
Synthesized Differentiable Programs

Anonymous Author(s)
Affiliation
Address
email

Abstract

Program synthesis algorithms produce interpretable and generalizable code that1

captures input data but are not directly amenable to continuous optimization using2

gradient descent. In theory, any program can be represented in a Turing complete3

neural network model, which implies that it is possible to compile syntactic pro-4

grams into the weights of a neural network by using a technique known as neural5

compilation. This paper presents a combined algorithm for synthesizing syntactic6

programs, compiling them into the weights of a neural network, and then tuning7

the resulting model. This paper’s experiments establish that program synthesis,8

neural compilation, and differentiable optimization together form an efficient al-9

gorithm for inducing abstract algorithmic structure and a corresponding local set10

of desirable complex programs11

1 Introduction12

Program synthesis efficiently induces abstract computer programs from data. Alternatively, gradi-13

ent optimization induces parameterized functions which can be seen as a relaxed form of program14

search [1, 2, 3]. However, programs recovered via gradient optimization will be represented as real-15

valued weights, in contrast to code in a higher-level language. Generally, program synthesis is more16

appropriate for finding abstract algorithmic structures and gradient optimization is a flexible but17

less specialized technique for relaxed program induction. This paper unifies these two paradigms18

by leveraging neural compilation and decompilation: techniques for transforming code into neural19

network weights and transforming weights back into code [4, 5, 6, 7]. This hybrid algorithm retains20

both the generalization of program synthesis and the flexibility of gradient optimization.21

The closest ideas to this paper are forms of neurosymbolic programming [3], and AutoML, which22

each mix elements of program synthesis, symbolic search, and differentiable computing [8, 9, 10,23

11, 12, 13, 14, 15, 16, 17]. However, program synthesis combined with neural compilation and24

optimization is a unique and direct form of hybrid discrete-continuous neurosymbolic search.25

Neural Compilation The neural compilation algorithm in this paper is a replication of [6]. His-26

torically, [4] established the Turing completeness of neural networks, which implies the existence of27

a neural compiler: a function that maps any Turing-complete program into the weights of a neural28

network. Shortly after, [5] created the first neural compiler, based on Pascal. However, this neural29

compiler could not tune compiled programs using gradient descent. Accordingly, [6] created the first30

neural compiler which was adaptive and could be locally tuned with gradient descent. This focused31

on a minimal assembly language that ran on a minimal differentiable computer, a type of recurrent32

neural network with explicit memory and addressing schemes. Afterward, [7] created a neural inter-33

preter for a higher-level language called forth, which used a differentiable stack machine. However,34

both [6] and [7] utilized human-written programs as initializations for optimization. In contrast, this35

paper utilizes program synthesis as a method for efficiently finding abstract algorithmic structures.36

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

Library

Grammar

Program Synthesis Compilation Optimization Target Programs

high = filter | map | reduce | cond
binop = add | sub | mul | div |
 mod | max | min
unary = inc | dec
ctrl = jump | halt | read | write

filter
map
reduce
cond
jump
halt

read
write

inc
dec
add
sub
mul
div
mod
max
min

map noop
map inc
inc

cond mod
filter mod
reduce add
reduce max

High-level Low-level

Neural Compiler Differentiable Computer

Figure 1: A neurosymbolic program induction algorithm which leverages program synthesis to find
abstract algorithmic structure that is compiled into weights and optimized to find specific programs

Program Synthesis Program synthesis was anticipated as early as Turing, and underlied37

Solomonoff’s theory of inductive inference [18, 19], though the first critical historical milestone38

for program synthesis was the FlashFill program [20]. Components such as version space algebras,39

equivalence-Graphs, and synthesis through unification were essential in efficiently searching the40

combinatorial space of computer programs, which is otherwise intractable [1, 21, 22, 23, 24]. How-41

ever, an even more critical feature of effective program synthesis is abstraction: the ability to create42

a customized library of higher-level programs which capture common patterns, making program in-43

duction more efficient [25, 26, 27, 28]. Finding abstractions and composing them is a central feature44

of human intelligence, and therefore also central for machines [29, 30, 31, 32, 33].45

