.600 1.676% 1s 30.241 2.619% 7s RF-TE 16.762 2.454% 1s 26.689 3.579% 7s

O
V

R
PB

HGS-PyVRP 6.898 * 10.4m 10.335 * 20.8m

O
V

R
PB

L

HGS-PyVRP 6.899 * 10.4m 10.335 * 20.8m
OR-Tools 6.928 0.412% 10.4m 10.577 2.315% 20.8m OR-Tools 6.927 0.386% 10.4m 10.582 2.363% 20.8m
MTPOMO 7.108 3.005% 1s 10.878 5.224% 7s MTPOMO 7.112 3.055% 1s 10.884 5.276% 6s
MVMoE 7.089 2.741% 2s 10.840 4.861% 9s MVMoE 7.098 2.846% 2s 10.847 4.928% 9s
RF-POMO 7.086 2.688% 1s 10.836 4.821% 7s RF-POMO 7.087 2.693% 1s 10.837 4.830% 6s
RF-MoE 7.080 2.513% 2s 10.805 4.522% 9s RF-MoE 7.083 2.635% 2s 10.806 4.534% 9s
RF-TE 7.071 2.479% 1s 10.772 4.208% 6s RF-TE 7.074 2.508% 1s 10.778 4.262% 6s

O
V

R
PB

LT
W

HGS-PyVRP 11.668 * 10.4m 19.156 * 20.8m

O
V

R
PB

T
W

HGS-PyVRP 11.669 * 10.4m 19.156 * 20.8m
OR-Tools 11.681 0.106% 10.4m 19.305 0.767% 20.8m OR-Tools 11.682 0.109% 10.4m 19.303 0.757% 20.8m
MTPOMO 11.817 1.260% 1s 19.637 2.496% 7s MTPOMO 11.814 1.229% 1s 19.635 2.485% 7s
MVMoE 11.822 1.301% 2s 19.641 2.518% 10s MVMoE 11.819 1.271% 2s 19.638 2.503% 10s
RF-POMO 11.805 1.157% 1s 19.609 2.344% 8s RF-POMO 11.804 1.148% 1s 19.607 2.339% 7s
RF-MoE 11.824 1.312% 2s 19.607 2.334% 10s RF-MoE 11.823 1.304% 2s 19.606 2.328% 10s
RF-TE 11.805 1.150% 1s 19.551 2.048% 7s RF-TE 11.805 1.151% 1s 19.550 2.042% 7s

O
V

R
PL

HGS-PyVRP 6.507 * 10.4m 9.724 * 20.8m

O
V

R
PL

T
W

HGS-PyVRP 10.510 * 10.4m 16.926 * 20.8m
OR-Tools 6.552 0.668% 10.4m 10.001 2.791% 20.8m OR-Tools 10.497 0.114% 10.4m 17.023 0.728% 20.8m
MTPOMO 6.719 3.227% 1s 10.214 5.002% 6s MTPOMO 10.670 1.500% 1s 17.420 2.889% 7s
MVMoE 6.707 3.030% 2s 10.184 4.696% 9s MVMoE 10.671 1.511% 2s 17.419 2.885% 10s
RF-POMO 6.701 2.949% 1s 10.180 4.659% 6s RF-POMO 10.657 1.375% 1s 17.393 2.731% 7s
RF-MoE 6.696 2.864% 2s 10.140 4.249% 9s RF-MoE 10.673 1.532% 2s 17.386 2.693% 10s
RF-TE 6.686 2.721% 1s 10.120 4.052% 6s RF-TE 10.653 1.341% 1s 17.327 2.347% 7s

5.2 (RQ2) ABLATION STUDIES

We conduct ablation studies to evaluate the impact of newly introduced components. On the left
of Fig. 5.1, we compare the performance of the full ROUTEFINDER (RF-TE) against its variants
with ablated components, using the results for MTPOMO as a baseline. The following components
are removed in the ablation studies: 1) Transformer Encoder (Section 4.2.1), 2) Global Attribute
Embeddings (Section 4.2.2), 3) Mixed Batch Training (Section 4.3.1) and 4) Reward Normalization
(Section 4.3.2). All components contribute to the performance of ROUTEFINDER. On the right of
Fig. 5.1, we show the effect of different Reward Normalizations, i.e., 1)—4) from Section 4.3.2, with
different values of α for the exponential moving averages. The best setting is the division through
the exponentially smoothed mean with α = 0.25. We note that future reward normalization research
may further improve performance. We further provide an ablation study on the importance of the
Transformer Encoder layers components in Appendix D.1 and report the effects of MBT on training
stability and convergence for imbalanced variant distributions in Appendix D.2.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

MTPOMO

RouteFinder (full)

No Transformer Encoder

No Global Embeddings

No Mixed Batch
Training

No Reward Normalization

3.2

3.4

3.6

3.8

4.0

A
ve

ra
ge

G
ap

(%
)

No Normalization

Cumul (Div)

Cumul (Sub)

Exp (Sub, 0.1)

Exp (Sub, 0.25)

Exp (Div, 0.1)

Exp (Div, 0.25)

9.885

9.890

9.895

9.900

9.905

9.910

A
ve

ra
ge

C
os

t

Figure 5.1: [Left] Ablation study on ROUTEFINDER components. [Right] Effect of Reward Normalization.

5.3 (RQ3) GENERALIZATION WITH EAL

We finally evaluate ROUTEFINDER (RF-TE) in few-shot learning settings to unseen attributes,
namely the mixed (M) backhauls variants. Unlike classical backhauls, this setting allows picking up
items before delivering, but the model needs to keep track of the current number of picked-up items
and remaining deliverables as context and a new global attribute to learn to plan effectively. We
initialize a new EAL that results in a global embedding W′

0 adding l = 1 features, i.e., the mixed
backhaul flag. Moreover, we encode the available load accounting for the backhaul demand picked
up as a dynamic context during decoding, resulting in another EAL W′

c, also adding one dimen-
sion. We compare against traditional baselines and 1) zero-shot performance of ROUTEFINDER,
2) training a new model from scratch, 3) AL from Lin et al. (2024), which adds new layers while
keeping the pre-trained backbone, and 4) our proposed EAL. We train baselines and EAL with the
same setup as the full training, but for only 10 epochs, 10K instances are sampled for each.

Table 5.2: Finetuning performance on 1000 mixed backhaul (MB) variants. ROUTEFINDER’s EAL maintains
the zero-shot performance and performs significantly better than other methods.

VRPMB OVRPMB VRPMBL VRPMBTW OVRPMBL OVRPMBTW VRPMBLTW OVRPMBLTW

Method Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap

HGS-PyVRP 13.54 * 9.01 * 13.78 * 25.51 * 9.01 * 16.97 * 25.85 * 16.97 *
OR-Tools 14.93 10.27% 10.59 17.54% 15.42 11.90% 29.97 17.48% 10.59 17.54% 19.31 13.78% 30.44 17.76% 19.31 13.78%
Zero-shot 14.88 10.13% 10.72 19.02% 15.18 10.32% 28.29 10.87% 10.72 19.01% 18.45 8.68% 28.65 10.82% 18.45 8.69%
Train (scratch) 15.18 12.13% 10.40 15.38% 15.48 12.37% 28.11 10.17% 10.46 16.08% 18.85 11.09% 28.69 10.95% 18.86 11.19%
AL (step 0) 43.15 221.25% 37.98 323.23% 32.81 139.84% 59.17 133.55% 29.15 224.37% 39.03 131.09% 66.62 158.21% 40.92 141.51%
AL 14.91 10.10% 10.14 12.53% 15.12 9.73% 27.79 8.92% 10.18 12.95% 18.52 9.13% 28.33 9.56% 18.51 9.05%
EAL (step 0) 14.88 10.13% 10.72 19.02% 15.18 10.32% 28.29 10.87% 10.72 19.01% 18.45 8.68% 28.65 10.82% 18.45 8.69%
EAL 14.59 7.89% 9.66 7.19% 14.78 7.39% 26.69 4.61% 9.65 7.13% 17.60 3.70% 27.13 4.90% 17.59 3.65%

Table 5.2 shows that EAL consistently outperforms baselines in few-shot learning, with strong per-
formance further supported by multi-depot experiments Appendix D.3. We additionally compare
AL and EAL at “step 0”, i.e., after replacing the new adapter layers. Notably, while AL with the
untrained new layers can greatly degrade the performance unless optimization is performed, EAL
maintains the zero-shot performance even without training, providing a much better starting point.

6 CONCLUSION

In this work, we presented ROUTEFINDER, a comprehensive framework to develop foundation mod-
els for VRPs. We introduced a unified VRP environment to represent any combination of attributes.
We proposed a new Transformer Encoder and Global Attribute Embeddings to enhance learning
representations of diverse VRPs. We introduced Mixed Batch Training and Multi-variant Reward
Normalization to allow for effective training with RL in a multi-task setting with different tasks
and reward scales. Finally, we introduced Efficient Adapter Layers, a lightweight and powerful
technique to finetune ROUTEFINDER to unseen attributes. Our extensive evaluations on 24 VRP
variants showed ROUTEFINDER outperforms SOTA neural baselines for VRPs.

ROUTEFINDER represents an early attempt to learn a foundation model across problem variants.
While demonstrating strong generalization, it does so at a slight expense in solution quality com-
pared to techniques trained on specific problem variants, at least for in-distribution results, as also
noted by prior works (Liu et al., 2024a; Zhou et al., 2024). For future work, we intend to extend
ROUTEFINDER to support further variants of the vast VRP literature. We also intend to improve
the model performance to eventually outperform state-of-the-art traditional OR solvers – exciting
directions include decomposition methods (Ye et al., 2024c; Zheng et al., 2024) and end-to-end
construction and improvement (Kong et al., 2024).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
prediction of biomolecular interactions with alphafold 3. Nature, pp. 1–3, 2024.

Luca Accorsi and Daniele Vigo. A fast and scalable heuristic for the solution of large-scale capaci-
tated vehicle routing problems. Transportation Science, 55(4):832–856, 2021.

Luca Accorsi and Daniele Vigo. Routing one million customers in a handful of minutes. Computers
& Operations Research, 164:106562, 2024.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

The Jin Ai and Voratas Kachitvichyanukul. A particle swarm optimization for the vehicle routing
problem with simultaneous pickup and delivery. Computers & Operations Research, 36(5):1693–
1702, 2009.

Sanjeev Arora, Wei Hu, and Pravesh K Kothari. An analysis of the t-sne algorithm for data visual-
ization. In Conference on learning theory, pp. 1455–1462. PMLR, 2018.

Mustafa Avci and Seyda Topaloglu. An adaptive local search algorithm for vehicle routing problem
with simultaneous and mixed pickups and deliveries. Computers & Industrial Engineering, 83:
15–29, 2015.

Ahmad Bdeir, Jonas K Falkner, and Lars Schmidt-Thieme. Attention, filling in the gaps for general-
ization in routing problems. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pp. 505–520. Springer, 2022.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405–421, 2021.

Federico Berto, Chuanbo Hua, Junyoung Park, Laurin Luttmann, Yining Ma, Fanchen Bu, Jiarui
Wang, Haoran Ye, Minsu Kim, Sanghyeok Choi, Nayeli Gast Zepeda, André Hottung, Jianan
Zhou, Jieyi Bi, Yu Hu, Fei Liu, Hyeonah Kim, Jiwoo Son, Haeyeon Kim, Davide Angioni,
Wouter Kool, Zhiguang Cao, Jie Zhang, Kijung Shin, Cathy Wu, Sungsoo Ahn, Guojie Song,
Changhyun Kwon, Lin Xie, and Jinkyoo Park. RL4CO: an Extensive Reinforcement Learn-
ing for Combinatorial Optimization Benchmark. arXiv preprint arXiv:2306.17100, 2024. URL
https://github.com/ai4co/rl4co.

Jieyi Bi, Yining Ma, Jiahai Wang, Zhiguang Cao, Jinbiao Chen, Yuan Sun, and Yeow Meng Chee.
Learning generalizable models for vehicle routing problems via knowledge distillation. Advances
in Neural Information Processing Systems, 35:31226–31238, 2022.

Aigerim Bogyrbayeva, Meraryslan Meraliyev, Taukekhan Mustakhov, and Bissenbay Dauletbayev.
Learning to solve vehicle routing problems: A survey. arXiv preprint arXiv:2205.02453, 2022.

Léo Boisvert, Hélène Verhaeghe, and Quentin Cappart. Towards a generic representation of com-
binatorial problems for learning-based approaches. In International Conference on the Integra-
tion of Constraint Programming, Artificial Intelligence, and Operations Research, pp. 99–108.
Springer, 2024.

Felix Chalumeau, Shikha Surana, Clément Bonnet, Nathan Grinsztajn, Arnu Pretorius, Alexandre
Laterre, and Tom Barrett. Combinatorial optimization with policy adaptation using latent space
search. Advances in Neural Information Processing Systems, 36, 2024.

