
Uncertainty Propagation on Unimodular Lie Groups
Using a Gaussian Approximation

Jikai Ye and Gregory S. Chirikjian

Abstract—We discuss the connection between two definitions
of stochastic differential equations (SDEs) on unimodular Lie
groups and derive the mean and covariance propagation equa-
tions in this work. Starting from an SDE defined on Lie
groups via Mckean-Gangolli injection, we first convert it to
a parametric SDE in exponential coordinates. The coefficient
transform method for the conversion is stated for both Itô’s and
Stratonovich’s interpretation of the SDE. Then we derive a mean
and covariance fitting formula for probability distributions on Lie
groups defined by a concentrated distribution on the exponential
coordinate. It is used to derive the mean and covariance propaga-
tion equations for the SDE defined by injection, which coincides
with the equations derived from a Fokker-Planck equation. The
Gaussian distribution constructed from the mean and covariance
can be used for calculating the cost function of diffusion models
on Lie groups.

I. INTRODUCTION

Stochastic differential equations (SDEs) play an important
role in many fields of engineering, from noise modeling in
dynamical systems to diffusion models in deep learning [6].
When the state variable x lives in Euclidean space, the general
form of a Itô SDE is

dx = h(x, t)dt+H(t)dW (1)

and the propagation of the mean µ(t) and covariance Σ(t) of
the state variable x is well-known [12]{

µ̇ = ⟨h⟩
Σ̇ = ⟨h(x− µ)T + (x− µ)hT ⟩+HHT

(2)

where ⟨φ⟩ .
= E(φ). A famous example is the Orn-

stein–Uhlenbeck process where h(x, t) = Ax+ b. When the
initial state is x0, the conditional probability density function
of xt, pt|0(xt|x0), will remain a Gaussian during the process
and the mean and covariance can be calculated by (2). This
property is utilized in calculating the cost function for score-
based generative models [6]

ℓt(sθ) = E[∥sθ(xt)−∇xt log pt|0(xt|x0)∥2] (3)

where pt|0(xt|x0) has an analytic expression and is thus easy
to compute.

In robotic tasks, however, the state space usually has a Lie
group structure, e.g. SO(3) and SE(3). The expression of
the probability density function pt|0(gt|g0) on Lie groups is
not well understood. This paper derives a mean and covariance
propagation equation in this setting from a stochastic differen-
tial equation perspective, which provides more insight into the
equation derived by a Fokker-Planck equation on unimodular
Lie groups in [16]. The connection between different ways

of defining stochastic differential equations on Lie groups is
also stated. The Gaussian distribution constructed from the
propagated mean and covariance can be used to calculate the
cost function for diffusion models on Lie groups as in (3),
which have found applications in robotics tasks, such as 6D
grasping [15] and robot motion generation [5].

When the state variable lives in a Lie group, the noisy
dynamic model is a stochastic differential equation (SDE) on
the Lie group. There exist several ways to define such an SDE.
In [14, 10], a matrix Lie group is considered as a submanifold
embedded in GL(n), and the SDE is defined on GL(n)
directly. Another way is to use the McKean-Gangolli injection
[11, 3] in which an infinitesimal stochastic process on the
Lie algebra is projected to the Lie group. These two types of
SDEs can be interconverted if the coefficients satisfy a simple
relationship [14]. A third way is to parametrize the group and
define an SDE on the parameter space. In this paper, we start
with the second type of SDE and convert it to the third type.
When using exponential coordinates for parametrization and
Stratonovich’s interpretation, the coefficient conversion is very
simple, while when using Ito’s interpretation, an additional
drift term shows up. Note that the Fokker-Planck equation
corresponding to these two equivalent SDEs is derived in
[16], which describes the evolution of the probability density
function of the state variable.

We proceed to review the mean and covariance propaga-
tion methods. In extended Kalman filter type of methods,
the mean is propagated using the dynamic model without
noise [1, 2] and the propagation of covariance is derived by
expansion and truncation. In the literature that employs the
unscented transform, the mean and covariance propagation
can be calculated by propagating sigma points on the group
and performing optimization [7, 9], by propagating sigma
points on the tangent space and projecting the mean and
covariance back to the group [9, 13], or by propagating the
mean using the deterministic dynamic model [3, 4] and the
covariance by the unscented transform. In this work, we
take the second approach which utilizes the tangent space
for propagation. Different from previous work that projects
mean and covariance alone, we project quantities on the
tangent space back to the group while taking into account the
influence of the probability distribution. Also, we do not make
approximations in the derivation and arrive at propagation
equations in the form of (2) assuming the initial probability
distribution is concentrated. A propagation equation of the
same form has been derived previously in [16] from a Fokker-
Planck equation’s perspective and the approximate equation



based on it has been demonstrated by experiments. We offer
another derivation that provides more insight into the meaning
of each term in the equation from an SDE perspective.

