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ABSTRACT

Generative models, particularly diffusion models, have achieved remarkable suc-
cess in density estimation for multimodal data, drawing significant interest from the
reinforcement learning (RL) community, especially in policy modeling in continu-
ous action spaces. However, existing works exhibit significant variations in training
schemes and RL optimization objectives, and some methods are only applicable to
diffusion models. In this study, we compare and analyze various generative policy
training and deployment techniques, identifying and validating effective designs for
generative policy algorithms. Specifically, we revisit existing training objectives
and classify them into two categories, each linked to a simpler approach. The
first approach, Generative Model Policy Optimization (GMPO), employs a native
advantage-weighted regression formulation as the training objective, which is sig-
nificantly simpler than previous methods. The second approach, Generative Model
Policy Gradient (GMPG), offers a numerically stable implementation of the native
policy gradient method. We introduce a standardized experimental framework
named GenerativeRL. Our experiments demonstrate that the proposed methods
achieve state-of-the-art performance on various offline-RL datasets, offering a
unified and practical guideline for training and deploying generative policies.

1 INTRODUCTION

Generative models, such as flow models and diffusion models, have demonstrated remarkable
capabilities in modeling multi-modal data across diverse applications, including image, video, and
audio generation (Rombach et al., 2022; Ho et al., 2022; Mittal et al., 2021), and protein structure
prediction (Abramson et al., 2024). Their expressive power stems from constructing continuous
and invertible mappings between probability distributions, enabling the transformation of simple
distributions like standard Gaussians into complex target distributions. Generative policies, which
are RL policy models based on generative models, have become a focus of study within the RL
community (Janner et al., 2022; Chi et al., 2023; Ren et al., 2024). They offer a principled approach
to modeling expressive and nuanced action distributions, particularly important in robotics tasks with
continuous and high-dimensional action spaces.

Despite the success of recent studies in offline-RL (Chen et al., 2023; Wang et al., 2023; Lu et al.,
2023; Hansen-Estruch et al., 2023), these studies often employ complex training schemes and lack
systematic investigation. This hinders understanding of key factors in training generative models for
policy modeling, leading to unnecessary dependencies, training inefficiencies, and higher inference
costs. Some work focuses primarily on diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020),
which has limited applicability to other generative models, such as flow models (Lipman et al., 2023;
Liu et al., 2023; Pooladian et al., 2023; Albergo & Vanden-Eijnden, 2023; Tong et al., 2024).

This motivates us to develop simple yet effective training schemes for both diffusion and other
emerging generative models, leveraging their advancements for the RL community’s benefit. We
revisit previous works on generative policy optimization in Table 1, and then categorize these works,
and propose two training schemes: Generative Model Policy Optimization (GMPO) and Generative
Model Policy Gradient (GMPG). GMPO is an advantage-weighted regression method with a stable
training process that does not require pretraining the generative model before optimal policy extraction.
This makes it more efficient and easier to train, featuring a shorter training schedule and a wider
range of model applications while maintaining comparable performance to previous works. GMPG
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is a policy gradient-based method in an RL-native formulation. We provide a numerically stable
implementation for continuous-time generative models as an RL policy. It has proven effective
in optimal policy extraction, especially for suboptimal policies. We evaluate the performance of
diffusion and flow models using these two training schemes in an offline reinforcement learning
setting with the D4RL dataset (Fu et al., 2021) and RL Unplugged (Gulcehre et al., 2020). Our results
demonstrate that the proposed schemes offer comparable or better performance than previous works
in most cases. We provide multiple ablations, covering model types, temperature settings, solver
schemes, and sampling time steps for training, to validate the effectiveness of our proposed methods.

To facilitate consistent comparisons and analyses, we introduce a standardized experimental frame-
work designed to combine the strengths of generative models and reinforcement learning by decou-
pling the generative model from the RL components. This decoupling enables consistent comparisons
and analyses of different generative models within the same RL context, a capability lacking in
previous works. Four key properties distinguish our framework from existing ones: unified API,
flexible data formats and shapes, auto-grad support, and diverse generative model integration.

In conclusion, the main contributions of our work include:

• Proposing two simple yet effective RL-native training approaches for generative policies, GMPO
and GMPG, which are compatible for both diffusion and flow models.

• Evaluating the performance of different generative models with the two training schemes on offline-
RL dataset, achieving state-of-the-art performance in most cases. Our work elucidates the key
factors in training generative policies and corrects several biases described in previous research.

• Providing a unified framework for combining the power of generative models and RL seamlessly,
easy for conducting a fair and RL-native evaluations, named GenerativeRL.

2 RELATED WORKS

Generative Policy Algorithms. Haarnoja et al. (2017) introduces Soft Q-Learning and uses an
energy-based generative policy for learning continuous actions from continuous states. Haarnoja et al.
(2018a) integrates hierarchical policies with discrete layers into the Soft Actor-Critic (Haarnoja et al.,
2018b) framework, which is called SACLSP and utilizes normalizing flows. Janner et al. (2022) first
incorporate diffusion models into RL named as diffuser, acting as optimal trajectory planners by
linking generative models with value function guidance being applied rudimentary. Chi et al. (2023)
explores diffusion models for policy modeling in robotics, which is the concept of diffusion policy
is first introduced. Chen et al. (2023) demonstrates effective policy learning in offline Q-learning
using a diffusion model as support called SfBC. Wang et al. (2023) introduces Diffusion-QL and
achieves policy regularization by alternating training between a Q-function-guided diffusion model
and a diffusion-supported Q-function. Lu et al. (2023) introduces Q-guided Policy Optimization
(QGPO) and derives the exact formulation of energy guidance for energy-conditioned diffusion
models, enabling precise Q-guidance for optimal policy. Hansen-Estruch et al. (2023) introduces
Implicit Diffusion Q-learning (IDQL) which uncovers the implicit policy form after Implicit Q-
learning, emphasizing the importance of sampling from both the behavior policy and the diffusion
model. Chen et al. (2024) uses the score function of a pre-trained diffusion model as a regularizer,
optimizing a Gaussian policy to maximize the Q-function by combining the multimodal properties
of diffusion models with the fast inference of Gaussian policies, which is called Score Regularized
Policy Optimization (SRPO). Similar methods can also be applied to models trained using the flow
matching (Zheng et al., 2023b; Kim et al., 2024). More details about the generative policy analyzed
in this paper are provided in Appendix C.

Reinforcement Learning Frameworks. Several open-source RL frameworks provide unified
interfaces for solving RL problems, although some are no longer maintained, such as OpenAI
Baselines (Dhariwal et al., 2017), Facebook/ELF (Tian et al., 2017), TFAgents (Guadarrama et al.,
2018), and JaxRL (Kostrikov, 2021). Active and widely-used frameworks include RLlib (Liang
et al., 2018), which focuses on distributed RL for training large-scale models; Dopamine (Castro
et al., 2018), a research framework for rapid RL algorithm prototyping; and Acme (Hoffman et al.,
2020), designed for flexibility and scalability in RL research. Stable Baselines3 (Raffin et al.,
2021), Tianshou (Weng et al., 2022), DI-engine (Niu et al., 2021), ElegantRL (Liu et al., 2021), and
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CleanRL (Huang et al., 2022) offer a wide range of algorithms, environments, and user-friendly
interfaces. TorchRL (Bou et al., 2023), a modular RL framework, supports PyTorch’s native API
and excels in handling dictionary-type tensors common in RL. The framework most related to ours
is CleanDiffuser (Dong et al., 2024), which was recently proposed to integrate different types of
diffusion algorithmic branches into a single framework.

3 BACKGROUND

This section provides a brief introduction to reinforcement learning and generative models. For more
fundamentals of diffusion and flow models, please refer to Appendix B.

3.1 REINFORCEMENT LEARNING

Reinforcement learning (RL) addresses sequential decision-making tasks typically modeled as a
Markov decision process (MDP), defined by the tuple (S,A, p, r, γ). Here, S is the state space, A is
the action space, p(st+1|st, at) represents the transition dynamics, r(st, at) is the reward function,
and γ is the discount factor. At each time step t, the agent, in state st, takes an action at ∈ A
according to the policy π(at|st). The agent then receives a reward rt and transitions to a new state
st+1 based on the transition dynamics p(st+1|st, at). The goal of the agent is to learn a policy
π : S → A that maximizes the expected cumulative reward over time, using only previously collected
data. This objective can be expressed as: Rs0,a0 = Es0,a0,s1,a1,... [

∑∞
t=0 γ

trt] .

In offline reinforcement learning (offline-RL), the agent has access to a fixed dataset Dµ of historical
interaction trajectories {st, at, rt, st+1}, collected by a behavior policy µ(at|st), which is often
suboptimal. Offline-RL is challenging because the agent cannot collect new data to correct its
mistakes, unlike in online-RL, where exploration is possible.

Suppose the value of action a at state s is modeled by a Q-function Q(s, a) ≈ Rs,a, which estimates
the expected return of taking action a at state s and following policy π thereafter. The value of state s
is modeled by a V-function V (s) = Ea∼π(·|s)[Q(s, a)].

3.2 GENERATIVE MODELS

Diffusion Models. Given a fixed data or target distribution, a diffusion model is determined by
the diffusion process path as an stochastic differential equation (SDE): dx = f(t)xtdt+ g(t)dwt.
The transition distribution of a point x ∈ Rd from time 0 to t is: p(xt|x0) ∼ N (xt|αtx0, σ2

t I). The
reverse process path can be described by an ordinary differential equation (ODE):

dxt
dt

= v(xt) = f(t)xt −
1

2
g2(t)∇xt log p(xt), (1)

where v(xt) is the velocity function and ∇xt
log p(xt) is the score function, typically modeled by a

neural network with parameters θ, denoted as vθ(xt) and sθ(xt), respectively.

Flow Models. Consider a flow model with time-varying velocity v(xt), whose flow path can be
described by an ODE: dxt

dt = v(xt). The velocity field transforms the source distribution p(x0) at
time t = 0 into the target distribution p(x1) at time t = 1 along the flow path and conforms to the
continuity equation: ∂p∂t +∇x · (pv) = 0.

Model Training. Training continuous-time generative model involves a matching objective
LMatching(θ), including the Score Matching method (Hyvärinen, 2005; Vincent, 2011):

LDSM =
1

2

∫ 1

0

Ep(xt,x0)

[
λ(t)∥sθ(xt)−∇xt

log p(xt|x0)∥2
]
dt, (2)

and the Flow Matching method (Lipman et al., 2023; Tong et al., 2024):

LCFM =
1

2

∫ 1

0

Ep(xt,x0,x1)

[
∥vθ(xt)− v(xt|x0, x1)∥2

]
dt. (3)
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Table 1: Training schemes of different generative policy RL algorithms. The ”Suitable Generative
Model” column indicates the model types to which the algorithm can be applied, with parentheses
showing the models actually used in previous work. If the model type is ”Any,” this method is
applicable to all generative models, including diffusion and flow models discussed in this paper. The
”Behavior Policy” column indicates whether the algorithm requires a pre-trained policy model for
subsequent training. The ”Critic Training” column describes the scheme used to learn the Q-function.
The ”Optimal Policy Extraction” column indicates whether the method trains and extracts the optimal
policy.