Xinwei Chen, Yurui Li, Yifan Yang, Li Zhang, Shijian Li, and Gang Pan. Extnco: A fine-grained
divide-and-conquer approach for extending nco to solve large-scale traveling salesman problem.
Available at SSRN 4679437, 2024.

11

https://github.com/ai4co/rl4co

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jinho Choo, Yeong-Dae Kwon, Jihoon Kim, Jeongwoo Jae, André Hottung, Kevin Tierney, and
Youngjune Gwon. Simulation-guided beam search for neural combinatorial optimization. Ad-
vances in Neural Information Processing Systems, 35:8760–8772, 2022.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. In International conference on machine learning, pp. 933–941. PMLR,
2017.

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. BQ-NCO:
Bisimulation quotienting for efficient neural combinatorial optimization. Advances in Neural
Information Processing Systems, 36, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

William Fedus, Jeff Dean, and Barret Zoph. A review of sparse expert models in deep learning.
arXiv preprint arXiv:2209.01667, 2022.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pp. 7474–7482, 2021.

Chengrui Gao, Haopu Shang, Ke Xue, Dong Li, and Chao Qian. Towards generalizable neural
solvers for vehicle routing problems via ensemble with transferrable local policy. IJCAI, 2024.

Marc Goetschalckx and Charlotte Jacobs-Blecha. The vehicle routing problem with backhauls.
European Journal of Operational Research, 42(1):39–51, 1989. ISSN 0377-2217. doi: 10.1016/
0377-2217(89)90057-X.

Nathan Grinsztajn, Daniel Furelos-Blanco, Shikha Surana, Clément Bonnet, and Tom Barrett. Win-
ner takes it all: Training performant rl populations for combinatorial optimization. Advances in
Neural Information Processing Systems, 36, 2024.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 12:966–980, 2017.

André Hottung and Kevin Tierney. Neural large neighborhood search for the capacitated vehicle
routing problem. arXiv preprint arXiv:1911.09539, 2019.

André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial
optimization problems. arXiv preprint arXiv:2106.05126, 2021.

André Hottung, Mridul Mahajan, and Kevin Tierney. PolyNet: Learning diverse solution strategies
for neural combinatorial optimization. arXiv preprint arXiv:2402.14048, 2024.

Qingchun Hou, Jingwei Yang, Yiqiang Su, Xiaoqing Wang, and Yuming Deng. Generalize learned
heuristics to solve large-scale vehicle routing problems in real-time. In The Eleventh International
Conference on Learning Representations, 2022.

J. Stuart Hunter. The exponentially weighted moving average. Journal of Quality Technology, 18
(4):203–210, 1986. doi: 10.1080/00224065.1986.11979014. URL https://doi.org/10.
1080/00224065.1986.11979014.

Xia Jiang, Yaoxin Wu, Yuan Wang, and Yingqian Zhang. Unco: Towards unifying neural combina-
torial optimization through large language model. arXiv preprint arXiv:2408.12214, 2024a.

12

https://doi.org/10.1080/00224065.1986.11979014
https://doi.org/10.1080/00224065.1986.11979014

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zixuan Jiang, Jiaqi Gu, Hanqing Zhu, and David Pan. Pre-rmsnorm and pre-crmsnorm transformers:
equivalent and efficient pre-ln transformers. Advances in Neural Information Processing Systems,
36, 2024b.

Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learn-
ing the travelling salesperson problem requires rethinking generalization. arXiv preprint
arXiv:2006.07054, 2020.

Sašo Karakatič and Vili Podgorelec. A survey of genetic algorithms for solving multi depot vehicle
routing problem. Applied Soft Computing, 27:519–532, 2015.

Minsu Kim, Jinkyoo Park, et al. Learning collaborative policies to solve NP-hard routing problems.
Advances in Neural Information Processing Systems, 34:10418–10430, 2021.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-NCO: Leveraging symmetricity for neural
combinatorial optimization. Advances in Neural Information Processing Systems, 35:1936–1949,
2022.

Minsu Kim, Sanghyeok Choi, Jiwoo Son, Hyeonah Kim, Jinkyoo Park, and Yoshua Ben-
gio. Ant colony sampling with gflownets for combinatorial optimization. arXiv preprint
arXiv:2403.07041, 2024.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San Diega, CA, USA, 2015.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pp. 4015–4026, 2023.

Çağrı Koç, Gilbert Laporte, and İlknur Tükenmez. A review of vehicle routing with simultaneous
pickup and delivery. Computers & Operations Research, 122:104987, 2020.

Çagri Koç and Gilbert Laporte. Vehicle routing with backhauls: Review and research perspectives.
Computers & Operations Research, 91:79–91, 2018. ISSN 0305-0548. doi: 10.1016/j.cor.2017.
11.003.

Detian Kong, Yining Ma, Zhiguang Cao, Tianshu Yu, and Jianhua Xiao. Efficient neural collab-
orative search for pickup and delivery problems. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2024.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! Inter-
national Conference on Learning Representations, 2019.

Wouter Kool, Herke van Hoof, Joaquim Gromicho, and Max Welling. Deep policy dynamic pro-
gramming for vehicle routing problems. In International conference on integration of constraint
programming, artificial intelligence, and operations research, pp. 190–213. Springer, 2022.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, 33:21188–21198, 2020.

Feiyue Li, Bruce Golden, and Edward Wasil. The open vehicle routing problem: Algorithms, large-
scale test problems, and computational results. Computers & Operations Research, 34(10):2918–
2930, 2007. ISSN 0305-0548. doi: https://doi.org/10.1016/j.cor.2005.11.018.

Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. Ad-
vances in Neural Information Processing Systems, 34:26198–26211, 2021.

Ivan Lima, Eduardo Uchoa, D Oliveira, and E Queiroga. CVRPLIB: Capacitated vehicle routing
problem library. Date accessed, 8(02):2022, 2014.

Zhuoyi Lin, Yaoxin Wu, Bangjian Zhou, Zhiguang Cao, Wen Song, Yingqian Zhang, and
Senthilnath Jayavelu. Cross-problem learning for solving vehicle routing problems. IJCAI, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Fei Liu, Xi Lin, Qingfu Zhang, Xialiang Tong, and Mingxuan Yuan. Multi-task learning for routing
problem with cross-problem zero-shot generalization. arXiv preprint arXiv:2402.16891, 2024a.

Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language
model. In International Conference on Machine Learning, 2024b.

Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language
mode. In ICML, 2024c. URL https://arxiv.org/abs/2401.02051.

Shengcai Liu, Yu Zhang, Ke Tang, and Xin Yao. How good is neural combinatorial optimization?
A systematic evaluation on the traveling salesman problem. IEEE Computational Intelligence
Magazine, 18(3):14–28, 2023.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with
heavy decoder: Toward large scale generalization. Advances in Neural Information Processing
Systems, 36, 2024a.

Fu Luo, Xi Lin, Zhenkun Wang, Tong Xialiang, Mingxuan Yuan, and Qingfu Zhang. Self-improved
learning for scalable neural combinatorial optimization. arXiv preprint arXiv:2403.19561, 2024b.

Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang.
Learning to iteratively solve routing problems with dual-aspect collaborative transformer. Ad-
vances in Neural Information Processing Systems, 34:11096–11107, 2021.

Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Hongliang Guo, Yuejiao Gong, and Yeow Meng
Chee. Efficient neural neighborhood search for pickup and delivery problems. arXiv preprint
arXiv:2204.11399, 2022.

Yining Ma, Zhiguang Cao, and Yeow Meng Chee. Learning to search feasible and infeasible re-
gions of routing problems with flexible neural k-opt. Advances in Neural Information Processing
Systems, 36, 2024.

Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning
for combinatorial optimization: A survey. Computers & Operations Research, 134:105400, 2021.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement
learning for solving the vehicle routing problem. Advances in neural information processing
systems, 31, 2018.

Eric Nguyen, Michael Poli, Matthew G Durrant, Armin W Thomas, Brian Kang, Jeremy Sullivan,
Madelena Y Ng, Ashley Lewis, Aman Patel, Aaron Lou, et al. Sequence modeling and design
from molecular to genome scale with evo. bioRxiv, pp. 2024–02, 2024.

Yun Peng, Byron Choi, and Jianliang Xu. Graph learning for combinatorial optimization: a survey
of state-of-the-art. Data Science and Engineering, 6(2):119–141, 2021.

Laurent Perron and Frédéric Didier. CP-SAT, 2024. URL https://developers.google.
com/optimization/cp/cp_solver/.

Laurent Perron and Vincent Furnon. OR-Tools. Google, 2023.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

Stefan Ropke and David Pisinger. A unified heuristic for a large class of vehicle routing problems
with backhauls. European Journal of Operational Research, 171(3):750–775, 2006. doi: 10.
1016/j.ejor.2004.09.004.

Frank Ruis, Gertjan Burghouts, and Doina Bucur. Independent prototype propagation for zero-shot
compositionality. Advances in Neural Information Processing Systems, 34:10641–10653, 2021.

14

https://arxiv.org/abs/2401.02051
https://developers.google.com/optimization/cp/cp_solver/
https://developers.google.com/optimization/cp/cp_solver/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Marius M Solomon. Algorithms for the vehicle routing and scheduling problems with time window
constraints. Operations research, 35(2):254–265, 1987.

Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimiza-
tion. Advances in Neural Information Processing Systems, 36, 2024.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

Daniela Thyssens, Tim Dernedde, Jonas K Falkner, and Lars Schmidt-Thieme. Routing arena: A
benchmark suite for neural routing solvers. arXiv preprint arXiv:2310.04140, 2023.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Thibaut Vidal. Hybrid genetic search for the cvrp: Open-source implementation and swap* neigh-
borhood. Computers & Operations Research, 140:105643, 2022.

Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, and Christian Prins. A unified solution
framework for multi-attribute vehicle routing problems. European Journal of Operational Re-
search, 234(3):658–673, 2014. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.2013.09.045.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural informa-
tion processing systems, 28, 2015.

Chenguang Wang and Tianshu Yu. Efficient training of multi-task neural solver with multi-armed
bandits. arXiv preprint arXiv:2305.06361, 2023.

Niels A Wouda and Leon Lan. Alns: A python implementation of the adaptive large neighbourhood
search metaheuristic. Journal of Open Source Software, 8(81):5028, 2023.

Niels A Wouda, Leon Lan, and Wouter Kool. PyVRP: A high-performance VRP solver package.
INFORMS Journal on Computing, 2024.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo
Park, and Guojie Song. Reevo: Large language models as hyper-heuristics with reflective evo-
lution. In Advances in Neural Information Processing Systems, 2024a. https://github.
com/ai4co/reevo.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Helan Liang, and Yong Li. DeepACO: Neural-enhanced
ant systems for combinatorial optimization. Advances in Neural Information Processing Systems,
36, 2024b.

Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. Glop: Learning
global partition and local construction for solving large-scale routing problems in real-time. AAAI
2024, 2024c.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

Zhi Zheng, Changliang Zhou, Tong Xialiang, Mingxuan Yuan, and Zhenkun Wang. Udc: A unified
neural divide-and-conquer framework for large-scale combinatorial optimization problems. arXiv
preprint arXiv:2407.00312, 2024.

Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable
neural methods for vehicle routing problems. In International Conference on Machine Learning,
pp. 42769–42789. PMLR, 2023.

15

https://github.com/ai4co/reevo
https://github.com/ai4co/reevo

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Jianan Zhou, Zhiguang Cao, Yaoxin Wu, Wen Song, Yining Ma, Jie Zhang, and Chi Xu. MV-
MoE: Multi-task vehicle routing solver with mixture-of-experts. In International Conference on
Machine Learning, 2024.

A UNIFIED VRP ENVIRONMENT DETAILS

We consider the seven attributes from Section 3.1 for instance generation through our environment
definition explained in Section 4.1. Leveraging our environment’s modular structure, we build the
16 VRP variants as used in MVMoE (Zhou et al., 2024), but by differentiating between traditional
(B) and mixed (MB) backhauls, as defined in Avci & Topaloglu (2015), we extend that number to
24. By considering multi-depot problems, we further increase that number to 48 variants that can be
solved with ROUTEFINDER (see Table A.1).

We describe additional details of the Unified VRP environment, including data generation in
Appendix A.1 and environment logic in Appendix A.2. For a better understanding, we invite
the reader to look at the source code, which we tried our best to comment on for clarity, at
https://anonymous.4open.science/r/routefinder/.

A.1 DATA GENERATION

We now explain the individual steps in the data generation process we use for our modular VRP
environment, including the node attributes and global attributes. While throughout the main part of
this paper, we have focused on routing problems with a single depot, our unified environment can
actually handle problems with multiple depots, where we define m as the number of depots. For
comparability to the neural baselines, the main experiments were run on single-depot problems, but
we report results for multi-depot problems (Appendix D.3).