Differentiable Computing The minimal differentiable computer in this paper builds on recurrent46

neural networks [34] and their many extensions [35, 36, 37, 38, 39]. These architectures aim to47

induce programs from data via gradient optimization. However, doing so is challenging due to48

an overabundance of local but suboptimal solutions, as well as technical issues such as unstable49

gradients [40]. Despite this, with the correct formulation and resources, it is possible to recover50

interesting algorithms, such as simple planning or sorting algorithms [37].51

2 Algorithm52

The algorithm in this paper (depicted in Figure 1) has three primary steps: synthesis, compilation,53

and optimization. First, a program synthesis algorithm searches a high-level language for abstract54

program templates. Then, these programs are mapped into the minimal assembly language specified55

in [6]. A neural compiler converts this lower-level assembly program into the weights of a neural56

network, which then act as the initialization for optimization. Finally, the optimization algorithm57

tunes this program by using gradient descent. Optimization is repeated multiple times, as algorithmic58

induction is highly sensitive to initialization.59

Minimal assembly language acts as a common interface between synthesis and optimization, and60

neural compilation is the means for using this interface. While minimal assembly is easily compiled,61

it is unideal for direct program synthesis, even when using equivalence graphs or version space alge-62

bras. For example, in a 4 register machine with 13 instructions, there are roughly 100 million distinct63

instruction-argument pairs in only three lines of minimal assembly. Because of this, designing an64

appropriate high-level language plays a large part in the success of the overall algorithm, especially65

since the language design controls what abstract algorithm templates are included. By carefully66

manipulating this, it should be possible to recover desirable target programs reliably.67

2

2.1 Neural Compilation68

Fundamentally, the minimal differentiable computer is a recurrent neural network with a controller69

δ, interpreter I , language L, memory tensor M , register tensor R, and halt state h: (δ, I, L,M,R, h).70

The controller outputs an instruction f and register arguments r based on the instruction register l:71

f, r = δ(l) (1)
Where f is a one-hot encoding corresponding to an assembly instruction, and r contains three one-72

hot encodings specifying register arguments. Typically the first two registers are inputs, and the73

third register is used to store output, such as add(r1, r2, r3), which adds the values in r1 and r274

and stores the result in r3. The controller is parameterized with four weight matrices Wk, which75

determine the function f , and the arguments r as functions of l, the instruction register:76

f = softmax(W0l) ak = softmax(Wkl) k > 0 (2)
Neural compilation works by inverting softmax and setting Wk to produce a desired instruction77

(f, r) at instruction count c. Uniform noise u is added with a magnitude γ, which allows flexible op-78

timization but preserves the desired instruction. A small constant ϵ is added for numerical stability:79

W0c = log(fc + γu+ ϵ) Wkc = log(rkc + γu+ ϵ) k > 0 (3)

The machine interpreter I is a function that uses the recurrent state (memory and registers) and the80

instruction specified by the controller:81

Mt+1, Rt+1, ht+1 = I(Mt, Rt, ft, rt) (4)
First, arguments rkt are resolved to their values vkt by a register lookup:82

vkt = rktRt (5)
Many functions, such as add only depend on input registers, and not on memory state. For a machine83

in base b, outputs are stored in a |L|×b×b×b lookup table T , where the first dimension corresponds84

to a function f , the second two dimensions represent values v1 and v2, and the final dimension85

encodes the output of f(v1, v2). For the read instruction, the b×1×b sub-tensor of T corresponding86

to reading is set to the current memory, Mt, and for special instructions write, jump, halt, sub-87

tensors of T are zero. T is indexed differentiably using an Einstein summation, which is analogous88

to using an addition or multiplication table, but for all assembly instructions and arguments89

ot = einsum(klmn, k, l,m → n, T, ft, v1t, v2t) (6)
Then, registers are updated with a soft write parameterized by r3, the output argument:90

Rt+1 = Rt ⊙ (1− r3t) + ot ⊗ r3t (7)
Writing to memory uses wt, the scalar component of ft representing the write probability.91