Algorithm Suitable Generative Model Behavior Policy Critic Training Optimal Policy Extraction

SfBC Any (VPSDE) Needed In-support Q-Learning ✗
QGPO Diffusion (VPSDE) Needed In-support Q-Learning ✓

Diffusion-QL Any (DDPM) Needed Conventional Q-Learning ✓
IDQL Any (DDPM) Needed IQL ✗
SRPO Diffusion (VPSDE) Needed IQL ✓
GMPO Any Not needed IQL ✓
GMPG Any Needed IQL ✓

For diffusion models, we investigate the Linear Variance-Preserving SDE (VP-SDE) model proposed
by Song et al. (2021b), a continuous-time variant of Denoising Diffusion Probabilistic Models
(DDPM) by Ho et al. (2020), and the Generalized VP-SDE (GVP) model introduced by Albergo
& Vanden-Eijnden (2023), which extends the Improved DDPM by Nichol & Dhariwal (2021) with
triangular scale and noise levels. For flow models, we investigate a simple flow model named I-CFM
by Tong et al. (2024).

4 REVISITING GENERATIVE POLICIES

We establish the formulation of the optimal policy in offline-RL in Section 4.1. Next, we review
prior work on generative policies in Section 4.2, with additional details in Appendix C. Subsequently,
Section 4.3 introduces two straightforward and effective training schemes.

4.1 OPTIMAL POLICY IN OFFLINE-RL

Previous works in offline-RL (Peters & Schaal, 2007; Peters et al., 2010; Abdolmaleki et al., 2018;
Wu et al., 2020) formulate policy optimization as a constrained optimization problem. The policy is
learned by maximizing the expected return, subject to the KL divergence constraint to the behavior
policy: π∗ = argmaxπ Es∼D,a∼π(·|s)

[
Q(s, a)− 1

βDKL(π(·|s)∥µ(·|s))
]
. This approach ensures

the learned policy rarely acts outside the support of the behavior policy, thus avoiding extrapolation
errors that could degrade performance, as emphasized by Kumar et al. (2019) and Fujimoto et al.
(2019). The optimal policy has an analytical form, as shown by Peng et al. (2021): π∗(a|s) =
eβ(Q(s,a)−V (s))

Z(s) µ(a|s), where Z(s) is a normalizing factor, and β is a temperature parameter. In
practice, we can build a parameterized neural-net policy πθ to approximate the optimal policy π∗.
The policy model can be trained by minimizing the KL divergence:

L(θ) = Es∼D [DKL(π
∗(·|s)∥πθ(·|s))] = Es∼D,a∼µ(·|s)

[
−e

β(Q(s,a)−V (s))

Z(s)
log πθ(a|s)

]
+ C, (4)

where C is a constant that does not depend on θ, or by using reverse KL divergence:

L(θ) = Es∼D [DKL(πθ(·|s)∥π∗(·|s))] = Es∼D,a∼πθ(·|s) [−βQ(s, a) +DKL(πθ(·|s)∥µ(·|s))] + C.
(5)

Comparison and derivation details of Eq. 4 and Eq. 5 are provided in Appendix A.

4.2 PREVIOUS WORKS ON GENERATIVE POLICY

Table 1 summarizes existing approaches for obtaining optimal generative policies. Table 2 provides
an overview of the training and inference schemes of these algorithms.

4
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Table 2: Generative model training and inference schemes of different generative RL algorithms. The
forward KL method, which includes SfBC, QGPO, IDQL, and GMPO, incorporates an advantage-
weighted regression term in its training or inference schemes. In contrast, the reverse KL method,
including Diffusion-QL, SRPO, and GMPG, utilizes the Q-function for policy gradients with KL
constraints. More comparisons are provided in Appendix A.2 and Appendix C.

Algorithm Training Schemes Inference Schemes

Forward KL ∇θEs,a∼µ
[
− e

β(Q(s,a)−V (s))

Z(s)
log πθ(a|s)

]
Reverse KL ∇θEs,a∼πθ [−βQ(s, a) +DKL(πθ(·|s)||µ(·|s))]

Public Works

SfBC ∇θLMatching(θ) (Eq. 2) a ∼ softmaxai∼µθQ(ai, s)

QGPO ∇ϕEt,s,ai∼µ
[
− eβQ(s,ai)∑N

i=1 e
βQ(s,ai)

log e
Eϕ(s,ai,t)∑N

i=1 e
Eϕ(s,ai,t)

]
a ∼ π,∇ log π = ∇ logµ+∇ log Eϕ

Diffusion-QL ∇θEs,a∼πθ [−βQ(s, a) + LMatching(θ)] a ∼ softmaxai∼πθQ(ai, s)

IDQL ∇θLMatching(θ) (Eq. 2) a ∼ |
∂

∂V
(Q(s,ai)−V (s))|

|Q(s,ai)−V (s)| µθ(ai|s)

SRPO ∇θEt,s,a∼πθ [−βQ(s, a) + w(t)(ϵψ(at|s)− ϵ)] a ∼ πθ

This work

GMPO ∇θEs,a∼µ
[
eβ(Q(s,a)−V (s))

Z(s)
LMatching(θ)

]
a ∼ πθ

GMPG ∇θEs,a∼πθ

[
−βQ(s, a) + log πθ(a|s)

µ(a|s)

]
a ∼ πθ

• KL divergence or its variant for behavior policy constraint.
• Q function for policy gradient method.
• Importance weight for advantage-weighted regression.

Generative Model Type Table 1 highlights that QGPO and SRPO are limited to diffusion models,
while other algorithms accommodate various generative models. QGPO’s restriction arises from its
reliance on the Contrastive Energy Prediction method (Eq. 30), which distills the Q function into
an energy guidance model specifically designed for diffusion models (Appendix C.2). Similarly,
SRPO’s constraint stems from its score-regularized loss, which naturally aligns with diffusion models
due to their inherent modeling of the score function. This compatibility, however, does not extend to
non-diffusion models, such as flow models (see Appendix C.4 for further explanation).

Given the rapid advancements in generative modeling, we strive to establish a unified training scheme
applicable to any generative model. By extracting effective designs from QGPO and SRPO algorithms,
we can eliminate components that hinder generalization, training efficiency, and complexity without
affecting performance

Behavior Policy Pretraining and Critic Training. As shown in Table 1, all methods require
pretraining a behavior policy. SfBC and IDQL rely on it for importance sampling during inference.
QGPO leverages the behavior policy for sampling in conjunction with energy guidance (Eq. 31).
SRPO utilizes a well-trained behavior policy to regularize the Gaussian model policy (Eq35). Fur-
thermore, while QGPO and SfBC employ in-support Q-learning with data augmentation from the
behavior policy for Q function training (Eq. 29), Diffusion-QL utilizes traditional Q-learning with a
similar dependence on the behavior policy (Eq. 36).

All three methods use the behavior policy for data augmentation during Q function training, making
it essential. In contrast, SRPO and IDQL use Implicit Q-Learning to train the Q function directly
(Eq. 32), without needing a behavior policy. This decouples the training of the behavior policy and
the Q function, allowing simultaneous training.

The slower sampling rates of generative models raise questions about the necessity of data augmenta-
tion in training process of SfBC, QGPO, and Diffusion-QL. Simpler approaches, such as the Implicit
Q-Learning employed by SRPO and IDQL, could offer greater efficiency for Q function training

5
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in generative policy optimization. This observation motivates us to investigate whether comparable
performance can be achieved by directly leveraging the Q function learned by IQL to guide generative
policy optimization. Specifically, we are interested in exploring the potential of explicitly extracting
a generative policy from the IQL-trained Q function, a direction not explored in previous works.

Optimal Policy Extraction. As shown in Table 1, SfBC and IDQL do not perform explicit policy
extraction. Instead, they use importance sampling to derive the optimal policy from the behavior
policy by evaluating the Q function. Although parallel computation can save inference time, the total
computational budget during inference scales with the number of actions sampled from the behavior
policy. SRPO uses a Gaussian model to explicitly output the optimal policy for guidance distillation,
reducing computational costs and speeding up deployment. However, Gaussian models are generally
less expressive than generative models, which can limit their effectiveness (Chi et al., 2023; Ren
et al., 2024). Therefore, explicit policy extraction using generative models is preferred for balancing
computational efficiency and expressiveness.

4.3 GENERATIVE MODEL POLICY TRAINING

To improve upon previous methods, we propose two straightforward yet effective training schemes
for generative model policy optimization, derived from Eq. 4 and Eq. 5, as shown in Table 2. These
schemes satisfy three key requirements: (1) Generality: Ensure compatibility with any generative
model through a simple and effective training process. (2) Decoupled Training: Train the Q-function
directly using Implicit Q-Learning (IQL), minimizing reliance on generative sampling. (3) Explicit
Policy Extraction: Consistently infer only one action at a time for model inference.

Generative Model Policy Optimization. Inspired by Song et al. (2021a), who demonstrated that
training with a maximum likelihood objective is equivalent to score matching, we replace the log-
likelihood term with the matching loss (Eq. 2) of the generative model. By keeping the exponential
form of the advantage function as the importance weight, as in Eq. 4, we derive the following
advantage-weighted regression training objective suitable for both diffusion and flow models:

LGMPO(θ) = Es∼D,a∼π∗(·|s) [LMatching(θ)]

= Es∼D,a∼µ(·|s)

[
eβ(Q(s,a)−V (s))

Z(s)
LMatching(θ)

]
.

(6)

Although Eq. 6 looks similar to Eq. 4, with the log-likelihood term replaced by the matching loss, it
can be derived independently. See Appendix C.6 for more details.

Unlike previous works, our GMPO approach does not have to use data augmentation from the
behavior policy. This removes the necessity of behavior policy and uses only data from the offline
dataset:

LGMPO(θ) = E(s,a)∼Dµ

[
eβ(Q(s,a)−V (s))

Z(s)
LMatching(θ)

]
. (7)

More details about GMPO are provided in Appendix C.6.

