
ApiQ: Finetuning of 2-Bit Quantized Large Language Model

Anonymous ACL submission

Abstract

Memory-efficient finetuning of large language001
models (LLMs) has recently attracted huge at-002
tention with the increasing size of LLMs, pri-003
marily due to the constraints posed by GPU004
memory limitations and the effectiveness of005
these methods compared to full finetuning. De-006
spite the advancements, current strategies for007
memory-efficient finetuning, such as QLoRA,008
exhibit inconsistent performance across diverse009
bit-width quantizations and multifaceted tasks.010
This inconsistency largely stems from the detri-011
mental impact of the quantization process on012
preserved knowledge, leading to catastrophic013
forgetting and undermining the utilization of014
pretrained models for finetuning purposes. In015
this work, we introduce a novel quantization016
framework named ApiQ, designed to restore the017
lost information from quantization by concur-018
rently initializing the LoRA components and019
quantizing the weights of LLMs. This approach020
ensures the maintenance of the original LLM’s021
activation precision while mitigating the error022
propagation from shallower into deeper layers.023
Through comprehensive evaluations conducted024
on a spectrum of language tasks with various025
LLMs, ApiQ demonstrably minimizes activa-026
tion error during quantization. Consequently,027
it consistently achieves superior finetuning re-028
sults across various bit-widths.029