Mt+1 = (1− wt)Mt + w(1− v1t) · 1⊙Mt + v1t ⊙ v2t (8)
The jump instruction modifies the instruction register l probabilistically using j, a scalar component92

of ft representing the jump probability, and z, the scalar component of v1t representing the proba-93

bility that v1t is zero. Tinc denotes the sub-tensor of T for the increment instruction, and ln would94

be the next instruction if the jump is not taken.95

ln = lt · Tinc lt+1 = ln(1− j) + r2tz + jln(1− z) (9)
Finally, the halting probability ht is simply a scalar component of ft.96

2.2 Optimization97

Once a program has been compiled into program weights, it is optimized using the adam optimizer98

[41], and a loss function with two components: correctness and efficiency. Correctness is a masked99

cross-entropy loss between a predicted tensor P and labels L across the final dimension. µ is a100

vector mask across the first dimension. Correctness is calculated for registers R and memory M :101

L(P,L, µ)
correctness

= µ⊙ cross_entropy(P,L) (10)

Efficiency is a differentiable penalty for the number of computation steps:102

ht>k = max(ht≤k) L(ht)
efficiency

=
∑

1− ht (11)

And the composite loss is a weighted combination of the correctness and efficiency losses:103

L(M̂, R̂,M,R, h, µ)
composite

= λ(L(M̂,M, µM) + L(R̂, R, µR))
correctness

+ λL(h)
efficiency

(12)

Neural networks and optimization components are implemented in jax and equinox [16, 17].104

3

1 map_loop:
2 read 1 2
3 inc 2 2
4 write 1 2
5 inc 1 1
6 jump 3

map_loop↪→
7

8

9

10

1 inc 4 4
2 inc 4 4
3 sum_loop:
4 read 3 2
5 add 1 2 1
6 inc 3 3
7 max 3 4 5
8 sub 4 5 5
9 jump 5

sum_loop↪→
10 write 3 1

1 inc 2 2
2 fib_loop:
3 write 3 2
4 add 1 2 2
5 read 3 1
6 write 3 2
7 inc 3 3
8 jump 4

fib_loop↪→
9

10

Listing 1: Minimal assembly code for map, sum-reduce, and fibonacci functions

3 Experiments105

These experiments explore which algorithms can be recovered via program synthesis, optimization,106

or a combined algorithm. An ideal evaluation task involves high-level algorithmic structure that can107

be established via program synthesis but contains sub-components that are continuous or best opti-108

mized as neural networks. Program synthesis finds the overall structure of a program, and the local109

optimizer tunes this program locally. The primary experiment uses a budget of k = 100 optimization110

runs and compares structured initializations to random initializations. Since many algorithms share111

a common structure (recursion, looping, conditionals, etc), starting with an algorithm template acts112

as a positive inductive bias, similar to how the choice of network architecture affects program be-113

havior. Recovery is based on observational equivalence over a dataset of sampled program outputs.114

This allows recovering syntactically different solutions to a problem and discourages overfitting to115

a particular input-output pair.116

Generally, algorithmic skeletons are better initializations than random initialization, but it is com-117

mon for differentiable tuning to discard large parts of algorithm structure in certain problems. Since118

program synthesis finds various algorithmic skeletons, it outperforms using multiple uniform ran-119

dom initializations. Even programs that aren’t directly enumerated, such as the Fibonacci program120

(Listing 1, Table 1), can be recovered using the combination of synthesis and tuning. Introducing121

no-ops into program synthesis (and not penalizing them) can be advantageous, as gradient descent122

tuning does not naturally model concepts like insertion. Table 1 includes no-op-padded program ini-123

tializations in the second half. Interestingly, a few results defy intuition, such as that inc is harder124

to find, and that map dec is not transitive with map inc, we hypothesize that this is because it is125

difficult for optimization to represent simpler programs, as it typically saturates the available instruc-126

tions. A preliminary grid search found a noise parameter in the neighborhood of γ = 0.3, which is127

sufficient for gradient information to capture the local program space.128

Table 1: Recovery rates for selected algorithms and initializations

Algorithm inc map inc map dec reduce Parity Fibonacci

Optimization 19% 86% 56% 41% 95% 4%
Synthesis 100% 100% 100% 100% 100% 0%
Both 100% 100% 100% 100% 100% 75%

