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Abstract

We study the problem of learning to stabilize un-
known noisy Linear Time-Invariant (LTI) systems
on a single trajectory. The state-of-the-art guaran-
tees that the system is stabilized before the system
state reaches 2O(k logn) in L2-norm, where n is
the state dimension, and k is the dimension of the
unstable subspace. However, this bound only holds
in noiseless LTI systems that have a control input
dimension at least as large as the dimension of un-
stable subspace, making it impractical in many real-
life scenarios. In noisy systems, unknown noise is
not only amplified by unstable system modes but
also imposes significant difficulty in estimating the
system dynamics or bounding the estimation er-
rors. Furthermore, the aforementioned complexity
is only achievable when the system has a number
of control inputs that are at least as many as the
dimension of the unstable subspace. To address
these issues, we develop a novel algorithm with
a singular-value-decomposition(SVD)-based ana-
lytical framework and show that the system is sta-
bilized with the same complexity guarantee with
the state-of-the-art in a noisy environment. With
the SVD-based framework, we can bound the error
of system identification with Davis-Kahan Theo-
rem and design a controller that does not require
the invertibility of the control matrix, making it
possible to apply this algorithm in under-actuated
settings. To the best of our knowledge, this paper is
the first to achieve learning-to-stabilize unknown
LTI system without exponential blow-up in noisy
and under-actuated systems. We further demon-
strate the advantage of the proposed algorithm in
under-actuated settings.

1 INTRODUCTION

Driven by the success of machine learning and the prac-
tical engineering need in control, there has been a lot of
interests in learning-based control of unknown dynamical
systems Beard et al. [1997], Li et al. [2022], Bradtke et al.
[1994], Krauth et al. [2019], Dean S. Mania [2020]. How-
ever, the existing methods commonly rely on the strong as-
sumption of having access to a known stabilizing controller.
This motivates the learning-to-stabilize problem, i.e. learn-
ing to stabilize an unknown dynamical system, particularly
on a single trajectory, which has long been a challenging
problem both in theory and for applications such as control
of automatic vehicles and unmanned aerial vehicles (UAV).

Although many classical adaptive control approaches can
solve the learn-to-stabilize problem and achieve asymptotic
stability guarantees [Pasik-Duncan, 1996, Petros A. Ioannou,
2001], it is well known that the learn-to-stabilize problem
suffers from an issue known as exponential blow-up during
transients. As an example, Abbasi-Yadkori and Szepesvári
[2011] and Chen and Hazan [2020] presented a model-based
approach for learning to stabilize an unknown LTI system
xt+1 = Axt +But. It first excites the system in open loop
to learn the dynamics matrices (A,B) and then designs
the stabilizer. However, the initial excitation phase needs
to run the system in open loop for at least n steps before
learning (A,B) where n is the dimension of the state space,
because it takes at least n samples to fully explore the n
dimensional state space. As a result, the state norm blows
up to the order of 2Õ(n) as the system may be unstable in
open loop. Such an exponential blow-up can be catastrophic
and has been observed in multiple papers [Abbasi-Yadkori
and Szepesvári, 2011, Chen and Hazan, 2020, Lale et al.,
2020, Perdomo et al., 2021, Tsiamis and Pappas, 2021].
Further, it has also been shown that all general-purpose
control algorithms suffer a worst-case regret of 2Ω(n) [Chen
and Hazan, 2020].

Despite the exponential blow-up lower bound in Chen and
Hazan [2020], it is a worst-case bound and does not rule
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out better results for specific systems. This motivates the
following question: is it possible to exploit instance-specific
properties to learn to stabilize a noisy LTI system without
suffering from the worst-case exponential blow-up in n?
This problem has two challenges. First, in order to avoid
the exponential blow-up, one can only collect o(n) samples,
based on which we can only get partial information on the
dynamics. With only partial information about the system
dynamics, it is difficult to stabilize it. Second, the noise
in each step of the system is amplified by the open loop
unstable system, causing strong statistical dependencies
between states, which explode exponentially in a single
trajectory.

To solve the first challenge, we take inspiration from the
framework proposed in Hu et al. [2022], which gave an
algorithm that stabilizes a deterministic LTI system with
only Õ(k) state samples along a trajectory, where k < n
is the number of unstable eigenvalues of A. Therefore, Hu
et al. [2022] offered an algorithm with state norm upper
bounded by 2Õ(k), which avoids the exponential blow-up
2Õ(n) [Chen and Hazan, 2020, Tsiamis and Pappas, 2021].
However, Hu et al. [2022] only solves the challenge in the
much simplified noiseless and deterministic system dynam-
ics, as its methodology has difficulty decoupling the am-
plified noise from the system dynamics. In addition, Hu
et al. [2022] assumes that the control matrix has the same
dimension as the instability index k and is invertible. In
other words, the system is fully actuated when restricted
to the unstable subspace. This assumption is also unreal-
istic in applications, as the dimension of control input is
problem-specific and may not be equal to k. Particularly,
many real-world systems are under-actuated, meaning that
the control dimension can be much less than k. However, Hu
et al. [2022] hints at the possibility of stabilizing a general
noisy LTI system with fewer data points.

To solve the second challenge and address the limitations
in Hu et al. [2022], we need to determine a new method to
approximate the unstable part of the system dynamics under
stochastic noise and stabilize it with under-actuated control
inputs. This is nontrivial as, for example, while some previ-
ous works have designed methods to approximate system
dynamics from a noisy and blowing-up trajectory[Sarkar
and Rakhlin, 2018, Simchowitz et al., 2018], these methods
do not study how to separate the unstable part of the dynam-
ics from the stable part and how to stabilize the system. The
goal of this paper is to overcome these technical challenges
and to learn-to-stabilize an unknown LTI system without the
exponential blow-up state norm in noisy and under-actuated
settings.

Contribution. In this paper, we develop a novel model-
based algorithm, LTS0-N, to stabilize an unknown LTI sys-
tem. We design a new singular-value-decomposition(SVD)-
based subspace estimation technique to estimate the “un-
stable” part of system dynamics under noise perturbations

and stabilize it. Using this new technique, we develop an
analytical framework with the Davis-Kahan Theorem to es-
timate the error of subspace estimation, based on which we
show the approach stabilizes the unknown dynamical system
with state norm bounded by 2O(k log k+log(n−k)+m−log gap),
where m is the dimension of control input, and gap is a
constant depending on the spectral properties of A. Note
that this bound avoids the worst-case exponential blow-
up in state dimension Θ(2n) and outperforms the state-of-
the-art for stabilizing unknown noisy systems Lale et al.
[2020], Chen and Hazan [2020]. Further, despite the chal-
lenge caused by strong stochastic dependencies, the afore-
mentioned bound achieves a similar guarantee as the norm
bound in Hu et al. [2022] for noiseless systems. In addition,
as an improvement to Hu et al. [2022], we do not place
any requirement on dimensions of system dynamics matri-
ces and maintain the same complexity for under-actuated
system dynamics.

Related Work. Our work is mostly related to online learn-
ing and adaptation, learn-to-control with known stabilizing
controllers, learning-to-stabilize on multiple trajectories,
and learn-to-stabilize on a single trajectory. In addition, we
will also briefly cover system identification.

Online learning and adaptation. Adaptive control enjoys a
long history of study [Pasik-Duncan, 1996, Petros A. Ioan-
nou, 2001, Chen and Astolfi, 2021]. Most classical adaptive
control methods focus on asymptotic stability and do not
provide finite sample analysis, and therefore do not study
the exponential blow-up issue explicitly. The more recent
work on non-asymptotic sample complexity of adaptive con-
trol has recongnized the exponential blow-up issue when a
stabilizing controller is not known a priori [Chen and Hazan,
2020, Faradonbeh, 2017, Lee et al., 2023, Tsiamis and Pap-
pas, 2021, Tu and Recht, 2018]. Specifically, the most typi-
cal strategy to stabilize an unknown dynamic system is to
use past trajectory to estimate the system dynamics and then
design the controller [Berberich et al., 2020, De Persis and
Tesi, 2020, Liu et al., 2023]. Therefore, those works need
to run in an open loop for at least O(n) steps before stabi-
lizing, resulting in an exponential blow-up in the order of
the state space dimension. Compared with those works, we
can stabilize the system with fewer samples by identifying
and stabilizing only the unstable subspace, thus avoiding
the exponential blow-up.

Learn to control with known stabilizing controller. There is
abundant literature on stabilizing LTI systems under stochas-
tic noise [Bouazza et al., 2021, Jiang and Wang, 2002, Kusii,
2018, Li et al., 2022]. One line of research uses model-free
approaches to learn the optimal controllers [Fazel et al.,
2019, Jansch-Porto et al., 2020, Li et al., 2022, Wang et al.,
2022, Zhang et al., 2020]. Those algorithms typically require
a known stabilization controller as an initialization point for
policy search. Another line of research utilizes model-based
approaches, which require known stabilizing controllers



to collect data for learning the system dynamics [Cohen
et al., 2019, Mania et al., 2019, Plevrakis and Hazan, 2020,
Zheng et al., 2020]. Compared with those works, we focus
on learn-to-stabilize, and the controller we obtain can serve
as the initialization to existing learning-to-control works
that require a known stabilizing controller.

Learning-to-stabilize on multiple trajectories. In addition
to the aforementioned literatures, some works do not as-
sume open-loop stability and learn the full system dynamics
by learning from multiple trajectories. Before designing
a stabilizing controller, they require a data complexity of
Θ̃(n) [Dean S. Mania, 2020, Tu and Recht, 2018, Zheng and
Li, 2020], which is larger than Õ(k) of our work. Recently,
a model-free approach via the policy gradient method offers
a novel perspective with the same complexity [Perdomo
et al., 2021]. Those works do not face the same exponential
blow-up issue since they allow multiple trajectories, i.e., the
state can be “reset” to 0. Compared with their work, we
focus on the more challenging setting of stabilizing on a
single trajectory.

Learning-to-stabilize on a single trajectory. Learning to
stabilize for a linear system in an infinite time horizon has
long been studied in traditional control literatures [Lai, 1986,
Chen and Zhang, 1989, Lai and Ying, 1991]. There have
been algorithms incurring regret of 2O(n)O(

√
T ) which

relies on assumptions of observability and strictly stable
transition matrices [Abbasi-Yadkori and Szepesvári, 2011,
Ibrahimi et al., 2012]. Some studies have improved the
regret to 2Õ(n) + Õ(poly(n)

√
T ) [Chen and Hazan, 2020,

Lale et al., 2020]. Recently, Hu et al. [2022] proposed an
algorithm that requires Õ(k) samples but has assumptions
on the dimension of B and does not incorporate noise in the
system dynamics. In this work, we propose an algorithm
that has the same state norm bound as Hu et al. [2022] in a
noisy and potentially under-actuated LTI system.

System identification. Existing literature in system identifi-
cation focuses on determining system parameters [Oymak
and Ozay, 2018, Sarkar and Rakhlin, 2018, Simchowitz
et al., 2018, Xing et al., 2022]. Our approach also partially
determines the system parameters for the construction of
stabilizing controllers. Compared to those works, we do
not just conduct the identification but also close the loop
by stabilizing the system. Such results require additional
characterization of the identification accuracy and its impact
on closed-loop response.

2 PROBLEM FORMULATION

Notations. In this paper, we use the L2-norm as the default
norm ∥·∥. We use M∗ to represent the conjugate transpose
ofM , ei to denote the unit vector with 1 at the i-th entry and
0 everywhere else, and ρ(·) to denote the spectral radius of a
matrix. We provide an indexing of notations at Appendix H.

We consider an LTI system xt+1 = Axt +But + ηt where
xt, ηt ∈ Rn and ut ∈ Rm are the state, noise, and control
input at time step t, respectively. The system dynamics
determined by A and B are unknown to the learner. We
further assume E[ηt] = 0, and there exists constant C ∈ R+

such that ∥ηt∥ < C for all t ∈ N.1

The goal of the learning is to stabilize the system with a
learned controller, defined as follows:

Definition 2.1 (Stabilizing controller). Control rule (ut) is
called a stabilizing controller if and only if the closed-loop
system xt+1 = Axt + But + ηt is ultimately bounded;
i.e. when ∥ηt∥ ≤ C for all t, lim supt→∞ ∥xt∥ < Cn is
guaranteed in the closed-loop system for some Cn ∈ R+.

The learner is allowed to learn the system by interacting
with it on a single trajectory. More specifically, the learner
can observe xt and freely determine ut. In this paper, we
make the standard assumption that (A,B) is controllable.
We also assume x0 = 0 for simplicity of proof. Our proof
can be easily generalized to nonzero initial conditions.

