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Abstract

Some recent studies have demonstrated the feasibility of single-stage neural text-1

to-speech, which does not need to generate mel-spectrograms but generates the2

raw waveforms directly from the text. Single-stage text-to-speech often faces two3

problems: a) the one-to-many mapping problem due to multiple speech variations4

and b) insufficiency of high frequency reconstruction due to the lack of supervision5

of ground-truth acoustic features during training. To solve the a) problem and6

generate more expressive speech, we propose a novel phoneme-level prosody7

modeling method based on a variational autoencoder with normalizing flows8

to model underlying prosodic information in speech. We also use the prosody9

predictor to support end-to-end expressive speech synthesis. Furthermore, we10

propose the dual parallel autoencoder to introduce supervision of the ground-truth11

acoustic features during training to solve the b) problem enabling our model to12

generate high-quality speech. We compare the synthesis quality with state-of-13

the-art text-to-speech systems on an internal expressive English dataset. Both14

qualitative and quantitative evaluations demonstrate the superiority and robustness15

of our method for lossless speech generation while also showing a strong capability16

in prosody modeling.17

1 Introduction18

With the rapid development of deep learning, neural text-to-speech (TTS) systems can generate19

natural and high-quality speech and thus have drawn much attention in the machine learning and20

speech community. TTS is a task that aims at synthesizing raw speech waveforms from the given21

source text. Most previous neural TTS systems’ pipelines are two-stage. The first stage is to generate22

intermediate speech representations (e.g., mel-spectrograms) autoregressively [36, 29, 24, 19] or23

non-autoregressively [27, 26, 14] from input text. The second stage is to synthesize speech waveforms24

from the generated intermediate speech representations using a vocoder [10, 22, 25, 38, 33]. These25

systems with two-stage pipelines can synthesize high-quality speech but still have drawbacks because26

they need sequential training or fine-tuning [15]. In addition, the use of predefined intermediate27

representations prevents further improvement in overall performance, as two system components can28

not be jointly trained and connected by learned intermediate representations.29

Recently, several works (FastSpeech 2s [26], EATS [7], VITS [15]) have proposed parallel end-to-end30

TTS models that generate raw waveforms directly from input text in a single stage. FastSpeech 2s31

introduces explicit pitch and energy as mel-spectrogram decoder conditions to alleviate the one-to-32

many mapping problem in the TTS system. However, it needs to extract these handcrafted features in33
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advance, complicating the training pipeline. Moreover, FastSpeech 2s only models pitch and energy34

but does not disentangle other prosody features from the speech. EATS and VITS can synthesize35

high-quality speech, but they do not disentangle prosody information from speech, so they can not36

achieve prosody modeling and control.37

To solve the problem that previous single-stage parallel end-to-end TTS models do not model the38

general prosody, we propose the Controllable and LOssless Non-autoregressive End-to-end TTS39

(CLONE), which contains some carefully designed components to disentangle and model the general40

prosody from speech.41

Firstly, to better solve the one-to-many mapping problem, we need to model the information variance42

other than text in speech. We propose an implicit phoneme-level prosody latent variable modeling43

instead of only explicitly modeling pitch and energy in FastSpeech 2s. The phoneme-level prosody44

latent variable models general prosody in the speech in a unified way without supervision. Specifically,45

we assume that prosody follows a normal distribution and use a variational autoencoder [16] (VAE)46

with normalizing flows [28, 6] to model it, which enhances the modeling ability of pure VAE and47

enables better modeling of prosody information that has extremely high variance. We propose a48

prosody predictor to predict the prior distribution of phoneme-level prosody latent variable from the49

input phoneme, which enables end-to-end synthesis as a TTS system.50

In addition, we carefully study the problem of unsatisfactory high-frequency information generation51

in single-stage end-to-end speech synthesis, which is caused by the lack of the supervision of ground-52

truth acoustic features during training. To enhance the learned intermediate representation, we propose53

the dual parallel autoencoder (DPA) that consists of two parallel encoders (the acoustic encoder54

and the posterior wave encoder) and a wave decoder. DPA uses ground-truth linear spectrograms55

to regularize the learned intermediate representations for efficient learning. Besides, we introduce56

the multi-band discriminator (MBD) that significantly speeds up model convergence and improves57

generation quality. DPA and MBD enable CLONE to synthesize high-quality speech at the lossless58

high sampling rate (48 kHz) with better high-frequency information.59

We conduct experiments on our private speech datasets. The results of extensive evaluations show that60