1 Introduction030

Large language models (LLMs) have garnered sig-031

nificant acclaim and success across a wide range of032

domains and applications (Touvron et al., 2023b;033

Jiang et al., 2023; OpenAI, 2023). With ongoing ad-034

vancements, the scope and complexity of released035

LLMs have witnessed exponential growth, with036

some LLMs encompassing more than 50B param-037

eters (Touvron et al., 2023b,a; Zhang et al., 2022;038

Scao et al., 2022). This remarkable upscaling intro-039

duces considerable challenges, particularly when040

effectively adapting these models for downstream041

tasks. Historically, a prevalent method for adapt- 042

ing pretrained models to specific downstream tasks 043

is full finetuning, a process that updates all pre- 044

trained parameters. Although this approach has led 045

to many state-of-the-art achievements, its practical- 046

ity is somewhat hindered in scenarios where GPU 047

memory is limited. This limitation stems from the 048

necessity to store the model’s weights and opti- 049

mizer’s states in the GPU’s memory and intensifies 050

with the escalating sizes of LLMs. 051

To mitigate the extensive memory requirement 052

for finetuning LLMs, an alternative method is 053

parameter-efficient finetuning (PEFT) (Liao et al., 054

2023a; Hu et al., 2022; Houlsby et al., 2019). This 055

technique involves selectively introducing and up- 056

dating a limited set of parameters while leaving the 057

majority of the LLM’s parameters unchanged. A 058

key advantage of this approach is the substantial 059

reduction in GPU memory required for the opti- 060

mizer’s states since the size of the optimizer states 061

is proportional to the amount of trainable parame- 062

ters. To further reduce the GPU memory required 063

by loading the LLM’s weights, multiple model 064

compression methods have been proposed (Shao 065

et al., 2023a; Xiao et al., 2023; Dettmers et al., 066

2023b; Lin et al., 2023; Frantar et al., 2022), con- 067

verting high-precision weight values into a discrete 068

set of values. Initially, quantization techniques 069

were primarily developed for deploying LLMs in 070

memory-limited environments for inference pur- 071

poses. QLoRA (Dettmers et al., 2023a) innova- 072

tively combines PEFT, specifically LoRA (Hu et al., 073

2022), with quantization methods to remarkably re- 074

duce the GPU memory requirement for finetuning. 075

However, QLoRA (Dettmers et al., 2023a) in- 076

herits the same challenge as LLM’s quantization, 077

namely the distortion of the learned knowledge 078

from the full-precision LLM due to the quantization 079

error, which exacerbates at lower-bit quantizations, 080

leading to catastrophic forgetting. Recently, Li 081

et al. (2023) and Guo et al. (2023) proposed a new 082

1

method to reduce the quantization error through083

a strategic initialization of the LoRA components084

to maintain the original weight states. This tech-085

nique has demonstrated considerable success in the086

finetuning of lower-bit quantized LLMs (QLLMs).087

Nonetheless, they focus on preserving the weight088

states on a per-linear-layer basis, resulting in accu-089

mulative error propagation through layers.090

In this paper, we introduce a novel and efficient091

quantization framework, termed ApiQ, which con-092

sists of two steps to adapt an LLM, similar to093

QLoRA. During the quantization step, ApiQ pre-094

serves the activation instead of the weight of full-095

precision LLM by jointly optimizing the LoRA’s096

components and quantizing the LLM’s weights.097

This approach ensures that the output of the QLLM098

remains consistent with that of the full-precision099

LLM, effectively mitigating quantization error by100

aligning the activations across corresponding lay-101

ers. As a result, the quantization errors introduced102

in earlier layers are ameliorated. Subsequently, we103

finetune the LoRA modules with the fixed QLLM104

on downstream tasks, thereby significantly reduc-105

ing the demands on GPU memory.106

Our primary contributions are as follows:107

• We conduct an in-depth analysis of the chal-108

lenges associated with finetuning QLLM (§3).109

• We propose ApiQ to initialize the PEFT pa-110

rameters in conjunction with the quantization111

of an LLM, aiming to retain the activation of112

the full-precision LLM. ApiQ demonstrates113

superior performance post-quantization, even114

surpassing the latest post-training quantiza-115

tion (PTQ) techniques (§4).116

• We carry out extensive finetuning experiments117

on 5 LLMs across 5 different tasks to evaluate118

the effectiveness of ApiQ. ApiQ consistently119

outperforms all baselines at various bit levels120

(§5 and Figure 4).121

2 Preliminaries122

GPU memory allocation and utilization are typ-123

ified by three principal mechanisms for training a124

model, as exemplified in Figure 1 during the train-125

ing of Llama-2-7b (Touvron et al., 2023b). Initially,126

a substantial portion of GPU memory is allocated127

to store the model’s weights. For instance, approxi-128

mately 12.6GB is required for a model comprising129

12.6

26.4
25.1

15.9

Full Finetuning

Model
Optimizer

Gradient+Activations+Other
Unused

4.65.3

23.9 46.2

QLoRA

Figure 1: Memory allocation (GB) of a A100-80GB
GPU for finetuning Llama-2-7b. The optimizer is Adam.
The batch size is 1. The sequence length is 2048. For
QLoRA, the bit-width is 4 and the LoRA rank is 64.