Generative Model Policy Gradient. This approach is directly derived from Eq. 5:

LGMPG(θ) = Es∼D [DKL(πθ(·|s)||π∗(·|s))]
= Es∼D,a∼πθ(·|s) [−βQ(s, a) +DKL(πθ(·|s)||µ(·|s))]
= Es∼D,a∼πθ(·|s) [−βQ(s, a) + log πθ(a|s)− logµ(a|s)] .

(8)

As an RL-native policy gradient method, GMPG directly calculates the log-likelihood term. However,
efficiently computing gradients for diffusion and flow models is challenging due to their forward
sampling process, which involves solving an initial value problem within an ODE solver. To address
this, we employ advanced techniques such as the adjoint method or Neural ODEs (as proposed by
Chen et al. (2018)), ensuring computational feasibility. Additionally, we utilize the Hutchinson trace
estimator (Hutchinson, 1990; Grathwohl et al., 2019) to compute the log-likelihood of the policy for
continuous-time generative models. See Appendix C.7.1 for more details.
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In contrast to GMPG’s direct log-likelihood calculation, Wang et al. (2023) propose an alternative
approach that replaces the log-likelihood term with a score matching loss (Eq. 37), and further
mitigates computational costs by employing a low time step (T = 5). However, this method
has limitations, as it may not scale effectively to high-dimensional spaces and could potentially
compromise generation quality with such a low time step. More details about GMPG are provided in
Appendix C.7.

We illustrate the intuitive sampling trajectories of GMPO and GMPG with a 2D toy example in
Appendix C.8 to clarify how it works.

5 FRAMEWORK

Based on the research needs analyzed in previous sections, we create GenerativeRL for verifying and
comparing various generative models and reinforcement learning algorithms. The key distinction of
GenerativeRL is its standardized implementation and unified API for generative models, allowing
researchers to access these models at the configuration level without dealing with complex details.
When compared to existing frameworks like CleanDiffuser (Dong et al., 2024), GenerativeRL differs
in its design principles:

• Unified API: It offers a simple API that maximizes compatibility with different kinds of generative
models, avoiding immature algorithms.

• Flexible Data Formats: It ensures consistent data formats for long-term use, supporting inputs and
outputs as PyTorch tensors, tensordicts (Bou et al., 2023), and treetensors (Contributors, 2021),
given the prevalence of dict-type data in RL.

• Auto-Grad Support: Designed to support Neural ODEs, it facilitates gradient-based inference via
ODE or SDE, which is useful for many RL policies.

• Diverse Model Integration: It integrates various generative models, including flow and bridge
models, treating diffusion models as a special case.

Thus, GenerativeRL seamlessly incorporates both diffusion and flow models for various RL algo-
rithms, while decoupling the generative model from RL components. This allows for consistent
comparisons and analyses of different generative models within the same RL context. See usage
examples in Appendix E.1 and framework structure in Appendix E.2.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Experiments are conducted on the classical offline-RL environments, D4RL dataset (Fu et al., 2021)
and RL Unplugged DeepMind Control Suite datasets (Gulcehre et al., 2020).

Following QGPO (Lu et al., 2023), we adopt the same U-Net architecture with three hidden layers
for all generative policy algorithms. The sampling process is performed using the Euler-Maruyama
method in an ODE solver with uniform time steps, T = 1000 in training for GMPG, and T = 32 in
evaluation for both GMPO and GMPG. All evaluations are conducted and averaged over five random
seeds. Performance scores on D4RL datasets are normalized as suggested by Fu et al. (2021). We
re-implemented QGPO, IDQL and SRPO under the same experimental settings for fair comparisons,
reporting both our implementation scores and the original scores from the respective papers.

More details about computation resources, hyperparameters, and training specifics can be found in
Appendix D.1.

6.2 EXPERIMENTS AND ANALYSIS

We address two key questions: (1) Can simpler RL-native training schemes like GMPO and GMPG
extract the optimal policy and achieve performance comparable to state-of-the-art algorithms on the
classical offline-RL dataset? (2) What are the experimental differences between GMPO and GMPG,
given that both forward KL and reverse KL theoretically point to the same optimal policy?

7
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Table 3: Performance evaluation on D4RL datasets of different generative policies. We provide
the original scores of SfBC, Diffusion-QL, QGPO, IDQL, and SRPO from their respective papers.
SfBC and Diffusion-QL are not integrated into our framework due to the substantial modifications
required. Other algorithms have been successfully implemented using our unified framework. A
detailed comparison between the original scores and our implementation can be found in Appendix D,
Table 9.

Environment SfBC Diffusion-QL QGPO IDQL SRPO GMPO GMPG

Model type VPSDE DDPM VPSDE VPSDE VPSDE GVP VPSDE
Function type ϵ(xt, t) ϵ(xt, t) ϵ(xt, t) ϵ(xt, t) ϵ(xt, t) v(xt, t) v(xt, t)

Pretrain scheme Eq. 2 Eq. 2 Eq. 2 Eq. 2 Eq. 2 / Eq. 3
Fintune scheme / Eq. 37 Eq. 30 / Eq. 35 Eq. 40 Eq. 8

halfcheetah-medium-expert-v2 92.6 96.8 92.0± 1.5 91.7± 2.4 86.7± 3.7 91.9± 3.2 89.0± 6.4
hopper-medium-expert-v2 108.6 111.1 107.0± 0.9 96.8± 10.4 100.8± 9.3 112.0± 1.8 107.8± 1.9
walker2d-medium-expert-v2 109.8 110.1 107.3± 1.3 107.0± 0.5 118.7± 1.4 108.1± 0.7 112.8± 1.2

halfcheetah-medium-v2 45.9 51.1 44.0± 0.7 43.7± 2.8 51.4± 2.9 49.9± 2.7 57.0± 3.1
hopper-medium-v2 57.1 90.5 80.1± 7.0 72.1± 17.6 97.2± 3.3 74.6± 21.2 101.1± 2.6
walker2d-medium-v2 77.9 87.0 82.8± 2.7 82.0± 2.4 85.6± 2.1 81.1± 4.3 91.9± 0.9

halfcheetah-medium-replay-v2 37.1 47.8 42.5± 1.7 41.6± 8.4 47.2± 4.5 42.3± 3.6 50.5± 2.7
hopper-medium-replay-v2 86.2 100.7 99.3± 1.8 89.1± 3.1 78.2± 12.1 97.8± 3.8 86.3± 10.5
walker2d-medium-replay-v2 65.1 95.5 81.1± 4.2 80.4± 9.2 79.6± 7.6 86.4± 1.7 90.1± 2.2

Average (Locomotion) 75.6 88.0 81.8± 2.4 78.3± 6.3 82.8± 5.1 82.7± 4.8 87.3± 3.5

Table 3 shows the performance of various generative policy algorithms on D4RL environments,
including SfBC (Chen et al., 2023), Diffusion-QL (Wang et al., 2023), QGPO (Lu et al., 2023),
IDQL (Hansen-Estruch et al., 2023), and SRPO (Chen et al., 2024). Table 4 presents the performance
of generative policies on the RL Unplugged DeepMind Control Suite datasets (Gulcehre et al., 2020).
For reference, we include the performance of two classical offline RL algorithms: RABM (Siegel
et al., 2020) and D4PG (Barth-Maron et al., 2018), the latter being the algorithm for which most of
this dataset was collected. The average performance across these tasks demonstrates that GMPO
and GMPG effectively solve challenging continuous control tasks, achieving competitive results
compared with other state-of-the-art algorithms.

Hansen-Estruch et al. (2023) claims that using highly expressive models with importance weighted
objectives can be problematic as such models can increase the likelihood of all training points
regardless of their weight. And they find using advantage-weighted regression in the DDPM objective
to not help performance, so they recommend sampling from behavior policy and filter out the high
Q-value actions with the softmax importance sampling. However, our practice overturns the above
claims and found that generative policy trained with advantage-weighted regression even from a
scratch initialization can gain comparably equivalent performance to IDQL using resampling tricks,
as shown in Table 3. Since utilizing the same Implicit Q-learning method, GMPO and GMPG
both successfully extract optimal policies from the Q function. GMPO, a simpler variant of QGPO,
achieves comparable performance on these datasets. This indicates that the advantage-weighted
regression loss, a common component of both methods, is crucial for successful training.

Unlike Diffusion-QL, which separates the KL divergence into a simulation-free score matching
loss but remains Q guidance through simulation, GMPG computes both Q guidance and the KL
divergence directly through simulation, achieving similar performance. Despite using a significantly
larger number of sampling steps (T = 1000) compared to Diffusion-QL (T = 5), GMPG does not
exhibit computational difficulties in our implementation. This effectively addresses the limitations
highlighted by Wang et al. (2023), where the maximum T they could afford was 20, and they opted
for T = 5 to balance performance and computational cost.

In addition, our experiments challenged the intuition that a complete 1000-step inference inherently
leads to high computational costs, even with Neural ODEs. Our results demonstrate that with
direct gradient guidance, no extra computational cost is required for optimization. For example, in
halfcheetah-medium-v2-GMPG-GVP, optimal performance is achieved in 50-100 steps, taking 5-10
hours on an A100 GPU. Similarly, for halfcheetah-medium-v2-GMPO-GVP, optimal performance
occurs at 240K-480K steps, also requiring 5-10 hours. Despite slower calculations for a 1000-step
inference for one gradient step, it uses fewer training batches, resulting in similar overall time costs,
ensuring no computation is wasted during training.
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Table 4: Performance evaluation on RL Unplugged DeepMind Control Suite dataset of different
generative policies. We evaluate different generative policies using the RL Unplugged DeepMind
Control Suite dataset. D4PG is the primary algorithm used for most of this dataset’s collection,
while RABM serves as a classical offline-RL algorithm for comparison. We present the original
scores of D4PG and RABM from their respective papers. Since the original papers for QGPO,
IDQL, and SRPO do not provide performance metrics on this dataset, we report the scores from our
implementations.