Exponential blow-up. Although there are many existing
works in the learn-to-stabilize problem, including classi-
cal adaptive control [Petros A. Ioannou, 2001] or more
recent learning-based control papers [Abbasi-Yadkori and
Szepesvári, 2011, Chen and Hazan, 2020, Ibrahimi et al.,
2012, Lale et al., 2020], it is widely recognized that any
generic learn-to-stabilize algorithm inevitably causes expo-
nential blow-up in the state norm as shown by the lower
bound in Chen and Hazan [2020] and Tsiamis and Pappas
[2021]. This is because Θ(n) samples are mandatory to suf-
ficiently explore the n-dimensional state space and estimate
the system dynamics before designing a stabilizing con-
troller is possible. In contrast to these existing approaches
that estimate the full system, our approach breaks the lower-
bound by isolating the smaller unstable subspace from the
stable subspace, estimating the system dynamics in the un-
stable subspace under stochastic coupling, and showing that
by stabilizing the "smaller" subspace, we can stabilize the
entire state space. As such, our approach breaks the exponen-
tial blow-up lower-bound in the regime when the unstable
subspace has smaller dimension than n.

3 PRELIMINARIES

Our approach uses the decomposition of the state space into
stable and unstable subspace (introduced in Hu et al. [2022]),
and we only conduct system identification and stabilization

1The assumption on boundedness of noise can be loosened
to sub-Gaussian random variables at the cost of a slightly more
complicated proof. Indeed, in the simulation in Section 6, we show
our algorithm stabilizes an LTI system with additive Gaussian
noise.



for the unstable subspace. In this section, we provide a
review of these concepts.

3.1 DECOMPOSITION OF THE STATE SPACE

Consider the open-loop system xt+1 = Axt, where A is
diagonalizable. Let λ1, · · · , λn denote the eigenvalues of A
such that 2

|λ1| > |λ2| > · · · > |λk| > 1 > |λk+1| > · · · > |λn|.

We define the unstable subspace Eu as the invariant sub-
space corresponding to the unstable eigenvalues λ1, . . . , λk
and the stable subspace Es as the invariant subspace corre-
sponding to the stable eigenvalues λk+1, . . . , λn.

The Eu ⊕ E⊥
u -decomposition. Let P1 ∈ Rn×k and P2 ∈

Rn×(n−k) denote the orthonormal bases of the unstable sub-
space Eu and its orthogonal complement E⊥

u , respectively,
namely,

Eu = col(P1), E⊥
u = col(P2).

Let P = [P1, P2], which is also orthonormal and thus
P−1 = P ∗ = [P ∗

1 , P
∗
2 ]

∗. Let Π1 := P1P
∗
1 and Π2 :=

P2P
∗
2 be the orthogonal projectors onto Eu and E⊥

u , re-
spectively. With the above decomposition, we can transform
the matrix A into the two subspaces. Since Eu is an invari-
ant subspace with regard to A, there exists M1 ∈ Rk×k,
∆ ∈ Rk×(n−k), and M2 ∈ R(n−k)×(n−k), such that

AP = P

[
M1 ∆

M2

]
⇔M :=

[
M1 ∆

M2

]
= P−1AP.

In the above decomposition, the top-left block M1 ∈ Rk×k
acts on the unstable subspace, while M2 acts on the sta-
ble subspace. Consequently, M1 inherits all the unstable
eigenvalues of A, and M2 inherits all the stable eigenvalues.

Finally, we examine the system dynamics after the above
transformation. Let y = [y∗1 , y

∗
2 ]

∗ represent x in the basis
formed by the column vectors of P after coordinate trans-
formation (i.e. x = Py). The system dynamics after the
transformation can be written as[
y1,t+1

y2,t+1

]
= P−1AP

[
y1,t
y2,t

]
+ P−1But +

[
P ∗
1

P ∗
2

]
ηt

=

[
M1 ∆

M2

] [
y1,t
y2,t

]
+

[
P ∗
1B
P ∗
2B

]
ut +

[
P ∗
1

P ∗
2

]
ηt.

(1)

The Eu ⊕ Es-decomposition As M is not block diago-
nal, signified by the top-right ∆ block, which represents

2In practice, if A does have the same eigenvalues, a slight
perturbation will make A have distinct eigenvalues, to which our
method will apply. Further, a light perturbation will only introduce
a log factor, as our dependence on the eigenvalue-related “gap”
constant is only logarithmic, as shown in Theorem 4.2.

how much a state shifts from E⊥
u to Eu in one step, E⊥

u

is in general not an invariant subspace with respect to A
in the Eu ⊕ E⊥

u -decomposition. For convenience of anal-
ysis, we introduce another decomposition in the form of
Eu ⊕ Es, where both Eu and Es are invariant with respect
to A. We also represent Eu = col(Q1) and Es = col(Q2)
by their orthonormal bases, and define Q := [Q1 Q2].
Since Eu and Es are generally not orthogonal, we define
R := Q−1 = [R∗

1, R
∗
2]

∗. The construction detail is further
explained in Appendix A.1 of Hu et al. [2022].

3.2 τ -HOP CONTROL

A τ -hop controller only inputs non-zero control ut for once
every τ steps, i.e. when t = sτ , s ∈ N. We inherit the τ -hop
mechanism introduced in Hu et al. [2022] but change the
stopping time mechanism. Let x̃s := xsτ and ũs := usτ
denote state and control action τ time steps apart. We can
then write the dynamics of the τ -hop control system as:

x̃s+1 = Aτ x̃s +Aτ−1Bũs +

τ−1∑
i=0

Aiηsτ+i. (2)

Let ỹs denote the state under Eu ⊕ E⊥
u -decomposition, i.e.

ỹs = P ∗x̃s. The state evolution becomes

[
ỹ1,s+1

ỹ2,s+1

]
=P−1AτP

[
ỹ1,s
ỹ2,s

]
+ P−1Aτ−1Bũs +

τ−1∑
i=0

P−1Aiηsτ+i

=Mτ

[
ỹ1,s
ỹ2,s

]
+

[
P ∗
1A

τ−1B
P ∗
2A

τ−1B

]
ũs +

τ−1∑
i=0

[
P ∗
1A

i

P ∗
2A

i

]
ηsτ+i.

(3)

We shall denote Bτ := P ∗
1A

τ−1B for simplicity, and

Mτ =

([
M1

M2

]
+

[
0 ∆

0

])τ
=

[
Mτ

1

∑τ−1
i=1 M

i
1∆M

τ−1−i
2

Mτ
2

]
:=

[
Mτ

1 ∆τ

Mτ
2

]
.

Now we use a state feedback controller ũs = K1ỹ1,s in the
τ -hop control system to stabilize the system by acting on
the unstable component ỹ1,s. The closed-loop dynamics can
be written as

ỹs+1 =

[
Mτ

1 + P ∗
1A

τ−1BK1 ∆τ

P ∗
2A

τ−1BK1 Mτ
2

]
ỹs+

τ−1∑
i=0

P−1AiPηsτ+i.

(4)



Algorithm 1 LTS0-N: learning a τ -hop stablilzing controller

1: Stage 1: learning the unstable subspace of A.
2: Run the system in open loop for T steps and let D ←

[x1, · · · , xT ].
3: Compute the singular value decomposition of D =
UΣV ∗. Let P̂1 ← U (k) be the top k columns of U .

4: Calculate Π̂1 ← P̂1P̂
∗
1 .

5: Stage 2: approximate M1 on the unstable subspace.
6: Solve the least square problem
M̂1 ← argminM1∈Rk×k L(M1) :=∑T
t=0

∥∥∥P̂ ∗
1 xt+1 −M1P̂

∗
1 xt

∥∥∥2.
7: Stage 3: restore Bτ for τ -hop control.
8: for i = 1, · · · ,m do
9: Let the system run in open loops for ωi steps until

∥(I−Π̂1)xti∥
∥xti∥

< (1− ϵ)γ and C

∥xti∥
< δ.

10: Run for τ more steps with initial uti = α ∥xti∥ ei,
where ti = T +

∑i
j=1 ωj + (i− 1)τ .

11: end for
12: Let B̂τ ← [b̂1, · · · , b̂m], where the i-th column b̂i ←

1

α∥xti∥
(
P̂ ∗
1 xti+τ − M̂τ

1 P̂
∗
1 xti

)
.

13: Stage 4: construct a τ -hop stabilizing controller K.
14: Construct the τ -hop stabilizing controller K̂1 from M̂τ

1

and B̂τ .

4 MAIN RESULTS

4.1 ALGORITHM

In this section, we propose Learning to Stabilize from Zero
with Noise (LTS0-N). The algorithm is divided into 4 stages:
(i) learn an orthonormal basis P1 of the unstable subspace
Eu (Stage 1); (ii) learn M1, the restriction of A onto the
subspace Eu (Stage 2); (iii) learn Bτ = P ∗

1A
τ−1B (Stage

3); and (iv) design a controller that seeks to stabilize the
“unstable”Eu subspace (Stage 4). This is formally described
in Algorithm 1. We provide detailed descriptions of the four
stages in LTS0-N.

Stage 1: Learning the unstable subspace of A. We let
the system run in open-loop (with control input ut ≡ 0)
for T time steps. Per the stable/unstable decomposition,
the ratio between the norms of the state components in the
unstable and stable subspace increases exponentially, and,
very quickly, the state will lie “almost” inEu. Consequently,
the subspace spanned by the T states, i.e. the column space
of D := [x1, · · · , xT ], is very close to Eu. Thus, we use
the top k left singular vectors of D (the top k eigenvectors
of DD∗), denoted as U (k), as an estimate of the basis of
the unstable subspace P̂1. In other words, we set P̂1 = U (k)

and use it to construct the orthogonal projector onto Eu,
namely Π̂1 = U (k)(U (k))∗, as an estimation of the projector
Π1 = P1P

∗
1 onto Eu.

Stage 2: Learn M1 on the unstable subspace. Recall that
M1 is the system dynamics matrix for the subspace Eu
under Eu ⊕ E⊥

u -decomposition. Therefore, to estimate M1,
we first compute the projection of states x1:T on subspace
Eu, i.e. ŷ1,t = P̂ ∗

1 x1,t for t = 1, · · · , T . Then we use least
squares to estimate M1, i.e. find M̂1 that minimizes the
square loss:

L(M̂1) :=

T∑
t=0

∥∥∥ŷ1,t+1 − M̂1ŷ1,t

∥∥∥2 . (5)

Stage 3: Learn Bτ for τ -hop control. In this stage, we
estimate Bτ , which quantifies the effect of control input
on states in the unstable subspace Eu (as discussed in Sec-
tion 3.2). Note that (3) shows

y1,ti+τ =Mτy1,ti +∆τy2,ti +Bτuti

+

τ−1∑
j=1

Mτ−jη1,ti+j +∆τ−jη2,ti+j .
(6)

We estimate the columns of Bτ one by one. Specifically, we
use a scaled unit vector ei as control input at time ti, run
the system in open loop for τ steps, and use (6) but simply
ignore the ∆τ related terms to estimate bi, the i-th column
of Bτ , as

b̂i =
1

∥uti∥

(
P̂ ∗
1 xti+τ − M̂τ

1 P̂
∗
1 xti

)
, (7)

where uti is parallel to ei with magnitude α ∥xti∥ for nor-
malization. Here, α is an adjustable constant to guarantee
that the Es-component does not increase too much to blur
our estimation after injecting uti . Since we ignored the ∆τ

related terms in the estimation of bi, to ensure that those
terms do not cause much error in our estimation of Bτ , we
let the system run in open loop for ωi time steps before
the estimation of bi starts. Here, ωi is a stopping time (cf.
Line 9 in Algorithm 1). The purpose of the stepping time is
to reduce the estimation error caused by the ∆τ . For more
details, see Proposition E.5 in the proof.

Stage 4: Construct a τ -hop stabilizing controllerK. With
the estimated Mτ

1 and Bτ from the last stage, denoted as
M̂τ

1 and B̂τ , the learner can choose any stabilization algo-
rithm to find K̂1 by stabilizing the linear system

ˆ̃yi+1 = M̂τ
1
ˆ̃yi + B̂τ ũi, ũi = K̂1

ˆ̃yi,

where the tilde in ˆ̃y emphasizes the use of τ -hop control
and the hat emphasizes the use of estimated projector P̂1,
which introduces an extra estimation error to the final closed-
loop dynamics. As K̂1 is chosen by the learner, we denote
K to be a constant such that

∥∥∥K̂1

∥∥∥ < K. Furthermore, by

Proposition F.1, there exists a positive definite matrix Ū such
that

∥∥∥M̂τ
1 − B̂τ K̂1

∥∥∥
Ū
:= U < 1, where ∥·∥Ū denotes the



weighted norm induced by Ū . These user-defined constants
are used in the proof of Theorem 4.2.