CLONE outperforms SOTA two-stage and single-stage TTS models [29, 26, 15] in terms of speech61

quality. In addition, CLONE can synthesize lossless speech at 48 kHz with better speech quality.62

Furthermore, we demonstrate that CLONE can model and control prosody by the phoneme-level63

prosody latent variable and generate speech with appropriate prosodic inflections. We attach audio64

samples generated by CLONE at https://cloneneurips2022.github.io/CLONE/.65

2 Related Work66

Text-to-Speech Text-to-Speech (TTS), which aims to synthesize intelligible and natural speech67

waveforms from the given text, has attracted much attention in recent years. Specifically, the neural68

network-based TTS models [36, 29, 27, 26, 22] have achieved tremendous progress. The quality of69

the synthesized speech is improved a lot and is close to that of the human counterpart. The previous70

prevalent methods are two-stage. The general pipeline of two-stage methods is: first, generate the71

acoustic features (e.g., mel-spectrograms) from text autoregressively [36, 29, 24, 19, 34] or non-72

autoregressively [27, 26, 14, 23], then synthesize the raw waveforms conditioned on the acoustic73

features [10, 22, 25, 18]. Recently, several single-stage end-to-end TTS models [26, 7, 15] have been74

proposed to generate raw waveform directly from the text. Among them, VITS [15] outperforms the75

two-stage models due to the advantages of learned intermediate speech representations obtained by76

fully end-to-end training. However, these single-stage methods have poor controllability over the77

prosody of synthesized speech. Specifically, EATS [7] and VITS cannot control prosody. FastSpeech78

2s [26] can only control some pre-defined prosodic features (i.e., pitch and energy), and these features79

are required to be extracted in advance. Unlike the aforementioned single-stage models, by utilizing80

a conditional VAE with normalizing flows, CLONE achieves high controllability over the general81

phoneme-level prosody of synthesized speech.82
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Figure 1: The overview of CLONE and prosody modeling method.

Prosody Modeling Many previous works have focused on learning underlying non-textual infor-83

mation (e.g., style and prosody) in speech. In particular, some works [30, 37] introduce a reference84

embedding to model style and prosody. [30] extracts a prosody embedding from a reference spec-85

trogram, and [37] models a reference embedding as a weighted combination of a bank of learned86

embeddings. Some works [1, 39] use the variational autoencoder (VAE) to model latent representa-87

tions for styles and prosody of speech. Specifically, [32] uses multi-level VAE to model fine-grained88

prosody at the phoneme and word level in an autoregressive way. [39] and [12] integrate VAE89

with Tacotron 2 for better style modeling. Some works [8, 11] use GMM based mixture density90

network to model prosodic information at phoneme and word levels. Unlike the previous models,91

CLONE adopts a conditional VAE with normalizing flows for the phoneme-level prosody modeling92

to a single-stage parallel TTS system. Inspired by [28, 5, 40] that improve the expressive capability93

of prior and posterior distribution with normalizing flows, we add normalizing flows to enhance94

the representation power of our prior distribution for better prosody modeling. Furthermore, the95

prosody predictor enables CLONE to predict the prior distribution of prosody directly from the text96

and control the prosody of generated speech during inference without the need for manually adjusting97

the sampling points [39] or a reference speech [37] or other modality input (e.g., video [13]).98

3 CLONE99

3.1 Overview100

The overall model structure of CLONE shown in Figure 1a can be regarded as a conditional VAE.101

Firstly, the posterior encoder converts the input spectrograms to a sequence of phoneme-level prosody102

latent variable z. Then, the acoustic encoder transforms the prosody latent variable z into the learnable103

intermediate representations conditioning on linguistic features. Finally, the wave decoder predicts the104

waveforms from the learnable intermediate representations. The objective of CLONE is to maximize105

the evidence lower bound (ELBO) of the intractable marginal log-likelihood of data logθ(x | c):106