Environment D4PG RABM QGPO IDQL SRPO GMPO GMPG

Model type / / VPSDE VPSDE VPSDE GVP GVP
Function type / / ϵ(xt, t) ϵ(xt, t) ϵ(xt, t) v(xt, t) v(xt, t)

Pretrain scheme / / Eq. 2 Eq. 2 Eq. 2 / Eq. 3
Fintune scheme / / Eq. 30 / Eq. 35 Eq. 40 Eq. 8

Cartpole swingup 856± 13 798± 31 806± 54 851± 9 842± 13 830± 36 858± 51
Cheetah run 308± 122 304± 32 338± 135 451± 231 344± 127 359± 188 503± 212
Humanoid run 1.72± 1.66 303± 6 245± 45 179± 91 242± 22 226± 72 209± 61
Manipulator insert ball 154± 55 409± 5 340± 451 308± 433 352± 458 402± 489 686± 341
Walker stand 930± 46 689± 14 672± 266 850± 161 946± 23 593± 287 771± 292
Finger turn hard 714± 80 433± 3 698± 352 534± 417 328± 464 738± 204 657± 371
Fish swim 180± 55 504± 13 412± 297 474± 248 597± 356 634± 192 515± 168
Manipulator insert peg 50.4± 9.2 290± 15 279± 229 314± 376 327± 383 398± 481 540± 343
Walker walk 549± 366 651± 8 791± 150 887± 51 963± 15 869± 241 656± 233

Average 416± 83 487± 14 509± 220 538± 224 549± 207 561± 243 599± 230

Figure 1 illustrates the log-likelihood of D4RL datasets evaluated by GMPO/GMPG policies across
different training iterations. A higher log-likelihood indicates that the generative model output is
closer to the original data distribution. For hopper-medium-v2, the generative model trained with
GMPO maintains a certain distance from the original data distribution throughout training. In contrast,
the GMPG-trained model closely aligns with the original data distribution during pretraining but
diverges more during finetuning compared to GMPO. This divergence allows GMPG to achieve better
performance. In the case of halfcheetah-medium-expert-v2, both GMPO and GMPG benefit from
high-quality data, as the optimal policy is already near the original distribution. Here, GMPO excels
in filtering out high Q-value actions, resulting in a slightly better performance compared to GMPG.

More experiment details for GMPO and GMPG on D4RL AntMaze dataset can be found in Table 11
(Appendix D).

In general, GMPG with reverse KL loss outperforms GMPO and other generative policies with
Forward KL loss in most medium and medium-replay locomotion tasks. This suggests that the policy
gradient method more aggressively leverages Q guidance and is less constrained by the behavior
policy, allowing optimization into regions with less data support — a beneficial exploration strategy
in medium and medium-replay data, though it results in slightly poorer performance with expert data
as shown in Table 3. Additionally, GMPO shows more stable training convergence with monotonic
improvement, while GMPG exhibits fluctuating performance during training with small batch sizes,
requiring larger batch sizes for stability.

6.3 ABLATION EXPERIMENTS

Generative Model Type. Table 5 presents a performance comparison of three generative models:
GVP, VPSDE, and I-CFM (a more detailed comparison is available in Table 10). Overall, all three
models demonstrate comparable performance. However, I-CFM exhibits slightly weaker performance
in certain cases. This discrepancy may stem from its simpler flow path, as defined in Eq. 28, which
could potentially limit its ability to capture the environment’s complex dynamics effectively.

Sampling Scheme for GMPG. As shown in Table 6, our ablation study reveals that increasing the
number of sampling time steps T within the GMPG algorithm can lead to improved performance.

Further ablation experiments about temperature coefficient β and solver schemes for sampling are
detailed in Appendix D.3.
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(a) HM/GMPO-GVP (b) HM/GMPG-GVP (c) HME/GMPO-GVP (d) HME/GMPG-GVP

Figure 1: Log-Likelihood of D4RL datasets evaluated by GMPO/GMPG-GVP policies during
training. HM stands for hopper-medium-v2, HME stands for halfcheetah-medium-expert-v2. Each
point represents a model during training, with colors indicating different stages. The returns of the
model are evaluated and averaged over five random seeds. Blue points denote the pretraining stage
for GMPG and the training stage for GMPO, as GMPO does not require pretraining. Orange points
indicate the finetuning stage for GMPG. The star marker shows the optimal model obtained during
training. The density of the points reflects the number of models in that area.

Table 5: Performance comparison of model types on D4RL datasets. The average performance is
calculated over 9 locomotion tasks.

Algo. type GMPO GMPG

Model type VPSDE GVP I-CFM VPSDE GVP I-CFM

Average (Locomotion) 80.2± 4.2 82.7± 4.8 76.2± 8.0 87.3± 3.5 84.2± 3.2 83.4± 4.2

Table 6: Performance comparison of different sampling time steps for GMPG. The time span of the
ODE solver is [0, 1], so a larger T means more sampling steps and a smaller step size.

GMPG / VPSDE / v(xt, t)
Pretrain scheme / Finetune scheme Eq. 3 / Eq. 8

T (Used for Training Only) 32 100 1000

halfcheetah-medium-v2 53.9± 2.7 55.8± 2.8 57.0± 3.1
halfcheetah-medium-replay-v2 43.4± 3.5 49.1± 3.3 50.5± 2.7

7 CONCLUSION

In this paper, we provide a comprehensive study of generative policies and propose two unified
and RL-native training schemes, GMPO and GMPG, that are effective and straightforward for both
diffusion and flow models. GMPO benefits from a stable training process and does not require
pretraining the generative model before optimal policy extraction, making it more efficient and easier
to train. GMPG is a native policy gradient-based method for continuous-time generative models,
and we provide a numerically stable implementation for the RL community. Our experiment results
demonstrate that the proposed training schemes offer comparable or better performance than previous
works in most cases.

To ensure consistent comparisons and analyses, we introduce a unified framework for reinforcement
learning algorithms that leverages the expressive power of generative models. This standardized
experimental framework decouples the generative model from the RL components, allowing for
consistent evaluation of different generative models within the same RL context.

Overall, this work simplifies and unifies the training of generative models for policy modeling,
providing practical guidelines for training and deploying generative policies in reinforcement learning.
Additionally, we discuss existing limitations and valuable topics for future work in Appendix F.
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Rishabh Agarwal, Josh S Merel, Daniel J Mankowitz, Cosmin Paduraru, et al. Rl unplugged: A
suite of benchmarks for offline reinforcement learning. Advances in Neural Information Processing
Systems, 33:7248–7259, 2020.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In Proceedings of the 34th International Conference on Machine
Learning - Volume 70, ICML’17, pp. 1352–1361. JMLR.org, 2017.

Tuomas Haarnoja, Kristian Hartikainen, Pieter Abbeel, and Sergey Levine. Latent space policies for
hierarchical reinforcement learning. In Jennifer Dy and Andreas Krause (eds.), Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 1851–1860. PMLR, 10–15 Jul 2018a. URL https://proceedings.
mlr.press/v80/haarnoja18a.html.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer Dy and Andreas
Krause (eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp. 1861–1870. PMLR, 10–15 Jul 2018b. URL
https://proceedings.mlr.press/v80/haarnoja18b.html.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
IDQL: implicit q-learning as an actor-critic method with diffusion policies. CoRR, abs/2304.10573,
2023. doi: 10.48550/ARXIV.2304.10573. URL https://doi.org/10.48550/arXiv.
2304.10573.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
H Larochelle, M Ranzato, R Hadsell, M F Balcan, and H Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 6840–6851. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi,
and David J Fleet. Video diffusion models. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems, volume 35, pp. 8633–8646. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/39235c56aef13fb05a6adc95eb9d8d66-Paper-Conference.pdf.

Matthew W. Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Nikola Momchev,
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A POLICY OPTIMIZATION

We provide a detailed derivation of the forward KL and reverse KL divergence training objectives in
Appendix A.1, and discuss the theoretical connections and differences between these objectives in
Appendix A.2.

A.1 DERIVATION DETAILS

The full derivation of the forward KL divergence training objective in Eq. 4 is as follows:

L(θ) = Es∼D [DKL [π
∗(·|s)∥πθ(·|s)]]

= Es∼D

[∫
π∗(a|s)(log π∗(a|s)− log πθ(a|s))da

]
= Es∼D

[∫
π∗(a|s) log π∗(a|s)da−

∫
π∗(a|s) log πθ(a|s)da

]
= Es∼D

[
−Hπ∗(a|s) −

∫
eβ(Q(s,a)−V (s))

Z(s)
µ(a|s) log πθ(a|s)da

]
= Es∼D,a∼µ(·|s)

[
−e

β(Q(s,a)−V (s))

Z(s)
log πθ(a|s)

]
− Es∼D

[
Hπ∗(a|s)

]
= Es∼D,a∼µ(·|s)

[
−e

β(Q(s,a)−V (s))

Z(s)
log πθ(a|s)

]
+ C.

(9)

The full derivation of the reverse KL divergence training objective in Eq. 5 is as follows:

L(θ) = Es∼D [DKL [πθ(·|s)∥π∗(·|s)]]

= Es∼D

[∫
πθ(a|s)(log πθ(a|s)− log π∗(a|s))da

]
= Es∼D

[∫
πθ(a|s)(log πθ(a|s)− log (

eβ(Q(s,a)−V (s))

Z(s)
µ(a|s)))da

]
= Es∼D

[∫
πθ(a|s)(log πθ(a|s)− logµ(a|s)− log (

eβ(Q(s,a)−V (s))

Z(s)
))da

]
= Es∼D

[
DKL [πθ(·|s)∥µ(·|s)] +

∫
−πθ(a|s) log (

eβ(Q(s,a)−V (s))

Z(s)
)da

]
= Es∼D

[
DKL [πθ(·|s)∥µ(·|s)] +

∫
−πθ(a|s)(βQ(s, a)− βV (s)− logZ(s))da

]
= Es∼D

[
DKL [πθ(·|s)∥µ(·|s)]

∫
πθ(a|s)da−

∫
πθ(a|s)βQ(s, a)da+ (βV (s) + logZ(s))

∫
πθ(a|s)da

]
= Es∼D

[∫
πθ(a|s)(−βQ(s, a) +DKL [πθ(·|s)∥µ(·|s)])da+ (βV (s) + logZ(s))

∫
πθ(a|s)da

]
= Es∼D

[∫
πθ(a|s)(−βQ(s, a) +DKL [πθ(·|s)∥µ(·|s)])da+ βV (s) + logZ(s)

]
= Es∼D

[∫
πθ(a|s)(−βQ(s, a) +DKL [πθ(·|s)∥µ(·|s)])da

]
+ Es∼D [βV (s) + logZ(s)]

= Es∼D,a∼πθ(·|s) [−βQ(s, a) +DKL [πθ(·|s)∥µ(·|s)]] + C.
(10)
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A.2 COMPARISON BETWEEN FORWARD AND REVERSE KL DIVERGENCE TRAINING
OBJECTIVES

To obtain a neural network approximation πθ(a|s) of the optimal policy

π∗(a|s) = eβ(Q(s,a)−V (s))

Z(s)
µ(a|s), (11)

where the policy is a state-conditioned probability distribution, we can use either the forward KL
divergence or reverse KL divergence as the training objective. Minimizing the KL divergence between
πθ(a|s) and the optimal policy π(a|s) reduces the discrepancy between the two distributions:

Minimize DKL [π
∗(·|s)∥πθ(·|s)] or DKL [πθ(·|s)∥π∗(·|s)] . (12)

However, as is well-known in the literature (Murphy, 2023), the forward and reverse KL divergence
objectives have different properties and implications. Training with the forward KL divergence tends
to be mode-covering, preferring to cover all modes of the target distribution, including those with
low probability mass. In contrast, training with the reverse KL divergence tends to be mode-seeking,
concentrating on modes with high probability mass while potentially ignoring others.