Initializations

map inc - 100% 7% - 7% 26%
map dec - 45% 100% - 6% 41%
loop no-op 100% 100% 100% 100% 49% 75%

Table 1 shows the percent of perfect algorithms recovered for each algorithm and different initial129

program structures. Program synthesis will recover many of the program structures listed in this130

table, some of which will be near-misses to a desired program. Then, differentiable tuning can find131

a local variant of the program that is close to a desired program. This shows that, for this neural132

architecture, the combined synthesis-compilation algorithm is more computationally efficient than133

optimization alone.134

4

4 Limitations & Future Work135

While the neural compilation method introduced by [6] is straightforward to compute and implement,136

it could be more adaptive and general. One major limitation is the lack of parameters in the network137

model: each instruction and its arguments are determined only from the instruction register, and138

the function used is linear with a softmax activation. For example, in a network model for a 32139

instruction program, there are only 3, 640 parameters. While this is desirable for some applications,140

it is in contrast to implementations such as [34, 35, 36, 37] where network behavior is a function of141

memory and input, and modern network architectures that have millions or billions of parameters.142

Also, using a recurrent neural network inherently makes representing long programs and sequences143

difficult because of the unstable gradient problem. Future work will explore neural compilation144

techniques that are more adaptive and tunable but retain interpretability.145

The minimal differentiable computer introduced in [6] is a relatively weak program induction base-146

line. Future work will include stronger end-to-end differentiable algorithm induction baselines, es-147

pecially modern architectures [37, 39]. However, the minimal differentiable computer is highly148

compute and parameter efficient.149

The program synthesis algorithm given in this paper is relatively simple compared to modern tech-150

niques. In particular, it does not generate abstractions or utilize neural search heuristics such as those151

in [25]. These elements are modular and would most likely boost performance, especially if used152

in tandem with differentiability-based tuning. Finally, given sufficient computing power and time, a153

more advanced version of this algorithm would likely be successful on more interesting tasks, such154

as sorting or planning algorithms that are embedded in larger neural programs.155

References156

[1] Armando Solar-Lezama. Introduction to Program Synthesis. URL: https://people.csail.157

mit.edu/asolar/SynthesisCourse/ (visited on 08/27/2021).158

[2] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. “Program Synthesis”. In: Founda-159

tions and Trends® in Programming Languages 4.1-2 (2017), pp. 1–119. ISSN: 2325-1107.160

DOI: 10.1561/2500000010. URL: http://dx.doi.org/10.1561/2500000010.161

[3] Swarat Chaudhuri et al. “Neurosymbolic programming”. In: Foundations and Trends in162

Programming Languages 7.3 (2021), pp. 158–243. ISSN: 23251131. DOI: 10 . 1561 /163

2500000049.164

[4] Hava T. Siegelmann. “Computation beyond the turing limit”. In: Science 268.5210 (1995),165

pp. 545–548. ISSN: 00368075. DOI: 10.1126/science.268.5210.545.166

[5] Frédéric Gruau, Jean Yves Ratajszczak, and Gilles Wiber. “A neural compiler”. In: Theoret-167

ical Computer Science 141.1-2 (1995), pp. 1–52. ISSN: 03043975. DOI: 10.1016/0304-168

3975(94)00200-3.169

[6] Rudy Bunel et al. “Adaptive neural compilation”. In: Advances in Neural Information Pro-170

cessing Systems (2016), pp. 1452–1460. ISSN: 10495258. arXiv: 1605.07969.171

[7] Matko Bošnjak et al. “Programming with a differentiable forth interpreter”. In: 34th Inter-172

national Conference on Machine Learning, ICML 2017. Vol. 2. 2017, pp. 842–859. ISBN:173

9781510855144. arXiv: 1605.06640. URL: http://proceedings.mlr.press/v70/174

bosnjak17a.html?ref=https://githubhelp.com.175

[8] Dweep Trivedi et al. “Learning to Synthesize Programs as Interpretable and Generalizable176