ELBO = Eqϕ(z|x,c) [log pθ(x | z, c)]−Dkl (qϕ(z | x, c)∥pθ(z | c)) , (1)

where c and z denote the linguistic feature and the phoneme-level prosody latent variable respectively,107

qϕ(z | x, c) is the approximate posterior distribution of z given a data point x and condition c,108

pθ(x | z, c) is the likelihood function of x given z and c, and pθ(z | c) is the prior distribution of z109

given c.110
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The training loss of CLONE is the negative ELBO, which consists of the reconstruction loss111

(−Eqϕ(z|x,c) [log pθ(x | z, c)]) and the KL divergence (Dkl(qϕ(z | x, c)∥pθ(z | c))). The details112

of the reconstruction loss and the KL divergence are described in Section 3.4.2 and Section 3.2,113

respectively.114

3.2 Prosody Modeling115

To model the prosody of speech more appropriately, we determine to model the phoneme-level116

prosody rather than the frame-level prosody or the word-level prosody. Because the frame-level117

prosody causes severe linguistic information leakages during training, and the granularity of the118

word-level prosody is too large to reflect the details of the prosody well. Since the input linear119

spectrogram is at the frame level, we need to convert the frame-level prosody feature to the phoneme120

level. We use the obtained duration of phonemes to construct the hard alignment matrix representing121

the correspondence between phonemes and spectrogram frames and convert the frame-level prosody122

feature to the phoneme-level prosody feature by the matrix as follows:123

PFphone = diag(s) ·A ·PFframe, (2)

where PFphone ∈ RTp×d and PFframe ∈ RTf×d denote the phoneme-level prosody feature and124

the frame-level prosody feature, respectively, A ∈ RTp×Tf denotes the hard alignment matrix, and125

s ∈ RTp denotes the inverse of the duration of phonemes (si = 1/
∑Tf

j=1 aij).126

The mean and standard deviation of the approximate posterior distribution qϕ(z | x, c) are predicted127

from the obtained phoneme-level prosody feature and linguistic feature. We obtain the linguistic128

feature c by expanding the output of the text encoder according to the phoneme duration. The length129

of the linguistic feature is the same as the number of frames in the spectrogram.130

The formula for KL divergence is as follows:131

Lkl = Dkl (qϕ(z | x, c)∥pθ(z | c)) = Eqϕ(z|x,c) [log qϕ(z | x, c)− log pθ(z | c)] . (3)

Unlike traditional VAE, we assume that the approximate posterior distribution of the phoneme-level132

prosody latent variable z is a normal distribution rather than a standard normal distribution, i.e.,133

qϕ (z | x, c) = N (z;µϕ (x, c) , σϕ (x, c)). As a TTS model, we want to control the phoneme-level134

prosody explicitly. If z follows the standard normal distribution, the prosody variation is implicitly135

determined in the random sampling process, which is not desired. Thus, a normal distribution with136

variable mean and variance is a better choice. It enables the prosody variation to be contained in the137

mean and variance of normal distribution so that the corresponding prosody can be determined by138

predicting the mean and variance. In addition, compared with standard normal distribution, normal139

distribution is more complex, which increases the prosody modeling ability to obtain diverse prosody140

variation.141

We also need to increase the expressiveness of the prior distribution to match the posterior distribution.142

Therefore, we apply normalizing flows, which enable an invertible transformation from a simple143

standard normal distribution into a more complex prior distribution following the rule of change-of-144

variables:145

pθ(z | c) = N (fθ(z);0, I)

∣∣∣∣det ∂fθ(z)∂z

∣∣∣∣ , (4)

where fθ denotes the normalizing flow. After the reparameterization of VAE, we get the phoneme-146

level prosody latent variable z which represents the phoneme-level prosody of the speech. We need147

to convert phoneme-level z to frame-level variable P̂Fframe to match the length of the linguistic148

feature as follows:149

P̂Fframe = AT · z, (5)
where AT is the transposed matrix of A.150

3.3 Prosody Predictor151

We propose a prosody predictor to model the correspondence between phoneme and phoneme-level152

prosody. The prosody predictor can predict the mean and variance of qϕ (z | x, c) from the output153
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of the text encoder. Therefore, CLONE can predict phoneme-level prosody from text input in the154

inference stage. During inference, there are three modes to generate highly natural speech with155