Locations We generate m+n locations randomly with xi and yi ∼ U(0, 1),∀i ∈ {0, ...,m+n−
1}, where [xi, yi], i ∈ {0, ...,m− 1} denote the m depots and [xi, yi], i ∈ {m, ...,m+ n− 1}, the
n customer nodes. Note that this setting can be expanded to consider more realistic distributions as
in (Bi et al., 2022; Zhou et al., 2023; Gao et al., 2024), and our implementation is already set up in
such a way to allow for different distributions in the future via the get_sampler method.

Multiple depots (MD) Depot nodes, in principle, have the same node attributes as customer nodes.
The location, however, is the only attribute that is generated in the same way, which is explained
below. For all other attributes, the values are fixed and identical for all depots. Linehaul and backhaul
demands, as well as service durations, are set to zero, while the time windows of all depots in an
instance are set to [ei, li] = [0, tmax], i ∈ {0, ...,m − 1}, where tmax denotes the system end time
and M the number of depots. For problems without time windows, tmax is set to ∞. In the unseen
variants experiments of Appendix D.3, we employ m = 3 depots for the MD finetuning variants.

Vehicle capacity (C) The vehicle capacity C is a fixed value applied to all vehicles and calculated
according to:

C =

30 +
⌊
1000
5 + n−1000

33.3

⌋
if 1000 < n

30 +
⌊
n
5

⌋
if 20 < n ≤ 1000

30 otherwise

which is commonly used in NCO for VRP approaches (Kool et al., 2019; Kwon et al., 2020).

Linehaul and backhaul demands (C) / (B) / (MB) We generate demands according to the fol-
lowing scheme:

1. Generate linehaul demands qi for all customers i ∈ Nc by sampling uniformly from the set
of integers {1, 2, ..., 9}.

2. Generate backhaul demands pi for all customers i ∈ Nc by sampling uniformly from the
set of integers {1, 2, ..., 9}.

16

https://anonymous.4open.science/r/routefinder/

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table A.1: The 48 VRP variants we consider. All variants include the base Capacity (C). The k = 5 features O,
B, L, TW, and MD can be combined into any subset, including the empty set and itself (i.e., a power set) with
2k = 32 possible combinations. The Mixed (M) global feature creates new Mixed Backhaul (MB) variants in
generalization studies, adding 16 more variants.

VRP Variant
Capacity

(C)
Open Route

(O)
Backhaul

(B)
Mixed

(M)
Duration Limit

(L)
Time Windows

(TW)
Multi-depot

(MD)

CVRP ✓
OVRP ✓ ✓
VRPB ✓ ✓
VRPL ✓ ✓
VRPTW ✓ ✓
OVRPTW ✓ ✓ ✓
OVRPB ✓ ✓ ✓
OVRPL ✓ ✓ ✓
VRPBL ✓ ✓ ✓
VRPBTW ✓ ✓ ✓
VRPLTW ✓ ✓ ✓
OVRPBL ✓ ✓ ✓ ✓
OVRPBTW ✓ ✓ ✓ ✓
OVRPLTW ✓ ✓ ✓ ✓
VRPBLTW ✓ ✓ ✓ ✓
OVRPBLTW ✓ ✓ ✓ ✓ ✓
VRPMB ✓ ✓ ✓
OVRPMB ✓ ✓ ✓ ✓
VRPMBL ✓ ✓ ✓ ✓
VRPMBTW ✓ ✓ ✓ ✓
OVRPMBL ✓ ✓ ✓ ✓ ✓
OVRPMBTW ✓ ✓ ✓ ✓ ✓
VRPMBLTW ✓ ✓ ✓ ✓ ✓
OVRPMBLTW ✓ ✓ ✓ ✓ ✓ ✓
MDCVRP ✓ ✓
MDOVRP ✓ ✓ ✓
MDVRPB ✓ ✓ ✓
MDVRPL ✓ ✓ ✓
MDVRPTW ✓ ✓ ✓
MDOVRPTW ✓ ✓ ✓ ✓
MDOVRPB ✓ ✓ ✓ ✓
MDOVRPL ✓ ✓ ✓ ✓
MDVRPBL ✓ ✓ ✓ ✓
MDVRPBTW ✓ ✓ ✓ ✓
MDVRPLTW ✓ ✓ ✓ ✓
MDOVRPBL ✓ ✓ ✓ ✓ ✓
MDOVRPBTW ✓ ✓ ✓ ✓ ✓
MDOVRPLTW ✓ ✓ ✓ ✓ ✓
MDVRPBLTW ✓ ✓ ✓ ✓ ✓
MDOVRPBLTW ✓ ✓ ✓ ✓ ✓ ✓
MDVRPMB ✓ ✓ ✓ ✓
MDOVRPMB ✓ ✓ ✓ ✓ ✓
MDVRPMBL ✓ ✓ ✓ ✓ ✓
MDVRPMBTW ✓ ✓ ✓ ✓ ✓
MDOVRPMBL ✓ ✓ ✓ ✓ ✓ ✓
MDOVRPMBTW ✓ ✓ ✓ ✓ ✓ ✓
MDVRPMBLTW ✓ ✓ ✓ ✓ ✓ ✓
MDOVRPMBLTW ✓ ✓ ✓ ✓ ✓ ✓ ✓

3. For each customer i ∈ Nc, generate a temporary decision variable zi ∈ {0, 1} with proba-
bilities P(zi = 0) = 0.8 and P(zi = 1) = 0.2.

• If zi = 0, keep the linehaul demand qi and set the backhaul demand pi = 0.
• If zi = 1, set the linehaul demand qi = 0 and keep the backhaul demand pi.

This demand generation scheme ensures that each customer has either a linehaul demand or a back-
haul demand, but not both. With a probability of 0.8, a customer will have only a linehaul demand,
and their backhaul demand will be set to 0. Conversely, with a probability of 0.2, a customer will
have only a backhaul demand, and their linehaul demand will be set to 0. It is important to note
that not all customers are typically backhaul customers, even in a backhaul setting. Therefore, this
scheme allows for the consideration of both linehaul and backhaul demands in backhaul problem
settings while ensuring that each customer has only one type of demand.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

We note that this can be easily extended to the case of VRP with simultaneous pickup and de-
livery (VRPSPD), in which a customer can have both linehaul and backhaul demand (Ai & Ka-
chitvichyanukul, 2009; Koç et al., 2020). In such a case, we could duplicate the customer node into
two nodes with the same attributes, such as locations, but different values for linehaul (pickup) and
backhaul (delivery) in the current VRP environment or allow for both linehaul and backhaul to be
present at the same time in a single node with small modifications in the action masking.

Backhaul class (B) / (MB) For testing the few-shot setting described in Section 5.3, we generate
instances with mixed backhauls. The instances themselves are actually identical to instances with
the traditional backhaul, and we use a global attribute in the instance to differentiate between them.
For this purpose, we allow either setting a fixed value ∈ {1, 2} or sampling from {1, 2} for every
customer with equal probabilities p(1) = p(2) = 0.5, allowing for different backhaul settings within
one batch, if needed (see the batching procedure described in Section 4.3.1). Note that we sample
from {1, 2} instead of boolean sampling because we plan to extend the number of backhaul settings
in the future.

Open routes (O) For open routes, we generate a boolean vector with all True values. During
sampling (see Section 4.3.1), the actual ratio of open route instances is defined, not at the initial
instance generation (i.e., we temporarily change the True value to False for every batch element
with a certain probability).

Time Windows (TW) We generate the time windows [ei, li] and service times si in several steps
for all customers i ∈ Nc:

1. Generate service times si ∈ [0.15, 0.18].

2. Generate time window lengths ti ∈ [0.18, 0.2].

3. Calculate the maximum distance from any of the depots j ∈ {0, ...,m− 1} to customer i:
dmax = maxj(dij).

4. Calculate upper bounds for time window start times hi =
tmax−si−ti

dmax
− 1.

5. Calculate time window start times as ei = (1 + (hi − 1) · ui) · dmax with ui ∼ U(0, 1).

6. Calculate time window end times as li = ei + ti.

When calculating the action mask, we have the constraint that the expected arrival time should be
earlier than the end time of nodes; if the problem is a closed problem, we should also consider the
time back to the depot, i.e., max(tcurr + dij , ej) + sj + dmax < l0. We note that for simplicity, we
set the vehicle speed to 1.0 in equations and normalize time windows accordingly so that travel time
from two nodes is the same numerically as the distance between them. This can be easily modified
in the code.

We mention as an alternative TW generation procedure the one from the Solomon benchmark
(Solomon, 1987; Li et al., 2021), which may perform better in that benchmark, as done in Zhou
et al. (2024).

Distance limit (L) The distance limit is sampled from a uniform distribution to ensure meaningful
and feasible constraints. Specifically, we sample L from U(2 · max(d0i), lmax)), where d0i is the
distance from the depot to customer i, and lmax = 3.0 is a predefined upper bound. This approach
ensures that L is always greater than the round trip to the farthest customer (2 ·max(d0i)), making
all customers reachable, while also allowing for variation in the constraint tightness. For the multi-
depot case we replace max(d0i) with minj(maxi(dij)), i ∈ {m, ...,m + n}, j ∈ {0, ...,m}, i.e.,
we first get the maximum distance from any customer node to each of the depots and then take
the minimum out of those distances. By taking the maximum in the first step we ensure that all
customers are reachable, and by taking the minimum across depots, we make the problem more
challenging, because even though all nodes can in principle be serviced, some may only be serviced
by one (or a subset) of the available depots. This sampling method produces more variation than
previous works Liu et al. (2024a); Zhou et al. (2024) (where there was virtually no difference in
solutions of (L) and non-(L) variants), as it guarantees feasible instances while still providing a
range of challenging scenarios.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Attribute Normalization and Scaling All demands, both linehauls and backhauls, are scaled to
lie in [0, 1] through division by the vehicle capacity. q′i = qi/C, p

′
i = pi/C. All other features are

already sampled from a normalized range. Note that during loading instances from e.g. CVRPLib,
we normalize features before passing them to the policy - for instance, locations are normalized
between 0 and 1.

A.2 ENVIRONMENT LOGIC

To determine available actions for the Unified VRP environment formulation, the constraints for the
individual problems have to be combined in the action mask (action_mask in the code following
RL4CO, where True means that the action is feasible (Berto et al., 2024)). We build a logical
test structure, essentially separating the checks in the action mask according to the individual VRP
problem types and then bringing them all together again. The individual action_mask checks are
the following:

a) Can reach in time: depending on the current time and the travel distance to every node not yet
visited, can we reach that node before its service time window ends? tcurr+dij < lj , where tcurr
is the current time.

b) Does not exceed distance limit: depending on the current length of the route, if we travel to any
available node, will we exceed the total distance limit for the route? lcurr + dij < L, where lcurr
is the current length.

c) Can reach depot: there are two types of constraints from time windows (TW) and distance limit
(L):

• If we need to ensure we can reach the depot in time, i.e., the current time plus traveling time
to the depot must be smaller than the system end time: max(tcurr + dij , ej) + sj + dj0 <
tmax .

• If we need to ensure we can reach the depot without exceeding the distance limit, i.e., the
current distance plus the traveling distance to the depot must be smaller than the distance
limit: lcurr + dij + dj0 < L.

For the multi-depot case we replace dj0 in both these constraints with djk, where k ∈ {0, ...,m−
1} indexes the depot the current route started from. For open routes, this will always be set to
True, i.e., this constraint does not apply.

d) Demand constraints for backhaul problems:

• Checks for all backhauls problems:
– Does the linehaul demand exceed vehicle capacity if we add a node’s demand to the

current vehicle? ccurr + qj < C, where ccurr is the used capacity.
– Does the backhaul demand exceed vehicle capacity if we add a node’s demand to the

current vehicle? ccurr + pj < C, where ccurr is the used capacity.
• Checks for traditional backhaul settings:

– Carrying backhaul: if we are already picking up backhaul demands, we cannot service
any linehaul demands on this route anymore.

– If we are not carrying backhaul demands yet, are there any unserved linehaul demands
left?

– If there are no linehaul demands left or we are already carrying backhauls, are there still
unserved backhaul demands?

• Checks for mixed backhaul settings:
– Cannot service linehaul demands: depending on the backhaul demands currently loaded

in the vehicle, do we have space left for further linehaul demands?
We additionally remark that our definition of backhauls follows the generally accepted def-
inition in the OR community, originally due to Goetschalckx & Jacobs-Blecha (1989). This
definition differs from the routing problems with backhaul considered in several recent pa-
pers in the machine learning (e.g., Liu et al. (2024a); Zhou et al. (2024)), who define back-
haul customers as having a negative demand of the same commodity used for linehaul, and
do not consider the precedence constraint that all linehaul must be completed before back-
haul may start on the route. The problem setting with a single commodity is not commonly

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

studied in the OR literature since it implies pickups may be used for deliveries at later cus-
tomers, while the relaxation of the precedence constraint is more properly referred to as a
mixed backhaul problem (Koç & Laporte, 2018).

e) Already visited: every customer node needs to be visited exactly once.