Contributions: i) We state the equivalence between a non-
parametric stochastic differential equation (SDE) on a Lie
group defined by Mckean-Gangolli injection and a parametric
SDE defined on exponential coordinates of the Lie group. ii)
A formula with error analysis is derived for fitting the group-
theoretic mean and covariance of a probability defined on
exponential coordinates of a Lie group. iii) A continuous-
time mean and covariance propagation equation is derived
using exponential coordinates and the mean and covariance
fitting method, which can then be used to construct a Gaussian
distribution to approximate the true distribution for diffusion
model training.

II. BACKGROUND

In this section, we provide a minimal introduction to Lie
group theory. The Einstein summation convention is used to
simplify notations throughout this paper.

An N -dimensional matrix Lie group G is an N -dimensional
analytic manifold and also a subgroup of the general linear
matrix GL(n) with group product and inverse operation being
analytic. The Lie algebra G of a Lie group is the tangent
space at the identity of G equipped with a Lie bracket. In the
case of a N -dimensional matrix Lie group, its Lie algebra G
can be understood as a N -dimensional linear space consisting
of matrices whose matrix exponential are in G and the Lie
bracket is defined by

[X,Y ]
.
= XY − Y X, X, Y ∈ G. (4)

Given a basis of G as {Ei}i=1,2,...,N , we can draw equivalence
between the Lie algebra G and RN using the ‘∧’ and ‘∨’
operation: x∧ .

=
∑N

i=1 xiEi ∈ G, x ∈ RN and X∨ = x ∈
RN which is the inverse of ‘∧’. This identification of Ei with
ei is equivalent to fixing a metric for G. The little ‘ad’ operator
is defined by adXY

.
= [X,Y ], X, Y ∈ G. This operator is a

linear operator on Y and can be transformed into a matrix
[adX ] ∈ RN×N that satisfies [adX ]y = (adXY )∨.

Since a matrix Lie group is also a manifold, we can locally
parametrize it by a subset of RN as g(q) ∈ G where q ∈ RN .
One parametrization that exists for all matrix Lie groups
is the exponential coordinate, where parametrization around
µ ∈ G is obtained by the matrix multiplication and matrix
exponential, g(x) = µ exp(x∧). The neighborhood of any
group element µ ∈ G can be parametrized in this way and the
parametrization is a local diffeomorphism between D ⊆ RN

and G. The domain of exponential coordinate, D, is specified
case by case, for example D = {x ∈ R3 | ∥x∥2 < π} for
SO(3).

The left and right Jacobian matrices of G are defined by

Jl(q) =

[(
∂g(q)

∂q1
g−1

)∨

,

(
∂g(q)

∂q2
g−1

)∨

, ...,

(
∂g(q)

∂qN
g−1

)∨]
,

(5)

Jr(q) =

[(
g−1 ∂g(q)

∂q1

)∨

,

(
g−1 ∂g(q)

∂q2

)∨

, ...,

(
g−1 ∂g(q)

∂qN

)∨]
,

(6)

where g(q) can be the exponential or any other parametriza-
tion. One use of Jacobians is to solve ordinary differential
equations on G by parametrization. For example,

(g−1ġ)∨ = h(g) ⇐⇒ q̇ = J−1
r (q)h(g(q)) (7)

when the Jacobian matrix is not singular. The Jacobian can
also be used to construct two Haar measures on G defined
by dlg

.
= |det Jl|dq and drg

.
= |det Jr|dq. When |det Jl| ≡

|det Jr|, the group is called unimodular, e. g. SE(2), SE(3),
SO(3), and the two Haar measures are both invariant to left
and right shift.

In this paper, we only consider functions whose support is
within the domain of exponential coordinates centered at some
group element µ, i.e. supp(f) ⊆ µ exp(D), and the integration
can be calculated on the exponential coordinate by∫

G

f(g)dg
.
=

∫
D

f(µ exp(x))|Jr(x)|dx. (8)

To simplify equations, we notationally suppress the ‘∧’ oper-
ator in the exponential map, which we will continue to use
throughout this paper.

A probability density function p(g) on G is a function
that satisfies: i) p(g) ≥ 0 and ii)

∫
G
p(g)dg = 1. Building

on terminology already in use in literature [13, 2], we now
formally define the concept of concentrated distribution on
RN :

Definition 1. If a probability distribution on RN satisfies the
following properties, it is said to be a concentrated distribution
for Lie group G: i) the support of the probability density
function p̃(x) is within the domain of exponential coordinates
of G, i.e. supp(p̃) ⊆ D, and ii) the mean of the distribution is
around 0, i.e. ∥E(x)∥2 << 1.