To sum up, Algorithm 1 terminates in T +
∑m
i=1(1+ωi+τ)

time steps, where ωi is the stopping time for the system to

satisfy ∥(I−Π̂1)xti∥
∥xti∥

< (1− ϵ)γ and C

∥xti∥
< δ.

Remark 4.1. Our algorithm is different from the algorithm
proposed in Hu et al. [2022] in three aspects. Firstly, to
account for the noise, we do not directly use the span of con-
secutive k vectors as the estimator for the unstable subspace.
Instead, to identify the unstable subspace under noise, we
utilize the singular value decomposition to identify the dom-
inating state space in the trajectory and use that space as an
estimation of P1. Such an estimator requires a much more
delicate analysis framework to bound the error based on
Davis-Kahan Theorem, which we elaborate in Appendix A.
Secondly, the above algorithm generalizes the problem to an
under-actuated setting, where the control matrixB ∈ Rn×m
with m ̸= k. To achieve this, unlike Hu et al. [2022] we no
longer try to cancel out the unstable matrix M1, but rather
allow the learner to choose the stabilization controller. We
show in Section 6 that our algorithm outperforms Hu et al.
[2022] in an under-actuated setting in simulation. Thirdly,
we use a stopping time to monitor the state norm in esti-
mating Bτ , so that our algorithm always terminates at the
earliest possible time.

4.2 STABILITY GUARANTEE

In this section, we formally state the assumptions and show
our approach finds a stabilizing controller without suffering
from exponential blow-up in n. Our first assumption is re-
garding the spectral properties of A, which requires distinct
eigenvalues with specified eigengap.

Assumption 1 (Spectral Property). A is diagonalizable with
distinct eigenvalues λ1, . . . , λn satisfying |λ1| > |λ2| >
· · · > |λk| > 1 > |λk+1| > · · · > |λn|.

We assume the learner knows the value of k. However, we
point out that our algorithm works as long as the learner
picks a value k̂ at least as large as k. In order to provide
guarantee to the estimation of the open-loop unstable system
dynamics, we also need an assumption on the distribution
of noise η.

Assumption 2 (pdf of η). Let M1 := P̄−1JP̄ de-
note the Jordan normal form of M1, and P̄ :=
[P̄1, P̄2, · · · , P̄k]∗. There exists Cz ∈ R, such that the
supremum of the probability distribution function (pdf)
of
∣∣∣P̄ ∗
i

∑t
j=1M

−j
1 P ∗

1 ηj

∣∣∣ is upper bounded almost every-

where,.i.e. ess sup pdf
(∣∣∣P̄ ∗

i

∑t
j=1M

−j
1 P ∗

1 ηj

∣∣∣) < Cz , for
all i ∈ {1, . . . , k} and t ∈ N.

Assumption 2 holds for most common noise distributions,
including bounded uniform distribution and Gaussian distri-
butions(Lemma C.3). We further discuss this assumption in
Appendix B and C.

With the above assumptions, our main result is as follows.

Theorem 4.2. Given a noisy LTI system xt+1 =
Axt + But + ηt subject to Assumption 1, Assump-
tion 2, and additionally, |λ1||λk+1| < 1. Fur-

ther, denote gap :=

∣∣∣∣∏ m1 ̸=m2,
m1,m2∈{1,...,k}

(λ−1
m1
− λ−1

m2
)

∣∣∣∣ .
By running Algorithm 1 with parameters γ =
O(1), δ = O(m− 1

2 ), τ = O(1), α = O(1), and
T = O (k log k + log(n− k) + logm− log gap), the con-
troller returned by Algorithm 1 is a stabilizing controller.
Further, Algorithm 1 guarantees that

∥xt∥ < exp (O (k log k + log(n− k) +m− log gap)) ,

before termination. Here the big-O notation only shows
dependence on k,m and n, while omitting dependence on
C,Cz, |λ1|, |λk|, |λk+1|, θ, K, and U .

The precise bound given for each constant can be found at
(65),(66),(67), and (68) in the Appendix, and the bound for
T is given in Theorem 5.1. Despite the more challenging
setting with noises and potentially underactuated systems,
Theorem 4.2 achieves a similar guarantee as Hu et al. [2022].
Specifically, in the regime of m = O(k),3 the above Theo-
rem shows that LTS0-N finds a stabilizing controller with
an upper bound on state norm at 2Õ(k), which is better
than the state-of-the-art 2Θ(n) complexity in the noisy set-
tings. Therefore, our approach leverages instance specific
properties (the dimension of unstable subspace k) to break
the exponential lower bound [Chen and Hazan, 2020] and
learns to stabilize without the exponential blow-up in n in
noisy and under-actuated settings.

We also point out that constant gap is also k-dependent. In
the worst case, the gap has an order of 2O(k2). This is still
independent of n. We note that Hu et al. [2022] did not
show explicit dependence on this constant. We leave it as
future work whether this additional constant is essential or
is an artifact of the proof. Moreover, our assumption that
|λ1||λk+1| < 1 is weaker than the assumption in Hu et al.
[2022], which requires |λ1|2|λk+1| < |λk|. If the system
can not satisfy this assumption, than the learner can pick
k̂ > k, such that |λ1||λk̂+1| < 1 for Algorithm 1. In the
worst case, LTS0-N has the same complexity bound as the
algorithm proposed in Chen and Hazan [2020]. Overall,
we can achieve a better bound than the previous works for
the LTI system with additive noise using singular value

3We note that the regime of m = O(k) is the most interesting
regime as it covers the under-actuated setting, which is known to
be more challenging.



decomposition to isolate the unstable component. The key
steps will be shown in Theorem 5.1 in Section 5.

We demonstrate the effectiveness of our algorithm in simu-
lation in Section 6, showing our algorithm’s state norm does
not blow-up with n and also outperforms other benchmarks.

5 PROOF OUTLINE

In this section, we will give a high-level overview of the key
proof ideas for the main theorem. The full proof details can
be found in Appendix F.

Proof Structure. The proof is largely divided into four steps.
In Step 1, we examine how accurately the learner estimates
the unstable subspace Eu in Stage 1. We will show that
Π1, P1 can be estimated up to an error of ϵ, δ respectively
within T = O (k log k + log(n− k)− log ϵ− log gap)
steps, where δ :=

√
2kϵ. In Step 2, we examine how ac-

curately the learner estimates M1. We show that M1 can
be estimated up to an error of 3 ∥A∥ δ. In Step 3, we exam-
ine the estimation error of Bτ in Stage 3. Lastly, in Step
4, we eventually show that the τ -hop controller output by
Algorithm 1 makes the system stable.

Overview of Step 1. To upper bound the estimation errors in
Stage 1, we use SVD to isolate the unstable subspace and use
the Davis-Kahan Theorem to decouple the system dynamics
from the noise perturbation. The bounds on

∥∥∥Π1 − Π̂1

∥∥∥ is
shown in Theorem 5.1.

Theorem 5.1. For a linear dynamic system with noise
xt+1 = Axt + ηt satisfying Assumption 1 and Assump-
tion 2, let Eu be the unstable subspace of A, k = dimEu
be the instability index of the system and Π1 be the orthog-
onal projector onto subspace Eu. Then for any ϵ > 0, by
running Stage 1 of Algorithm 1 for T time steps, where

T = O (k log k + log(n− k)− log ϵ− log gap) ,

we get an estimation Π̂1 = U (k)(U (k))∗ with error∥∥∥Π̂1 −Π1

∥∥∥ < ϵ. Here, the big-O notation only shows
dependence on k, n and ϵ, while omitting dependence on
C,Cz, |λ1|, |λk|, |λk+1|, and θ.

The proof of Theorem 5.1 is deferred to Appendix A. Over-
all, Theorem 5.1 gives a non-asymptotic bound on the speed
in which the last n− k singular values of D decay. There-
fore, even if the learner has no information on the exact
value of k, the learner will find a large gap between the k-th
and (k + 1)-th singular value of D as the first k singular
values grow exponentially and the last (n−k) singular value
decays exponentially, from which the learner can infer the
value of k.

Overview of Step 2. To upper bound the er-
ror in Stage 2, We upper bound the error in

argminM1

∑T
t=0

∥∥(U (k))∗xt+1 −M1(U
(k))∗xt

∥∥2 and
obtain the following proposition.

Proposition 5.2. Under the premise of Theorem 4.2, we
have∥∥∥M̂τ

1 −Mτ
1

∥∥∥ ≤ 3τ ∥A∥ ζϵ1(A)2(|λ1|+ ϵ1)
τ−1δ,

where ζϵ1(A) is constant for Gelfand’s formula defined in
Lemma G.2, and we recall δ is the estimation error for P1.

The proof in this step and the related lemmas and proposi-
tions are deferred to Appendix D.

Overview of Step 3. To bound the error in Stage 3, we
upper bound the error in each column of Bτ . In particular,
we show that (7) generates an estimation ofBτ with an error
in the same order as δ. The detail is left to Proposition E.5
in Appendix E.

Overview of Step 4. To analyze the stability of the closed-
loop system, we shall first write out the closed-loop dy-
namics under the τ -hop controller. Recall in Section 3.2,
we have defined ũs, x̃s, ỹs to be the control input, state in
x-coordinates, and state in y-coordinates in the τ -hop con-
trol system, respectively. Using those notations, the learned
controller is obtained from the estimation of Mτ

1 and Bτ
by the learner with any stabilization algorithm (e.g. LQR,
pole-placement).

Therefore, the closed-loop, the closed-loop τ -hop dynamics
should be

ỹs+1 = L̂

[
ỹ1,s
ỹ2,s

]
+

τ−1∑
i=0

P−1AiPηsτ+i

:= L̂ỹs +

τ−1∑
i=0

[
P ∗
1A

i

P ∗
2A

i

]
ηsτ+i,

(8)

where

L̂ :=

[
Mτ

1 + P ∗
1A

τ−1BK̂1P̂
∗
1 P1 ∆τ + P ∗

1A
τ−1BK̂1P̂

∗
1 P2

P ∗
2A

τ−1BK̂1P̂
∗
1 P1 Mτ

2 + P ∗
2A

τ−1BK̂1P̂
∗
1 P2

]
:=

[
L̂1,1 L̂1,2

L̂2,1 L̂2,2

]
.

(9)

We will show the above system to be ultimately bounded (i.e.
ρ(L̂τ ) < 1). Note that L̂τ is given by a 2-by-2 block form,
and we can utilize the following lemma for the spectral
analysis of block matrices.

Lemma 5.3. For block matrices A =

[
A1 0
0 A2

]
, E =[

0 E12

E21 0

]
, the spectral radii of A and A+E differ by at



most |ρ(A+E)− ρ(A)| ≤ χ(A+E) ∥E12∥ ∥E21∥, where
χ(A+ E) is a constant.

The proof of the lemma can be found in existing literature
such as Nakatsukasa [2017]. Therefore, we need to ensure
the stability of the diagonal blocks of L̂ and upper-bound the
norms of the off-diagonal blocks via estimation of factors
appearing in these blocks. Complete proofs can be found in
Appendices F.

6 NUMERICAL SIMULATION

Lastly, we include numerical simulations to demonstrate the
performance of our algorithm. We consider an LTI system
with additive noise

xt+1 = Axt +But + ηt, where ηt ∼ N (0, σ2I),

where σ2 is the variance of the additive Gaussian noise at
each step. Note we use unbounded Gaussian noise here, and
noise with bounded uniform distribution would generate
similar results. The dynamics matrix B is generated ran-
domly. Matrix A is generated by A = V ΛV −1, where V is
a randomly generated matrix, and Λ is a diagonal matrix of
eigenvalues generated uniformly at random from the interval
that satisfies |λ1||λk+1| < 1.

In our first experiment, we compare the performance of
LTS0-N in different settings (with different n, σ). In each
setting, we conduct 200 trials and record the minimal time
steps it takes to stabilize the system, and the results are
in Figure 1. In our second experiment, we compare our
proposed algorithm to three different algorithms: a classical
self-tunning regulator in Pasik-Duncan [1996], black-box
control proposed in Chen and Hazan [2020], and the LTS0
algorithm proposed in Hu et al. [2022] and the results are in
Figure 2.

Figure 1: Running steps of LTS0-N. The line shows the
average steps it takes to stabilize the system, and the shadow
area shows the standard deviation.

Figure 2: State norm along one trajectory. The trajectory
of our algorithm, the algorithm in Hu et al. [2022], the
black-box controller in Chen and Hazan [2020] and a self-
tunning regulator in Pasik-Duncan [1996] are compared in
a randomly generated LTI system with n = 128, k = 4,
m = 3, and σ = 0.01.