We bring together checks a) to e) and introduce an additional check for the depot: if we are currently
in the depot and there are still unserved customers, we cannot select the depot as the next action to
ensure the model cannot get stuck during decoding. For the multi-depot case we further extend this
check. If we are currently in a depot and there are unserved customers, we cannot visit any depot.
If no further customers can be serviced, all depots are available actions again. However, if we are
currently in a depot and no customers can be served from this depot, we mask it out so as to service
the remaining customers from the remaining depots that can actually service them.

Combining these checks in this way allows us to meticulously check for individual VRP settings
while at the same time maintaining the necessary flexibility the unified environment formulation
requires.

B ROUTEFINDER MODEL DETAILS

ROUTEFINDER follows the encoder-decoder architecture from the Attention Model (Kool et al.,
2019), a transformer-like architecture based on the attention mechanism (Vaswani et al., 2017). We
additionally improve the encoder architecture in RF-TE as explained in Section 4.2. We focus the
explanation on modeling all attributes possible with the MDOVRPMBLTW, noting that in the main
training runs, we do so without considering attributes from multi-depots and mixed backhaul, whose
additional parameters are added upon EAL finetuning.

B.1 MULTI-HEAD ATTENTION

At the core of ROUTEFINDER lies the Multi-Head Attention (MHA) mechanism, proposed by
Vaswani et al. (2017). MHA concurrently attends to information from various representation sub-
spaces, facilitating the capture of diverse relationships between input elements. Notably, MHA is
capable of handling a variable number of elements.

The MHA operation starts by linearly projecting the input sequences of queries Q, keys K, and
values V to H distinct subspaces using learned projection matrices WQ

i , WK
i , and WV

i , respec-
tively, where H denotes the number of attention heads: Qi = QWQ

i , Ki = KWK
i , Vi = VWV

i
for i = 1, . . . ,H . Subsequently, the attention weights for each head are computed by performing a
scaled dot product between the projected queries and keys, followed by a softmax operation:

Ai = Softmax
(
QiK

T
i√

dk
+M

)
(7)

where dk represents the dimension of the keys, acting as a scaling factor to prevent the dot products
from growing too large, Softmax(xi) =

exp(xi)∑N
j=1 exp(xj)

and M is an optional attention mask that can

be used to prevent attending to certain positions (e.g., infeasible actions), which can be done by
setting elements to −∞. The output of each attention head is then calculated as a weighted sum of
the projected values, using the attention weights: Zi = AiVi.

Lastly, the outputs from all attention heads are concatenated and linearly projected using a learned
matrix WO to yield the final output of the MHA operation:

MHA(Q,K, V) = Concat(Z1, . . . , ZH)WO (8)
While the MHA grows quadratically, i.e., with sequence length (i.e., number of nodes) N , it grows
as O(N2), several efficient implementations have been proposed over the years, and we use FlashAt-
tention (Dao et al., 2022; Dao, 2023) to speed up the model.

B.2 ENCODER

The Encoder transforms an input instance x into a hidden embedding h. The Encoder architecture
consists of the following main components: 1) Global Embedding, 2) Node Embedding, and 3)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

a series of Encoder Layers. We consider a VRP instance of n locations as having n + 1 nodes,
where node 0 is the depot and nodes {1, . . . , n} are n customers. For problems with multiple
depots, we define m as the number of depots, i.e., nodes {0, . . . ,m − 1} are the depot nodes, and
m, . . . ,m+ n− 1 are the n customer nodes.

Global Embedding Since Global Attributes contain a single value for all the m + n problem
nodes, we embed them in depot nodes, in a similar fashion to how traditional solvers as PyVRP
encode information about the global problem structure on depot nodes.. Global Embeddings include
global attributes Open Routes o ∈ {0, 1}, Duration Limits l ∈ [0, L], and Mixed Backhauls flag
µ ∈ {0, 1}, as well as the locations of the depot node(s) [xi, yi] ∈ R2, i ∈ {0, . . . ,m − 1} and
the system end time lmax (i.e., the depot(s) time window). In practice, for the multi-depot case with
m > 1, the global attributes are projected on the depot nodes. In ROUTEFINDER, the global
embedding f is a linear projection layer Wg ∈ Rk×d where k = 6 features and d = 128 is the
hidden dimension. The initial projected global hidden embedding per depot gi can be written as
h
(0)
gi = Wg[xi, yi, lmax, o, l, µ]

⊤.

Node Embedding The node embeddings, on the other hand, capture customer-specific attributes
and are projected onto the remaining n nodes. These attributes include for nodes i ∈ {m, . . .m +
n − 1}: Linehaul demands qi ∈ [0, Q], Time Windows parameters ei, si, li ∈ [0, T]3 where e
and l denote the time window’s start and end and s is the service time, the Backhaul demands
pi ∈ [0, Q], and finally the node locations [xi, yi] ∈ R2. In ROUTEFINDER this a linear projection
layer Wn ∈ Rk×d where k = 7 features and d = 128 is the hidden dimension. The initial projected
node hidden embedding can be written for each node ni as h(0)

ni = Wn[xi, yi, qi, ei, si, li, pi]
⊤.

Raw Features to Hidden States The projected global embedding and node embeddings are con-
catenated to obtain the initial hidden representation h(0) ∈ R(m+n)×d, where m + n is the total
number of nodes (m depots + n customers) and d is the hidden dimension:

(9)

bmh(0) = Concat(h(0)
g1 , . . . ,h

(0)
gm ,h(0)

n1
, . . . ,h(0)

nn
) (10)

The initial hidden representation h(0) is then passed through a series of Encoder Layers to refine
and enrich the representation. Each Encoder Layer consists of a Multi-Head Attention (MHA) layer
and a Multi-Layer Perceptron (MLP) layer, as described in Eq. (12) and Eq. (13), respectively.

The Encoder can be represented as:
h = EncoderBlocks(h(0)) (11)

Each EncoderBlock consists of two sub-layers: a Multi-Head Attention (MHA) layer and a Multi-
Layer Perceptron (MLP) layer (or SwiGLU as we propose). The MHA layer allows the model to
capture dependencies between different positions in the input sequence, while the MLP layer applies
non-linear transformations to the features at each position. The input to each EncoderBlock is first
passed through the MHA layer, which computes the self-attention using the input as queries, keys,
and values:

ĥ = Norm
(
h(ℓ−1) + MHA(h(ℓ−1),h(ℓ−1),h(ℓ−1))

)
(12)

where h(ℓ−1) represents the input to the ℓ-th EncoderBlock, and Norm denotes a normalization
operation, in ROUTEFINDER we employ Instance Normalization (IN). The output of the MHA layer,
ĥ, is then passed through the MLP layer, which applies a series of linear transformations with non-
linear activations:

h(ℓ) = Norm
(
ĥ+ MLP(ĥ)

)
(13)

The pointwise MLP layer consists of two linear layers with a non-linear activation function as ReLU,
between them.

Transformer-based Encoder We further explicit our proposed Transformer-based encoder. Each
EncoderBlock consists of two sub-layers: a Multi-Head Attention (MHA) layer and a Feed Forward
SwiGLU layer (Shazeer, 2020). The MHA layer captures dependencies between different positions
in the input sequence, while the SwiGLU layer applies non-linear transformations to the features.
We employ RMS normalization (Zhang & Sennrich, 2019) and pre-norm architecture for improved

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

stability and faster convergence:
ĥ = h(ℓ−1) + MHA(RMSNorm(h(ℓ−1)),RMSNorm(h(ℓ−1)),RMSNorm(h(ℓ−1))) (14)

h(ℓ) = ĥ+ SwiGLU(RMSNorm(ĥ)) (15)
where h(ℓ−1) represents the input to the ℓ-th EncoderBlock. The SwiGLU activation function is
defined as:

SwiGLU(x) = x⊙ σ(W1x+ b1)⊗ SiLU(W2x+ b2) (16)
where ⊙ denotes element-wise multiplication, ⊗ is matrix multiplication, σ is the sigmoid function,
SiLU is the Sigmoid Linear Unit (Swish) activation function, and W1,W2, b1, b2 are learnable
parameters. We use FlashAttention (Dao et al., 2022; Dao, 2023) in the MHA layer for enhanced
performance.

B.3 DECODER

The Decoder autoregressively constructs the solution based on the Encoder output h and the state st
at the current step t.

Context Embedding The context embedding is used to modify the query embedding of the prob-
lem node of the current partial solution. It consists of a linear layer that projects the concatenated
current node embedding and state embedding to the embedding space. The state embedding is com-
puted by projecting the following: the current node embedding ht and a set of dynamic features
from state st, i.e. the available load ct, current time tt, current distance traveled dt, the available
backhaul load bt – i.e. the difference between the vehicle capacity Q and the used backhaul ca-
pacity, which is necessary because if we pick up items, the deliverable quantity must exceed the
remaining capacity after pick up for mixed backhauls (MB) – as well as the location of the origin
depot o we have to return to at step t: [xo

t , y
o
t] for the multi-depot variants (MD). In ROUTEFINDER

the context embedding Wc ∈ Rd×(d+k) is a linear projection matrix, d = 128 is the hidden dimen-
sion, and k = 6 is the number of state features. The context embedding at step t is thus computed
as h(t)

c = WcConcat([ht; [ct, tt, dt, bt, x
o
t , y

o
t]])

⊤.

Attention and Pointer Mechanism The query qt is obtained directly from the context embedding
qt = h

(t)
c and then passed into a masked MHA layer and final single-head attention to obtain logits

z:
hc
t = MHA(qt,K

g
t , V

g
t ,Mt), (17)

z =
V p
t h

c
t√

dk
(18)

where Mt is the set of feasible actions (i.e., the action_mask), and projections Kg
t , V

g
t , V

p
t =

W g
kh,W

g
v h,W

p
v h are precomputed once as cache. We note that Eq. (18) is usually referred to as

the pointer mechanism (Vinyals et al., 2015).

Logits processing Finally, logits z are transformed into a probability distribution:
p = Softmax (C · tanh(z)) (19)

where logits for infeasible actions can be masked, and C is the tanh clipping that serves in improving
the exploration, which we set to 10 according to Bello et al. (2016).

Action selection During training, we use the POMO multistart sampling. For the multi-
depot case we force the first action to start from all depots in the instance. For the single-depot
case we force the first action to start with every customer node to maximize diversity. Note that if
num_starts is not divisible by the number of depots m, the resulting tensor will not have an equal
number of indices for each depot, i.e., the number of starts will not be distributed evenly across the
depots, as we use the modulo operator for the assignment.

During testing, we also employ multistart but with greedy selection (i.e., selecting the maxi-
mum probability). Prior to the selection, a dihedral augmentation is also performed prior to encoding
instance x in the encoder, which enables exploring 8× as many solutions with 4 rotations × 2 flips.
We note that additional augmentations and techniques can be performed during inference, which
can further boost evaluation performance (Kim et al., 2022; Ma et al., 2022; Choo et al., 2022; Luo

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

et al., 2024a). For fairness of comparison, we do not employ additional augmentations but assume
that this could further boost the performance of ROUTEFINDER.

B.4 EAL MODELING

We describe in more detail the procedure for Efficient Adapter Layers (EAL) modeling. Our ini-
tial model trained from Section 5.1 has linear projections layers as referenced in full detail in Ap-
pendix B.2 and Appendix B.3 without additional parameters for mixed backhaul and multi-depots.

EAL for mixed backhauls This adds, as explained in Section 4.4, a single (l = 1) parameter
row W′

0 for the mixed backhaul flag µ to the global embedding. Moreover, we add l = 1 rows for
the context embedding resulting W′

c for the available backhaul load bt at step t, i.e. the difference
between the vehicle capacity Q and the used backhaul capacity.

EAL for multi-depots In this case, we do not modify the global embedding but directly project
multiple times global attributes and depot locations at each depot node as explained in Appendix B.2.
However, we modify the context embedding W′

c by adding l = 2 rows to keep track of the location
of the origin depot o we have to return to at step t: [xo

t , y
o
t].

EAL for multi-depots & mixed backhauls Here we combine the EAL implementations of the
previous two paragraphs. We add the l = 1 parameter row W′

0 for the mixed backhaul flag µ to
the global embedding and project the global embedding m according to the number of depots and
modify the context embedding W′

c by adding l = 3 rows to keep track of the available backhaul
load bt and the location of the origin depot [bt, xo

t , y
o
t].

C ADDITIONAL MATERIAL

C.1 DETAILS FOR AVERAGE BATCH REWARD FOR MULTI-TASK REWARD NORMALIZATION

At each training step t = 1, . . . , T we train on a batch of b = 1, . . . , B problem instances, each of
which belongs to one of the k ∈ K problem variants covered by ROUTEFINDER. Let 1b,k ∈ {0, 1}
be an indicator function such that:

1b,k =

{
1 if instance b is of type k

0 otherwise
which is efficiently calculated in our unified VRP environment based on vectorized checks. The
reward r

(k)
bt for instance b of variant k at training step t can then be expressed as r(k)bt = rbt · 1b,k.