Although we employ highly expressive probabilistic models, such as diffusion and flow models,
which may mitigate these tendencies, the two training objectives still have different implications and
may lead to different performance in practice. We provide a detailed term-by-term illustration of
these two methods and their variants in Appendix A.2.1 and A.2.2, respectively.

A.2.1 FORWARD KL DIVERGENCE TRAINING OBJECTIVE

As shown in Eq. 13, the forward KL divergence training objective involves three components:

• The behavior policy µ(·|s), from which actions are sampled.

• An exponential function of the advantage, eβ(Q(s,a)−V (s)), acting as an importance weight.
• The log-likelihood term log πθ(a|s) for maximum likelihood estimation (MLE).

L(θ) = Es∼D,a∼µ(·|s)︸ ︷︷ ︸
Behavior Policy

− eβ(Q(s,a)−V (s))

Z(s)︸ ︷︷ ︸
Advantage Weights

log πθ(a|s)︸ ︷︷ ︸
MLE

+ C. (13)

In this objective, actions are sampled from the behavior policy µ(·|s), which serves as a strong prior
since it is static during optimization and pretrained to a well-established stage. Consequently, the
range of actions evaluated is stable and rarely extends beyond the support of the behavior policy.

The exponential advantage term in Eq. 13 acts as an importance weight, emphasizing actions with
higher advantage values. This term is crucial, as it focuses the learning on actions that improve policy
performance. By weighting actions according to their advantages, suboptimal actions are filtered out
in favor of optimal ones. If the advantage approaches zero for all actions, the objective simplifies to
standard MLE.

In practice, some algorithms use explicit training objectives with advantage weights, such as QGPO
(Lu et al., 2023) and GMPO, while others incorporate advantage weights during inference, such
as SfBC (Chen et al., 2023) and IDQL (Hansen-Estruch et al., 2023), essentially making them
sampling-based approaches when extracting optimal actions.

The MLE term log πθ(a|s) in Eq. 13 realizes the maximization of likelihood. However, as noted by
Finlay et al. (2020), directly using the log-likelihood term for policy optimization with flow-based
models can lead to ill-posed generative trajectories and poor performance. This is due to the infinite
number of generation trajectories that can bridge two probability distributions, making the obtained
trajectories sensitive.

Therefore, diffusion or flow models based on score matching or flow matching methods, which
have static generation trajectories, are preferred over flow models trained by directly maximizing
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log-likelihood. From a theoretical perspective, Song et al. (2021a) illustrated that conducting score
matching with λ(t) = g2(t) is equivalent to training with an ELBO for maximizing likelihood
estimation in diffusion models:

LMLE(θ) = Ep(x) [− log pθ(x)] ≤ LDSM(θ) + C. (14)

Recently, Lu et al. (2022) provided a more rigorous bound on how training diffusion models with
score matching improves the log-likelihood, and Zheng et al. (2023a) presented similar proofs for flow
matching methods. In general, any generative model training scheme that increases log-likelihood
can serve as a substitute for log πθ in Eq. 13. Previous methods such as SfBC, IDQL, and QGPO
use the score matching loss LDSM(θ), while in GMPO, we generalize this to include both the score
matching loss LDSM(θ) and the flow matching loss LCFM(θ), collectively denoted as the matching
loss LMatching(θ).

A.2.2 REVERSE KL DIVERGENCE TRAINING OBJECTIVE

As shown in Eq. 15, the reverse KL divergence training objective comprises three components:

• The optimized policy πθ(·|s), from which actions are sampled.
• A value function Q(s, a) that guides the policy optimization.
• A KL divergence term DKL(πθ(·|s)|µ(·|s)) acting as a proximal constraint.

L(θ) = Es∼D,a∼πθ(·|s)︸ ︷︷ ︸
Optimized Policy

− βQ(s, a)︸ ︷︷ ︸
Guidance Function

+DKL(πθ(·|s)∥µ(·|s))︸ ︷︷ ︸
Proximal Constraint

+ C. (15)

In this objective, actions are sampled from the policy being optimized, πθ(·|s), which is initialized to
the behavior policy µ(·|s) but gradually diverges from it as optimization progresses guided by the
value function. The value function Q(s, a) provides guidance by emphasizing actions with higher
values, encouraging the policy to focus on optimal actions, even if they are rare in the behavior policy.
This contrasts with the forward KL objective, where actions are sampled from the behavior policy.

The proximal constraint term DKL(πθ(·|s)|µ(·|s)) enforces closeness to the behavior policy to
prevent drastic updates that may degrade performance. While GMPG retains this KL divergence
term, other algorithms replace it with alternative regularization methods, such as the score matching
loss in Diffusion-QL (Wang et al., 2023) or a score regularization term in SRPO (Chen et al., 2024).

B GENERATIVE MODELS

Generative models generate samples from a target distribution p(x), or p(x|c) when conditioned on
context c. This work focuses on two types of continuous-time generative models: diffusion models
and flow models.

B.1 DIFFUSION MODELS

Diffusion models use a forward diffusion process to train the score function and a reverse diffusion
process for sampling. Given a fixed data or target distribution, a diffusion model is determined by the
diffusion process path. A common path, governed by a linear stochastic differential equation (SDE),
is:

dx = f(t)xtdt+ g(t)dwt. (16)

The transition distribution of a point x ∈ Rd from time 0 to t is:
p(xt|x0) ∼ N (xt|αtx0, σ2

t I). (17)

The drift coefficient f(t) and diffusion coefficient g(t) are related to the noise level σt and scale level
αt:

f(t) =
d logαt

dt
, (18)
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g2(t) =
dσ2

t

dt
− 2

d logαt
dt

σ2
t . (19)

The drift and diffusion coefficients for Linear Variance-Preserving SDE (VP-SDE) model (Song et al.,
2021b) and Generalized VP-SDE (GVP) model (Albergo & Vanden-Eijnden, 2023) are defined as:

VP-SDE: αt = exp

(
−1

2

∫ t

0

βs ds

)
, σt =

√
1− exp

(
−
∫ t

0

βs ds

)
.

GVP: αt = cos

(
1

2
πt

)
, σt = sin

(
1

2
πt

)
.

(20)

Here, βt follows the same scaling as in Song et al. (2021b).

The reverse process of the diffusion model is derived from the Fokker-Planck equation and can be
expressed as an ODE:

dxt
dt

= v(xt) = f(t)xt −
1

2
g2(t)∇xt

log p(xt), (21)

where v(xt) is the velocity function and ∇xt
log p(xt) is the score function, typically modeled by a

neural network with parameters θ, denoted as vθ(xt) and sθ(xt), respectively.

Training the diffusion model involves a matching objective LMatching(θ), which can utilize either the
Score Matching method by Hyvärinen (2005) or the Flow Matching method by Lipman et al. (2023).
The Score Matching objective is defined as a weighted Mean Squared Error (MSE) loss between the
score function model and the gradient of the log density of the target distribution:

LSM =
1

2

∫ 1

0

Ep(xt)

[
λ(t)∥sθ(xt)−∇xt log p(xt)∥2

]
dt. (22)

In practice, the Denoising Score Matching loss LDSM is used for every diffusion path conditioned on
x0 because it shares the same gradient, ∇LDSM = ∇LSM, as shown by Vincent (2011):

LDSM =
1

2

∫ 1

0

Ep(xt,x0)

[
λ(t)∥sθ(xt)−∇xt

log p(xt|x0)∥2
]
dt. (23)

We can use both Vanilla Score Matching proposed by Ho et al. (2020) and Maximum Likelihood
Score Matching by Song et al. (2021a). These methods differ in the weighting of the score matching
loss:

Vanilla Score Matching: λSM(t) = σ2
t .

Maximum Likelihood Score Matching: λMLSM(t) = g2(t).
(24)

The Flow Matching method uses a weighted Mean Squared Error (MSE) loss between the velocity
function of the reverse diffusion process and a target velocity:

LFM =
1

2

∫ 1

0

Ep(xt)

[
∥vθ(xt)− v(xt)∥2

]
dt. (25)

In practice, a Conditional Flow Matching loss LCFM for every flow path conditioned on x0 and x1 is
used, as it shares the same gradient, ∇LCFM = ∇LFM, as shown by Lipman et al. (2023) and Tong
et al. (2024):

LCFM =
1

2

∫ 1

0

Ep(xt,x0,x1)

[
∥vθ(xt)− v(xt|x0, x1)∥2

]
dt. (26)

We use both the Score Matching loss LDSM and the Flow Matching loss LCFM to train the diffusion
models.
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B.2 FLOW MODELS

Continuous normalizing flows (CNFs), introduced by Chen et al. (2018) and Grathwohl et al. (2019),
are the first continuous-time generative models capable of modeling complex target distributions.
However, their simulation-based maximum likelihood training process is unstable, often resulting in
poor performance and distorted generative paths, as illustrated by Finlay et al. (2020).

To address these issues, recent works (Lipman et al. (2023); Liu et al. (2023); Pooladian et al. (2023);
Albergo & Vanden-Eijnden (2023); Tong et al. (2024)) propose CNFs with simulation-free objectives,
similar to diffusion models that use designed and fixed diffusion paths as regression objectives. These
approaches are more stable during training and retain the advantage that the source distribution can
be arbitrary, unlike diffusion models which require a Gaussian source distribution.

For the flow models I-CFM (Tong et al., 2024) investigated in this paper, the flow path is defined as:
p(xt|x0, x1) = N (xt|tx1 + (1− t)x0, σ

2I). (27)
The velocity function is given by:

v(xt|x0, x1) = x1 − x0. (28)
The flow model vθ(xt) is trained using the Conditional Flow Matching loss LCFM.

C GENERATIVE POLICIES

As shown in Table 2, generative policy training schemes can be categorized based on their use of
either the forward KL divergence (Eq. 4) or the reverse KL divergence (Eq. 5). SfBC and QGPO use
forward KL divergence, while Diffusion-QL and SRPO employ reverse KL divergence. IDQL also
uses forward KL divergence but differs slightly due to its unique importance weighting for sampling.

C.1 SFBC: SELECTING FROM BEHAVIOR CANDIDATES

SfBC (Chen et al., 2023) trains a diffusion model as the behavior policy using the score matching
loss (Eq. 2) and trains the Q-function model with an In-Support Q-Learning method (Eq. 29):

Lin-support QL(ξ) = E(s,a,s′)∼D,a′i∼µ

(Qξ(s, a)− r(s, a)− γ

[∑N
i=1 e

Qξ(s
′,a′i)Qξ(s

′, a′i)∑N
i=1 e

Qξ(s′,a′i)

])2
 .
(29)

Actions are sampled by selecting the one with the highest Q-value among N candidates generated by
the behavior policy.