roughly 7B parameters in BFloat16 format. Sec- 130

ondly, the optimizer states associated with trainable 131

parameters occupy a considerable amount of GPU 132

memory. Employing Adam (Kingma and Ba, 2015) 133

as the optimizer necessitates storing the first and 134

second moments in the GPU memory, effectively 135

doubling the memory requirement compared to that 136

needed for the trainable parameters alone. Notably, 137

the memory allocations for the model’s weights 138

and optimizer states are static, remaining constant 139

throughout the training process. The third aspect 140

involves the temporary storage of activations — the 141

outputs produced by each layer as data traverses 142

through the model. These activations are crucial 143

for gradient computation during the backward pass 144

and are retained in memory for this purpose. After 145

the gradient computation, these activations are dis- 146

carded. Modern training frameworks, like PyTorch 147

(Paszke et al., 2019), employ a sequential process 148

for gradient computation and activation deletion, 149

enhancing memory efficiency. Subsequently, gradi- 150

ents are utilized to update the model’s weights and 151

optimizer states, and then they too are eliminated. 152

Peak memory usage typically occurs at the onset 153

of gradient computation or during the update of 154

optimizer states. 155

Memory-efficient finetuning. In response to 156

the GPU memory constraints and the increasing 157

size of LLMs, various strategies have been devel- 158

oped to optimize memory efficiency during finetun- 159

ing. To mitigate activation memory demands, tech- 160

niques such as selective activation storage and on- 161

demand recomputation are employed (Liao et al., 162

2023b; Gomez et al., 2017; Chen et al., 2016). Ad- 163

ditionally, to curtail the memory required for op- 164

timizer state storage, the pretrained LLM is kept 165

fixed while a limited amount of trainable parame- 166

ters are introduced (Hu et al., 2022; Houlsby et al., 167

2019). A prime example is LoRA (Hu et al., 2022), 168

2

which adapts the pretrained weight, W ∈ Rd1×d2 ,169

of a linear layer as W ′ = W + α
rAB⊤, where170

A ∈ Rd1×r, B ∈ Rd2×r, r ≪ d1, r ≪ d2 and α171

is a scalar. Introducing a smaller bottleneck dimen-172

sion r substantially reduces the memory demand173

for the optimizer, illustrated by a reduction from174

26.4GB to 5.3GB as shown in Figure 1. To further175

diminish LoRA’s memory usage, Dettmers et al.176

(2023a) introduced a quantized version of W , such177

as a 4-bit representation in contrast to 16 bits. This178

technique significantly decreases the memory re-179

quirement for storing the model’s weights, from180

12.6GB to 4.6GB.181

Quantization involves converting high-182

precision values into discrete levels. In this183

research, we focus on uniform affine quantization184

(Jacob et al., 2018), known for its enhanced185

hardware support and efficiency. This process186

quantizes the pretrained weight as follows:187

Wq = clamp(⌊W
s
⌉+ z, 0, 2b − 1) (1)188

where the scale factor s = max(W)−min(W)
2b−1

, the189

zero-point z = −⌊min(W)
s ⌉, b is the bit-width, and190

⌊⌉ is the round-to-nearest operation. One only191

needs to load Wq and z in a reduced bit format,192

and s in Float16 to GPU. During the forward pass,193

they are de-quantized for activation computation as194

Q = s(Wq − z).195

3 Challenges of Finetuning QLLM196

QLoRA (Dettmers et al., 2023a) employs a strat-197

egy wherein the fixed pretrained weights are loaded198

onto the GPU in a lower-bit format, while finetun-199

ing is confined to a minimal number of parameters200

from the adapters. This approach significantly re-201

duces the memory allocation required from both202

the model’s weights and optimizer states, decreas-203

ing it from 39GB to 10GB, as depicted in Figure204

1. This reduction in memory demand facilitates the205

finetuning of LLMs on more modest computational206

resources. Nevertheless, this method introduces207

certain challenges associated with quantization.208

3.1 QLLM breaks down the starting point209

LLMs are recognized for their ability to learn210

broadly applicable and distributed representations211

that effectively support the downstream learning212

of compressed task-specific representations (Agha-213

janyan et al., 2021), i.e. offering a robust starting214

point for the training of downstream tasks. Liao215

Method LoRA MNLI (acc↑) WikiText (ppl↓)
position 2 Bits 4 Bits 2 Bits

QLoRA
All 79.7 5.24 N.A.
FFN 78.2 5.29 N.A.
Attn 75.7 5.28 N.A.

LoftQ
All 88.5 5.24 7.85
FFN 87.1 5.30 8.64
Attn 87.5 5.28 8.86

ApiQ-lw
All 88.6 5.28 7.46
FFN 88.2 5.29 7.50
Attn 88.6 5.25 7.55

Table 1: The effect of trainable LoRA position. All
linear layers are incorporated with a LoRA module ini-
tialized with different methods. Only the LoRA mod-
ules in the denoted position are finetuned. ApiQ has the
smallest gap between different positions.

et al. (2023b) postulate that maintaining this start- 216

ing point — ensuring that the difference between 217

the modified weight W ′ and the original weight W 218

is minimal (i.e., ∥W ′ −W ∥F → 0) — is crucial 219

at the finetuning’s outset to achieve performance 220

comparable to full finetuning. 221

LoRA (Hu et al., 2022) adheres to this principle 222

by initializing B = 0, which results in W ′ = W 223

at the start of the training. QLoRA (Dettmers et al., 224

2023a), on the other hand, follows LoRA’s default 225

initialization for A and B. Consequently, at the 226

onset of training, W ′ = Q + AB⊤ = Q. Due 227

to the round-to-nearest and clipping operations in- 228

volved in quantization, Q differs from the original 229

W , thereby distorting the starting point. This de- 230

viation, represented by ∥δW ∥ = ∥W −W ′∥F , is 231

expected to increase with lower-bit quantization. 232

Recent developments by Li et al. (2023) and Guo 233

et al. (2023) introduced an approach to initialize 234

the Q, A and B matrices in QLoRA by solving 235

the following optimization problem: 236

argmin
Q,A,B

∥W − (Q+AB⊤)∥F (2) 237

The key objective of this technique is to obtain Q, 238

A, and B in such a way that the initial state of the 239

model (the starting point) is preserved as closely as 240

possible. As shown in Figure 2 (Left), LoftQ (Li 241

et al., 2023) significantly reduces the weight error. 242

3.2 Accumulative quantization error 243

The findings of Hu et al. (2022) highlight that in- 244

tegrating LoRA modules solely into the query and 245

value projection layers is adequate to match the 246

performance of full finetuning. This stands in con- 247

trast to the stance of Dettmers et al. (2023a), who 248

3

0 10 20 30

10

0

10
R

el
at

iv
e

w
ei

gh
t e

rr
or

between LoftQ and QLoRA

q_proj k_proj v_proj o_proj gate_proj up_proj down_proj
0 10 20 30

between ApiQ-lw and QLoRA

0 10 20 30

between ApiQ-lw and LoftQ

Layer index

Figure 2: Relative weight quantization error of 2-bit quantized Llama-2-7b, i.e. e = ∥δW baseline∥F − ∥δWmethod∥F .
The larger e is, the more effective the method is in reducing weight error compared to the baseline. Left: The
method is LoftQ and the baseline is QLoRA. Middle: The method is ApiQ and the baseline is QLoRA. Right: The
method is ApiQ and the baseline is LoftQ. Refer to Figure C.1 for the 2-bit and 4-bit non-relative weight error.