suitable prosody (details in Section 4.4). The optimization goal of the prosody predictor is to minimize156

the KL divergence between the predicted normal distribution and the posterior distribution. Therefore,157

the training loss of the prosody predictor is as follows:158

Lpp = Dkl(N (µpp, σpp),N (µϕ, σϕ)), (6)

where µpp and σpp are the mean and standard deviation predicted by the prosody predictor. Compared159

with Fastspeech 2 to directly predict pitch and energy, we predict the distribution of phoneme-level160

prosody, avoiding the one-to-many mapping problem.161

It is worth noting that the duration predictor we used is an improved version of the duration predictor162

in FastSpeech 2 [26]. Since prosodic information partly determines the phoneme duration, we use z163

as the condition of the duration predictor besides the output of the text encoder, i.e., d̂ = DP(z, t) ∈164

RTp , where DP denotes the duration predictor, and t is the output of the text encoder. In this way,165

CLONE can generate more stable and natural phoneme durations.166

3.4 Waveform Generation167

3.4.1 Motivation168

Some end-to-end TTS studies [26, 7, 15] focus on generating raw waveforms directly from phonemes169

recently. These single-stage TTS systems usually generate learned intermediate representations from170

phonemes and then synthesize raw waveforms from the learned intermediate representations. Unlike171

the mel-spectrogram used in two-stage methods, the intermediate representation in single-stage172

methods is predicted by the model without training supervision, subject to prediction errors and173

over-smoothness. The lack of supervision of intermediate representations during training expands the174

search space of the single-stage model, resulting in the model being more challenging to optimize,175

which is reflected in the poor modeling ability for high-frequency information in our experiments. To176

narrow the search space of waveform generation in single-stage models, we introduce ground-truth177

speech signals. We design an autoencoder architecture called Dual Parallel Autoencoder (DPA) to178

regularize the learned intermediate representation. In addition, to further enhance the quality of the179

generated waveforms, we propose a new discriminator called Multi-Band Discriminator (MBD).180

MBD divides the waveform into multiple bands so that our model can separately supervise the181

low-frequency and high-frequency parts of the audio, improving the overall quality of the synthesized182

speech.183

3.4.2 Dual Parallel Autoencoder184

In the dual parallel autoencoder, two parallel encoders, namely the acoustic encoder and the posterior185

wave encoder, generate intermediate representation, and a dual training method is used to optimize186

them. The acoustic encoder transforms z into the predicted intermediate representations îr condi-187

tioning on linguistic features, and the posterior wave encoder transforms linear spectrograms into188

the intermediate representations ir. The wave decoder acts as the decoder of DPA and generates the189

waveform from both intermediate representations. In practice, we concatenate ir and îr in the batch190

dimension to get irconcat and send irconcat into the wave decoder to produce the waveform ŵ. For191

dual training, we compute the mean absolute error (MAE) Lir between ir and îr, so that îr gets192

the supervision of ground-truth acoustic features from ir, and îr is regularized by ir, which assists193

CLONE in learning intermediate representation efficiently. Please note that we only use the acoustic194

encoder without the posterior wave encoder during inference.195

To calculate the reconstruction loss, we convert ŵ to mel-spectrogram m1 and calculate MAE with196

ground-truth mel-spectrogram mgt. To make ir and îr focus on the information at the human197

voice frequency band for better prosody modeling, we use a one-layer linear network to predict the198

mel-spectrogram m2 from irconcat. Therefore, the whole reconstruction loss Lrecon is:199

Lrecon = MAE(mgt,m1) +MAE(mgt,m2). (7)
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3.4.3 Discriminator200

We use the popular adversarial training approach as HiFi-GAN [17] to improve the resolution of201

synthesized speech. The following equations describe the loss of adversarial training:202

LadvD = E(w,ŵ)

[
((D(w)− 1)2 + (D(ŵ))2

]
, (8)

LadvG = Ew

[
(D(ŵ)− 1)2

]
+ βLfm, Lfm = E(w,ŵ)

[
L∑

l=1

1

Nl
MAE(Dl(w), Dl(ŵ))

]
, (9)

where LadvD, LadvG and Lfm denote the loss of the discriminator, the loss of the wave decoder, and203

the loss of the feature map, respectively. L denotes the total number of layers in the discriminators.204