C.2 QGPO: Q-GUIDED POLICY OPTIMIZATION

QGPO (Lu et al., 2023) enhances SfBC by distilling the Q-function into an intermediate energy
guidance model, Eϕ(s, a, t), using the Contrastive Energy Prediction (CEP) method:

LCEP(ϕ) = −Et,(s,a)∼D,ai∼µ

[
N∑
i=1

eβQ(s,ai)∑N
i=1 e

βQ(s,ai)
log

eEϕ(s,ai,t)∑N
i=1 e

Eϕ(s,ai,t)

]
. (30)

This approach allows the optimal policy to be sampled using a combination of the score functions of
the behavior policy and the energy guidance model:

∇atπ(at|st) = ∇at logµ(at|st) +∇atEϕ(st, at, t). (31)
However, this method is not suitable for flow models, as their score functions cannot be easily
obtained.

C.3 IDQL: IMPLICIT DIFFUSION Q-LEARNING

IDQL (Hansen-Estruch et al., 2023) employs Implicit Q-Learning as described in Eq. 32:
LIQL-V (ψ) = E(s,a)∼D [Lτ2 (Qξ(s, a)− Vψ(s))]

Lτ2(u) = |τ − 1(u ≤ 0)|u2

LIQL-Q(ξ) = E(s,a)∼D

[
(Qξ(s, a)− r(s, a)− Vψ(s

′))
2
]
.

(32)
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IDQL implicitly constructs an optimal policy model through importance sampling based on the
Q-values of action candidates. A batch of backup actions is sampled from a behavior policy, and the
optimal action is selected through inference using the Q-function model.

Hansen-Estruch et al. (2023) demonstrated that if an implicit actor satisfies the following equation:

V ∗(s) = Ea∼πimplicit(a|s)[Q
∗(s, a)], (33)

for an optimal Q-function and value function in IQL, then the implicit actor is given by:

πimplicit(a|s) ∝

∣∣∣ ∂
∂V (s) (Q(s, a)− V ∗(s))

∣∣∣
|Q(s, a)− V ∗(s)|

µ(a|s). (34)

where
| ∂
∂V (s)

(Q(s,a)−V ∗(s))|
|Q(s,a)−V ∗(s)| is the importance weight for action a in state s.

C.4 SRPO: SCORE-BASED REGULARIZED POLICY OPTIMIZATION

SRPO (Chen et al., 2024) pretrains a behavior policy using a diffusion model with a score matching
loss, as described in Eq. 2. The Q-function model is then independently trained using the IQL method
outlined in Eq. 32.

The Dirac or Gaussian policy is trained by distilling guidance from the Q-function model, using the
score function of the behavior policy as a regularizer to prevent significant divergence:

LSRPO(ψ) = −βQ(s, a) + w(t)(ϵψ(at|s)− ϵ). (35)

C.5 DIFFUSION-QL

Diffusion-QL (Wang et al., 2023) trains the Q-function model using the conventional Bellman
operator with the double Q-learning trick:

LDiffusion-QL(ξ) = E(s,a,s′)∼D,a′∼π

[(
Qξ(s, a)− r(s, a)− γ min

i=1,2
Qξi(s

′, a′)

)2
]
. (36)

Next, Q-value function guidance is incorporated into the policy using the following training objective:

LDiffusion-QL(θ) = Es∼D,a∼πθ(·|s) [−βQ(s, a) + LDSM(θ)] , (37)

where LDSM(θ) is the score matching loss for the diffusion model, as defined in Eq. 2.

During inference, the authors adopt a resampling strategy similar to Implicit Diffusion Q-Learning,
where the action with the highest Q-value is selected using a softmax function among 50 candidates.
A small performance drop is observed in Diffusion-QL when the resampling strategy is disabled,
indicating that the policy model relies on the Q-function model to achieve optimal performance.

C.6 GMPO: GENERATIVE MODEL POLICY OPTIMIZATION

The derivation of Eq. 6 is:

LGMPO(θ) = Es∼D,a∼π∗(·|s) [LMatching(θ)]

= Es∼D

[∫
π∗(a|s)LMatching(θ)da

]
= Es∼D

[∫
eβ(Q(s,a)−V (s))

Z(s)
µ(a|s)LMatching(θ)da

]
= Es∼D

[∫
µ(a|s)e

β(Q(s,a)−V (s))

Z(s)
LMatching(θ)da

]
= Es∼D,a∼µ(·|s)

[
eβ(Q(s,a)−V (s))

Z(s)
LMatching(θ)

]
.

(38)
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We present the GMPO algorithm in Algorithm 1.

Algorithm 1 Generative Model Policy Optimization (GMPO)

Initialize πθ, Qξ, Vϕ.
// Critic training (Implicit Q-Learning)
for epoch = 1 to N do

ϕ← ϕ− λQ∇ϕLV (Eq. 32)
ξ ← ξ − λV∇ξLQ (Eq. 32)

// Policy training (Advantage-Weighted Regression)
for epoch = 1 to N do

θ ← θ − λπ∇θLπ (Eq. 7)

For the score matching objective, the GMPO loss is defined as:

LGMPO-SM(θ) = −Es∼D,a∼µ(·|s)

[
eβ(Q(s,a)−V (s))

Z(s) Ep(at|a)
[
1
2λ(t)∥sθ(at|s)−∇at log p(at|a, s)∥2

]]
.

(39)

For the flow matching objective, the GMPO loss is defined as:

LGMPO-FM(θ) = −Es∼D,a∼µ(·|s)

[
eβ(Q(s,a)−V (s))

Z(s)
Ep(at|a)

[
1

2
∥vθ(at|s)− v(at|a, s)∥2

]]
. (40)

To address potential numerical issues with the importance sampling weight in exponential form, we
can clamp the weight if it becomes too large. This adjustment reduces the emphasis on high Q-value
actions but does not significantly impact performance.

Alternatively, if clamping the weight is not desired, using a softmax function to approximate the
importance weight can also circumvent numerical issues. This approach is similar to QGPO and is
formulated as:

LGMPO-Softmax(θ) = −Es∼D,a1:K∼µ(·|s)

[
eβQ(s,ai)∑K
j=1 e

βQ(s,aj)
LMatching(θ)

]
. (41)

However, this requires sampling K actions from the behavior policy, increasing computational cost
during training.

We present the GMPO algorithm with the behavior policy in Algorithm 2.

Algorithm 2 Generative Model Policy Optimization (GMPO) with Behavior Policy

Initialize µθ1 , πθ2 , Qξ, Vϕ.
// Behavior Policy Pretraining (Score Matching or Flow Matching)
for epoch = 1 to N do

θ1 ← θ1 − λµ∇θ1Lµ (Eq. 2 or Eq. 3)
// Critic Training (Implicit Q-Learning)
for epoch = 1 to N do

ϕ← ϕ− λQ∇ϕLV (Eq. 32)
ξ ← ξ − λV∇ξLQ (Eq. 32)

// Policy Training (Advantage-Weighted Regression)
for epoch = 1 to N do

Sample ai ∼ µθ1
θ2 ← θ2 − λπ∇θ2Lπ (Eq. 41)

C.7 GMPG: GENERATIVE MODEL POLICY GRADIENT

We present the GMPG algorithm in Algorithm 3.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Algorithm 3 Generative Model Policy Gradient (GMPG)

Initialize µθ1 , πθ2 , Qξ, Vϕ.
// Behavior Policy Pretraining (Flow Matching)
for epoch = 1 to N do

θ1 ← θ1 − λµ∇θ1Lµ (Eq. 3)
// Critic Training (Implicit Q-Learning)
for epoch = 1 to N do

ϕ← ϕ− λQ∇ϕLV (Eq. 32)
ξ ← ξ − λV∇ξLQ (Eq. 32)

// Policy Training (Policy Gradient)
θ2 ← θ1
for epoch = 1 to N do

θ2 ← θ2 − λπ∇θ2Lπ (Eq. 8 or Eq. 42)

Since the vanilla GMPG loss relies on sampling from a dynamic generative model, policy training
can become unstable with a small batch size, particularly when the optimized policy encounters
state-action spaces with scarce data.

To stabilize the training process, we can use an importance sampling weight by sampling from a
static generative model, which in practice is the behavior policy µ(·|s):

∇θLGMPG-Static(θ) =

Es∼D,a∼µ(·|s)

[
eβ(Q(s,a)−V (s))

Z(s)
(−βQ(s, a) + log πθ(a|s)− logµ(a|s))∇θlog πθ(a|s)

]
Es∼D,a1:K∼µ(·|s)

[
eβQ(s,ai)∑K
j=1 e

βQ(s,aj)
(−βQ(s, ai) + log πθ(ai|s)− logµ(ai|s))∇θlog πθ(ai|s)

]
.

(42)

It is important to note that GMPG works well only when the generative model’s neural network
output is a velocity function vθ. Training encounters numerical issues when using a noise function
ϵθ as the neural network output. If using a neural network as the noise function, converting it to a
velocity function by Eq 21:

vθ(xt) = f(t)xt −
1

2
g2(t)∇xt log pθ(xt) = f(t)xt −

g2(t)

2σ(t)
ϵθ(xt). (43)

As g2(t) approaches 0 when sampling from t = 1 to t = 0, σ(t) approching 0 much faster than g2(t).
Therefore, since the noise function ϵθ is a neural network output and is in the range [−D,D], the
velocity can become unstable. Although this is not a major issue during sampling dx = vdt, since
dt is not 0 for ODE solvers, it can cause numerical instability during training if using neural ODE
implementation for backward gradient computation. Therefore, we use only the velocity model for
GMPG experiments across different generative models.

C.7.1 CALCULATION OF PROBABILITY DENSITY

The calculation of log p(x) is crucial for training the generative model via the GMPG algorithm,
following the approach of Chen et al. (2018); Grathwohl et al. (2019). Since sampling through the
generative model involves solving an ODE defined by Eq. 21, the probability density of the sampled
variable xt can be computed using the instantaneous change of variables theorem:

[
x0

log p(x0)− log p(x1)

]
=

∫ t0

t1

[
vθ(x(t), t)

−Tr
(
∂vθ
∂x(t)

)]
dt. (44)

Here, x1 ∼ N (0, I) and log p(x1) is tractable. Thus, log p(x0) can be obtained by integrating from
t1 = 1 to t0 = 0.
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To reduce the computational cost of calculating the trace of the Jacobian matrix, we use Hutchinson’s
trace estimator (Hutchinson, 1990), which approximates the trace as:

Tr
(
∂vθ
∂x(t)

)
≈ Eϵ∼N (0,I)

[
ϵ⊤

∂vθ
∂x(t)

ϵ

]
, (45)

where ϵ ∼ N (0, I) is a random vector sampled from a standard Gaussian distribution.