The average batch reward r̄
(k)
t for variant k at training step t over all instances of type k in a batch

can then be expressed as:

r̄
(k)
t =

∑B
b=1 r

(k)
bt∑B

b=1 1b,k

=

∑B
b=1 rbt · 1b,k∑B

b=1 1b,k

, ∀k ∈ K.

This average batch reward r̄
(k)
t is the basis for the reward normalization explained in Section 4.3.2.

C.2 HYPERPARAMETER DETAILS

We report in Table C.1 the hyperparameter details common across the main experiments.
ROUTEFINDER variants additionally employ the proposed contributions as outlined in the main
experiments of Section 5.1.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table C.1: Experiment hyperparameters. Values with “/” indicate different choices depending on the model,
i.e., on the right are values for the Transformer-Based encoder.

Hyperparameter Value
Model
Embedding dimension 128
Number of attention heads 8
Number of encoder layers 6
Use Pre-norm False / True
Normalization Instance / RMSNorm
Feedforward hidden dimension 512
Feedforward structure MLP / Gated MLP
Feedforward activation ReLU / SwiGLU
Tanh clipping 10.0
Mask logits True

Training
Train decode type multistart sampling
Val & Test decode type multistart greedy
Augmentation function dihedral
Batch size 256
Train data per epoch 100,000

Optimization
Optimizer Adam
Learning rate 3e-4
Weight decay 1e-6
LR scheduler MultiStepLR
LR milestones [270, 295]
LR gamma 0.1
Gradient clip value 1.0
Max epochs 300

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

C.3 ADDITIONAL DISCUSSION

Motivation Foundation models have been successful in several areas in recent years, including
large language models (Achiam et al., 2023), computer vision (Kirillov et al., 2023) as well as other
domains such as biology (Abramson et al., 2024; Nguyen et al., 2024). However, foundation models
for discrete decision-making, such as CO and our target VRPs, are still under-explored as an area
- one reason being the lack of large, high-quality open datasets that can effectively be employed to
train such models - which motivates our use of RL. Such foundation models may not only obtain
solutions faster than traditional OR counterparts but also avoid the requirement of possibly decades
of research and resources to tackle a single task, while a foundation model may automatically learn
heuristics without supervision.

Generalist, or specialized? Another open question is the idea of generality behind the model. In
ROUTEFINDER, we argue that a model might not need to be extremely complex and be specialized
for a specific application (such as routing). One such reason is that with larger model capabilities
comes larger size and inference time, which is crucial for real-world deployment. An interesting
future direction would be to attempt to generalize a model as a "foundation model for CO", for
instance, based on a general formulation (Boisvert et al., 2024), and see whether the additional
training and inference costs are worth a (possible) boost in optimality gaps and generalization ability.
Such a model may be able to attain a better few-shot generalization to totally unseen attributes, either
with adapter layers (Lin et al., 2024) or with our proposed EAL. However, we believe that tailored,
specialized foundation models as ROUTEFINDER for VRPs may be more practical and efficient. We
note that an orthogonal direction to ours is the use of LLMs as hyper-heuristics (Romera-Paredes
et al., 2024; Liu et al., 2024b; Ye et al., 2024a), which starts from a generalist LLM agent to generate
algorithms that can be used to improve the optimization of CO problems as VRPs. However, such
models are not used at inference time due to the inefficiency of using billions of parameters that are
not tailored for the problem at hand.

Going forward in specialized foundation models for VRPs, there are several challenges yet to be
addressed. One such challenge is the still sub-par performance compared to state-of-the-art solvers
(Wouda & Lan, 2023; Wouda et al., 2024), which may be offset on a larger scale by several means,
including decompositions. Another way to attain better performance would be to integrate with local
search (Ye et al., 2024b; Kim et al., 2024) and hybridize constructive (the current policy paradigm)
with improvement methods (Ma et al., 2021; 2024) to guarantee monotonic improvements given
larger time budgets. Finally, given the robust cross-task performance even compared to single-task
models, we believe expanding to more VRP variants (and their attribute distributions) may further
improve overall performance.

C.4 LICENSES FOR USED ASSETS

Table C.2 lists the used assets and their licenses. Our code is licensed under the MIT License.

Table C.2: Used assets and their licenses.

Type Asset License Usage

Code

POMO (Kwon et al., 2020) MIT License Evaluation
MTPOMO (Liu et al., 2024a) MIT License Evaluation
MVMoE (Zhou et al., 2024) MIT License Evaluation
RL4CO (Berto et al., 2024) MIT License Evaluation

AL (Lin et al., 2024) MIT License Evaluation
ORTools (Perron & Didier, 2024) Apache-2.0 Evaluation

PyVRP (Wouda et al., 2024) MIT License Evaluation

Dataset CVRPLib (Lima et al., 2014) Available for any non-commercial use Testing

D ADDITIONAL EMPIRICAL RESULTS

This Section supplements the main paper with several experiments evaluating various aspects of
ROUTEFINDER:

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

• Appendix D.1: we study the effect and interactions of Transformer Encoder components.
• Appendix D.2: here we study Mixed Batch Training and its effect on 1) training stability

and 2) imbalanced variant distributions.
• Appendix D.3: this section adds additional experiments for zero-shot and finetuning per-

formances with EAL on three unseen new attribute setups: 1) with mixed backhauls 2) with
multi-depots and 3) with both mixed backhauls and multi-depots.

• Appendix D.4: here we motivate our ROUTEFINDER foundation model for VRPs when
compared to single-variant models in 1) finetuning performance and 2) out-of-distribution
generalization.

• Appendix D.5: we evaluation large-scale and real-world distributions in CVRPLIB.
• Appendix D.6: we study the latent learning representation ability of different models via

t-SNE across 1) encoding layers 2) effect of different attributes on the latent embeddings.

D.1 EFFECT OF TRANSFORMER ENCODER COMPONENTS

We study the effect of the proposed Transformer Encoder by ablating its components, in particular:

RouteF
inder

RouteF
inder

(N
o RMSNorm

)

RouteF
inder

(N
o SwiG

LU)

RouteF
inder

(N
o SwiG

LU, No RMSNorm
)

2.05

2.10

2.15

2.20

A
v
g

G
ap

%
(a

ll
va

ri
a
n
ts

,
n

=
50

)

Figure D.1: Effect of encoder components.

1. ROUTEFINDER: uses the full proposed
Transformer Encoder as described in Sec-
tion 4.2.1.

2. ROUTEFINDER (No RMSNorm): removes
the RMSNorm in pre-norm, but keeps the
SwiGLU MLP.

3. ROUTEFINDER (No SwiGLU): removes
the SwiGLU MLP, but leaves the RM-
SNorm

4. ROUTEFINDER (No SwiGLU, No RM-
SNorm): removes all components and is
equivalent to the commonly used Attention
Model-style encoder (Kool et al., 2019).

We show in Fig. D.1 the effect of each component on the test gaps for n = 50 nodes, averaged
across the 16 variants of Table D.8. The full ROUTEFINDER provides the best performance. We
additionally study the behavior of each single component on validation data during the training
epochs across different variants in Appendix D.1. Interestingly, as shown in Appendix D.1, while
the final performance for the variant with no RMSNorm outperforms the baseline due to its enhanced
capability in representation learning, its convergence is slower in the beginning. However, the full
Transformer Encoder containing both RMSNorm and SwiGLU not only performs the best, but also
converges the fastest, indicating the importance of each single component.

FlashAttention speedup FlashAttention (Dao et al., 2022; Dao, 2023) is a recent exact attention
algorithm that can be used to significantly speed up computations with mixed precision. This can
be applied to any model with an attention-based mechanism, so we apply it by default to all neural
networks compared in this work. Overall, we can improve training and inference speed by up to
over 20% with virtually no performance degradation.

D.2 STUDIES ON MIXED BATCH TRAINING

Effect on training stability We visualize the effect of the proposed Mixed Batch Training (MBT)
across two different metrics. We compare two ROUTEFINDER models trained with the same hyper-
parameters on 50 nodes. In Fig. D.3, we show the effect of MBT on the loss function by keeping the
overall sampling distribution but mixing variants in the same batch, MBT allows for a much more
stable gradient across the different tasks, resulting in a substantially more stable loss compared to
training without it. We also show the validation gaps on held-out instances in Fig. D.4, where MBT
speeds up convergence across all variants.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250
Epochs

2

3

G
ap

(C
V

R
P

)
0 50 100 150 200 250

Epochs

2

3

4

5

G
ap

(V
R

P
T

W
)

0 50 100 150 200 250
Epochs

4

6

G
ap

(O
V

R
P

)

0 50 100 150 200 250
Epochs

2

3

4

G
ap

(V
R

P
L

)

0 50 100 150 200 250
Epochs

4

6

8

G
ap

(V
R

P
B

)

0 50 100 150 200 250
Epochs

2

3

G
ap

(O
V

R
P

T
W

)

0 50 100 150 200 250
Epochs

4

6

8

10

G
ap

(V
R

P
B

L
)

0 50 100 150 200 250
Epochs

2

3

4
G

ap
(V

R
P

B
L
T

W
)

0 50 100 150 200 250
Epochs

2

3

4

G
ap

(V
R

P
B

T
W

)

0 50 100 150 200 250
Epochs

3

4

5

6

G
ap

(V
R

P
L
T

W
)

0 50 100 150 200 250
Epochs

3

4

5

6

G
ap

(O
V

R
P

B
)

0 50 100 150 200 250
Epochs

3

4

5

6

G
ap

(O
V

R
P

B
L

)

0 50 100 150 200 250
Epochs

1.0

1.5

2.0

2.5

G
ap

(O
V

R
P

B
L
T

W
)

0 50 100 150 200 250
Epochs

1.0

1.5

2.0

2.5

G
ap

(O
V

R
P

B
T

W
)

0 50 100 150 200 250
Epochs

4

6

G
ap

(O
V

R
P

L
)

0 50 100 150 200 250
Epochs

2

3

G
ap

(O
V

R
P

L
T

W
)

RouteFinder RouteFinder (No RMSNorm) RouteFinder (No SwiGLU) RouteFinder (No SwiGLU, No RMSNorm)

Figure D.2: Ablation study on proposed encoder components over training.

Effect on imbalanced variant distributions As explained in Section 4.3.1, we can sample vari-
ants uniformly by setting the probability of sampling base attributes ν as pν = 0.5. We study

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0 20000 40000 60000 80000 100000

Step

0.00

0.01

0.02

0.03

0.04

0.05

0.06

L
os

s

MBT

No MBT

Figure D.3: Stabilizing effect of Mixed Batch Training (MBT) on the loss function on multiple variants.

the behavior of MBT in imbalanced attribute distributions. We train ROUTEFINDER models from
scratch with the same setting as the main experiments for 50 epochs with 10, 000 instances of size
50 sampled per epoch, with and without MBT, and at different values of the sampling probability
for time window attributes pTW as 0.5, 0.25, and 0.10. Fig. D.5 shows the validation gaps over the
training. Decreasing pTW (towards the right of the plot) results in fewer time window attributes;
thus, the convergence is slower for variants such as VRPTW. On the other hand, variants like the
CVRP will be sampled with higher probability, which results in slightly faster convergence. MBT
plays an important role in stabilizing the training for all cases. Interestingly, while its effect is more
moderate for the majority samples (CVRP), this effect is higher on minority samples as VRPTW,
where it results in a stable training curve, yielding fast convergence.

D.3 FINETUNING TO UNSEEN VARIANTS WITH EAL

We conduct additional experiments on zero-shot generalization of various models and finetuning
across three different settings of unseen variants in order of difficulty:

1. Mixed backhauls (MB): this is the setting from Section 5.3. We report the results in full in
Table D.1 and trends over epochs in Fig. D.6a.

2. Multi-depot (MD): we add additional attribute features for finetuning approaches as per
Appendix B.4 with data generated as in Appendix A.1. Results in full are available in
Table D.2 and trends over epochs in Fig. D.6b.

3. Mixed backhauls & multi-depot (MB&MD): this is the hardest setting, which considers
as finetuning variants only the ones containing both the unseen MB and MB attributes at
the same time from Table A.1. Full results are in Table D.3 with trends over epochs in
Fig. D.6c.

We keep the same methodology as outlined in Section 5.3, i.e., 10 epochs with 10k instances sampled
for each epoch. We use ROUTEFINDER models with Transformer Encoder (RF-TE), untrained for
the scratch training and pretrained from the same checkpoints as the main experiments in Section 5.1
for AL and EAL finetuning. Additional details on EAL modeling are available in Appendix B.4.