advocate for integrating the LoRA modules into all249

linear layers of QLLM to achieve similar results.250

We extend upon the conclusion of QLoRA by251

conducting finetuning experiments with DeBERTa-252

v3-base (He et al., 2023) and Llama-2-7b (Touvron253

et al., 2023b) on the MNLI (Williams et al., 2018)254

and WikiText-2 (Merity et al., 2017) datasets, re-255

spectively. As presented in Table 1, the most ef-256

fective results from QLoRA are achieved when257

the LoRA modules in all linear layers are trained,258

rather than a subset of them. This observation leads259

us to propose that each linear layer undergoes a loss260

of learned information as a consequence of quanti-261

zation. To mitigate this loss and restore the original262

learned information, it is essential to adapt each263

linear layer individually with a LoRA module.264

Furthermore, we notice that the quantization265

errors accumulate through layers. Consider two266

consecutive linear layers, W0 and W1, with in-267

puts and outputs X0, X1 and X2, respectively.268

Under QLoRA’s quantization, the activation error269

for the first layer is ∥X1 −Xq
1∥F = ∥X0W0 −270

X0Q0∥F = ∥X0W0 − X0(W0 − δW0)∥F =271

∥X0δW0)∥F , where δW0 is the quantization error.272

For the second layer, the error is ∥X2 −Xq
2∥F =273

∥X0W0δW1 + X0δW0W1 −X0δW0δW1)∥F .274

This phenomenon indicates that the quantization er-275

rors from shallower layers are propagated to deeper276

layers, with potentially greater impact in deeper277

LLMs. This effect underscores another justifica-278

tion for the implementation of LoRA modules in279

every quantized linear layer to timely counteract280

the quantization errors.281

Despite the advances made by LoftQ (Li et al.,282

2023) in reducing the quantization error δW =283

W − (Q+AB⊤), the issue of error propagation284

persists. This is evidenced in Table 1, where the285

performance between training all LoRA modules286

and only training a subset of them is still large, es- 287

pecially for lower-bit quantization. Such findings 288

emphasize the importance of not only minimizing 289

the quantization errors at their source but also man- 290

aging their propagation across layers. 291

3.3 SVD is not a universal solution 292

Li et al. (2023) and Guo et al. (2023) apply an 293

iterative algorithm to solve Equation (2) as: 294

A(t),B(t) ← SVD(W −Q(t−1)) 295

Q(t) ← f(W −A(t)B(t)⊤) 296

where f is a function for a sequential quantization 297

and de-quantization as:1 298

Q = f(W) 299

= s · (clamp(⌊W
s
⌉+ z, 0, 2b − 1)− z) (3) 300

Although this algorithm is effective without the 301

usage of calibration data, we couldn’t easily ap- 302

ply it to other PEFT methods, even a variant of 303

LoRA, i.e. DoRA (Liu et al., 2024). This algo- 304

rithm requires a relationship of addition between 305

the PEFT parameters and W , which is not possi- 306

ble for some PEFT methods, like (IA)3 (Liu et al., 307

2022a), Adapter (Houlsby et al., 2019), HiWi (Liao 308

et al., 2023a) and so on. 309

Overall, to effectively finetune a QLLM, we need 310

to preserve the starting point, mitigate the propaga- 311

tion of quantization error, and design a universal 312

algorithm for various PEFT methods. 313

4 Method: ApiQ 314

In this section, we introduce a novel quantization 315

framework, Activation-preserved initialization of 316

1We use uniform affine quantization to represent the quanti-
zation of LoftQ and LQ-LoRA for easy understanding. LoftQ
and LQ-LoRA actually apply NF-quantization as QLoRA.