Policies”. In: (2021). arXiv: 2108.13643. URL: http://arxiv.org/abs/2108.13643.177

[9] Lazar Valkov et al. HOUDINI: Lifelong Learning as Program Synthesis.178

[10] Thomas Pierrot Instadeep et al. “Learning Compositional Neural Programs with Recursive179

Tree Search and Planning”. In: Advances in Neural Information Processing Systems 32 (2019).180

URL: https://github.com/instadeepai/AlphaNPI.181

[11] Xinyun Chen et al. “Compositional Generalization via Neural-Symbolic Stack Machines”. In:182

Advances in Neural Information Processing Systems 33 (2020), pp. 1690–1701.183

[12] Alexander L. Gaunt et al. “Differentiable Programs with Neural Libraries”. In: 34th Inter-184

national Conference on Machine Learning, ICML 2017 3 (2016), pp. 1965–1977. DOI: 10.185

48550/arxiv.1611.02109. arXiv: 1611.02109. URL: https://arxiv.org/abs/1611.186

02109v2.187

5

https://people.csail.mit.edu/asolar/SynthesisCourse/
https://people.csail.mit.edu/asolar/SynthesisCourse/
https://people.csail.mit.edu/asolar/SynthesisCourse/
https://doi.org/10.1561/2500000010
http://dx.doi.org/10.1561/2500000010
https://doi.org/10.1561/2500000049
https://doi.org/10.1561/2500000049
https://doi.org/10.1561/2500000049
https://doi.org/10.1126/science.268.5210.545
https://doi.org/10.1016/0304-3975(94)00200-3
https://doi.org/10.1016/0304-3975(94)00200-3
https://doi.org/10.1016/0304-3975(94)00200-3
https://arxiv.org/abs/1605.07969
https://arxiv.org/abs/1605.06640
http://proceedings.mlr.press/v70/bosnjak17a.html?ref=https://githubhelp.com
http://proceedings.mlr.press/v70/bosnjak17a.html?ref=https://githubhelp.com
http://proceedings.mlr.press/v70/bosnjak17a.html?ref=https://githubhelp.com
https://arxiv.org/abs/2108.13643
http://arxiv.org/abs/2108.13643
https://github.com/instadeepai/AlphaNPI
https://doi.org/10.48550/arxiv.1611.02109
https://doi.org/10.48550/arxiv.1611.02109
https://doi.org/10.48550/arxiv.1611.02109
https://arxiv.org/abs/1611.02109
https://arxiv.org/abs/1611.02109v2
https://arxiv.org/abs/1611.02109v2
https://arxiv.org/abs/1611.02109v2

[13] Ameesh Shah et al. Learning Differentiable Programs with Admissible Neural Heuristics.188

Tech. rep. arXiv: 2007.12101v5.189

[14] Esteban Real et al. “AutoML-Zero: Evolving Machine Learning Algorithms From Scratch”.190

In: 37th International Conference on Machine Learning, ICML 2020 PartF16814 (2020),191

pp. 7963–7975. arXiv: 2003.03384. URL: https://arxiv.org/abs/2003.03384v2.192

[15] Daiyi Peng et al. “PyGlove: Symbolic programming for automated machine learning”. In:193

Advances in Neural Information Processing Systems 33 (2020), pp. 96–108.194

[16] James Bradbury et al. JAX: composable transformations of Python+NumPy programs. Ver-195

sion 0.3.13. 2018. URL: http://github.com/google/jax.196

[17] Patrick Kidger and Cristian Garcia. “Equinox: neural networks in JAX via callable PyTrees197

and filtered transformations”. In: arXiv preprint arXiv:2111.00254 (2021).198

[18] B.J. Copeland. Alan Turing’s Electronic Brain: The Struggle to Build the ACE, the World’s199

Fastest Computer. OUP Oxford, 2012. ISBN: 9780199609154. URL: https : / / books .200

google.com/books?id=YhQZnczOS7kC.201

[19] J Solomonoff Raymond. “A formal theory of inductive inference i”. In: Information and Con-202

trol 7 (1964), pp. 1–22.203

[20] Sumit Gulwani. “Automating String Processing in Spreadsheets Using Input-output Exam-204

ples”. In: Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles205

of Programming Languages. POPL ’11. Austin, Texas, USA: ACM, 2011, pp. 317–330. ISBN:206