Dl and Nl denote the features and the number of features in the l-th layer of the discriminator,205

respectively. β is the coefficient of the feature map loss Lfm, and we set it to 0.1 in our experiments.206

We use two discriminators for joint adversarial training, namely MPD in HiFi-GAN and MBD. MBD207

uses the pseudo quadrature mirror filter bank (Pseudo-QMF) to divide the waveform into N sub-208

bands. These N sub-bands with one full-band are respectively sent to N + 1 scale discriminators in209

MelGAN [18]. By applying different discriminators on different frequency bands of the synthesized210

audio, MBD can significantly enhance the generation quality of high-frequency parts, allowing211

CLONE to generate high-fidelity and lossless audio at a high sample rate. A similar idea is used212

in [21]. However, our method differs in that we send different frequency bands into different213

discriminators.214

3.5 Loss Function215

The total loss of CLONE can be expressed as follows:216

L = λ1 ∗ Lrecon + λ2 ∗ Lkl + λ3 ∗ Lir + λ4 ∗ Lpp + λ5 ∗ Ldur + λ6 ∗ LadvG, (10)

where λ[1→6] represent coefficients of different components of the total loss.217

4 Experiment218

4.1 Dataset219

We used proprietary English speech datasets, including a single-speaker dataset and a multi-speaker220

dataset. The single-speaker dataset contains 11,176 utterances with a total audio length of 10 hours221

at both 24 kHz and 48 kHz. We use 9,000 utterances as the training set, 100 utterances as the222

validation set, and the remaining data as the test set. The multi-speaker speech data contains five223

English speakers (two males and three females) with a total audio length of 22 hours. We evaluate the224

high-quality generation capability of CLONE on the single-speaker dataset and the prosody transfer225

capability of CLONE on the multi-speaker dataset.226

4.2 Data Preprocessing227

We convert the text sequences into phoneme sequences following [2, 19, 26]. In experiments, we use228

80-dimensional mel-spectrograms and linear spectrograms with 2048 filters. For the audio at 24 kHz,229

the hop size is 300, and the window size is 1200. For the audio at 48 kHz, the hop size is 300, and the230

window size is 2048. All use the Hann window.231

4.3 Model Configuration232

Our text encoder uses a stack of 6 feed-forward transformer blocks [35], and the prosody predictor233

consists of 4 WaveNet residual blocks (dilated CNN) [22], which consists of layers of dilated234

convolutions with a gated activation unit and skip connection. The duration predictor consists of a235

2-layer 1D convolutional network with ReLU activation, each followed by layer normalization [3]236

and the dropout layer [31], and an extra linear layer with ReLU activation to output a scalar, which is237
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the predicted phoneme duration. The posterior encoder consists of 8 blocks of dilated CNN, and the238

normalizing flow is a stack of affine coupling layers [6] consisting of 4 blocks of dilated CNN. The239

acoustic encoder is composed of 8 blocks of dilated CNN. The posterior wave encoder consists of 8240

blocks of dilated CNN. The structure of the wave decoder is the same as HiFi-GAN V1. To match241

our hop size, we change the upsampling rate to 5, 5, 4, 3 and change the upsampling kernel size to242

15, 15, 12, 9. The detailed hyper-parameters of CLONE are listed in the appendix.243

4.4 Training and Inference244

We train our model on 4 NVIDIA Tesla V100 32G GPUs with the batch size of 16 on each GPU for245

500k steps. We use the AdamW [20] optimizer with β1 = 0.8 and β2 = 0.99. The learning rate of246

CLONE is fixed at 2e-4. The discriminator uses the same optimization settings, with a fixed learning247

rate of 1e-4. As VITS, to reduce training time and GPU memory usage, we employ a windowed248

generator for training, randomly sampling segments of intermediate representation with a window249

size of 32 frames as input to the wave decoder.250

CLONE has three modes of inference, and the difference lies in how the prosody latent variable is251

calculated. (a) Use the prosody predictor to predict prosody information based on text information,252

and the input of the model is only text information, just like a typical TTS model. (b) The prosody253

latent variable is obtained through the inverse flow transformation, where the inputs of CLONE are254

textual information and the sampling value of the standard normal distribution. (c) The prosody255

information is extracted by the posterior encoder from the input linear spectrogram. In this mode, the256

model inputs are text information and the reference linear spectrogram. Besides, we test the inference257

speed of CLONE in mode (a) on an NVIDIA Tesla V100 32G GPU and compare it to that of VITS.258