4

QLLM termed as ApiQ, that addresses all above-317

mentioned challenges when finetuning a QLLM.318

The core objective of ApiQ is to maintain the in-319

tegrity of the starting point, while effectively mini-320

mizing the cumulative impact of the quantization321

errors as they traverse through the network.322

4.1 Activation-preserved initialization323

The ApiQ framework introduces a distinct ap-324

proach to quantization by focusing on minimizing325

the activation error, rather than the weight error as326

in previous methods (Li et al., 2023; Guo et al.,327

2023). The core optimization problem of ApiQ is328

formulated as follows:329

argmin
Q,A,B

||XW −Xq(Q+ABT)||F (4)330

The pretrained weight W ∈ Rd1×d2 remains fixed331

during optimization. The quantized weight Q ∈332

Rd1×d2
b is represented in b-bit format, while A ∈333

Rd1×r and B ∈ Rd2×r are low-rank matrices that334

are trainable. The input to the linear layer W is335

denoted as X ∈ Rn×t×d1 , where n is the batch size336

and t is the sequence length. Consequently, XW337

represents the output or activation of the linear338

layer. The input to the quantized linear layer with339

LoRA is Xq ∈ Rn×t×d1 . It’s important to note340

that for the first linear layer of an LLM, X equals341

Xq. For subsequent layers, Xq is the output from342

the nearest shallower quantized layer of W .343

A key difference from LoftQ (Li et al., 2023)344

and LQ-LoRA (Guo et al., 2023) is that ApiQ re-345

quires sequential optimization for each linear layer346

following the input order of different layers, as347

Xq is derived from the preceding layer. E.g., in348

each transformer block of Llama-2 (Touvron et al.,349

2023b), the optimization should start with the key,350

query, and value projection layers, followed by the351

output projection layer, then the gate and up pro-352

jection layer, and finally the down projection layer.353

ApiQ has two primary advantages. Firstly, it en-354

sures that the output from the quantized linear layer355

closely aligns with the original output, thereby356

preserving the starting point of the model. Sec-357

ondly, it potentially mitigates the quantization error358

from shallower layers into deeper layers. This is359

achieved by consistently enforcing that the output360

of each quantized layer closely matches the original361

output, thereby gradually easing the quantization362

error as it propagates through the network. This363

mechanism isn’t present in LoftQ and LQ-LoRA,364

Algorithm 1 ApiQ-lw for one linear layer
1: Input: calibration samples X and Xq , W , A, B, Θ
2: Output: Y , Y q , A, B, Θ
3: Y = XW ▷ Unquantized output, save for next layer
4: for e = 0 to (Epochs− 1) do
5: for (y,xq) in (Y , Xq) do ▷ Batch-wise
6: Q = W /s
7: Q = ⌊Q⌉+Q−Q.detach() ▷ STE
8: Q = s · (clamp(Q+ z, 0, 2b − 1)− z)
9: yq = xq(Q+AB⊤) ▷ Quantized output

10: loss = ||y − yq||2
11: loss.backward()
12: end for
13: end for
14: Y q = Xq(Q+AB⊤) ▷ Save for next layer

giving ApiQ a unique advantage in managing and 365

reducing the quantization errors in QLLMs. 366

4.2 Block-wise ApiQ 367

We define Equation (4) as layer-wise ApiQ (ApiQ- 368

lw), because the LLM is quantized in a layer-by- 369

layer manner. Additionally, we can optimize the 370

entire transformer block simultaneously as follows: 371

argmin
Qs,As,Bs

||F(W s,X)−F(Qs,As,Bs,Xq)||F 372

where F denotes the mapping function of a trans- 373

former block, W s represent all the weights of the 374

linear layers within this block, X is the input to this 375

block, Qs are the quantized versions of W s, As 376

and Bs are all low-rank matrices within this block, 377

and Xq is the input to the quantized block and the 378

output from the preceding quantized block. Block- 379

wise ApiQ (ApiQ-bw) necessitates sequential opti- 380

mization but on a block-by-block basis, meaning 381

we first optimize the first transformer block, fol- 382

lowed by the second block, and so on. 383

ApiQ-bw retains the benefits of ApiQ-lw while 384

offering two additional advantages. Firstly, ApiQ- 385

bw is more time-efficient than ApiQ-lw because it 386

quantizes the entire block in one step. Secondly, 387

ApiQ-bw is compatible with a broader range of 388

PEFT methods without necessitating adaptations 389

for every linear layer. The matrices As and Bs do 390

not have to be the low-rank matrices from LoRA; 391

they can be trainable parameters from any PEFT 392

method, such as DoRA, (IA)3, HiWi and Adapter. 393

4.3 Gradient-based optimization 394

To effectively solve Equation (4), ApiQ utilizes 395

a gradient-based algorithm akin to conventional 396

neural network training. The process involves op- 397

timizing the quantized weight Q along with the 398

low-rank matrices A and B jointly. 399

5

0

10

20

30
Block-wise

QLoRA LoftQ ApiQ-lw

0

5

10

15

QLoRA

q_proj k_proj v_proj o_proj gate_proj up_proj down_proj

0

5

10

15

LoftQ

0

5

10

15

ApiQ-lw

0 5 10 15 20 25 30
0

100

200
QLoRA / 1500

0 5 10 15 20 25 30
0

500

1000

1500

2000 o_proj / 3
down_proj / 12

0 5 10 15 20 25 30
0

50

100

150

0 5 10 15 20 25 30
0

50

100

150

A
ct

iv
at

io
n

er
ro

r 4
B

its
2

B
its

Layer index

Figure 3: The average activation error ∥XW −Xq(Q+AB⊤)∥F per token for different linear layers of Llama-
2-7b. 1st column: The activation error for every transformer block. We randomly sample 128 sentences from C4 to
obtain the activations. For better visualization, some lines are divided by a factor, denoted as “/ factor”. Please pay
attention to the scale of the y-axis to compare different methods. ApiQ has the smallest activation error.