Performance difference under different n and σ. Figure 1
shows the relationship between the number of steps between
running LTS0-N and the dimension of states. It is evident
that the increase in the number of steps is at most linear
in log(n), as proven in Theorem 4.2. As we used the same
randomly generated matrices for each (n, σ)−pair, all three
curves in Figure 1 have a similar trend at each node. This
observation verifies that the number of steps needed for
stabilization also depends on the eigenvalue distribution of
the system dynamics matrices, as we showed in the proof.
Moreover, we see that an increase in noise slightly increases
the number of steps for stabilization, as shown in the proof
of Theorem 5.1. As expected, an increase in noise also
increases the standard deviation of the number of steps
before stabilization.

Difference in performance in single trajectory Figure 2
shows a typical trajectory of our LTS0-N algorithm. It is ev-
ident that our algorithm takes significantly fewer steps than
adaptive control algorithms (self-tuning regulator and black-
box control) and also fewer steps than the LTS0 algorithm
proposed Hu et al. [2022]. This is because the self-tuning
regulator and the black-box control algorithm cannot take
stabilzing control actions before the system runs for at least
n steps and learns the system dynamics. Moreover, due to
the stochastic coupling of the system, estimation of system
dynamics becomes much more difficult, and the adaptive
control methods need a relatively large state to overcome the
disturbance of noise in system identification. In comparison
to LTS0, note that in this simulation, we chose m < k to
demonstrate the advantage of our algorithm in an under-
actuated system. We see that our algorithm incurred less
zig-zagging than LTS0, since we can stabilize directly on the
existing state space, and LTS0 has to stabilize on a compos-



ite state space, the details of which can be seen at Appendix
C of Hu et al. [2022].

7 ACKNOWLEDGEMENT

This work is supported by NSF 2154171, NSF CAREER
2339112, CMU CyLab seed funding, Department of the
Navy, Office of Naval Research, no. N00014-23-1-2252
Japan Science and Technology Agency, no. JPMJPR2136.
The views expressed are those of the authors and do not
reflect the official policy or position of the US Navy, Depart-
ment of Defense or the US Government.

8 CONCLUSION

This paper designs a novel algorithm for stabilizing the
unstable subspace in LTI problems with additive noise. We
showed that our algorithm finds a stabilizing controller with
a guarantee of state norm below 2Õ(k), which significantly
improves upon the previous literature with a state norm of
2Θ(n). Future directions include dropping the assumption
of diagonalizable A matrix and other assumptions on the
spectral properties of A.
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A PROOF OF THEOREM 5.1

One of the key innovations of this work is the SVD-based framework we use to decouple the unstable subspace from the rest
of the system. Therefore, we prove Theorem 5.1 here. After the system runs for time T , we record the state space in a n× T
matrix D whose t-th column is defined as:

D(t) = xt = Axt−1 + ηt.

We decompose A based on Eu ⊕ Es-decomposition. Suppose Eu and Es are represented by their orthonormal bases
Q1 ∈ Rn×k and Q2 ∈ Rn×(n−k), respectively, i.e. Eu = col(Q1), Es = col(Q2). Let Q = [Q1, Q2] (which is invertible as
A is diagonalizable), and let R = [R∗

1, R
∗
2]

∗ := Q−1. Since Eu and Es are both invariant with regard to A, we know there
exists N1 ∈ Rk×k, N2 ∈ R(n−k)×(n−k), s.t.

AQ = Q

[
N1

N2

]
⇔ N :=

[
N1

N2

]
= RAQ.

We are now ready to prove Theorem 5.1.

Proof: Let D = UΣV ∗ denote the compressed singular value decomposition of D and σ1 > · · · > σn denote its singular
values. In this case, we have U ∈ Rn×min{n,T}, Σ ∈ Rmin{n,T}×min{n,T}, and V ∈ RT×min{n,T}. Moreover, denote
U = [u1, . . . , un] and V = [v1, . . . , vn].

Furthermore, we have the following equalities

D = QRD = Q

[
R1D
R2D

]
= Q

[
D1

D2

]
=
[
Q1 Q2

] [D1

0

]
+
[
Q1 Q2

] [ 0
D2

]
= Q1D1 +Q2D2.

Let

D =

[
0 (Q1D1)

∗

Q1D1 0

]
, J =

[
0 (Q2D2)

∗

Q2D2 0

]
, D + J =

[
0 D∗

D 0

]
.

We can decompose D + J in the following form

D + J =

[
0 V ΣU∗

UΣV ∗ 0

]
=

1

2

([
V
U

]
Σ

[
V
U

]∗
−
[
V
−U

]
Σ

[
V
−U

]∗)
.

Therefore, we see that the eigenvalues of D + J are exactly {±σi} with eigenvectors [v∗i ,±u∗i ]∗, respectively. Correspond-
ingly, the top k largest eigenvalues of D + J are the top k largest singular values of D, or the square root of top k largest
eigenvalues of DD∗.

Similarly, we use compressed singular value composition on D1 = U1Σ1V
∗
1 , where U1 ∈ Rk×k,Σ1 ∈ Rk×k, V1 ∈ RT×k,
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and decompose D as follows:

D =

[
0 V1Σ1U

∗
1Q

∗
1

Q1U1Σ1V
∗
1 0

]
=
1

2

([
V1Σ1V

∗
1 V1Σ1U

∗
1Q

∗
1

Q1U1Σ1V
∗
1 Q1U1Σ1U

∗
1Q

∗
1

]
−
[

V1Σ1V
∗
1 −V1Σ1U

∗
1Q

∗
1

−Q1U1Σ1V
∗
1 Q1U1Σ1U

∗Q∗
1

])
=
1

2

([
V1Σ1

Q1U1Σ1

] [
V ∗
1 U∗

1Q
∗
1

]
−
[

V1Σ1

−Q1U1Σ1

] [
V ∗
1 −U∗

1Q
∗
1

])
=
1

2

([
V1

Q1U1

]
Σ1

[
V1

Q1U1

]∗
−
[

V1
−Q1U1

]
Σ1

[
V1

−Q1U1

]∗)
.

We see that the top k largest eigenvalues of D are the top k largest singular values of D1, denoted as σ̂1, . . . , σ̂k.

Let U (k) and V (k) denote the submatrices containing the first k columns of U and V , respectively. Let Π and Π′ denote the
projection onto the eigenspaces of the largest k eigenvectors of D + J and D, respectively.

It is clear that

Π =
1

2

[
V (k)

U (k)

] [
(V (k))∗ (U (k))∗

]
=

1

2

[
V (k)(V (k))∗ V (k)(U (k))∗

U (k)(V (k))∗ U (k)(U (k))∗

]
,

Π′ =
1

2

[
V1

Q1U1

] [
V ∗
1 U∗

1Q
∗
1

]
=

1

2

[
V1V

∗
1 V1U

∗
1Q

∗
1

Q1U1V
∗
1 Q1U1U

∗
1Q

∗
1

]
=

1

2

[
V1V

∗
1 V1U

∗
1Q

∗
1

Q1U1V
∗
1 Q1Q

∗
1

]
.

By Davis-Kahan Theorem (see Cao [2021] and Appendix G), we have

∥Π−Π′∥ ≤ 1

2

√
2k ∥J∥2

σ̂k − σk+1
=

√
2k ∥Q2D2∥
σ̂k − σk+1

≤
√
2k ∥Q2∥ ∥D2∥
σ̂k − σk+1

=

√
2k ∥D2∥

σ̂k − σk+1
.

Since Π̂1 = U (k)(U (k))∗,Π1 = Q1Q
∗
1, we have

∥∥∥Π̂1 −Π1

∥∥∥ ≤ ∥Π−Π′∥ ≤
√
2k ∥D2∥

σ̂k − σk+1
.

We next show that σ̂k = Ω(|λk|T ), σk+1 = O(T ) and ∥D2∥ = O(T ), based on which
∥∥∥Π̂1 −Π1

∥∥∥ ≤ O(T )

Ω(λT
k −T )

→ 0. More
formally, we have the following.

Lemma A.1. If

T > Θ

 log k − 2 log
(

gap

k
k
2
+3

)
− 3 log θ

log |λk|

 (10)

is satisfied, with probability at least 1− 4θ,

D1D
∗
1 ⪰

π|λk|2T θ2

4

gap2

kk+6

|λ1|2

|λ1|2 − 1
,

where we recall gap =

∣∣∣∣∏ m1 ̸=m2,
m1,m2∈{1,...,k}

(λ−1
m1
− λ−1

m2
)

∣∣∣∣.
The proof of Lemma A.1 is delayed to Appendix B.

For D2, we have the following inequalities

∥D2∥2 ≤
√
T ∥D2∥1 ≤

√
T

n∑
i=k+1

 T∑
j=1

λjiC

 ≤ √T (n− k)( C

1− |λk+1|

)
. (11)



By Lemma A.1 and (11), in order to have
∥∥∥Π̂1 −Π1

∥∥∥ < ϵ, we need∥∥∥Π̂1 −Π1

∥∥∥ < ϵ

⇐

√
2k
√
T (n− k)

(
C

1−|λk+1|

)
√
π|λk|T θ

2
gap

k
k
2
+3

√
|λ1|2

|λ1|2−1 − 2
√
2k
√
T (n− k)

(
C

1−|λk+1|

) < ϵ

⇐
2
√
2kk

k
2+3
√
T (n− k)

(
C

1−|λk+1|

)
√
π|λk|T θgap− 4

√
2kk

k
2+3
√
T (n− k)

(
C

1−|λk+1|

) < ϵ

⇐
2
√
2k

k+7
2

√
T (n− k)

(
C

1−|λk+1|

)
1
2

√
π|λk|T θgap

< ϵ (12)

⇐4
√
2k

k+7
2

√
T (n− k)

(
C

1− |λk+1|

)
<
√
π|λk|T θgapϵ

⇐1

2
log T + log

(
4
√
2k

k+7
2 (n− k)

(
C

1− |λk+1|

))
< T log |λk|+ log

(√
πθgapϵ

)
⇐1

2
T log |λk| > log

(4
√
2k

k+7
2 (n− k)

(
C

1−|λk+1|

)
√
πθgapϵ

)
(13)

⇐T >

2 log

(
4
√
2k

k+7
2 (n−k)

(
C

1−|λk+1|

)
√
πθgapϵ

)
log |λk|

(14)

where in (12), we require

4
√
2kk

k
2+3
√
T (n− k)

(
C

1− |λk+1|

)
<

1

2

√
π|λk|T θgap

⇐1

2
log T + log

(
4
√
2k

k+7
2 (n− k)

(
C

1− |λk+1|

))
< T log |λk|+ log(

1

2

√
πθgap)

⇐1

2
T log |λk| > log

(
4
√
2k

k+7
2 (n− k)

(
C

1− |λk+1|

))
− log(

1

2

√
πθgap) (15)

⇐T >

2 log

(
8
√
2k

k+7
2 (n−k)

(
C

1−|λk+1|

)
√
πθgap

)
log |λk|

(16)

where in (13) and (15), we need T log |λk| > log T . In order to have T log |λk| > log T , define

f(T ) := T log |λk| − log T.

When T > log |λk|, we have f(T ) = (log |λk|)2 − log log |λk| > 0 and f ′(T ) = log |λk| − 1
T > 0.

Therefore, when T > log |λk|, we have T log |λk| > log T .

Combining (14), (16), and T > log |λk| required above, we get

T > max

{2 log

(
8
√
2k

k+7
2 (n−k)

(
C

1−|λk+1|

)
√
πθgap

)
log |λk|

,

2 log

(
4
√
2k

k+7
2 (n−k)

(
C

1−|λk+1|

)
√
πθgapϵ

)
log |λk|

, log |λk|

}
.

(17)

Treating the eigenvalue terms and θ to be constants as stated in the theorem, for
∥∥∥Π̂1 −Π1

∥∥∥ < ϵ to hold, we need

T > Θ((k log k + log(n− k)− log ϵ− log gap) . (18)

This concludes the proof. □



B AUXILLARY LEMMAS FOR STEP 1

We derive a lower bound on D1D
∗
1 from Appendix 11 of Sarkar and Rakhlin [2018], which requires two additional functions

ϕmin(M1, T ) and ψ(M1, T ):

For the space Rd, define the a−outbox, Sd(a), as the following set

Sd(a) = {v ∈ Rd| min
1≤i≤d

|v(i)| > a},

which is used to quantify the following norm–like quantities of a matrix:

ϕmin(M1, T ) =

√√√√ inf
v∈Sk(1)

σmin

(
T∑
i=1

J−i+1vv∗(J−i+1)∗

)
, (19)

where M1 = P̄−1JP̄ is the Jordan normal form of M1. Here, Since A is diagonalizable (so M1 is diagonalizable), J is the
diagonal matrix of λ1, · · · , λk.