The RTF of CLONE and VITS are 0.012 and 0.017, respectively, indicating that our model has a259

comparable inference speed to the SOTA single-stage parallel TTS model.260

4.5 Evaluation261

4.5.1 MOS Evaluation262

We conduct the MOS (mean opinion score) evaluation to measure the synthesis quality of different263

models. We use each model to synthesize the same 30 utterances1, and let 15 English native264

speakers evaluate them. We compare with the state-of-the-art (SOTA) autoregressive TTS model265

Tacotron 2 [29] with GMM-based attention mechanisms [4], the SOTA non-autoregressive TTS model266

FastSpeech 2 [26], and the SOTA single-stage TTS model VITS [15]. The vocoder for Tacotron267

2 and FastSpeech 2 is TFGAN [33], as TFGAN has better generation robustness than HiFi-GAN268

in our experiments. The above models all generate audio at 24 kHz. We evaluate two kinds of269

CLONE, namely 24 kHz CLONE and 24 kHz CLONE without MBD, of which the discriminators270

are the same as those used in HiFi-GAN. The results of the MOS evaluation are shown in Table 1. It271

can be seen that CLONE surpasses other SOTA models, indicating that our phoneme-level prosody272

modeling method and the introduction of DPA enable the model to synthesize highly natural speech273

with appropriate prosodic inflections. In addition, CLONE is better than CLONE without MBD,274

demonstrating the effectiveness of MBD for generating higher quality speech.275

Table 1: The MOS result with 95% confidence intervals of different models.

Method MOS CI

Tacotron 2 + TFGAN 4.0717 ±0.0578
FastSpeech 2 + TFGAN 4.0983 ±0.0579
VITS 4.0108 ±0.0601

24 kHz CLONE w/o MBD 4.1000 ±0.0606
24 kHz CLONE 4.1567 ±0.0528

1To test the synthesis quality and robustness of the model and avoid data leakage, we use 30 general utterances
outside the dataset for testing.
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Furthermore, we conduct CMOS evaluations on 30 utterances with ground-truth recording audio.276

We compare 24 kHz VITS, 24 kHz CLONE, and 48 kHz CLONE with 48 kHz ground-truth audio,277

respectively, as shown in Table 2. We find that 48 kHz CLONE can generate the audio close to the 48278

kHz ground-truth audio and outperform both the 24 kHz CLONE and 24 kHz VITS, demonstrating279

that CLONE can synthesize high-fidelity 48 kHz audio.280

Table 2: The CMOS comparison to evaluate speech generation quality at high sample rates. The
audio synthesized by 48 kHz CLONE, 24 kHz CLONE, and 24 kHz VITS is compared with 48 kHz
ground-truth audio, respectively.

Method CMOS

48 kHz Ground-truth Audio 0
48 kHz CLONE −0.1712
24 kHz CLONE −0.2393
24 kHz VITS −0.3621

4.5.2 Prosody Modeling281

(a) Pitch envelopes of the audios generated from -1 and 1. (b) Comparison of pitch envelopes for prosody transfer. (c) Pitch envelopes for reconstruction synthesis. (d) Energy curves for reconstruction synthesis.

Figure 2: Visualization of prosody modeling. (a) shows the variation in the pitch of the audio
generated from all −1 and all 1 sampling, respectively. (b) shows the pitch comparison of the
reference audio, transfer result, and end-to-end synthesis result. (c) and (d) show the pitch and energy
of the reconstruction result and reference audio, respectively.