C.8 2D TOY EXAMPLE

To visually illustrate the fundamental differences between the proposed generative policies, we use a
simple 2D toy example with the Swiss Roll dataset. We designed a value function for this dataset,
where the value changes from −3.5 to 1.5 as the spiral extends outward (see Figure 2).

We evaluate the generation trajectories of models trained with GMPO and GMPG on this example,
with results shown in Figure 3. This demonstration highlights that GMPO and GMPG operate
differently: GMPO filters data points and learns the path to these points, whereas GMPG attempts
to keep the generation path within the manifold of the original data distribution. Consequently, the
Swiss Roll shape is largely preserved in GMPG trajectories but not in GMPO trajectories.

Figure 2: 2D toy Swiss Roll dataset with assigned value function. Values range from −3.5 to 1.5 as
the spiral extends outward. Colors represent data point values. A small noise ϵ = 0.6 is added for
better visualization.

D EXPERIMENTS

D.1 TRAINING DETAILS

Training is conducted on an NVIDIA A100 GPU with 80GB of memory. The duration for each
experiment ranges from 24 to 72 hours, depending on the model complexity, dataset size, and chosen
training steps. Table 7 lists the hyperparameters used for training generative models and reinforcement
learning models.

We tune the temperature coefficient β for different tasks, as it affects the strength of the Q-value guid-
ance. Choosing the appropriate value is sometimes essential for optimal policy model performance,
as shown in Table 8.
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Table 7: Hyper-parameters for training generative models and reinforcement learning models

Training

Optimizer Adam
τ in IQL 0.7
τ in IQL for AntMaze 0.9
Discount factor γ 0.99
Learning rate for pretraining behavior model 10−4

Learning rate for critic training 10−4

Learning rate for policy extraction 10−4

Learning rate for policy extraction (special cases) 10−5 ∼ 10−6

Batchsize for pretraining behavior model 4096
Batchsize for critic training 4096
Batchsize for policy extraction in GMPO 4096
Batchsize for policy extraction in GMPG 40960
Sampling steps T 1000

Evaluation

Solver for ODE Euler-Maruyama
Sampling steps T 32

Table 8: Temperature coefficient β value tuning over different tasks

Task GMPO GMPG

D4RL Locomotion

halfcheetah-medium-expert-v2 1.0 4.0
hopper-medium-expert-v2 1.0 4.0
walker2d-medium-expert-v2 1.0 4.0
halfcheetah-medium-v2 1.0 1.0
hopper-medium-v2 16.0 20.0
walker2d-medium-v2 8.0 1.0
halfcheetah-medium-replay-v2 4.0 4.0
hopper-medium-replay-v2 6.0 8.0
walker2d-medium-replay-v2 8.0 4.0

D4RL AntMaze

antmaze-umaze-v0 8.0 1.0
antmaze-umaze-diverse-v0 16.0 1.0
antmaze-medium-play-v0 12.0 0.25
antmaze-medium-diverse-v0 12.0 0.25
antmaze-large-play-v0 16.0 0.5
antmaze-large-diverse-v0 4.0 1.0

RL Unplugged DeepMind Control Suite

Cartpole swingup 1.0 4.0
Cheetah run 1.0 4.0
Humanoid run 1.0 4.0
Manipulator insert ball 1.0 4.0
Walker stand 1.0 4.0
Finger turn hard 1.0 4.0
Fish swim 1.0 4.0
Manipulator insert peg 1.0 4.0
Walker walk 1.0 4.0
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(a) GMPO (b) GMPG

Figure 3: Generation trajectories of models trained by GMPO and GMPG on the 2D toy Swiss Roll
dataset. Colors indicate time stamps of data points during generation.

Table 9: Performance comparison of on D4RL datasets across QGPO, SRPO and IDQL algorithms
between GenerativeRL and original papers.

Original Papers GenerativeRL

Algo. type QGPO IDQL SRPO QGPO IDQL SRPO

Model type VPSDE DDPM VPSDE VPSDE VPSDE VPSDE
Function type ϵ(xt, t) ϵ(xt, t) ϵ(xt, t) ϵ(xt, t) ϵ(xt, t) ϵ(xt, t)

Pretrain scheme Eq. 2 Eq. 2 Eq. 2 Eq. 2 Eq. 2 Eq. 2
Finetune scheme Eq. 30 / Eq. 35 Eq. 30 / Eq. 35

halfcheetah-medium-expert-v2 93.5 95.9 92.2 92.0± 1.5 91.7± 2.4 86.7± 3.7
hopper-medium-expert-v2 108.0 108.6 100.1 107.0± 0.9 96.8± 10.4 100.8± 9.3
walker2d-medium-expert-v2 110.7 112.7 114.0 107.3± 1.3 107.0± 0.5 118.7± 1.4

halfcheetah-medium-v2 54.1 51.0 60.4 44.0± 0.7 43.7± 2.8 51.4± 2.9
hopper-medium-v2 98.0 65.4 95.5 80.1± 7.0 72.1± 17.6 97.2± 3.3
walker2d-medium-v2 86.0 82.5 84.4 82.8± 2.7 82.0± 2.4 85.6± 2.1

halfcheetah-medium-replay-v2 47.6 45.9 51.4 42.5± 1.7 41.6± 8.4 47.2± 4.5
hopper-medium-replay-v2 96.9 92.1 101.2 99.3± 1.8 89.1± 3.1 78.2± 12.1
walker2d-medium-replay-v2 84.4 85.1 84.6 81.1± 4.2 80.4± 9.2 79.6± 7.6

Average (Locomotion) 86.6 82.1 87.1 81.8± 2.4 78.3± 6.3 82.8± 5.1

D.2 MORE EXPERIMENTS

We provide comparative performance scores for the QGPO, SRPO, and IDQL algorithms on D4RL
datasets, using both our implementation and the scores reported in the original papers, as shown in
Table 9.

We conduct experiments on the D4RL to evaluate the performance of generative policy using different
generative models as shown in Table 10.

We conducted additional experiments on the D4RL AntMaze datasets to evaluate the performance of
GMPO and GMPG, as shown in Table 11. In this 2D maze environment, the agent navigates to a goal
location, with a larger action and state space compared to previous D4RL locomotion experiments.
Performance is evaluated based on the average return over 100 episodes. Our results indicate that the
proposed generative policies, GMPO and GMPG, achieve competitive performance compared to the
baselines.
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Table 10: Performance comparison of on D4RL datasets over different generative models over GMPO
and GMPG.

Algo. type GMPO GMPG

Model type VPSDE GVP I-CFM VPSDE GVP I-CFM
Function type ϵ(xt, t) v(xt, t) v(xt, t) v(xt, t) v(xt, t) v(xt, t)

Pretrain scheme / / / Eq. 3 Eq. 3 Eq. 3
Fintune scheme Eq. 39 Eq. 40 Eq. 40 Eq. 8 Eq. 8 Eq. 8

halfcheetah-medium-expert-v2 91.8± 3.3 91.9± 3.2 83.3± 3.7 89.0± 6.4 84.2± 8.0 86.9± 4.5
hopper-medium-expert-v2 111.1± 1.34 112.0± 1.8 87.4± 25.7 107.8± 1.9 101.6± 2.9 101.7± 1.4
walker2d-medium-expert-v2 107.7± 0.4 108.1± 0.7 110.3± 0.7 112.8± 1.2 110.0± 1.2 110.7± 0.3

halfcheetah-medium-v2 49.8± 2.6 49.9± 2.7 48.0± 2.9 57.0± 3.1 46.0± 2.7 51.4± 2.9
hopper-medium-v2 71.9± 22.1 74.6± 21.2 69.5± 20.4 101.1± 2.6 100.1± 1.6 92.8± 18.1
walker2d-medium-v2 79.0± 13.2 81.1± 4.3 79.2± 7.6 91.9± 0.9 92.0± 1.1 82.6± 2.3

halfcheetah-medium-replay-v2 36.6± 2.4 42.3± 3.6 41.7± 3.2 50.5± 2.7 39.1± 5.4 41.0± 3.5
hopper-medium-replay-v2 89.2± 7.4 97.8± 3.8 86.0± 2.6 86.3± 10.5 103.4± 2.1 104.2± 2.0
walker2d-medium-replay-v2 84.5± 4.6 86.4± 1.7 80.9± 5.3 90.1± 2.2 81.7± 3.2 79.4± 3.2

Average (Locomotion) 80.2± 4.2 82.7± 4.8 76.2± 8.0 87.3± 3.5 84.2± 3.2 83.4± 4.2

Table 11: Performance evaluation on D4RL AntMaze of different generative policies.

Environment SfBC Diffusion-QL QGPO IDQL SRPO GMPO GMPG

Model type VPSDE DDPM VPSDE DDPM VPSDE GVP VPSDE
Function type ϵ(xt, t) ϵ(xt, t) ϵ(xt, t) ϵ(xt, t) ϵ(xt, t) v(xt, t) v(xt, t)

Pretrain scheme Eq. 2 Eq. 2 Eq. 2 Eq. 2 Eq. 2 / Eq. 3
Fintune scheme / Eq. 37 Eq. 30 / Eq. 35 Eq. 40 Eq. 8

antmaze-umaze-v0 92.0 93.4 96.4 94.0 97.1 94.2± 0.9 92.5± 1.6
antmaze-umaze-diverse-v0 85.3 66.2 74.4 80.2 82.1 76.8± 11.2 76.0± 3.4

antmaze-medium-play-v0 81.3 76.6 83.6 84.5 80.7 84.6± 4.2 62.5± 3.7
antmaze-medium-diverse-v0 82.0 78.6 83.8 84.8 75.0 69.0± 5.6 67.2± 2.0

antmaze-large-play-v0 59.3 46.4 66.6 63.5 53.6 49.2± 11.2 40.1± 8.6
antmaze-large-diverse-v0 64.8 56.6 64.8 67.9 53.6 69.4± 15.2 60.5± 3.7

Average (AntMaze) 74.2 69.6 78.3 79.1 73.6 73.8± 8.0 66.5± 3.8

We observe that GMPG’s performance in the AntMaze environment does not surpass that of GMPO,
unlike in the locomotion medium and medium-replay tasks. This is particularly evident in the
AntMaze medium and large tasks, where the maze size increases and GMPG becomes less effective.
This discrepancy may result from the increased complexity and task length of the AntMaze environ-
ment, which demands stable and effective policy generation. The goal in this environment is timely
navigation through the maze, not rapid completion; faster trajectories do not yield higher rewards.
Aggressive strategies can cause ant agents to fall and fail to complete the task, potentially explaining
the performance difference between GMPO and GMPG in AntMaze.