ROUTEFINDER models perform the best in zero-shot generalization across all experiments; more-
over, EAL finetuning achieves the same zero-shot performance as the backbone ROUTEFINDER
model RF-TE thanks to the zero-padded initialization, while AL does not due to the introduction of
untrained embedding layers. Notably, experiments with multi-depots are much harder than mixed
backhaul variants since they require the model to understand multiple starting (and returning) point
locations and to schedule vehicle assignments to their respective depots efficiently. EAL performs
the best across all variants in finetuning performance. Remarkably, EAL’s performance compared
to AL and retraining a model from scratch is more prominent with the increasing difficulty of the
finetuning task from MB to MB+MD, indicating it is a suitable method for efficient deployment in
finetuning to new tasks.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250
Epochs

1.5

2.0

2.5

G
ap

(C
V

R
P

)
0 50 100 150 200 250

Epochs

2.0

2.5

3.0

3.5

4.0

G
ap

(V
R

P
T

W
)

0 50 100 150 200 250
Epochs

3

4

5

G
ap

(O
V

R
P

)

0 50 100 150 200 250
Epochs

1.5

2.0

2.5

3.0

G
ap

(V
R

P
L

)

0 50 100 150 200 250
Epochs

3

4

5

6

G
ap

(V
R

P
B

)

0 50 100 150 200 250
Epochs

1.5

2.0

2.5

G
ap

(O
V

R
P

T
W

)

0 50 100 150 200 250
Epochs

4

5

6

7

G
ap

(V
R

P
B

L
)

0 50 100 150 200 250
Epochs

2.0

2.5

3.0

3.5

G
ap

(V
R

P
B

L
T

W
)

0 50 100 150 200 250
Epochs

1.5

2.0

2.5

3.0

G
ap

(V
R

P
B

T
W

)

0 50 100 150 200 250
Epochs

3

4

G
ap

(V
R

P
L
T

W
)

0 50 100 150 200 250
Epochs

3

4

5

G
ap

(O
V

R
P

B
)

0 50 100 150 200 250
Epochs

3

4

5

G
ap

(O
V

R
P

B
L

)

0 50 100 150 200 250
Epochs

1.00

1.25

1.50

1.75

2.00

G
ap

(O
V

R
P

B
L
T

W
)

0 50 100 150 200 250
Epochs

1.00

1.25

1.50

1.75

2.00

G
ap

(O
V

R
P

B
T

W
)

0 50 100 150 200 250
Epochs

3

4

5

G
ap

(O
V

R
P

L
)

0 50 100 150 200 250
Epochs

1.5

2.0

2.5

G
ap

(O
V

R
P

L
T

W
)

MBT No MBT

Figure D.4: Mixed Batch Training (MBT) allows for better convergence across all variants.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

0 1000 2000 3000

Steps

0

5

10

15

20

25

G
ap

(%
)

pTW = 0.50

0 1000 2000 3000

Steps

0

5

10

15

20

25
pTW = 0.25

0 1000 2000 3000

Steps

0

5

10

15

20

25
pTW = 0.10

0 1000 2000 3000

Steps

0

5

10

15

20

25
G

ap
(%

)
pTW = 0.50

0 1000 2000 3000

Steps

0

5

10

15

20

25
pTW = 0.25

0 1000 2000 3000

Steps

0

5

10

15

20

25
pTW = 0.10

C
V

R
P

V
R

P
T

W

MBT No MBT

Figure D.5: Effect of Mixed Batch Training (MBT) on imbalanced variant distributions with varying probability
pTW of sampling time windows (TW). MBT stabilizes the training not only for the downsampled TW variants
such as VRPTW but also improves the performance for variants with more samples as CVRP.

0 2 4 6 8 10

Epochs

5

10

15

20

25

30

A
ve

ra
ge

G
ap

A
cr

os
s

Ta
sk

s
(%

) EAL
AL
Scratch

(a) Mixed backhaul

0 2 4 6 8 10
Epochs

10

15

20

25

30

35

A
ve

ra
ge

G
ap

A
cr

os
s

T
as

k
s

(%
) EAL

AL

Scratch

(b) Multi-depot

0 2 4 6 8 10
Epochs

20

30

40

A
ve

ra
ge

G
ap

A
cr

os
s

T
as

k
s

(%
) EAL

AL

Scratch

(c) Mixed backhaul & multi-depot

Figure D.6: Validation gaps averaged across new tasks including unseen features as (a) mixed backhaul (MB),
(b) multi-depot (MD), and (c) their combination (MB&MD) for retraining from scratch, AL and EAL finetun-
ing.

Table D.1: Zero-shot, retraining, and fine-tuning performance on unseen mixed backhaul (MB) variants. "∅"
denotes models and fine-tuning methods evaluated in zero-shot settings. EAL finetuning maintains the zero-
shot performance and performs best overall.

VRPMB OVRPMB VRPMBL VRPMBTW OVRPMBL OVRPMBTW VRPMBLTW OVRPMBLTW

Method Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap

HGS-PyVRP 13.54 * 9.01 * 13.78 * 25.51 * 9.01 * 16.97 * 25.85 * 16.97 *
OR-Tools 14.93 10.27% 10.59 17.54% 15.42 11.90% 29.97 17.48% 10.59 17.54% 19.31 13.78% 30.44 17.76% 19.31 13.78%
MTPOMO∅ 15.04 11.32% 10.87 20.65% 15.41 11.97% 28.31 11.06% 10.85 20.43% 18.51 9.08% 28.73 11.27% 18.51 9.12%
MVMoE∅ 14.99 10.94% 10.85 20.42% 15.33 11.37% 28.32 11.10% 10.82 20.14% 18.55 9.33% 28.70 11.16% 18.55 9.30%
RF-POMO∅ 14.98 10.90% 10.84 20.31% 15.29 11.12% 28.53 11.94% 10.84 20.32% 18.62 9.72% 28.89 11.89% 18.62 9.71%
RF-MoE∅ 14.93 10.49% 10.76 19.49% 15.21 10.47% 28.20 10.63% 10.76 19.40% 18.45 8.74% 28.55 10.57% 18.45 8.72%
RF-TE∅ 14.88 10.13% 10.72 19.02% 15.18 10.32% 28.29 10.87% 10.72 19.01% 18.45 8.68% 28.65 10.82% 18.45 8.69%
Train (scratch) 15.18 12.13% 10.40 15.38% 15.48 12.37% 28.11 10.17% 10.46 16.08% 18.85 11.09% 28.69 10.95% 18.86 11.19%
AL∅ 43.15 221.25% 37.98 323.23% 32.81 139.84% 59.17 133.55% 29.15 224.37% 39.03 131.09% 66.62 158.21% 40.92 141.51%
AL 14.91 10.10% 10.14 12.53% 15.12 9.73% 27.79 8.92% 10.18 12.95% 18.52 9.13% 28.33 9.56% 18.51 9.05%
EAL∅ 14.88 10.13% 10.72 19.02% 15.18 10.32% 28.29 10.87% 10.72 19.01% 18.45 8.68% 28.65 10.82% 18.45 8.69%
EAL 14.59 7.89% 9.66 7.19% 14.78 7.39% 26.69 4.61% 9.65 7.13% 17.60 3.70% 27.13 4.90% 17.59 3.65%

D.4 COMPARISONS TO SINGLE-VARIANT MODELS

In this section, we study our foundation model and ask the following question: how does
ROUTEFINDER perform when compared to models trained specifically on a single variant? To an-
swer this question, we compare ROUTEFINDER and other multi-task learning methods with POMO
trained on single variants, including CVRP, VRPL, VRPTW, OVRP, and VRPB. For fairness of

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Table D.2: Zero-shot, retraining, and fine-tuning performance on unseen multi-depot (MD) variants. "∅"
denotes models and fine-tuning methods evaluated in zero-shot settings. EAL finetuning maintains the zero-
shot performance and performs best overall.

MDCVRP MDOVRP MDVRPB MDVRPL MDVRPTW MDOVRPTW MDOVRPB MDOVRPL

Method Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap

HGS-PyVRP 11.89 * 7.97 * 11.64 * 11.90 * 19.33 * 13.00 * 8.69 * 7.97 *
OR-Tools 12.52 5.27% 8.16 2.33% 12.22 5.01% 12.52 5.24% 19.62 1.55% 13.09 0.74% 8.87 2.15% 8.16 2.33%
MTPOMO∅ 16.07 35.74% 10.28 29.06% 15.18 30.66% 16.30 37.58% 26.68 38.56% 17.57 35.67% 10.94 26.08% 10.28 29.07%
MVMoE∅ 16.02 35.35% 10.24 28.59% 15.12 30.13% 16.25 37.17% 26.67 38.51% 17.57 35.68% 10.89 25.56% 10.24 28.60%
RF-POMO∅ 16.03 35.46% 10.23 28.52% 15.11 30.10% 16.25 37.19% 26.60 38.16% 17.54 35.43% 10.88 25.48% 10.23 28.55%
RF-MoE∅ 16.01 35.24% 10.20 28.06% 15.06 29.69% 16.21 36.89% 26.60 38.11% 17.54 35.44% 10.84 25.02% 10.20 28.06%
RF-TE∅ 15.98 35.02% 10.18 27.82% 15.05 29.53% 16.20 36.76% 26.51 37.64% 17.48 34.96% 10.82 24.74% 10.18 27.84%
Train (scratch) 14.44 21.59% 9.88 23.87% 14.86 27.75% 14.50 21.99% 23.33 20.82% 15.48 19.16% 10.76 23.84% 9.89 24.07%
AL∅ 33.91 188.76% 25.02 215.12% 33.56 189.58% 31.06 164.78% 49.08 155.57% 31.17 141.42% 26.30 203.65% 24.12 203.73%
AL 14.23 19.84% 9.67 21.28% 14.84 27.57% 14.33 20.51% 22.64 17.18% 15.05 15.81% 10.69 23.12% 9.69 21.45%
EAL∅ 15.98 35.02% 10.18 27.82% 15.05 29.53% 16.20 36.76% 26.51 37.64% 17.48 34.96% 10.82 24.74% 10.18 27.84%
EAL 12.96 9.14% 8.64 8.37% 13.05 12.15% 12.99 9.31% 21.14 9.43% 13.81 6.24% 9.46 8.88% 8.64 8.33%

MDVRPBL MDVRPBTW MDVRPLTW MDOVRPBL MDOVRPBTW MDOVRPLTW MDVRPBLTW MDOVRPBLTW

Method Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap

HGS-PyVRP 11.68 * 22.03 * 19.35 * 8.69 * 14.369 * 13.00 * 22.06 * 14.37 *
OR-Tools 12.22 4.66% 22.40 1.69% 19.66 1.58% 8.87 2.13% 14.49 0.87% 13.09 0.70% 22.43 1.70% 14.49 0.86%
MTPOMO∅ 15.80 35.54% 30.55 39.23% 27.13 40.71% 10.94 26.11% 19.69 37.62% 17.58 35.70% 31.09 41.52% 19.69 37.64%
MVMoE∅ 15.73 34.95% 30.55 39.22% 27.12 40.67% 10.90 25.66% 19.69 37.62% 17.58 35.74% 31.06 41.39% 19.69 37.61%
RF-POMO∅ 15.71 34.80% 30.46 38.80% 27.04 40.22% 10.89 25.49% 19.66 37.38% 17.54 35.43% 30.97 41.00% 19.66 37.37%
RF-MoE∅ 15.65 34.25% 30.47 38.87% 27.03 40.18% 10.84 25.03% 19.66 37.40% 17.55 35.45% 30.98 41.06% 19.66 37.42%
RF-TE∅ 15.62 33.98% 30.36 38.36% 26.93 39.69% 10.82 24.78% 19.59 36.95% 17.48 34.95% 30.86 40.49% 19.60 36.96%
Train (scratch) 15.05 28.91% 26.43 20.03% 23.41 21.08% 10.77 24.02% 16.86 17.41% 15.50 19.28% 26.52 20.30% 16.88 17.54%
AL∅ 32.08 175.25% 51.70 136.04% 47.65 147.90% 25.00 188.85% 32.45 127.08% 29.94 131.91% 50.14 128.59% 30.93 116.41%
AL 14.95 28.03% 25.81 17.19% 22.70 17.33% 10.70 23.14% 16.47 14.66% 15.07 15.98% 25.84 17.16% 16.48 14.71%
EAL∅ 15.62 33.98% 30.36 38.36% 26.93 39.69% 10.82 24.78% 19.59 36.95% 17.48 34.95% 30.86 40.49% 19.60 36.96%
EAL 13.16 12.70% 23.88 8.42% 21.18 9.47% 9.46 8.85% 15.18 5.61% 13.81 6.24% 23.94 8.54% 15.17 5.60%

Table D.3: Zero-shot, retraining, and fine-tuning performance on unseen variants with combined multi-depots
(MD) and mixed backhauls (MB). "∅" denotes models and fine-tuning methods evaluated in zero-shot settings.
EAL finetuning maintains the zero-shot performance and performs best overall.