978-1-4503-0490-0. DOI: 10.1145/1926385.1926423. URL: http://doi.acm.org/10.207

1145/1926385.1926423.208

[21] Program Synthesis. “Emina Torlak Computer-Aided Reasoning for Software”. In: ().209

[22] Tessa Lau et al. “Programming by Demonstration Using Version Space Algebra”. In: Mach.210

Learn. 53.1-2 (2003), pp. 111–156. ISSN: 0885-6125. DOI: 10.1023/A:1025671410623.211

URL: https://doi.org/10.1023/A:1025671410623.212

[23] Tom M. Mitchell. “Generalization as Search”. In: Artif. Intell. 18.2 (1982), pp. 203–226. DOI:213

10.1016/0004-3702(82)90040-6. URL: https://doi.org/10.1016/0004-3702(82)214

90040-6.215

[24] Rajeev Alur, Pavol Černý, and Arjun Radhakrishna. “Synthesis through unification”. In:216

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-217

gence and Lecture Notes in Bioinformatics) 9207 (2015), pp. 163–179. ISSN: 16113349. DOI:218

10.1007/978- 3- 319- 21668- 3_10/FIGURES/3. arXiv: 1505.05868. URL: https:219

//link.springer.com/chapter/10.1007/978-3-319-21668-3_10.220

[25] Kevin Ellis et al. “DreamCoder: Bootstrapping inductive program synthesis with wake-sleep221

library learning”. In: Proceedings of the ACM SIGPLAN Conference on Programming Lan-222

guage Design and Implementation (PLDI) (2021), pp. 835–850. DOI: 10.1145/3453483.223

3454080.224

[26] Kevin Ellis et al. “Library Learning for Neurally-Guided Bayesian Program Induction”. In:225

().226

[27] Matthew Bowers et al. “Top-Down Synthesis For Library Learning”. In: Proceedings of the227

ACM on Programming Languages 1 (2022). URL: https://doi.org/.228

[28] Kensen Shi et al. CROSSBEAM: LEARNING TO SEARCH IN BOTTOM-UP PROGRAM SYN-229

THESIS. URL: https://github.com/google-research/crossbeam.230

[29] Melanie Mitchell. “Abstraction and Analogy-Making in Artificial Intelligence”. In: (). arXiv:231

2102.10717v2.232

[30] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. “Human-level concept233

learning through probabilistic program induction”. In: Science 350.6266 (2015), pp. 1332–234

1338.235

[31] Brenden M Lake et al. “Building machines that learn and think like people”. In: Behavioral236

and brain sciences 40 (2017).237

[32] Brenden M Lake. “Compositional generalization through meta sequence-to-sequence learn-238

ing”. In: (). arXiv: 1906.05381v2.239

[33] Miguel Lázaro-Gredilla et al. “Beyond imitation: Zero-shot task transfer on robots by learning240

concepts as cognitive programs”. In: (2018). arXiv: 1812.02788v1.241

6

https://arxiv.org/abs/2007.12101v5
https://arxiv.org/abs/2003.03384
https://arxiv.org/abs/2003.03384v2
http://github.com/google/jax
https://books.google.com/books?id=YhQZnczOS7kC
https://books.google.com/books?id=YhQZnczOS7kC
https://books.google.com/books?id=YhQZnczOS7kC
https://doi.org/10.1145/1926385.1926423
http://doi.acm.org/10.1145/1926385.1926423
http://doi.acm.org/10.1145/1926385.1926423
http://doi.acm.org/10.1145/1926385.1926423
https://doi.org/10.1023/A:1025671410623
https://doi.org/10.1023/A:1025671410623
https://doi.org/10.1016/0004-3702(82)90040-6
https://doi.org/10.1016/0004-3702(82)90040-6
https://doi.org/10.1016/0004-3702(82)90040-6
https://doi.org/10.1016/0004-3702(82)90040-6
https://doi.org/10.1007/978-3-319-21668-3_10/FIGURES/3
https://arxiv.org/abs/1505.05868
https://link.springer.com/chapter/10.1007/978-3-319-21668-3_10
https://link.springer.com/chapter/10.1007/978-3-319-21668-3_10
https://link.springer.com/chapter/10.1007/978-3-319-21668-3_10
https://doi.org/10.1145/3453483.3454080
https://doi.org/10.1145/3453483.3454080
https://doi.org/10.1145/3453483.3454080
https://doi.org/
https://github.com/google-research/crossbeam
https://arxiv.org/abs/2102.10717v2
https://arxiv.org/abs/1906.05381v2
https://arxiv.org/abs/1812.02788v1