Originally, f from Equation (3) is a static func-400

tion without any trainable parameters. Drawing401

inspiration from existing learnable quantization402

methods (Shao et al., 2023a; Liu et al., 2022b; Esser403

et al., 2020; Choi et al., 2018), ApiQ introduces two404

trainable parameters, γ and β, for each weight ma-405

trix. These parameters control the clipping range406

of the quantization process:407

s =
σ(γ)max(W)− σ(β)min(W)

2b − 1
408

z = −⌊σ(β)min(W)

s
⌉409

Here, σ denotes a sigmoid function, constraining410

the clipping range to prevent excessive value ex-411

pansion. We initialize γ = β = 4 (σ(4) ≈ 0.98)412

to maintain the original clipping range at the begin-413

ning of quantization.414

The optimization for one linear layer is outlined415

in Algorithm 1. During this process, only A, B416

and Θ = {γ, β} are trained. Given that the quanti-417

zation function f incorporates a round-to-nearest418

operation, a straight-through estimator (STE) (Ben-419

gio et al., 2013) is applied to ensure the update of Θ.420

The ApiQ-lw algorithm is designed to be memory-421

efficient, optimizing each layer sequentially. This422

implies that any GPU capable of running the model423

inference can be used to quantize the model using424

ApiQ-lw. The outputs Y and Y q from each layer425

serve as inputs to optimize the subsequent adjacent426

layer, ensuring efficient quantization.427

ApiQ-bw employs a nearly identical optimiza-428

tion algorithm to ApiQ-lw, with the primary distinc-429

tion being that the outputs, y and yq, are generated430

from a transformer block rather than a linear layer. 431

It is worth noting that while ApiQ-bw offers im- 432

proved time efficiency compared to ApiQ-lw, it 433

necessitates marginally higher GPU memory usage 434

due to the need to cache more activations from the 435

layers within a transformer block. 436

Preliminary experiments. In Figure 3, ApiQ 437

reduces the activation error by a large margin com- 438

pared to QLoRA and LoftQ, more obvious for 439

lower-bit quantization. Interestingly, while our 440

objective is to minimize the activation error, the 441

weight error of ApiQ is the smallest for most lay- 442

ers, as shown in Figure 2. This dual effectiveness 443

in minimizing both activation and weight errors 444

underscores the comprehensive nature of ApiQ to 445

quantization. Further evidence of ApiQ’s effective- 446

ness is presented in Table 1 where ApiQ has the 447

smallest performance gap for different trainable 448

LoRA positions. In some cases, only training the 449

LoRA modules in the attention position can offer 450

the best results, similar to the original findings of 451

LoRA (Hu et al., 2022). It suggests that ApiQ is 452

particularly adept at addressing and mitigating the 453

cumulative effects of quantization error. 454

Due to space constraints, we highly recommend 455

that readers refer to Appendix §B.1 and §B.2 for 456

a comprehensive analysis of ApiQ’s quantization 457

quality and efficiency. 458

5 Experiments 459

In this section, we evaluate ApiQ on the language 460

understanding, language modeling, arithmetic rea- 461

soning and commonsense reasoning tasks by quan- 462

tizing DeBERTa-v3 (He et al., 2023), RoBERTa 463

6

70

75

80

85

90 Full FT ApiQ-lw

QLoRA

LoftQ
ApiQ-lw

GLUE

5

6

7

8 WikiText-2

20

30

40

50

GSM8K

40

45

50

55

60 Arithmetic reasoning
LoRA QLoRA GPTQ-LoRA LoftQ ApiQ-lw ApiQ-bw

2 3 4
70

75

80

85

90 Full FT QLoRA

QLoRA
LQ-LoRA

ApiQ-lw

2 3 4

5

6

7

8

2 3 4
20

30

40

50

2 3 4
40

45

50

55

60

Bit

Av
er

ag
e

sc
or

e

Pe
rp

le
xi

ty

Ac
cu

ra
cy

Av
er

ag
e

ac
cu

ra
cy

Figure 4: Finetuning performance over various tasks. 1st row: LLM is DeBERTa-v3-base for GLUE and Llama-2-
7b for the rest. 2nd row: LLM is RoBERTa-large for GLUE and Llama-2-13b for the rest. For better visualization,
some unexpectedly worse results are ignored. Please refer to Table C.4, C.7 and C.8 for the detailed numbers.