ψ(M1, T ) =
1

2k sup1≤i≤k C|P̄∗
i zT |

, (20)

where CX is the essential supremum of the probability distribution function (pdf) of X , P̄ = [P̄1, P̄2, · · · , P̄k]∗, and

zt :=M−t
1 P ∗

1 xt =

t∑
j=1

M−j
1 P ∗

1 ηj . (21)

The following lemma is adapted from Appendix 11 of Sarkar and Rakhlin [2018].

Lemma B.1. With probability at least 1− 4θ,

D1D
∗
1 ⪰

1

2
ϕmin(M1, T )

2ψ(M1, T )
2θ2MT

1 (MT
1 )∗,

whenever (
4T 3λ

−2(T+1)υ
k k +

T 2k
∑k
i=1 λ

−2(T+1)
i

θ

)

≤ ϕmin(M1, T )
2ψ(M1, T )

2θ2

2
,

(22)

and

T > max

{
C

1− |λk+1|
,

C

|λk| − 1

}
. (23)

for some υ such that (T + 1)υ = ⌊T+1
2 ⌋.

Note that in (22), we select T such that
∑k
i=1

∑T
t=1 |λi|−t < kT , or T > 1

k

∑k
i=1

λi

λi−1 .

In Section C, we further prove the bounds on ϕmin and ψ in Lemma C.2 and Lemma C.4, which, combining with Lemma B.1
leads to the result in Lemma A.1 directly. It is clear that the bound in (10) under Lemma A.1 satisfies (23) in Lemma B.1
trivially. Therefore, to prove Lemma A.1, we just need to show that under (10), (22) in Lemma B.1 is satisfied.

Proof: [proof of Lemma A.1] To satisfy (22), we need

T 3λ
−2(T+1)υ
k k ≤ ϕmin(M1, T )

2ψ(M1, T )
2θ2

16
, (24)

and
T 2k

∑k
i=1 |λi|−2(T+1)

θ
≤ ϕmin(M1, T )

2ψ(M1, T )
2θ2

4
. (25)



We then separately evaluate the conditions that would guarantee the satisfaction of the above inequities.

Condition (24): Taking the log, we have

3 log T − 2(T + 1)υ log |λk|+ log k ≤ 2 log (ϕmin(M1, T )ψ(M1, T )θ)− log 16

(a)⇐3Tυ log |λk| − 2(T + 1)υ log |λk|+ log k ≤ 2 log (ϕmin(M1, T )ψ(M1, T )θ)− log 16

⇐− (3T + 2)υ log |λk| ≤ 2 log (ϕmin(M1, T )ψ(M1, T )θ)− log 16− log k

⇐T ≥ log 16 + log k − 2 log (ϕmin(M1, T )ψ(M1, T )θ)

3υ log |λk|
− 2.

where the step (a) uses the following: Tυ log |λk| > log T , which we show now. Define

f(T ) := T log |λk|υ − log T.

When T = log |λk|υ, we have f(T ) = (log |λk|υ)2 − log log |λk|υ > 0. When T ≥ log |λk|υ, we have f ′(T ) =
log |λk|υ − 1

T > 0.

Therefore, when T > log |λk|υ , we have Tυ log |λk| > log T .

Condition (25): Since |λ1| > . . . > |λk|, to meet (25), it suffices to show:

T 2k2|λk|−2(T+1) ≤ ϕmin(M1, T )
2ψ(M1, T )

2θ3

4

⇐T 2|λk|−2(T+1) ≤ ϕmin(M1, T )
2ψ(M1, T )

2θ3

4k2

⇐2 log T − 2(T + 1) log |λk| ≤ log
ϕmin(M1, T )

2ψ(M1, T )
2θ3

4k2

⇐T log |λk| − 2(T + 1) log |λk| ≤ log
ϕmin(M1, T )

2ψ(M1, T )
2θ3

4k2

⇐T ≥ −
log ϕmin(M1,T )2ψ(M1,T )2θ3

4k2

log |λk|
+ 2.

Similar to the derivation of (24), in order to get T log |λk| > 2 log T , we need T > 2 log |λk|.

Combining the above and applying Lemma C.2 and Lemma C.4, we get the condition for T as in (10).

This concludes the proof of Lemma A.1. □

The following Corollary directly follows from Theorem 5.1.

Corollary B.2. Under the premise of Theorem 5.1, for any orthonormal basis P̂1 of col(Π̂1) (where Π̂1 is obtained by
Algorithm 1), there exists a corresponding orthonormal basis P1 of col(Π1), such that∥∥∥P1 − P̂1

∥∥∥ < √2kϵ := δ.

The proof structure of Corollary B.2 is identical to the proof of Corollary 5.2 of Hu et al. [2022].

C PROOF OF AUXILIARY LEMMAS FOR APPENDIX B

In this section, we prove a few Lemmas that is used to bound D1D
∗
1 in Appendix B.

Lemma C.1. Given a k × k Vandermonde Matrix Λ

Λ =

1 λ−1
1 · · · λ−k+1

1
...

...
...

...
1 λ−1

k · · · λ−k+1
k

 , (26)



and λ1, . . . , λk ̸= 0, then
∥∥Λ−1

∥∥ ≤ k
k
2
+1

gap , where

gap =

∣∣∣∣∣∣
∏

m1 ̸=m2

(λ−1
m1
− λ−1

m2
)

∣∣∣∣∣∣ . (27)

Proof: From Theorem 1 of Tucci and Whiting [2011], we have

Λ−1(i, j) =
(−1)k−iσjk−i∏

m1 ̸=m2
(λ−1
m1 − λ−1

m2)
, (28)

where σjk−i :=
∑
ρjk−i

∏
ℓ∈ρjk−i

λ−1
ℓ and ρjk−i goes through all subsets of {λ−1

1 , . . . , λ−1
j−1, λ

−1
j+1, . . . , λ

−1
k } with cardinality

k − i. In the above expression, the quantity σjk−i can be bounded as:

σjk−i ≤
(

k

k − i

)(
1

λk

)k−i
. (29)

Plugging (29) into (28) gives a bound for |Λ−1(i, j)| as follows:

∥∥Λ−1(i, j)
∥∥ ≤ ( k

k−i
) (

1
λk

)k−i
gap

. (30)

Moreover, we have the following well-known inequality (see, for example, Horn and Johnson [1985])

1√
k

∥∥Λ−1
∥∥
1
≤
∥∥Λ−1

∥∥
2
≤
√
k
∥∥Λ−1

∥∥
1
. (31)

Combining the above, we get ∥∥Λ−1
∥∥ ≤ max

i

∑
j

∣∣Λ−1(i, j)
∣∣ ≤ k

k
2+

3
2

gap
. (32)

where we have used the Sterling’s formula for bounding
(
k
k−i
)

in the summation. □

Lemma C.2. Under the premise of Theorem 5.1, given ϕmin as defined in (19), we have

ϕmin(M1, T ) ≥
gap

k
k
2+2

.

Proof:

Let hi(v) =


λ−i+1
1 v(1)

λ−i+1
2 v(2)

...
λ−i+1
k v(k)

 ∈ Rk, and H(v) =
(
h1(v) h2(v) . . . hT (v)

)
. Then we have

ϕmin(M1, T ) =

√
infv∈Sd(1) σmin

(∑T
i=1 hi(v)h

∗
i (v)

)
=

√
infv∈Sd(1) σmin (H(v)H∗(v))

=
√

infv∈Sd(1)
1

∥H−1(v)∥2

= infv∈Sd(1)
1

∥H−1(v)∥

and we can decompose H(v) as follows

H(v) = diag (v(1), . . . , v(k))


1 λ−1

1 . . . λ−T+1
1

1 λ−1
2 . . . λ−T+1

2
...

...
...

...
1 λ−1

k . . . λ−T+1
k


:= diag(v)H̃.



Therefore, ∥∥H−1(v)
∥∥ =

∥∥∥H̃−1(diag(v))−1
∥∥∥ ≤ ∥∥∥H̃−1

∥∥∥∥∥(diag(v))−1
∥∥ . (33)

By Lemma C.1, we get ∥∥∥H̃−1
∥∥∥ ≤ k

k
2+

3
2

gap
.

Plugging the above inequality into (33) gives ∥∥H−1(v)
∥∥ ≤ k

k
2+2

gap
,

and
ϕmin(M1, T ) ≥

gap

k
k
2+2

.

□

We also need a similar bound for ψ(M1, T ). However, since we do not have an explicit formula for the pdf of noise η, it
is difficult to evaluate sup1≤i≤k C|P̄∗

i zT | in (20) explicitly. However, it is intuitively clear that sup1≤i≤k C|P̄∗
i zT | is upper

bounded by a constant, as zT in (21) converges in distribution as T →∞. Therefore, the probability distribution function of
P̄ ∗
i zT also converges.

To demonstrate this more concretely, we explicitly compute the bound when ηt ∼ N(0, 1) follows the standard normal
distribution:

Lemma C.3. If ηt follows the standard normal distribution for all t, then

C|P̄∗
i zT | <

√
2

π

√
|λi|2 − 1

|λi|2

Proof: The j-th entry of P̄ ∗
i zT can be represented as

P̄ ∗
i zT (j) =

T∑
t=1

vi ·
(
M−t

1 P ∗
1 ηt
)
∼ N

(
0,

T∑
t=1

(
|λj |−t

)2)
so

pdfP̄∗
i ZT

(y) =
1√

2π
∑T
t=1 (|λi|−t)

2
e
− y2

2
∑T

t=1(|λi|−t)2 , y ∈ R.

With some algebra, we get

pdf|P̄∗
i zT |(y) =

√
2√

π
∑T
t=1 (|λi|−t)

2
e
− y2

2
∑T

t=1(|λi|−t)2 , y ∈ R+.

Therefore, C|P̄∗
i zT | ≤

√
2√

π
∑T

t=1(|λi|−t)2
≤
√

2
π

√
|λi|2−1
|λi|2 . □

In the rest of the paper, we will assume C|P̄ ′
izT | is bounded and take

C|P̄∗
i zT | < Cz, (34)

for some constant Cz , as in Assumption 2. Therefore, the following result directly follows:

Lemma C.4. Under the premise of Theorem 5.1, given ψ as defined in (20), we have

ψ(M1, T ) ≥
1

2kCz
.



D SOLUTION TO THE LEAST SQUARE PROBLEM IN STAGE 2

Lemma D.1 gives the explicit form for the solution to the least squares problem in Algorithm 1

Lemma D.1. Given D := [x0, · · · , xT ] and Π̂1 = U (k)(U (k))∗, the solution to

M̂1 = argmin
M1

T∑
t=0

∥∥∥(U (k))∗xt+1 −M1(U
(k))∗xt

∥∥∥2
is uniquely given by M̂1 = (U (k))∗AU (k) +ϖ, where ϖ =

(∑
t(U

(k))∗ηtx
∗
tU

(k)
)
((Σ(k))2)−1.

Proof: Sincec M1 is a stationary point of L, for any ∆ in the neighborhood of O, we have

0 ≤L(M1 +∆)− L(M1)

=
∑
t

∥ŷ1,t+1 −M1ŷ1,t −∆ŷ1,t∥2 −
∑
t

∥ŷ1,t+1 −M1ŷ1,t∥2

=
∑
t

⟨∆ŷ1,t, ŷ1,t+1 −M1ŷ1,t⟩+O(∥∆∥2)

=
∑
t

tr
(
ŷ∗1,t∆

∗(ŷ1,t+1 −M1ŷ1,t)
)
+O(∥∆∥2)

=
∑
t

tr
(
∆∗(ŷ1,t+1 −M1ŷ1,t)ŷ

∗
1,t

)
+O(∥∆∥2)

=tr

(
∆∗
∑
t

(ŷ1,t+1 −M1ŷ1,t) ŷ
∗
1,t

)
+O(∥∆∥2).

Since the above holds for all ∆, we get∑
t

(ŷ1,t+1 −M1ŷ1,t)ŷ
∗
1,t ⇔ M1

∑
t

ŷ1,tŷ
∗
1,t =

∑
t

ŷ1,t+1ŷ
∗
1,t.

Plugging in ŷ1,t = (U (k))∗xt and ŷ1,t+1 = (U (k))∗(Axt + ηt), we have

M1(U
(k))∗DD∗U (k) =M1

∑
t

(U (k))∗xtx
∗
tU

(k)

=
∑
t

(U (k))∗(Axt + ηt)x
∗
tU

(k)

= (U (k))∗ADD∗U (k) +
∑
t

(U (k))∗ηtx
∗
tU

(k).