[34] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal represen-242

tations by error propagation. Tech. rep. California Univ San Diego La Jolla Inst for Cognitive243

Science, 1985.244

[35] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural computa-245

tion 9.8 (1997), pp. 1735–1780.246

[36] Alex Graves and Greg Wayne. “Neural Turing Machines”. In: (). arXiv: 1410.5401v2.247

[37] Alex Graves and Google Deepmind. “Adaptive Computation Time for Recurrent Neural Net-248

works”. In: (). arXiv: 1603.08983v6.249

[38] Scott Reed and Nando De Freitas. “Neural Programmer-Interpreters”. In: 4th International250

Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings (2015).251

DOI: 10.48550/arxiv.1511.06279. arXiv: 1511.06279. URL: https://arxiv.org/252

abs/1511.06279v4.253

[39] Mostafa Dehghani et al. “Universal transformers”. In: arXiv preprint arXiv:1807.03819254

(2018).255

[40] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. “On the difficulty of training recurrent256

neural networks”. In: International conference on machine learning. PMLR. 2013, pp. 1310–257

1318.258

[41] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In: arXiv259

preprint arXiv:1412.6980 (2014).260

A Appendix261

A.1 Interpreting distributed programs262

Differentiable programs are distributed, because the instruction register is a probability distribution.263

This means that multiple instructions can be carried out at once, which makes one-to-one decompi-264

lation difficult, and also prevents these programs from being easily human-interpretable. Distributed265

execution is affected by two factors in our model: the probability that a current instruction is a jump266

instruction, and the probability that the comparison register for the jump instruction is equal to zero.267

Also, every operation is distributed, so each register’s values and all memory values are multino-268

mial distributions created by softmax, which overlap with one another. Thus, in a longer non-trivial269

program, decompiling network weights into a one-to-one interpretation is more difficult. However,270

starting with a decompilable algorithm increases the probability that a tuned algorithm will be inter-271

pretable, as the initialized algorithm is less distributed than a naturally recovered algorithm.272

1 read 0 1
2 inc 1 1
3 read 1 1
4 write 0 1
5 halt

1 map_loop:
2 read 1 2
3 inc 2 2
4 write 1 2
5 inc 1 1
6 jump 3

map_loop↪→

1 cond:
2 mod 2 3 1
3 jump 1 true
4 jump 0 false
5 true:
6 write 4 1
7 false:
8 read 4 1

273

1 loop:
2 noop
3 noop
4 inc 3 3
5 jump 4 loop

1 filter_loop:
2 read 3 2
3 mod 2 6 1
4 write 3 1
5 inc 3 3
6 max 3 4 5
7 sub 4 5 5
8 jump 5

filter_loop↪→

1 inc 2 2
2 fib_loop:
3 write 3 2
4 add 1 2 2
5 read 3 1
6 write 3 2
7 inc 3 3
8 jump 4

fib_loop↪→

274

7

https://arxiv.org/abs/1410.5401v2
https://arxiv.org/abs/1603.08983v6
https://doi.org/10.48550/arxiv.1511.06279
https://arxiv.org/abs/1511.06279
https://arxiv.org/abs/1511.06279v4
https://arxiv.org/abs/1511.06279v4
https://arxiv.org/abs/1511.06279v4

	Introduction
	Algorithm
	Neural Compilation
	Optimization

	Experiments
	Limitations & Future Work
	Appendix
	Interpreting distributed programs