(Liu et al., 2019), Llama-2 (Touvron et al., 2023b)464

and Mistral (Jiang et al., 2023). Like QLoRA,465

LoftQ and LQ-LoRA, ApiQ consists of two steps:466

the quantization step and the finetuning step. Dur-467

ing the quantization step, we initialize Q, A and B468

in a way to preserve the starting point and mitigate469

the propagation of quantization error. For the fine-470

tuning step, we freeze Q in a lower bit and train A471

and B in half-precision (BFloat16).472

Implementation details. In Algorithm 1, the473

quantization process of ApiQ requires a calibration474

dataset. We randomly sample 128 sentences from475

the training set of WikiText-2 (Merity et al., 2017).476

Following our baselines (Dettmers et al., 2023a;477

Li et al., 2023), LoRA modules are integrated into478

all linear layers. By default, the group/block size479

for quantization is 64 for all methods. We employ480

AdamW (Loshchilov and Hutter, 2019) as an opti-481

mizer to update A, B and Θ. More implementation482

details for the quantization and finetuning steps are483

detailed in Appendix §C for reproduction.484

Baselines include full finetuning (Full FT),485

LoRA (Hu et al., 2022), QLoRA (Dettmers et al.,486

2023a), GPTQ-LoRA (Frantar et al., 2022), LoftQ487

(Li et al., 2023), and LQ-LoRA (Guo et al., 2023).488

Full FT and LoRA are considered the upper bound489

for finetuning. QLoRA and GPTQ-LoRA employ490

NF-quantization and uniform quantization, respec-491

tively, on the pretrained weights with the default492

LoRA initialization. These methods are memory-493

efficient but distort the starting point. In contrast,494

LoftQ and LQ-LoRA initialize the matrices Q, A,495

and B to preserve the initial weight state, thus serv-496

ing as a strong baseline to ApiQ.497

5.1 Finetuning results and discussion 498

Natural language understanding. We finetune 499

DeBERTa-v3-base and RoBERTa-large on the 500

GLUE tasks (Wang et al., 2019) and show the re- 501

sults in Figure 4. ApiQ outperforms all baselines 502

under the same level of quantization on average. 503

With 3-bit quantization, ApiQ is even better or com- 504

parable to Full FT. 505

Language modeling. We finetune Llama-2-7b, 506

Llama-2-13b and Mistral-7b-v0.1 on the WikiText- 507

2 training set (Merity et al., 2017) and report their 508

perplexity on the validation set, as shown in Fig- 509

ure 4 (Table C.7 for Mistral). Among the tested 510

methods, ApiQ-bw consistently achieved the best 511

performance, followed closely by ApiQ-lw across 512

all bit levels. The performance difference becomes 513

more pronounced at lower bit levels. The ApiQ’s 514

results on Llama-2-13b are even better than LoRA 515

(Float16) for the 3-bit and 4-bit levels. 516

Arithmetic reasoning (single-task). We fine- 517

tune Llama-2 and Mistral on the training set of 518

GSM8K (Cobbe et al., 2021) and report the accu- 519

racy on the test set in Figure 4 (Table C.7 for Mis- 520

tral). Similar to the results of WikiText-2, ApiQ- 521

bw and ApiQ-lw achieve the highest and second- 522

highest accuracy for all bit levels, respectively, with 523

both ApiQs being comparable to or even better than 524

LoRA for the 3 and 4-bit quantization. 525

ApiQ-lw or ApiQ-bw? ApiQ-lw is more 526

memory-efficient for quantization than ApiQ-bw, 527

as shown in Table B.3. However, ApiQ-lw requires 528

more time for quantization due to the layer-by-layer 529

manner. Based on the quantization quality (Ap- 530

pendix §B.1), quantization efficiency (Appendix 531

7

Model Method Bit BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg. ↑

LoRA 16 73.60.3 86.50.1 81.80.1 95.20.1 86.90.2 89.40.4 76.70.8 86.70.8 84.60.2

QLoRA 4 73.90.4 84.40.8 79.70.2 93.30.2 84.60.6 86.10.4 73.00.4 85.10.5 82.50.2
GPTQ-LoRA 4 73.40.4 83.60.5 79.30.3 93.30.1 84.50.8 86.50.3 72.81.3 83.30.2 82.10.2
LoftQ 4 73.70.4 86.00.6 81.10.2 94.60.3 86.30.1 88.10.5 75.51.0 86.20.6 83.90.2
ApiQ-bw 4 73.50.2 87.00.4 82.00.1 95.20.1 86.90.2 89.50.4 77.00.8 86.20.4 84.70.2