D.3 ABLATION EXPERIMENTS

Temperature Coefficient β The temperature coefficient β is a common hyperparameter in both
GMPO and GMPG. Larger β values indicate stronger exploration. As shown in Table 12, a moderate
β value is beneficial for performance.

Table 12: Performance comparison of temperature coefficient β for GMPO and GMPG.

Algo. / Model type / Function Type GMPO / GVP / v(xt, t) GMPG / VPSDE / v(xt, t)
Pretrain scheme / Fintune scheme - / Eq. 40 Eq. 3 / Eq. 8

β 1 4 8 1 4 8

halfcheetah-medium-v2 43.2± 1.2 48.9± 1.9 49.9± 2.7 57.0± 3.1 56.1± 2.7 55.5± 2.6
halfcheetah-medium-replay-v2 40.6± 2.9 42.3± 3.6 42.2± 3.1 47.1± 2.5 50.5± 2.7 50.0± 3.0
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Solver Schemes for Sampling. Table 13 shows the performance comparison of different solver
schemes for GMPO and GMPG. We find GMPO and GMPG to be robust to the choice of solver
schemes, with performance remaining consistent across different schemes.

Table 13: Performance comparison using different solver schemes for GMPO/GMPG. RK4 stands for
the Fourth-order Runge-Kutta with 3/8 rule. DPM-Solver of order 2 is used for 17 steps sampling.
Other solver schemes are used for 32 steps sampling. The average performance is very close across
different solver schemes.

GMPO / VPSDE / v(xt, t)
Pretrain scheme / Finetune scheme - / Eq. 40

Solver schemes Euler-Maruyama Midpoint RK4 DPM-Solver

hopper-medium-v2 78.5± 20.2 76.9± 20.4 75.0± 22.1 76.7± 19.2
halfcheetah-medium-expert-v2 89.6± 4.3 83.5± 8.9 83.6± 4.7 90.9± 3.6

GMPG / VPSDE / v(xt, t)
Pretrain scheme / Finetune scheme Eq. 3 / Eq. 8

Solver schemes Euler-Maruyama Midpoint RK4 DPM-Solver

hopper-medium-v2 101.1± 2.6 98.3± 9.6 98.9± 2.1 100.5± 2.2
halfcheetah-medium-expert-v2 89.0± 6.4 88.2± 5.4 88.2± 4.3 89.7± 4.0

E FRAMEWORK

GenerativeRL is implemented using native PyTorch 2.0 and utilizes numerical solvers like torchdif-
feq (Chen et al., 2018) and Torchdyn (Poli et al., 2021) for ordinary differential equations. Unlike
frameworks such as Hugging Face Diffusers (von Platen et al., 2022) that generate final outputs,
in reinforcement learning (RL), generative models act as policies, world models, or other compo-
nents. This requires a differentiable sampling process with computable and differentiable likelihoods.
GenerativeRL addresses this by supporting sampling x ∼ p(·|c) and computing log p(x|c) with or
without automatic differentiation, uniformly across all continuous-time generative models.

E.1 USAGE EXAMPLE

Figure 4 illustrates a usage example of GenerativeRL. The framework is user-friendly and designed
for ease of use by reinforcement learning researchers. All models, training, and sampling processes
are defined in a single script, simplifying understanding and modifications. Experiment configurations
are recorded automatically, facilitating result reproduction.

Modular settings allow users to switch between different generative models, neural network compo-
nents, and special configurations easily. Once the model is defined, training and sampling require only
a few lines of code. Users can switch between training objectives and inference strategies seamlessly.
Most functions for generative models support batch processing and automatic differentiation, ensuring
smooth integration into reinforcement learning algorithms.

E.2 FRAMEWORK STRUCTURE

The framework structure is illustrated in Figure 5. It consists of three main components: reinforcement
learning algorithms, generative models, and neural network components. The reinforcement learning
algorithms include those based on generative models, such as QGPO and SRPO. The generative
models, including diffusion, flow, and bridge models, are used to model data distributions and serve
as key components in RL algorithms. The neural network components comprise commonly used
layers like DiT and U-Net, which are essential for building generative models. Users can customize
the neural network components and generative models to fit their specific needs. The framework is
designed to be compatible with future RL algorithms and can be easily extended for different RL
tasks.

The currently supported generative models are listed in Table 14.
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Table 14: Models functionality in GenerativeRL

Name Score Matching Flow Matching x ∼ p(·) x ∼ p(·|c)
Diffusion models

VPSDE ✓ ✓ ✓ ✓
GVP ✓ ✓ ✓ ✓
Linear (Karras et al., 2022) ✓ ✓ ✓ ✓

Flow models

I-CFM ✗ ✓ ✓ ✓
OT-CFM (Tong et al., 2024) ✗ ✓ ✓ ✗

Bridge models

SF2M (Tong et al., 2023) ✗ ✗ ✓ ✗

✓ Supported. ✗ Not supported.

F LIMITATIONS AND FUTURE WORK

Our work has several limitations:

• We focused on policy extraction using an optimal Q-value function trained with IQL, without
considering suboptimal Q-value functions or improving Q-value estimation using generative models.
This remains an open question for actor-critic methods utilizing generative models as policies.

• Generative models excel in high-dimensional data generation but may perform similarly to discrim-
inative models in low-dimensional contexts. Since most RL environments are low-dimensional,
future work should explore environments like Evogym (Bhatia et al., 2021), where generative
policies can leverage larger action spaces.

• We did not address scenarios where generative policies are deployed online with real-time data
generation. Future studies should assess the stability of policy optimization in dynamic data
contexts, evaluate performance, and consider the additional costs of using generative policies.

G SOCIETAL IMPACTS

This work uses generative models as policy models in reinforcement learning, applicable in real-world
applications such as robots and autonomous vehicles. Given uncertainties in Q-value function training
and reward labeling, potential negative societal impacts exist, including the risk of aligning generative
models with harmful Q-value functions. Therefore, caution is essential throughout the training and
deployment process, from data collection and reward labeling to Q-value function training and the
application of generative policies. Additionally, we must prevent the abuse of this technology, such
as using it for illegal activities or unethical purposes.
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          x_size = 2        
          x_size = (2, 2)   
          x_size = (3, 4, 5)

          device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
          t_embedding_dim = 32
          t_encoder = dict(
              type="GaussianFourierProjectionTimeEncoder",
              args=dict(
                  embed_dim=t_embedding_dim,
                  scale=30.0,
              ),
          )

          config = EasyDict(
              dict(
                  model=dict(
                      device=device,
                      diffusion_model=dict(
                          device=device,
                          x_size=x_size,

                          solver=dict(                          
                              type="ODESolver",                 
                              args=dict(                        
                                  library="torchdiffeq_adjoint",
                              ),                                
                          ),                                    

                          solver=dict(                          
                              type="SDESolver",                 
                              args=dict(                        
                                  library="torchsde",           
                              ),                                
                          ),                                    

                          solver=dict(                          
                              type="DPMSolver",                 
                              args=dict(                        
                                  order=2,                      
                                  device=device,                
                                  steps=17,                     
                              ),                                
                          ),                                    

                          path=dict(type="gvp"),   

                          path=dict(type="linear"),

                          path=dict(               
                              type="linear_vp_sde",
                              beta_0=0.1,          
                              beta_1=20.0,         
                          ),                       

                          model=dict(
                              type="velocity_function",

                              type="noise_function",   

                              type="score_function",   

                              args=dict(
                                  t_encoder=t_encoder,
                                  backbone=dict(
                                      type="TemporalSpatialResidualNet",
                                      args=dict(
                                          hidden_sizes=[512, 256, 128],
                                          output_dim=x_size,
                                          t_dim=t_embedding_dim,
                                      ),
                                  ),
                              ),
                          ),
                      ),
                  )
              )
          )

          if __name__ == "__main__":
              model = DiffusionModel(config.model.diffusion_model)

if __name__ == "__main__":

    model = DiffusionModel(config.model.diffusion_model)

    model = IndependentConditionalFlowModel(config.model.flow_model)

    train_x = torch.randn(data_num, x_size)

    training_loss = model.flow_matching_loss(x=train_x)

if __name__ == "__main__":

    model = DiffusionModel(config.model.diffusion_model)

    t_span = torch.linspace(0.0, 1.0, 1000)

    x = model.sample(t_span=t_span)
    x = model.sample(t_span=t_span, batch_size=500)
    x = model.sample(t_span=t_span, batch_size=500, with_grad=True)

if __name__ == "__main__":

    model = DiffusionModel(config.model.diffusion_model)

    x = torch.randn(data_num, x_size)

    logp = model.log_prob(x)
    logp = model.log_prob(x, with_grad=True)

if __name__ == "__main__":

    model = DiffusionModel(config.model.diffusion_model)

    train_x = torch.randn(data_num, x_size)

    training_loss = model.flow_matching_loss(x=train_x)
    training_loss = model.score_matching_loss(x=train_x)

Training Objectives Sampling Strategies

Models Types Probability Calculation

All Definition Through Configurations

Flexible Data Shapes

Diverse Solvers Integrated

Definitions of Diffusion Process

Convenient Generative Model Parameterization

Modular and Customizable Neural Network  

Figure 4: An example of using GenerativeRL for defining models, training, and sampling. All
experiment configurations are orgnized in a nested dictionary and can be recorded for reproductions.
Configuration of every component is modular and can be easily switched. Diverse generative models
and neural network components are supported. User can switch between training objectives and
inference strategies easily. Most functions support batch processing and automatic differentiation
with only a few lines of code. This configuration is flexible and can be easily extended for different
RL tasks.
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GenerativeRL  Framework

Entrance Main Files / Configurations
/grl_pipelines                                                                                                                                                                                                   

RL Algorithms
/grl/algorithms                                                                                                                                                                                                

Numerical methods
    /grl/numerical_methods                                                        

Generative Models
/grl/generative_models                                           

Common RL modules
/grl/rl_modules                                                                                                                                                                                                

Neural Networks
          /grl/neural_network                                                            

Trainable RL modules

Simulator
/grl/rl_modules/simulators          

Value function model
/grl/rl_modules/value_network   

World model
/grl/rl_modules/                     

Datasets
   /grl/datasets                            

Policy model
/grl/rl_modules/policy             

Specific models
/grl/algorithms                           

Framework Utils
    /grl/utils                                                                                                

Training

Evaluation

Data
Collection

Figure 5: Framework structure of GenerativeRL.
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