Given a concentrated distribution on RN , p̃(x), we can con-
struct a probability distribution on unimodular Lie groups by
defining a random variable g(x) = µ exp(x) ∈ G. Denote the
probability density function of this random variable as p(g).
The expectation of a function f(g) can be calculated as

⟨f⟩ .
=

∫
G

f(g)p(g)dg =

∫
RN

f(µ exp(x))p̃(x)dx (9)

where

p(µ exp(x))|Jr(x)| = p̃(x). (10)

The group-theoretic mean and covariance of p(g) denoted by
µG and Σ are defined below:∫

G

log∨(µ−1
G g)p(g)dg = 0 (11)

and

Σ =

∫
G

[log∨(µ−1
G g)][log∨(µ−1

G g)]T p(g)dg. (12)



III. STOCHASTIC DIFFERENTIAL EQUATIONS ON LIE
GROUPS

Suppose we have a N-dimensional matrix Lie group, G, a
vector-valued function, h : G×R → RN , and a matrix-valued
function, H : G × R → RN×N . Denote a N -dimensional
Wiener process as W (t) which satisfies

(
W (t+s)−W (t)

)
∼

N (0, s·IN×N ).

Definition 2. (non-parametric SDE on G) A stochastic differ-
ential equation on G can be defined non-parametrically via
Mckean-Gangolli injection [11],

g(t+ dt) = g(t) exp
(
h
∣∣∣
g=g(t)
t=t

dt+H
∣∣∣
g=g(t+κdt)
t=t+κdt

dW
)
, (13)

where dt is the infinitesimal increment of time and dW
.
=

W (t+ dt)−W (t).

The SDE is called Itô’s when κ = 0 and Stratonovich’s when
κ = 1

2 , which is consistent with the definitions on Euclidean
space [8]. A sample path of the non-parametric SDE (13)
starting at g(0) is defined by the following limit

g(T )= lim
M→∞

g(0)

M−1∏
i=0

exp

[
h
∣∣∣
g=g(ti)
t=ti

∆t+H
∣∣∣
g=g(ti+κ∆t)
t=ti+κ∆t

∆W i

]
(14)

where ∆t = T/M , ti = i∆t, ∆W i = W (ti+1) − W (ti),
and the exponential of increment is multiplied on the right
sequentially.

Another way to define an SDE on Lie groups is to param-
eterize group elements and define an SDE on the parameter
space:

Definition 3. (parametric SDE on G) A stochastic differential
equation on G can be defined parametrically by parametrizing
group elements as g = g(q) and writing an SDE on the
parameter space as

q(t+ dt)=q(t) + (J−1
r h̃)

∣∣∣
q=q(t)

t=t

dt+(J−1
r H̃)

∣∣∣
q=q(t+κdt)

t=t+κdt

dW

(15)
where h̃(q, t) and H̃(q, t) are functions of the parameters and
time.

As before, it is called Itô’s when κ = 0 and Stratonovich’s
when κ = 1/2. For a short time, assume the trajectory q(t)
is still in the domain of the parametrization, a sample path of
the SDE starting at q(0) is defined by the following limit [8]

q(T ) = q(0)+

lim
M→∞

M−1∑
i=0

{
(J−1

r h̃)
∣∣∣
q=q(ti)

t=ti

∆t+(J−1
r H̃)

∣∣∣
q=q(ti+κ∆t)

t=ti+κ∆t

∆W i

}
(16)

where ∆t = T/M , ti = i∆t and ∆W i = W (ti+1)−W (ti).
The path is then mapped back to G by g(t) = g(q(t)).

When using exponential coordinates to parametrize the
group, i.e. g(x) = µ exp(x), the sample paths of equation
(13) and equation (15) are related by the following theorem:

Theorem 1. Using the parametrization g(x) = µ exp(x) in
Definition 3, when both equation (13) and equation (15) are

interpreted as Ito’s SDEs, i.e. κ = 0, their sample paths are
equivalent if the following condition holds

h̃
∣∣∣
x=x
t=t

= h
∣∣∣
g=µ exp(x)

t=t

+

(
1

2
Jr

∂J−1
r

∂xk
HHTJ−1

r

)∣∣∣∣∣g=µ exp(x)
x=x
t=t

ek,

H̃
∣∣∣
x=x
t=t

= H
∣∣∣
g=µ exp(x)

t=t

.