MDVRPMB MDOVRPMB MDVRPMBL MDVRPMBTW MDOVRPMBL MDOVRPMBTW MDVRPMBLTW MDOVRPMBLTW

Method Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap

HGS-PyVRP 10.68 * 7.66 * 10.71 * 19.29 * 7.66 * 12.96 * 19.31 * 12.96 *
OR-Tools 12.22 14.37% 8.88 15.83% 12.23 14.23% 22.39 16.12% 8.87 15.73% 14.49 11.79% 22.43 16.16% 14.49 11.79%
MTPOMO∅ 15.14 42.22% 10.91 42.57% 15.49 45.23% 28.44 48.01% 10.90 42.45% 18.56 43.63% 28.93 50.36% 18.56 43.65%
MVMoE∅ 15.08 41.67% 10.90 42.41% 15.40 44.37% 28.46 48.12% 10.88 42.13% 18.61 44.04% 28.89 50.19% 18.60 43.95%
RF-POMO∅ 15.09 41.78% 10.90 42.41% 15.37 44.05% 28.68 49.27% 10.90 42.37% 18.69 44.70% 29.08 51.15% 18.69 44.69%
RF-MoE∅ 15.02 41.08% 10.82 41.40% 15.29 43.34% 28.38 47.67% 10.82 41.36% 18.50 43.19% 28.77 49.56% 18.50 43.22%
RF-TE∅ 14.99 40.80% 10.77 40.67% 15.28 43.27% 28.43 47.93% 10.76 40.62% 18.49 43.14% 28.80 49.69% 18.50 43.17%
Train (scratch) 13.12 22.88% 9.37 22.32% 13.24 23.72% 22.85 18.56% 9.38 22.44% 15.13 16.75% 22.90 18.65% 15.11 16.60%
AL∅ 34.12 223.14% 26.36 245.53% 27.41 158.88% 48.94 155.28% 24.11 216.01% 31.53 144.89% 46.80 143.89% 30.08 133.48%
AL 13.10 22.70% 9.36 22.14% 13.20 23.36% 22.90 18.76% 9.38 22.46% 15.28 17.91% 23.02 19.26% 15.39 18.77%
EAL∅ 14.99 40.80% 10.77 40.67% 15.28 43.27% 28.43 47.93% 10.76 40.62% 18.49 43.14% 28.80 49.69% 18.50 43.17%
EAL 12.70 18.98% 8.53 11.35% 12.68 18.56% 21.41 11.05% 8.54 11.43% 13.93 7.41% 21.44 11.09% 13.91 7.32%

comparison, we train the POMO models with the same hyperparameters as the other models (from
Table C.1), including the same batch size, learning rate, and training epochs on n = 100 nodes.

Finetuning performance We finetune all POMO models with the same setting as the experiment
with unseen mixed backhaul and multi-depots (MB&MD) from Appendix D.3 with EAL.

Table D.4: Fine-tuning performance on unseen variants of single-variant POMO models and ROUTEFINDER.
Finetuning a foundation model for VRPs is crucial for fast adaptation to downstream tasks.

MDVRPMB MDOVRPMB MDVRPMBL MDVRPMBTW MDOVRPMBL MDOVRPMBTW MDVRPMBLTW MDOVRPMBLTW

Method Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap

HGS-PyVRP 10.68 * 7.66 * 10.71 * 19.29 * 7.66 * 12.96 * 19.31 * 12.96 *
OR-Tools 12.22 14.37% 8.88 15.83% 12.23 14.23% 22.39 16.12% 8.87 15.73% 14.49 11.79% 22.43 16.16% 14.49 11.79%
POMO_CVRP 13.34 24.97% 9.66 26.01% 13.43 25.50% 25.19 30.84% 9.66 25.97% 25.14 30.39% 17.66 36.50% 17.65 36.43%
POMO_VRPL 13.36 25.14% 9.88 28.97% 13.37 24.99% 28.15 46.43% 9.86 28.70% 28.02 45.58% 20.79 60.98% 20.74 60.53%
POMO_OVRP 13.31 24.62% 9.54 24.45% 13.35 24.77% 26.03 35.27% 9.55 24.63% 26.03 35.07% 18.65 44.21% 18.66 44.30%
POMO_VRPTW 13.91 30.27% 10.17 32.77% 13.99 30.72% 24.70 28.13% 10.22 33.43% 24.78 28.43% 16.74 29.32% 16.80 29.77%
POMO_VRPB 13.00 21.69% 9.25 20.63% 13.06 22.07% 22.50 16.66% 9.23 20.44% 22.53 16.64% 14.96 15.39% 14.97 15.54%
ROUTEFINDER 12.70 18.98% 8.53 11.35% 12.68 18.56% 21.41 11.05% 8.54 11.43% 13.93 7.41% 21.44 11.09% 13.91 7.32%

Table D.4 shows that fine-tuning our ROUTEFINDER foundation model achieves the best results,
even when comparing variants that include only unseen features for both. For instance, POMO
trained only on VRP with backhauls (POMO_VRPB in the table) was trained by sampling many

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

more (classical) backhaul features, but ROUTEFINDER can fine-tune better on MDVRPMB. Models
trained on similar features as the target ones, such as POMO_VRPTW, can overall fine-tune better
than others on variants that include time windows, as expected, yet not as well as our foundation
model. This is a strong motivation for practitioners and researchers: developing foundation models
for VRPs is crucial for fast adaptation to new tasks that may arise in real-world scenarios, such as
adding new constraints or attributes.

Out-of-distribution generalization We also study out-of-distribution generalization for unseen
attribute values of capacities (C), time windows (C), and duration limits (L), for multi-task learning
models and single-variant POMO ones. We compare cost values and gaps (the lower, the better)
to the results of POMO training specifically for that single variant, similarly to Liu et al. (2024a,
Appendix D). All experiments are performed on 1000 variants for each setting with n = 100.

For CVRP, the training distribution in 100 nodes considers a vehicle capacity C = 50. We study
generalization over different capacities C = {30, 50, 70, 90, 110, 130, 150, 200} and show the re-
sults in Table D.5 with costs. POMO trained specifically on CVRP can perform best for capacities
close to the training distribution, while ROUTEFINDER demonstrates a significant improvement for
larger capacities.

Table D.5: Comparison of our model with single-task POMO on out-of-distribution CVRP instances.

Vehicle Capacity 30 50 70 90 110 130 150 200

Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap

POMO_CVRP 22.95 * 15.72 * 12.91 * 11.48 * 10.64 * 10.04 * 9.75 * 9.24 *
MTPOMO 23.29 1.50% 15.87 0.94% 13.07 1.24% 11.69 1.77% 10.88 2.30% 10.34 2.90% 10.04 2.97% 9.59 3.77%
MVMoE 23.04 0.43% 15.83 0.67% 12.99 0.61% 11.54 0.49% 10.67 0.33% 10.06 0.12% 9.74 -0.09% 9.21 -0.28%
RF-POMO 23.10 0.69% 15.84 0.77% 13.03 0.90% 11.61 1.07% 10.76 1.17% 10.17 1.26% 9.86 1.12% 9.38 1.51%
RF-MoE 23.13 0.80% 15.81 0.58% 13.00 0.74% 11.59 0.89% 10.74 0.92% 10.14 0.95% 9.82 0.69% 9.31 0.75%
RF-TE 22.96 0.06% 15.79 0.44% 12.95 0.29% 11.47 -0.07% 10.56 -0.71% 9.92 -1.22% 9.59 -1.67% 9.02 -2.36%

In VRPTW, we consider different values of the time interval, i.e., the minimum and maximum values
from which service times si and time window lengths ti are sampled (points 1 and 2 for time window
generation of Appendix A.1). In distribution, these values are sampled from [0.15, 0.20]. In the out-
of-distribution settings, we consider them as {[0.05, 0.1], [0.15, 0.20], . . . , [0.85, 0.9], [0.85, 1.0]}.
The results in Table D.6 demonstrate again that for values differing from the in-training distribution,
our model obtains better results than POMO trained solely on VRPTW.

Table D.6: Comparison of our model with single-task POMO on out-of-distribution VRPTW instances.

Time Interval [0.05, 0.10] [0.15, 0.20] [0.25, 0.30 [0.35, 0.40] [0.45, 0.50] [0.55, 0.60] [0.65, 0.70] [0.75, 0.80] [0.80, 0.85] [0.95, 1.00]

Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap

POMO_VRPTW 25.30 * 26.27 * 28.11 * 31.36 * 35.25 * 39.66 * 44.43 * 48.17 * 52.60 * 55.24 *
MTPOMO 25.51 0.84% 26.59 1.20% 28.27 0.57% 31.28 -0.26% 35.05 -0.56% 39.51 -0.39% 44.34 -0.21% 48.25 0.17% 52.85 0.47% 55.67 0.78%
MVMoE 25.47 0.66% 26.57 1.15% 28.25 0.50% 31.19 -0.54% 34.97 -0.79% 39.34 -0.82% 44.15 -0.63% 48.05 -0.26% 52.68 0.14% 55.61 0.68%
RF-POMO 25.45 0.58% 26.49 0.85% 28.23 0.44% 31.32 -0.11% 35.19 -0.18% 39.58 -0.22% 44.41 -0.06% 48.20 0.06% 52.61 0.02% 55.22 -0.03%
RF-MoE 25.43 0.51% 26.49 0.85% 28.21 0.35% 31.25 -0.35% 35.10 -0.43% 39.54 -0.32% 44.35 -0.19% 48.13 -0.09% 52.53 -0.14% 55.18 -0.10%
RF-TE 25.33 0.10% 26.40 0.50% 28.14 0.11% 31.17 -0.61% 34.91 -0.95% 39.30 -0.93% 44.08 -0.80% 47.86 -0.65% 52.40 -0.38% 55.16 -0.14%

For VRPL, we consider different distance limit values l. During training, we sample feasible in-
stances with lmax = 3.0 as described in Appendix A.1. For out-of-distribution settings, we test
distances for values of l = {2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5}. Interestingly, as shown in Table D.7,
our model already outperforms POMO_VRPL in distribution, and the trend is maintained for larger
values of l.

Finally, Appendix D.5 reports the results for large-scale CVRPLIB, which demonstrate
ROUTEFINDER better generalize across sizes and real-world distributions than other multi-task
models and single-variant ones. Overall, we can see that ROUTEFINDER is robust, and its advantage
is more pronounced the further away from the training distribution we go. This motivates future
work in foundation models for VRPs, where we believe that exploring diverse solutions and variants
will significantly advance the field.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Table D.7: Comparison of our model with single-task POMO on out-of-distribution VRPL instances.

Distance Limit 2.9 3.0 3.1 3.2 3.3 3.4 3.5

Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap

POMO_VRPL 15.84 * 16.00 * 16.04 * 15.52 * 16.02 * 15.74 * 15.85 *
MTPOMO 15.92 0.49% 16.08 0.53% 16.12 0.54% 15.59 0.47% 16.11 0.60% 15.81 0.48% 15.92 0.43%
MVMoE 15.88 0.22% 16.03 0.22% 16.08 0.27% 15.54 0.11% 16.04 0.15% 15.78 0.25% 15.88 0.20%
RF-POMO 15.91 0.41% 16.04 0.27% 16.09 0.33% 15.56 0.28% 16.06 0.29% 15.78 0.29% 15.87 0.13%
RF-MoE 15.86 0.12% 16.03 0.21% 16.05 0.08% 15.53 0.09% 16.04 0.15% 15.77 0.21% 15.87 0.12%
RF-TE 15.82 -0.17% 15.96 -0.21% 16.02 -0.10% 15.50 -0.10% 16.00 -0.11% 15.72 -0.11% 15.82 -0.16%

D.5 CVRPLIB EVALUATION

We report in Table D.8 the results for large-scale CVRPLIB (Lima et al., 2014) with sizes greater
than 500 as done in MVMoE (Zhou et al., 2024). We report the original POMO (Kwon et al., 2020)
alongside versions of MTPOMO and MVMoE that were initially trained on mixtures of only CVRP,
OVRP, VRPL, VRPB, VRPTW, and OVRPTW for more than 3× longer than our setting with all
variants. Interestingly, training on all variants improves the generalization performance of MVMoE
compared to the original setting, while it decreases the MTPOMO one (possibly due to the fact
several more CVRP instances were sampled in MVMoE’s setting). Notably, ROUTEFINDER vastly
outperforms other SOTA single and multi-task RL baselines.

Table D.8: Results on large-scale CVRPLIB instances from the X set. All models are only trained on the
uniformly distributed data with the size n = 100 and evaluated via greedy rollouts. Results for methods with †
are drawn from Zhou et al. (2024), models trained with single features excluding feature compositions (except
for OVRPTW). Training on multiple variants enhances generalization across models.