Since U (k) are the first k singular vectors of D, we have the following equalities:

(U (k))∗DD∗U (k) = (U (k))∗UΣV ∗V Σ∗U∗U (k) =
[
I(k) 0

]
Σ2

[
I(k)

0

]
= (Σ(k))2, (35)

which is invertible, and M̂1 is explicitly given by

M̂1 =

(
(U (k))∗ADD∗U (k) +

∑
t

(U (k))∗ηtx
∗
tU

(k)

)
(Σ(k))−2. (36)

Moreover, we have

U (k)(U (k))∗DD∗U (k) = U (k)(Σ(k))2

=
[
U (k) 0

] [(Σ(k))2

0

]
= U

[
(Σ(k))2

0

]
=UΣ2

[
I(k)

0

]
= UΣ2U∗U (k) = DD∗U (k),



where the first equality is obtained by using (35). Substituting the above in (36) yields

M̂1 =
(
(U (k))∗A(U (k)(U (k))∗DD∗)U (k)

)
(Σ(k))−2 +ϖ

=
(
(U (k))∗AU (k)(U (k))∗

)(
DD∗U (k)

)
(Σ(k))−2 +ϖ

= (U (k))∗AU (k) +ϖ,

where ϖ =
(∑

t(U
(k))∗ηtx

∗
tU

(k)
)
(Σ(k))−2. □

We want to show (U (k))∗AU (k) is the dominating term of the above expression, as we will bound ϖ in the following lemma.

Lemma D.2. Under the premise of Theorem 5.1,∥∥∥M1 − M̂1

∥∥∥ < 3 ∥A∥ δ

for any δ > 0 whenever

T ≥
log
(

4C
πθ2∥A∥δ

kk+6

gap2

)
log |λk|

.

Proof: First, we prove that ϖ ≤ δ. Let H = [η1, . . . , ηT ], then we have

ϖ = (U (k))∗HD∗U (k)(Σ(k))−2

= (U (k))∗HV Σ∗U∗U (k)(Σ(k))−2

= (U (k))∗HV Σ∗
[
I(k)

0

]
(Σ(k))−2

= (U (k))∗HV

[
Σ(k)

0

]
(Σ(k))−2

= (U (k))∗HV

[
(Σ(k))−1

0

]
.

Therefore,

∥ϖ∥ ≤ ∥A∥ δ

⇐∥H∥
∥∥∥(Σ(k))−1

∥∥∥ ≤ ∥A∥ δ
⇐
√
TC

2√
π|λk|T θ

k
k
2+3

gap

√
|λ1|2 − 1

|λ1|2
≤ ∥A∥ δ (37)

⇐|λk|
T

√
T
≥ 2C√

πθ ∥A∥ δ
k

k
2+3

gap

⇐T log |λk| −
1

2
log T ≥ log

(
2C

πθ ∥A∥ δ
k

k
2+3

gap

)

⇐1

2
T log |λk| ≥ log

(
2C

πθ ∥A∥ δ
k

k
2+3

gap

)
(38)

⇐T ≥
2 log

(
2C

πθ∥A∥δ
k

k
2
+3

gap

)
log |λk|

, (39)

where (37) used Lemma A.1 and that for a n × T matrix H , ∥H∥2 ≤
√
T ∥H∥1, and (38) requires log T < T log |λk|,

which is satisfied when we derived (13) and (15). We can use Lemma A.1 to bound
∥∥(Σ(k))−1

∥∥ is a direct result of Cauchy
Interlacing Theorem. We further observe that (39) does not change the criteria obtained in (18).



Recall that U (k) = P̂1. We obtain∥∥∥M1 − M̂1

∥∥∥ = P ∗
1AP1 −

(
(U (k))∗AU (k) +ϖ

)
≤
∥∥∥P ∗

1AP1 − P ∗
1AP̂

∗
1

∥∥∥+ ∥∥∥P ∗
1AP̂1 − P̂ ∗

1AP̂
∗
1

∥∥∥+ ∥ϖ∥
≤ ∥A∥

∥∥∥P1 − P̂1

∥∥∥+ ∥A∥ ∥∥∥P1 − P̂1

∥∥∥+ ∥ϖ∥
≤ 3 ∥A∥ δ.

where in the last inequality, we used Corollary B.2. □

With Lemma D.2, we are ready to prove Proposition 5.2.

Proof: [Proof of Proposition 5.2] By Lemma D.2, we get
∥∥∥M1 − M̂1

∥∥∥ < 3 ∥A∥ δ. Moreover, by Gelfand’s formula, we
have ∥∥M t

1

∥∥ =
∥∥P ∗

1A
tP1

∥∥ ≤ ∥∥At∥∥ ≤ ζϵ1(A)(|λ1|+ ϵ1)
t,∥∥∥M̂ t

1

∥∥∥ =
∥∥∥P̂ ∗

1A
tP̂1

∥∥∥ ≤ ∥∥At∥∥ ≤ ζϵ1(A)(|λ1|+ ϵ1)
t,

Therefore, by telescoping, we get

∥∥∥Mτ
1 − M̂τ

1

∥∥∥ =

∥∥∥∥∥
τ∑
i=1

(M i
1M̂

τ−i
1 −M i−1

1 M̂τ−i+1
1 )

∥∥∥∥∥
≤
∥∥M i−1

1

∥∥∥∥Mτ−i
1

∥∥∥∥∥M1 − M̂1

∥∥∥
< τ · ζϵ1(A)2(|λ1|+ ϵ1)

τ−1 · 3 ∥A∥ δ
= 3τ ∥A∥ ζϵ1(A)2(|λ1|+ ϵ1)

τ−1δ.

□

With Proposition 5.2, the following corollary easily follows:

Corollary D.3. Under the premise of Theorem 4.2, when δ < 1
τ ,∥∥∥M̂τ

1

∥∥∥ < (ζϵ1(M1)(|λ1|+ ϵ1) + 3 ∥A∥ ζϵ1(A)) (|λ1|+ ϵ1)
τ−1.

Proof: By Gelfand’s formula and Proposition 5.2,∥∥∥M̂τ
1

∥∥∥ ≤ ∥Mτ
1 ∥+

∥∥∥M̂τ
1 −Mτ

1

∥∥∥
≤ ζϵ1(A)(λ1 + ϵ1)

τ + 3τ ∥A∥ ζϵ1(A)2(|λ1|+ ϵ1)
τ−1δ

< (ζϵ1(M1)(|λ1|+ ϵ1) + 3 ∥A∥ ζϵ1(A)) (|λ1|+ ϵ1)
τ−1.

where the last inequality requires δ < 1
τ . □

E BOUNDING
∥∥∥B̂τ −Bτ

∥∥∥
Lemma E.1. For any γ > ϵ, the following implication holds:

∥R2x∥
∥x∥

≤ γ − ϵ := γ′ ⇒

∥∥∥(I − Π̂1)x
∥∥∥

∥x∥
≤ γ



Proof: ∥∥∥(I − Π̂1)x
∥∥∥

∥x∥
=

∥∥∥(I − Π̂1 +Π1 −Π1)x
∥∥∥

∥x∥

≤∥(I −Π1)x∥
∥x∥

+

∥∥∥Π̂1 −Π1

∥∥∥ ∥x∥
∥x∥

≤∥Π2x∥
∥x∥

+ ϵ

=
∥Π2Πsx∥
∥x∥

+ ϵ (40)

≤∥Πsx∥
∥x∥

+ ϵ

≤γ (41)

where (40) holds because E2 is orthogonal to E1, therefore Π2Πu = 0, as P2P
∗
2Q1R1 = 0 by orthogonality of P2 and

Q1 = P1. □

In the following propositions, we show that the stopping time ωi defined in Algorithm 1 guarantees a bound on ∥xt∥.

Proposition E.2. Under the premise of Theorem 4.2, for any constant γ > ϵ, if in the open loop system,∥∥∥(I − Π̂1)xt

∥∥∥
∥xt∥

> γ,

then, exists Cγ ∈ R+ such that ∥xt∥ < Cγ .

Proof: Since we have that xt =
∑t
j=0A

t−jηj , we have

Rxt =

[
R1xt

R2xt

]
=

[
R1

∑t
j=0 A

t−jηj
R2

∑t
j=0 A

t−jηj

]
=

[∑t
j=0 N

t−j
1 R1ηj∑t

j=0 N
t−j
2 R2ηj

]
Therefore, we have that

∥R2x∥ ≤
t∑

j=0

∥∥∥N j
2

∥∥∥ ∥R2∥C ≤
t∑

j=0

ζϵ4(N2)(λk+1 + ϵ4)
j ∥R2∥C

≤ ζϵ4(N2)C

1− ξ

1

1− (λk+1 + ϵ4)

where we used Lemma A.1 of Hu et al. [2022]. As ∥R2xj∥ is bounded above by a constant, so is ∥Πsxt∥ = ∥Q2R2xt∥.

Since ∥(I−Π̂1)xt∥
∥xt∥ > γ, by Lemma E.1, ∥R2xt∥

∥xt∥ > γ′. Correspondingly, we have

γ′ <
∥R2xt∥
∥xt∥

,

which implies

∥xt∥ <
ζϵ4(N2)C

γ′(1− ξ)
1

1− (|λk+1|+ ϵ4)
:= Cγ . (42)

□

Proposition E.3. Under the premise of Theorem 4.2, for any constant γ > ϵ, consider the initial state xi such that
∥P∗

2 xi∥
∥xi∥ > γ. Moreover, xi+1 = Axi +Bu+ ηi, i.e. we insert control right after the initial state and let the system run in

open-loop thereafter. If for t ∈ Z+ such that ∥∥∥(I − Π̂1)xi+t

∥∥∥
∥xi+t∥

> γ,



then, for all α < 1
∥B∥ ,

∥xi+t∥ <
1

γ′

(
2ζϵ4(N2)

1− ξ
∥xi∥+ Cγ

)
.

Proof:

∥R2xi+t∥ ≤
∥∥N t

2R2xi +N t−1
2 R2Bu

∥∥+ t∑
j=0

∥∥∥N j
2

∥∥∥ ∥R2∥C

≤ζϵ4(N2)

1− ξ
(|λk+1|+ ϵ4)

t−1((1 + α ∥B∥) ∥xi∥) + Cγ

≤2ζϵ4(N2)

1− ξ
(|λk+1|+ ϵ4)

t−1 ∥xi∥+ Cγ . (43)

Since ∥(I−Π̂1)xi+t∥
∥xi+t∥ > γ, by Lemma E.1, we have that

γ′ <
∥R2xi+t∥
∥xi+t∥

.

Substitute the above in (43) finishes the proof. □

Proposition E.4. Under the premise of Theorem 4.2, for any constant γ > ϵ and stopping time ωi such that:

ωi = min

t > ti−1 :

∥∥∥(I − Π̂1)xt

∥∥∥
∥xt∥

≤ γ ∧ ∥xt∥ >
C

δ

 ,

where we assume t0 = T . Then, Algorithm 1 guarantees that

∥P ∗
2 xti∥
∥xti∥

< γ + ϵ, ∀i ∈ {1, . . . ,m},

while maintaining

∥xt1∥ ≤ max

{
∥A∥ C

δ
+ C, ∥A∥Cγ + C, ∥xT ∥

}
,

∥xt∥ < max

∥A∥ Cδ + C,

(
∥A∥
γ′

2ζϵ4(N2)

1− ξ

)i
∥xt1∥+

i−1∑
j=1

(
∥A∥
γ′

2ζϵ4(N2)

1− ξ

)j (∥A∥
γ′

Cγ + C

) , ∀ti ≤ t ≤ ti+1.

Proof: Similar to the steps in proof of Lemma E.1, we obtain that

∥P ∗
2 xti∥
∥xti∥

=
∥Π2(Πu +Πs)xti∥

∥xti∥
=
∥Π2Πsxti∥
∥xti∥

≤ ∥Π2xti∥
∥xti∥

=

∥∥∥(I − Π̂1 + Π̂1 −Π1)xti

∥∥∥
∥xti∥

≤ γ + ϵ,

which shows the first part of the result.

We now focus on the second part (bounding ∥xt∥). For the base case, We either have t1 = T , thus xt1 = xT , in which case
the stopping time criteria is already met after Stage 1 of algorithm 1, or, if t1 > T , there are two scenarios depending which

of the two stopping criteria is violated at time t1 − 1 . If ∥(I−Π̂1)xt1−1∥
∥xt1−1∥ > γ, by Proposition E.2, we have ∥xt1−1∥ < Cγ ,

where Cγ is defined in (42), in which case, we have

∥xt1∥ = ∥Axt1−1 + ηt1−1∥ ≤ ∥A∥Cγ + C. (44)

In the second case, ∥xt1−1∥ ≤ C
δ , so we have

∥xt1∥ < ∥A∥
C

δ
+ C.