Prosody Variation We infer CLONE in mode (b), i.e., sampling values in the standard normal282

distribution and obtaining the phoneme-level prosody latent variable through the inverse flow trans-283

formation. We find that the prosody of the generated speech has a very high variance by sampling284

different values in the standard normal distribution, which further proves the prosody modeling285

capability of CLONE. Figure 2a visualizes the variation in the pitch of the audio generated by setting286

sample values to all −1 and all 1, respectively. It can be seen that a significant prosody variation287

can be achieved by adjusting sample values in the standard normal distribution of the inverse flow288

transformation.289

Prosody Transfer We test the prosody transfer performance of CLONE. Firstly, we train a multi-290

speaker CLONE 2. Then we infer CLONE in mode (c). We input the reference speech of speaker 1 to291

the posterior encoder and use the speaker embedding of speaker 2 and the duration of the reference292

speech to synthesize the transfer result. The goal is to use the timbre of speaker 2 to synthesize audio293

with the same prosody as the reference audio of speaker 1. We also use the end-to-end synthesis294

result with the timbre of speaker 2 for comparison. In Figure 2b, the pitch envelope of the transfer295

result is very similar to that of the reference audio and quite different from that of the end-to-end296

synthesis result. Besides, we calculate the MAE on pitch and energy of the prosody transfer result297

and the end-to-end synthesis result (both are synthesized using the duration of the reference audio)298

with the reference audio as ground truth, as shown in Table 3. It can be seen that the MAE of the299

prosody transfer result is significantly smaller than that of the end-to-end synthesis result. Above two300

experiments prove the effectiveness of prosody transfer.301

2To implement multi-speaker TTS, we add speaker embedding to prosody predictor, duration predictor,
posterior encoder, and acoustic encoder.
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Table 3: The mean absolute error of pitch and energy of different methods.

Method Pitch MAE Energy MAE

end-to-end synthesis 79.38 35.91
prosody transfer synthesis 41.44 31.92
reconstruction synthesis by CLONE with HAPE 32.56 16.34
reconstruction synthesis by CLONE with SAPE 64.83 23.70

Prosody Reconstruction CLONE can extract the prosody of the reference audio through the302

posterior encoder and then reconstruct the audio as a conditional VAE. We draw the pitch and energy303

curves of the reference audio and the reconstruction result, as shown in Figure 2c and Figure 2d. We304

find that the two curves in each figure are very similar, indicating that CLONE can accurately extract305

and reconstruct the prosody (e.g., pitch and energy) of the reference audio.306

4.5.3 Ablation Study307

(a) CLONE without DPA (b) CLONE without MBD (c) CLONE

Figure 3: The spectrograms generated by three different CLONE, (a) CLONE without DPA, (b)
CLONE without MBD, and (c) complete CLONE.

Waveform Generation To further investigate the improvement of our method on waveform gen-308

eration, we conduct ablation experiments. Firstly, we conduct a MOS evaluation on the audio309

synthesized by the CLONE with and without MBD, as shown in Table 1. We find that MBD enhances310

the quality of synthesized audio. In addition, we plot the spectrograms of the synthesized audio, as311

shown in Figure 3. Figure 3a shows that without the DPA, the synthesized audio suffers obvious312

over-smoothness at high frequency, and Figure 3b shows that without MBD, the high-frequency313

details of synthesized audio are insufficient. These demonstrate that DPA significantly weakens the314

over-smoothness of the high frequency, and MBD further enhances the high-frequency details.315

Prosody Extraction CLONE uses a hard alignment prosody extractor (HAPE) to extract prosody,316

which improves the accuracy of prosody extraction. To verify this, we compare HAPE with the soft317

attention prosody extractor (SAPE) [9, 32] where the text encoder output is to query the ground-truth318

linear spectrogram by soft attention. We compute the MAE on pitch and energy of the above two319

methods in Table 3. It can be seen that the MAE of HAPE is smaller than that of SAPE, indicating320

that HAPE can extract prosody more accurately.321

5 Conclusion322

In this work, we propose a single-stage TTS system called CLONE that can directly generate lossless323

waveforms from the text in parallel. Specifically, we design a phoneme-level prosody modeling324

method based on a variational autoencoder with normalizing flows and a prosody predictor to solve the325

one-to-many mapping problem better and support end-to-end expressive speech synthesis. Besides,326

the dual parallel autoencoder is introduced to solve the problem of lacking supervision of ground-truth327

acoustic features during training, which allows the single-stage model to generate lossless speech.328

Our experiments demonstrate that CLONE outperforms existing SOTA single-stage and two-stage329

TTS models in speech quality while performing strong controllability over prosody.330
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