(17)

Remark: At first glimpse, it is surprising that an additional
appears when using a parametric SDE to describe a non-
parametric SDE. That term comes from the non-linearity of the
exponential map which is used in defining the non-parametric
SDE. Previous work [10] also observe a similar phenomenon
in their definitions of SDE.

Theorem 2. Using the parametrization g = µ exp(x) in equa-
tion (15), when both the non-parametric and the parametric
SDEs are interpreted as Stratonovich’s SDEs, i.e. κ = 1/2,
their solutions are equivalent when

h̃
∣∣∣
x=x
t=t

= h
∣∣∣
g=µ exp(x)

t=t

and H̃
∣∣∣
x=x
t=t

= H
∣∣∣
g=µ exp(x)

t=t

. (18)

Remark: The connection between a parametric and a non-
parametric SDE on G is natural when both are interpreted
as Stratonovich’s. Their corresponding Fokker-Planck equation
also takes a simple form [16].

IV. MEAN AND COVARIANCE PROPAGATION ON LIE
GROUPS

In this section, we provide a way to derive the mean and
covariance propagation equations on unimodular Lie groups
from an SDE perspective. We first present a theorem that
estimates the group-theoretic mean and covariance of a prob-
ability distribution on the exponential coordinate with error
analysis. It is then used to derive a continuous-time mean and
covariance propagation equation.

The following theorem gives an estimation of the group-
theoretic mean and covariance of the random variable g(x) =
µ exp(x) when x obeys a concentrated distribution:

Theorem 3. Given a random variable x ∈ RN whose prob-
ability distribution is concentrated for G. Denote its mean,
covariance matrix, and the probability density function by m,
Σ, and p̃(x). The random variable defined by g = µ exp(x)
obeys a distribution whose group-theoretic mean µm and
covariance Σm are estimated by

m′ = ⟨J−1
l ⟩−1m

µm = µ exp(m′ +O(|m′|2))
Σm = Σ− sym

(
⟨J−1

l m′xT ⟩
)
+O(|m′|2)

(19)

where ⟨v(x)⟩ .
=

∫
RN v(x)p̃(x)dx and sym(A)

.
= A+AT .

Remark: This theorem states that when the probability density
function p̃(x) is close to a Dirac-delta function, the group-
theoretic mean is close to µ exp(m). However, when the
probability is relatively dispersed, this approximate can lead
to a O(|m|) level error.



Suppose we have a stochastic process on Lie group G
described by a non-parametric Ito’s SDE (13) and assume
H is a constant matrix. We aim to derive the propagation
equations for the group-theoretic mean µ(t) and covariance
Σ(t) of g(t). At time t, we parametrize group elements by
g(t) = µ(t) exp(x(t)) and write the probability density func-
tion of x as p̃(x, t). We assume p̃(x, t) to be a concentrated
distribution for G. Using Theorem 1 and Theorem 3, we derive
the following propagation equations:

Theorem 4. The group-theoretic mean µ(t) and covariance
Σ(t) of a stochastic process g(t) described by the Itô’s SDE
(13) obey the following ordinary differential equations:

(µ−1µ̇)∨ = ⟨J−1
l ⟩−1

〈
1

2

∂J−1
r

∂xk
(HHTJ−T

r ek) + J−1
r hc

〉
(20)

and

Σ̇ =

〈
sym

[
(
1

2

∂J−1
r

∂xk
(HHTJ−T

r )ek − J−1
l (µ−1µ̇)∨

+ J−1
r hc)xT

]
+ J−1

r HHTJ−T
r

〉
.

(21)

where hc(x, t)
.
= h(µ exp(x), t) and sym(A)

.
= A+AT .

In practice, we could calculate the expectation approxi-
mately using Taylor’s expansion or unscented transform as
demonstrated in [16]. After having the mean and covariance,
we can construct a concentrated Gaussian distribution g =
µ(t) exp(x), x ∼ N (0,Σ(t)) as an approximate probability
distribution. In score-based generative models, it can be used
to compute ∇ log pt(gt|g0) approximately [6].

V. CONCLUSION

This paper provides a derivation to the mean and covari-
ance propagation equations when the dynamics model is a
stochastic differential equation (SDE) on Lie groups. We first
derive the relationship between a non-parametric SDE defined
by Mckean-Gangolli injection and a parametric SDE on expo-
nential coordinates. Then we derive a mean and covariance
fitting formula for probability distributions on Lie groups
that are defined by projecting a concentrated distribution on
the exponential coordinate to the group. Combining these
two tools, we derive the mean and covariance propagation
equations for a non-parametric SDE. In the future, we will
apply the approximate propagation method to train score-based
generative models on Lie groups.
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