Therefore, to sum up the base case, we have

∥xt1∥ ≤ max

{
∥A∥ C

δ
+ C, ∥A∥Cγ + C, ∥xT ∥

}
For the induction case, given ∥xti∥, there are again two cases depending on which criterion is violated at time ti+1 − 1. If∥∥xti+1−1

∥∥ ≤ C
δ , we have ∥∥xti+1

∥∥ < ∥A∥ C
δ
+ C.

Otherwise, if ∥(I−Π̂1)xti+1−1∥
∥xti+1−1∥ > γ, by Proposition E.3, we obtain that

∥∥xti+1−1

∥∥ < 1

γ′

(
2ζϵ4(N2)

1− ξ
∥xi∥+ Cγ

)
, (45)

where γ′ is defined in Lemma E.1.

By the definition of ωi, the maximum of the above inequalities also holds for all xt such that t < ti+1. Therefore,∥∥xti+1

∥∥ < max

{
∥A∥ C

δ
+ C,

∥A∥
γ′

(
2ζϵ4(N2)

1− ξ
∥xi∥+ Cγ

)
+ C

}
,

as required. Note that the same bound above also holds for all ti < t < ti+1. Hence we get the desired result after a simple
recursive expansion. □

We are now ready to bound
∥∥∥B̂τ −Bτ∥∥∥.

Proposition E.5. Under the premise of Theorem 4.2,∥∥∥B̂τ −Bτ∥∥∥ < CB (|λ1|+ ϵ1)
τ−1

δ,

where CB := (ζ2ϵ1(A)(3τ ∥A∥+ ∥B∥+ τC + 1) + (τ + 1)C∆)
√
m
α .

Proof: We have∥∥∥bi − b̂i∥∥∥ =
1

α ∥xti∥

∥∥∥∥∥P ∗
1 xti+τ −Mτ

1 P
∗
1 xti −∆τP

∗
2 xti −

τ−1∑
j=1

(Mτ−j
1 P ∗

1 ηti+j −∆τ−jP
∗
2 ηti+j)

−
(
P̂ ∗
1 xti+τ − M̂τ

1 P̂
∗
1 xti

)∥∥∥∥∥
≤ 1

α ∥xti∥

(∥∥∥(P1 − P̂1)
∗ (Aτxti +Bτuti)

∥∥∥+
∥∥∥∥∥∥
τ−1∑
j=1

Mτ−j
1 (P1 − P̂1)

∗ηti+j

∥∥∥∥∥∥+
∥∥∥Mτ

1 P
∗
1 xti − M̂τ

1 P̂
∗
1 xti

∥∥∥
+ ∥∆τP

∗
2 xti∥+

τ−1∑
j=1

∥∥∥Mτ−j
1 P ∗

1 ηti+j

∥∥∥+ τ−1∑
j=1

∥∆τ−jP
∗
2 ηti+j∥

)
.

Here, the first term is bounded by∥∥∥(P1 − P̂1)
∗ (Aτxti +Bτuti)

∥∥∥ ≤ ∥∥∥P1 − P̂1

∥∥∥ (∥Aτ∥+ ∥∥Aτ−1B
∥∥) ∥xti∥

≤∥xti∥ ζϵ1(A) (|λ1|+ ϵ1)
τ−1

(∥A∥+ ∥B∥)δ,

where in the last inequality we applied Corollary B.2 and Gelfand’s formula; the second term is bounded by∥∥∥∥∥∥
τ−1∑
j=1

Mτ−j
1 (P1 − P̂1)

∗ηti+j

∥∥∥∥∥∥ ≤
τ−1∑
j=1

ζϵ1(A) (|λ1|+ ϵ1)
τ−j

Cδ

<τζϵ1(A) (|λ1|+ ϵ1)
τ−1

Cδ,



where we used Corollary B.2 and Gelfand’s formula.

The third term is bounded above by∥∥∥Mτ
1 P

∗
1 xti − M̂τ

1 P̂
∗
1 xti

∥∥∥ ≤(∥∥∥Mτ
1 (P1 − P̂1)

∗
∥∥∥+ ∥∥∥(Mτ

1 − M̂τ
1 )P̂

∗
1 )
∥∥∥) ∥xti∥

<
(
ζϵ1(A) (|λ1|+ ϵ1)

τ−1 ∥A∥ δ + 3τ ∥A∥ ζϵ1(A) (|λ1|+ ϵ1)
τ−1

δ
)
∥xti∥

≤∥xti∥ ζϵ1(A)2 (|λ1|+ ϵ1)
τ−1

(3τ + 1) ∥A∥ δ,

where we applied Gelfand’s formula and Proposition 5.2. The fourth term is bounded by

∥∆τ∥ ∥P ∗
2 xti∥

∥xti∥
≤C∆(|λ1|+ ϵ1)

τ (γ + ϵ) (46)

≤C∆(|λ1|+ ϵ1)
τδ, (47)

where in (46), we used Proposition G.1 of Hu et al. [2022] and Proposition E.4, while and (47) we need to pick stopping
time ω defined by γ:

γ ≤ δ − ϵ = (
√
2k − 1)ϵ. (48)

For the second to last and the last term,

1

∥xti∥

τ−1∑
j=1

∥∥∥Mτ−j
1 P ∗

1 ηti+j

∥∥∥ ≤ 1

∥xti∥

τ−1∑
j=1

ζϵ1(A) (|λ1|+ ϵ1)
τ−j

C

<
1

∥xti∥
τζϵ1(A) (|λ1|+ ϵ1)

τ−1
C

<τζϵ1(A) (|λ1|+ ϵ1)
τ−1

δ, (49)

1

∥xti∥

τ−1∑
j=1

∥∆τ−jP
∗
2 ηti+j∥ ≤

1

∥xti∥
τC∆(|λ1|+ ϵ1)

τC

≤τC∆(|λ1|+ ϵ1)
τδ, (50)

where in (49) and (50), we need
C

∥xti∥
< δ. (51)

We notice that (51) happens with high probability since the system runs mostly in open loop. If the above inequality is not
satisfied, we can keep the system running in open loop until it is. If the above is never satisfied, then the system is stable.
More formally, as the first stopping time t1 stated in Proposition E.4 is never reached, the bound for ∥xt1∥ holds for all xt.

Finally, to bound the error of the whole matrix, we simply apply the definition∥∥∥B̂τ −Bτ∥∥∥ = max
∥u∥=1

∥∥∥(B̂τ −Bτ )u∥∥∥ ≤ max
∥u∥=1

m∑
i=1

|ui|
∥∥∥b̂i − bi∥∥∥

<(ζ2ϵ1(A)(3τ ∥A∥+ ∥B∥+ τC + 1) + (τ + 1)C∆) (|λ1|+ ϵ1)
τ−1

δ

√
m

α
.

□

F PROOF OF MAIN THEOREM

We assumed the system (A,B) is controllable. As we are stabilizing the system in (Mτ , Bτ ), we need to first show that
(Mτ , Bτ ) is stabilizable.

Proposition F.1. If (A,B) is controllable, then (M̂τ
1 , R1B̂τ ) is stabilizable.



Proof: Since (A,B) is controllable, by the PBH test criteria, there exists b, such that for all unit left eigenvector w̄ of A,
∥w̄∗B∥ > b.

Let w∗ denote an arbitrary unit left eigenvector of N1 with eigenvalue λ, so

w∗N1 = λw∗ ⇒ (R∗
1w)∗A = w∗R1Q1N1R1 = λ(R∗

1w)∗.

Therefore, R∗
1w is a left eigenvector of A, which leads to

∥w∗R1B∥ = ∥(R∗
1w)

∗B∥ > ∥R∗
1w∥ b.

By the construction of R1, as R is invertible, we see that all singular values of R1 are nonzero. Therefore, ∥R∗
1w∥ b > 0.

Correspondingly, (N1, R1B) is controllable.

We then consider the system under τ -hop control. Since w is the left eigenvector of N1, it is also the left eigenvector of Nτ
1 .

In particular, w∗Nτ−1 is a left eigenvector of N1. Since N1 is the expanding portion of A, we derive the following lower
bound: ∥∥w∗ (Nτ−1

1 R1B
)∥∥ =

∥∥(w∗Nτ−1
1

)
R1B

∥∥ ≥ λτ−1
k ∥R∗

1w∥ b.
Recall that Bτ = P ∗

1A
τ−1B.

Bτ = P ∗
1

[
Q1 Q2

] [Nτ−1
1

Nτ−1
2

] [
R1B
R2B

]
=
[
P ∗
1Q1 P ∗

1Q2

] [Nτ−1
1 R1B

Nτ−1
2 R2B

]
= Nτ−1

1 R1B + P ∗
1Q2N

τ−1
2 R2B.

By Gelfand’s Formula,
∥∥Nτ−1

2

∥∥ ≤ ζϵ4(N2) (λk+1 + ϵ4)
τ−1. Moreover, since E⊥

u and Es are ξ-close, by Lemma A.1 of
Hu et al. [2022], P ∗

1Q2 ≤
√
2ξ.

Therefore, we know that

∥w∗B∥ =
∥∥w∗ (Nτ−1

1 R1B + P ∗
1Q2N

τ−1
2 R2B

)∥∥
≥|λk|τ−1 ∥R∗

1w∥ b

−
√
2ξ ∥Q2∥ ∥R2∥ ∥B∥ ζϵ4(N2) (|λk+1|+ ϵ4)

τ−1

>
1

2
∥R∗

1w∥ b,

where the last inequality requires ϵ4 < 1− λk+1, and

τ ≥
log

∥R∗
1w∥b

2
√
2ξ∥Q2∥∥R2∥∥B∥ζϵ4 (N2)

log |λk|
|λk+1|+ϵ4

. (52)

Therefore, we conclude (Mτ
1 , R1Bτ ) is also controllable, as M1 = N1.

Lastly, we prove
(
M̂τ

1 , R1B̂τ

)
is stabilizable. Denote A := Mτ

1 − R1BτK1. Since (Mτ
1 , R1Bτ ) is controllable, we

know there exists K1 such that ρ (A) < 1. Since an asymptotically stable linear system is also exponentially stable, by
the Lyapunov equation, for every k × k matrix G > 0, the following discrete Lyapunov equation has a unique solution
H = H∗ > 0.

A∗HA+G−H = 0

In particular, we pick G such that σmin(G) > 2 and W (v) := 1
min{1,σmin(H)}v

∗Hv is a Lyapunov function of A. Moreover,
W (v) satisfies the following criteria regarding ∥v∥ and forward difference with respect to A:

∥v∥2 ≤W (v) ≤ κ(H) ∥v∥2 ,

W (Av)−W (v) = v∗A∗HAv−v∗Hv
min{1,σmin(H)}

≤ −v∗Gv
< −2 ∥v∥2 ,



where κ(H) is the condition number of H .

We now consider the forward difference with respect to Â = M̂τ
1 −R1B̂τK1, as a consequence of Jensen’s inequality, for

any ι > 0,

W
(
Âv
)
=W

(
Av +

(
Â − A

)
v
)

≤(1 + ι2)W (Av) +
(
1 +

1

ι2

)
W
((
Â − A

)
v
)
,

and

W
(
Âv
)
−W (v)

=W (Av)−W (v) +W
(
Âv
)
−W (Av)

≤W (Av)−W (v) + ι2W (Av) +
(
1 +

1

ι2

)
W
((
Â − A

)
v
)

<− 2 ∥v∥2 + ι2κ(H) ∥v∥2 +
(
1 +

1

ι2

)∥∥∥Â − A∥∥∥2 ∥v∥2
≤− ∥v∥2 ,

The last inequality requires

ι2 <
1

2κ(H)
,

∥∥∥Â − A∥∥∥2 < 1

2

ι2

1 + ι2
.

By Proposition 5.2 and E.5, we get∥∥∥M̂τ
1 −Mτ

1

∥∥∥ < 3τ ∥A∥ ζϵ1(A)2 (|λ1|+ ϵ1)
τ−1

δ,∥∥∥B̂τ −Bτ∥∥∥ < CB(|λ1|+ ϵ1)
τ−1δ.

So we require

δ <
1
6

ι2

1+ι2

τ ∥A∥ ζϵ1(A)2 (|λ1|+ ϵ1)
τ−1

+ ∥K1∥CB(|λ1|+ ϵ1)τ−1
. (53)

When all requirements above are satisfied, by Theorem 2 of Jiang and Wang [2002], we conclude
(
M̂τ

1 , R1B̂τ

)
is

stabilizable. □

As the control matrix K̂1 is obtained by the learner, we denote constant K such that
∥∥∥K̂1

∥∥∥ < K to be a user-defined constant.