Set-X POMO† MTPOMO † MVMoE† MVMoE-L† MTPOMO MVMoE RF-TE

Instance Opt. Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap

X-n502-k39 69226 75617 9.232% 77284 11.640% 73533 6.222% 74429 7.516% 69226 9.410% 76338 10.274% 71791 3.705%

X-n513-k21 24201 30518 26.102% 28510 17.805% 32102 32.647% 31231 29.048% 24201 42.511% 32639 34.866% 28465 17.619%

X-n524-k153 154593 201877 30.586% 192249 24.358% 186540 20.665% 182392 17.982% 154593 14.771% 170999 10.612% 174381 12.800%

X-n536-k96 94846 106073 11.837% 106514 12.302% 109581 15.536% 108543 14.441% 94846 16.109% 105847 11.599% 103272 8.884%

X-n548-k50 86700 103093 18.908% 94562 9.068% 95894 10.604% 95917 10.631% 86700 27.851% 104289 20.287% 100956 16.443%

X-n561-k42 42717 49370 15.575% 47846 12.007% 56008 31.114% 51810 21.287% 42717 30.770% 53383 24.969% 49454 15.771%

X-n573-k30 50673 83545 64.871% 60913 20.208% 59473 17.366% 57042 12.569% 50673 20.210% 61524 21.414% 55952 10.418%

X-n586-k159 190316 229887 20.792% 208893 9.761% 215668 13.321% 214577 12.748% 190316 19.125% 212151 11.473% 205575 8.018%

X-n599-k92 108451 150572 38.839% 120333 10.956% 128949 18.901% 125279 15.517% 108451 21.098% 126578 16.714% 116560 7.477%

X-n613-k62 59535 68451 14.976% 67984 14.192% 82586 38.718% 74945 25.884% 59535 30.523% 73456 23.383% 67267 12.987%

X-n627-k43 62164 84434 35.825% 73060 17.528% 70987 14.193% 70905 14.061% 62164 23.193% 70414 13.271% 67572 8.700%

X-n641-k35 63682 75573 18.672% 72643 14.071% 75329 18.289% 72655 14.090% 63682 30.321% 71975 13.023% 70831 11.226%

X-n655-k131 106780 127211 19.134% 116988 9.560% 117678 10.206% 118475 10.952% 106780 12.731% 119057 11.497% 112202 5.078%

X-n670-k130 146332 208079 42.197% 190118 29.922% 197695 35.100% 183447 25.364% 146332 24.809% 168226 14.962% 168999 15.490%

X-n685-k75 68205 79482 16.534% 80892 18.601% 97388 42.787% 89441 31.136% 68205 36.550% 82269 20.620% 77847 14.137%

X-n701-k44 81923 97843 19.433% 92075 12.392% 98469 20.197% 94924 15.870% 81923 13.319% 90189 10.090% 89932 9.776%

X-n716-k35 43373 51381 18.463% 52709 21.525% 56773 30.895% 52305 20.593% 43373 37.657% 52250 20.467% 49669 14.516%

X-n733-k159 136187 159098 16.823% 161961 18.925% 178322 30.939% 167477 22.976% 136187 28.910% 156387 14.833% 148463 9.014%

X-n749-k98 77269 87786 13.611% 90582 17.229% 100438 29.985% 94497 22.296% 77269 32.182% 92147 19.255% 85171 10.227%

X-n766-k71 114417 135464 18.395% 144041 25.891% 152352 33.155% 136255 19.086% 114417 16.692% 130505 14.061% 129935 13.563%

X-n783-k48 72386 90289 24.733% 83169 14.897% 100383 38.677% 92960 28.423% 72386 50.140% 96336 33.087% 83185 14.919%

X-n801-k40 73305 124278 69.536% 85077 16.059% 91560 24.903% 87662 19.585% 73305 24.536% 87118 18.843% 86164 17.542%

X-n819-k171 158121 193451 22.344% 177157 12.039% 183599 16.113% 185832 17.525% 158121 22.148% 179596 13.581% 174441 10.321%

X-n837-k142 193737 237884 22.787% 214207 10.566% 229526 18.473% 221286 14.220% 193737 19.429% 230362 18.904% 208528 7.635%

X-n856-k95 88965 152528 71.447% 101774 14.398% 99129 11.425% 106816 20.065% 88965 33.103% 105801 18.924% 98291 10.483%

X-n876-k59 99299 119764 20.609% 116617 17.440% 119619 20.463% 114333 15.140% 99299 15.240% 114016 14.821% 107416 8.174%

X-n895-k37 53860 70245 30.421% 65587 21.773% 79018 46.710% 64310 19.402% 53860 96.818% 69099 28.294% 64871 20.444%

X-n916-k207 329179 399372 21.324% 361719 9.885% 383681 16.557% 374016 13.621% 329179 18.134% 373600 13.494% 352998 7.236%

X-n936-k151 132715 237625 79.049% 186262 40.347% 220926 66.466% 190407 43.471% 132715 50.654% 161343 21.571% 163162 22.942%

X-n957-k87 85465 130850 53.104% 98198 14.898% 113882 33.250% 105629 23.593% 85465 48.127% 123633 44.659% 102689 20.153%

X-n979-k58 118976 147687 24.132% 138092 16.067% 146347 23.005% 139682 17.404% 118976 16.711% 131754 10.740% 129952 9.225%

X-n1001-k43 72355 100399 38.759% 87660 21.153% 114448 58.176% 94734 30.929% 72355 82.677% 88969 22.962% 85929 18.760%

Avg. Gap 29.658% 16.796% 26.408% 19.607% 30.202% 18.795% 12.303%

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

D.6 T-SNE VISUALIZATION

For interpretability, we study the representations learned from the model across different variants.
Given their high dimensionality, we employ t-SNE (Van der Maaten & Hinton, 2008) to project them
in 2D space. We employ the implementation from scikit-learn with the default perplexity of
30 and use 100 instances of size 100 for each of the 16 variants of the main experiments from
Section 5.1.

Layer-wise visualization We study ROUTEFINDER’s Transformer Encoder layers. As shown in
Fig. D.7, distinct clusters emerge at different model layers, indicating that the model progressively
separates the problem variants with increasing depth. Early layers (Layer 1) exhibit high overlap
between different variants, suggesting shared feature extraction. However, as we proceed to deeper
layers (Layer 6), the clusters become more distinct, particularly for more complex variants such as
OVRPB, VRPBLTW, and VRPBTW, signifying the model’s capacity to capture and differentiate
intricate problem structures.

−40 −20 0 20 40

−20

0

20

40

Layer 1

−40 −20 0 20 40

−40

−20

0

20

40

Layer 2

−40 −20 0 20 40

−40

−20

0

20

40

Layer 3

−40 −20 0 20 40

−60

−40

−20

0

20

40

Layer 4

−40 −20 0 20 40

−60

−40

−20

0

20

40

Layer 5

−40 −20 0 20 40

−40

−20

0

20

40

Layer 6

CVRP

OVRP

VRPB

VRPL

VRPTW

OVRPTW

OVRPB

OVRPL

VRPBL

VRPBTW

VRPLTW

OVRPBL

OVRPBTW

OVRPLTW

VRPBLTW

OVRPBLTW

Figure D.7: Visualization of ROUTEFINDER’s Transformer Encoder latent space via t-SNE analysis by layer.
Problem patterns become more visible with deeper layers, generating distinct clusters.

Comparison across models and VRP variants We also compare t-SNE analyses across the mod-
els, in particular, MTPOMO and MVMoE, compared to our ROUTEFINDER with Transformer En-
coder layers, with embeddings taken in the last encoder layer for all models. In particular, we
aim to analyze the differences in latent representation problem variants across the four attributes:
open routes (O), distance limits (L), backhauls (B), and time windows (TW). Fig. D.8 shows
that ROUTEFINDER generates more and defined clusters, indicating a better-learned representation
(Arora et al., 2018). For open routes, ROUTEFINDER has more defined clusters than the baselines. In
distance limits, our model generates double the clusters, which indicates different relations between
attributes; for instance, the model clearly separates backhaul variants VRPB and VRPBL (green
and grey, respectively), while other models do not clearly do this. This also holds in the backhaul

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

attribute clusters, where ROUTEFINDER more clearly separates different types of time windows as
well as distance limits. Finally, for time windows clusters, we notice the most striking difference
– while MTPOMO and MVMoE fail to distinguish between time window variants, resulting in a
single and sparse cluster, ROUTEFINDER separates time window variants with and without the open
(O) attribute into two separate clusters thanks to the Global Attribute Embeddings.

Open Routes (O) Distance Limits (L) Backhauls (B) Time Windows (TW)

M
T

PO
M

O

−50 0 50

−20

0

20

40

Constraint Open Routes

−50 0 50

−20

0

20

40

Constraint Duration Limits

−50 −25 0 25

−20

0

20

40

Constraint Backhauls

−40 −20

−30

−20

−10

0

10

20

Constraint Time Window

OVRP

OVRPTW

OVRPB

OVRPL

OVRPBL

OVRPBTW

OVRPLTW

OVRPBLTW

VRPL

OVRPL

VRPBL

VRPLTW

OVRPBL

OVRPLTW

VRPBLTW

OVRPBLTW

VRPB

OVRPB

VRPBL

VRPBTW

OVRPBL

OVRPBTW

VRPBLTW

OVRPBLTW

VRPTW

OVRPTW

VRPBTW

VRPLTW

OVRPBTW

OVRPLTW

VRPBLTW

OVRPBLTW

M
V

M
oE

−50 0 50

−20

−10

0

10

20

30

Constraint Open Routes

−50 0 50

−20

−10

0

10

20

30

Constraint Duration Limits

−50 −25 0 25

−20

−10

0

10

20

30

Constraint Backhauls

−40 −20

−20

−10

0

10

20

Constraint Time Window

OVRP

OVRPTW

OVRPB

OVRPL

OVRPBL

OVRPBTW

OVRPLTW

OVRPBLTW

VRPL

OVRPL

VRPBL

VRPLTW

OVRPBL

OVRPLTW

VRPBLTW

OVRPBLTW

VRPB

OVRPB

VRPBL

VRPBTW

OVRPBL

OVRPBTW

VRPBLTW

OVRPBLTW

VRPTW

OVRPTW

VRPBTW

VRPLTW

OVRPBTW

OVRPLTW

VRPBLTW

OVRPBLTW

R
O

U
T

E
F

IN
D

E
R

−20 0 20

0

10

20

30

40

Constraint Open Routes

−25 0 25 50

−40

−20

0

20

40

Constraint Duration Limits

−25 0 25 50

−40

−20

0

20

40

Constraint Backhauls

−40 −30 −20 −10

−20

0

20

40

Constraint Time Window

OVRP

OVRPTW

OVRPB

OVRPL

OVRPBL

OVRPBTW

OVRPLTW

OVRPBLTW

VRPL

OVRPL

VRPBL

VRPLTW

OVRPBL

OVRPLTW

VRPBLTW

OVRPBLTW

VRPB

OVRPB

VRPBL

VRPBTW

OVRPBL

OVRPBTW

VRPBLTW

OVRPBLTW

VRPTW

OVRPTW

VRPBTW

VRPLTW

OVRPBTW

OVRPLTW

VRPBLTW

OVRPBLTW

−20 0 20

0

10

20

30

40

Constraint Open Routes

−25 0 25 50

−40

−20

0

20

40

Constraint Duration Limits

−25 0 25 50

−40

−20

0

20

40

Constraint Backhauls

−40 −30 −20 −10

−20

0

20

40

Constraint Time Window

OVRP

OVRPTW

OVRPB

OVRPL

OVRPBL

OVRPBTW

OVRPLTW

OVRPBLTW

VRPL

OVRPL

VRPBL

VRPLTW

OVRPBL

OVRPLTW

VRPBLTW

OVRPBLTW

VRPB

OVRPB

VRPBL

VRPBTW

OVRPBL

OVRPBTW

VRPBLTW

OVRPBLTW

VRPTW

OVRPTW

VRPBTW

VRPLTW

OVRPBTW

OVRPLTW

VRPBLTW

OVRPBLTW

Figure D.8: Analysis of the t-SNE latent space for the last encoder layer across different attributes.
ROUTEFINDER yields well-defined, tightly grouped, and distinct clusters on all variants, which is a strong
indicator of its capability to generalize and specialize effectively in solving diverse VRP variants. For example,
unlike baselines, ROUTEFINDER distinctly separates time window variants into two clusters with and without
open routes (bottom-right image) thanks to the Global Attribute Embeddings.

35

	Introduction
	Related Works
	Preliminaries
	Vehicle Routing Problems
	Learning Neural Solvers for VRPs

	The RouteFinder Recipe
	Unified VRP Environment
	Model
	Transformer-based Architecture
	Global Attribute Embeddings

	Training
	Variant Sampling for Mixed Batch Training
	Multi-task Reward Normalization

	Efficient Adapter Layers: Finetuning to Unseen Attributes

	Experiments
	(RQ1) Main Results
	(RQ2) Ablation Studies
	(RQ3) Generalization with EAL

	Conclusion
	Unified VRP Environment Details
	Data generation
	Environment Logic

	RouteFinder Model Details
	Multi-Head Attention
	Encoder
	Decoder
	EAL Modeling

	Additional Material
	Details for Average Batch Reward for Multi-task Reward Normalization
	Hyperparameter Details
	Additional Discussion
	Licenses for used assets

	Additional Empirical Results
	Effect of Transformer Encoder Components
	Studies on Mixed Batch Training
	Finetuning to Unseen Variants with EAL
	Comparisons to Single-Variant Models
	CVRPLIB Evaluation
	T-SNE Visualization