After the proof of the stabilizability of the system after transformation, we are now ready to prove the main theorem.

Proof: [proof of Theorem 4.2] We shall bound each of the four terms in L̂ defined in (9). We first guarantee that the
diagonal blocks are stable. For the top-left block, by Proposition F.1, there exists positive-definite matrix Ū such that∥∥∥M̂τ

1 − B̂τ K̂1

∥∥∥
Ū
= U < 1, where ∥·∥Ū denotes the weighted norm induced by Ū . Therefore,

ρ(L̂1,1) ≤
∥∥∥Mτ

1 + P ∗
1A

τ−1BK̂1P̂
∗
1 P1

∥∥∥
Ū

(54)

≤
∥∥∥Mτ

1 − M̂τ
1

∥∥∥
Ū
+
∥∥∥M̂τ

1 − B̂τ K̂1

∥∥∥
Ū
+
∥∥∥(Bτ − B̂τ )K̂1

∥∥∥
Ū
+
∥∥∥Bτ K̂1(I − P̂ ∗

1 P1)
∥∥∥
Ū

≤κ(Ū)
1
2

(∥∥∥Mτ
1 − M̂τ

1

∥∥∥+ ∥∥∥Bτ − B̂τ∥∥∥∥∥∥K̂1

∥∥∥+ ∥Bτ∥ ∥∥∥K̂1

∥∥∥∥∥∥I − P̂ ∗
1 P1

∥∥∥)+ U
≤3κ(Ū)

1
2 τ ∥A∥ ζϵ1(A)2(|λ1|+ ϵ1)

τ−1δ + κ(Ū)
1
2CBK(|λ1|+ ϵ1)

τ−1δ

+ κ(Ū)
1
2 ζϵ1(A)(|λ1|+ ϵ1)

τ−1 ∥B∥Kδ + U (55)

<κ(Ū)
1
2 (CBK + ζϵ1(A) ∥B∥K + 1)(λ1|+ ϵ)τ−1δ + U (56)

<
1

2
+
U
2
, (57)



where in (55) we apply proposition E.1 of Hu et al. [2022] and Proposition 5.2 and Proposition E.5; In (56), we require

1

τ
(|λ1|+ ϵ1)

τ−1 > 3 ∥A∥ ζϵ1(A)2. (58)

In (57), we require

δ <
(1− U)(λ1|+ ϵ)−(τ−1)

2κ(Ū)
1
2 (CBK + ζϵ1(A) ∥B∥K + 1)

. (59)

For the bottom-right block, it is straightforward to see that

ρ(L̂2,2) ≤∥Mτ
2 ∥+

∥∥P ∗
2A

τ−1
∥∥ ∥B∥ ∥∥∥K̂1

∥∥∥ ∥∥∥P̂ ∗
1 P2

∥∥∥
≤ζϵ2(M2)(|λk+1|+ ϵ2)

τ + ζϵ2(M2) ∥B∥K(|λk+1|+ ϵ2)
τ−1δ

<
1

2
,

where the last inequality requires

τ >
log 1/(4ζϵ2(M2))

log(|λk+1|+ ϵ2)
, (60)

δ <
1

4ζϵ2(M2) ∥B∥K
(|λk+1|+ ϵ2)

−(τ−1). (61)

Now it suffices to bound the spectral norms of off-diagonal blocks. Note that, by applying Proposition G.1 of Hu et al.
[2022], the top right block is bounded as

ρ(L̂2,1) ≤∥∆τ∥+ ∥Bτ∥
∥∥∥K̂1

∥∥∥∥∥∥P̂ ∗
1 P2

∥∥∥
<C∆(|λ1|+ ϵ1)

τ + ζϵ1(A) ∥B∥K(|λ1|+ ϵ1)
τ−1δ

<(C∆ + 1)(|λ1|+ ϵ1)
τ ,

where the last inequality requires

δ <
1

ζϵ1(A) ∥B∥K
(|λ1|+ ϵ1)

−(τ−1). (62)

The bottom-left block is bounded as

ρ(L̂1,2) ≤
∥∥P ∗

2A
τ−1
∥∥ ∥B∥ ∥∥∥K̂1

∥∥∥
<ζϵ2(M2) ∥B∥K(|λk+1|+ ϵ2)

τ−1.

By Lemma 5.3 of Hu et al. [2022], we can guarantee that

ρ
(
L̂τ

)
≤ 1

2
+
U
2
+ χ

(
L̂τ

) (C∆ + 1)ζϵ2(M2) ∥B∥K
|λ1|+ ϵ1

((|λ1|+ ϵ1)(|λk+1|+ ϵ2))
τ−1

< 1, (63)

which requires

τ >
log (1−U)(|λ1|+ϵ1)(|λk+1|+ϵ2)

2χ(L̂τ )(C∆+1)ζϵ2 (M2)∥B∥K

log((|λ1|+ ϵ1)(|λk+1|+ ϵ2))
. (64)

Note that the above constraints make sense only if |λ1||λk+1| < 1. Therefore, when all constraints above are satisfied,
system (8) is ultimately bounded, and so is system (1).

We will then collect all the constraints. Combining (58) (60) and (64), we obtain

τ >max

{
log 1/(4ζϵ2(M2))

log(|λk+1|+ ϵ2)
,
log

(U+1)(|λ1|+ϵ1)(|λk+1|+ϵ2)

2χ(L̂τ )(C∆+1)ζϵ2 (M2)∥B∥K

log((|λ1|+ ϵ1)(|λk+1|+ ϵ2))
,

− 1

log(|λ1|+ ϵ1)
W−1

(
− log(|λ1|+ ϵ1)

3 ∥A∥ ζϵ1(A)2(|λ1|+ ϵ1)

)}
,



where W−1 denotes the non-principle branch of the Lambert-W function. Here we utilize the fact that, for x > 1
log a , y = a∗

x

is monotone increasing with inverse function x = − 1
log aW−1

(
− log a

y

)
, which can be upper bounded by Theorem 1 in

Chatzigeorgiou [2013] as

τ >
log

√
ξ

1−ξ
+ log 1

c
+ logχ

(
L̂τ

)
+ 5 log ζ̄ + log ∥A∥

|λ1|−|λk+1|
+ Cτ

log |λ1|
= O(1),

(65)

where ζ̄ := max
{
ζϵ1(A), ζϵ2(M2), ζϵ2(N2), ζϵ3(N

−1
1 )
}

, and Cτ is a numerical constant.

We then collect all the bound on γ, α, δ as follows:

γ > ϵ, (66)

α <
1

∥B∥
= O(1). (67)

Combining (53), (59), (61), (62) yields the following bound on δ:

δ < max

{
1
6

ι2

1+ι2

τ ∥A∥ ζϵ1(A)2 (|λ1|+ ϵ1)
τ−1

+ ∥K1∥CB(|λ1|+ ϵ1)τ−1
,

(1− U)(λ1|+ ϵ)−(τ−1)

2κ(Ū)
1
2 (CBK + ζϵ1(A) ∥B∥K + 1)

,

1

4ζϵ2(M2) ∥B∥K
(|λk+1|+ ϵ2)

−(τ−1),
1

ζϵ1(A) ∥B∥K
(|λ1|+ ϵ1)

−(τ−1)

}
.

which can be simplified to

δ <
Cδ√

mζ̄3(∥A∥+ ∥B∥)
|λ1|−2τ = O(m−1/2|λ1|−2τ ), (68)

where Cδ is a constant collecting minor factors. Recall that δ =
√
2kϵ. Substitute the above in (17) transfers the bound on δ

into a bound on T :

T >

2 log

(
8k

k
2
+4(n−k)

(
C

1−|λk+1|

)(√
mζ̄3(∥A∥+∥B∥)
Cδ|λ1|−2τ

)
√
πθgapϵ

)
log |λk|

= O (k log k + log(n− k) + logm− log gap) (69)

Different from Hu et al. [2022], we do not explicitly choose ω but let (ωi)i∈{1,...,m} be the stopping time defined in
Proposition E.4.

Combining the above constant with Theorem 5.1, we conclude that Algorithm 1 controls x with the following bound:

∥x∥ ≤ exp

(
O

(
T +

m∑
i=1

ωi + τm

))

≤ exp

(
O

(
1

log |λk|

(
− log gap + k log k − log θ + log(n− k)

+ log |λ1|+ logC − log (1− |λk+1|) + (1 + log |λ1|)m

))

Assuming that the eigenvalue-related terms are constants, the algorithm achieves exp(O(k log k+log(n−k)+m− log gap))
space complexity for ∥x∥.

This finishes the proof of Theorem 4.2. □



G ADDITIONAL MATHEMATICAL BACKGROUND

In this section, we introduce some relevant math background used in this paper. The notation of this section is independent
of the rest of the paper.

Theorem G.1 (Davis-Kahan). Let A be an n× n Hermitian matrix, and suppose we have the following spectral decomposi-
tion for A

A =

n∑
i=1

λiuiu
∗
i ,

where λi’s are the eigenvalues of A such that λ1 > · · · > λn, and ui’s are corresponding eigenvectors. Let H be another
n× n perturbation matrix, and the spectral decomposition of A+H is

A+H =

n∑
i=1

µiviv
∗
i .

Define

P =

k∑
i=1

uiu
∗
i := UU∗

to be the orthogonal projection operator to the k-dimensional eigenspace spanned by u1 . . . , uk. Similarly, define Q =∑k
i=1 viv

∗
i := V V ∗.

Suppose there exists δ > 0, such that |λi − µj | > δ for all i ∈ {1, . . . , k}, j ∈ {k + 1, . . . , n}, then the operator norm of
∥P −Q∥op satisfy

∥P −Q∥op ≤ ∥P −Q∥F ≤
√
2k ∥H∥op

δ
,

where ∥·∥F denotes the Frobenius norm.

This is a relatively common theorem, and the proof detail can be found at, for instance, Cao [2021].

Lemma G.2 (Gelfand’s formula). For any square matrix X , we have

ρ(X) = lim
t→∞

∥∥Xt
∥∥1/t .

In other words, for any ϵ > 0, there exists a constant ζϵ(X) such that

σmax(X
t) = ∥X∥ ≤ ζϵ(X)(ρ(X) + ϵ)t.

Further, if X is invertible, let λmin(X) denote the eigenvalue of X with minimum modulus, then

σmin(X
t) ≥ 1

ζϵ(X−1)

(
|λmin(X)|

1 + ϵ|λmin(X)|

)t
.

The proof can be found in existing literatures (e.g. Horn and Johnson [2012].

H INDEXING

For the convenience of readers, we provide a table summarizing all constants appearing in the bounds.



Table 1: Lists of parameters and constants appearing in the bound.

Constant Appearance Explanation

T Stage 1 T initialization steps to separate unstable components.
ωi Stage 3 Stopping time in each iteration to learn Bτ .
α Stage 3 uti = α ∥xti∥ ei to estimate columns of Bτ .
τ Stage 3 τ -steps between consecutive control inputs are injected.

Table 2: System parameters.

Constant Appearance Explanation

C Section 2 Upper bound the magnitude of noise.
λi Section 3.1 (Complex) eigenvalue of A with i-th largest modulus.
ξ Definition 3.1 of Hu et al. [2022] E⊥

u and Es are ξ-close subspaces, i.e. σminP
∗
2 Q1 > 1− ξ.

ζϵ(·) Lemma G.2 Gelfand constant for the norm of matrix exponents

Table 3: Shorthand notations (introduced in proofs).

Constant Appearance Explanation

C∆ Proposition G.1 of Hu et al. [2022] C∆ := ζϵ1(M1)ζϵ2(M2)
(2−ξ)

√
2ξ∥A∥

1−ξ

2|λk+1|
|λ1+ϵ1−|λk+1|−ϵ2

.

Cγ (42) in the proof of Proposition E.2 Cγ :=
ζϵ4 (N2)C

γ′(1−ξ)
1

1−(|λk+1|+ϵ4)
.

CB Proposition E.5 (ζ2ϵ1(A)(∥A∥+ ∥B∥+ (C + 2)τ + 1) + (τ + 1)C∆)
√
m
α

.

K Stage 4 Upper bounding
∥∥∥K̂1

∥∥∥ chosen by the user.

U Stage 4 Upper bounding
∥∥∥M̂τ

1 − B̂τ K̂1

∥∥∥
Ū

.

gap Theorem 4.2 gap :=
∣∣∣∏m1 ̸=m2

(λ−1
m1

− λ−1
m2

)
∣∣∣ ,m1,m2 ∈ {1, . . . , k}.
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