Llama-2-7b GPTQ-LoRA 3 71.80.2 82.70.3 79.30.6 92.10.1 82.80.3 84.20.6 70.60.8 83.41.1 80.80.1
LoftQ 3 74.00.0 85.60.4 81.00.7 94.30.1 85.60.1 88.10.6 75.40.8 85.50.7 83.70.3
ApiQ-bw 3 73.30.3 85.60.1 81.80.5 94.60.0 86.90.5 87.90.3 73.70.3 86.41.3 83.80.1

GPTQ-LoRA 2 62.20.0 49.50.2 33.30.6 25.10.1 49.40.4 25.00.2 22.60.0 27.60.0 36.80.0
LoftQ 2 62.40.0 70.52.9 73.40.5 78.83.6 71.03.7 66.54.5 50.84.3 62.37.5 67.03.3
ApiQ-bw 2 68.40.7 80.70.3 79.60.5 91.40.1 82.40.5 82.70.8 68.30.6 80.50.6 79.30.2

LoRA 16 76.30.2 88.50.0 83.40.3 96.50.2 89.60.4 92.80.4 81.70.4 89.60.4 87.30.1

QLoRA 4 74.90.5 86.60.5 81.50.5 94.90.1 86.90.2 89.10.7 77.10.4 87.20.7 84.80.3
GPTQ-LoRA 4 74.50.6 86.11.0 81.80.2 94.70.3 86.80.1 89.00.1 77.10.9 84.51.2 84.30.0
LoftQ 4 76.00.3 87.90.2 82.80.6 95.80.1 88.90.6 91.20.3 80.80.7 88.81.3 86.50.2
ApiQ-bw 4 76.20.3 88.50.3 83.50.1 96.61.4 90.00.4 92.10.1 81.20.3 89.90.5 87.30.1

Llama-2-13b GPTQ-LoRA 3 73.50.5 85.20.3 81.10.5 94.10.1 85.70.3 87.90.4 75.50.7 85.30.9 83.50.0
LoftQ 3 75.20.3 87.80.6 82.80.2 96.30.1 89.50.4 91.10.1 81.40.5 88.00.5 86.50.2
ApiQ-bw 3 76.00.4 88.00.5 82.30.1 95.80.0 89.10.1 91.10.2 81.10.5 89.50.4 86.60.0

GPTQ-LoRA 2 62.20.0 50.10.9 34.00.6 25.10.1 49.60.4 25.00.0 22.70.0 27.60.0 37.10.3
LoftQ 2 65.90.1 76.40.3 78.00.5 84.40.7 76.10.4 75.10.1 60.10.4 72.71.4 73.60.2
ApiQ-bw 2 73.10.4 85.20.5 82.30.5 94.40.1 86.20.3 88.20.3 74.90.4 85.91.4 83.80.3

Table 2: Accuracy and standard deviation from three random runs on commonsense reasoning tasks.

§B.2) and the previously discussed finetuning re-532

sults, we recommend using ApiQ-bw. Therefore,533

ApiQ-lw is ignored for the following experiments.534

Arithmetic reasoning. The setting here con-535

trasts with the previous experiments where each536

task involves finetuning a separate QLLM. Instead,537

we adopt a unified strategy by finetuning a single538

QLLM across all tasks as delineated in Hu et al.539

(2023). We finetune Llama-2 on Math10K (Hu540

et al., 2023), and evaluate the finetuned QLLM on541

the test sets of AQuA (Ling et al., 2017), GSM8K,542

MAWPS (Koncel-Kedziorski et al., 2016) and543

SVAMP (Patel et al., 2021). Such a setting is more544

practical as LLM is frequently used as a general545

model for various tasks.546

As shown in Figure 4, ApiQ-bw consistently547

outperforms all quantization baselines for various548

bit levels, except for the 4-bit level where ApiQ549

is slightly worse than QLoRA, 53.5 vs. 53.7 for550

Llama-2-7b and 59.0 vs. 59.5 for Llama-2-13b.551

However, QLoRA’s 3- and 2-bit results are ex-552

tremely worse, < 3% accuracy (Table C.8).553

Commonsense reasoning. In assessing the554

capacity of QLLM for commonsense reasoning,555

we focus on eight representative tasks: BoolQ556

(Clark et al., 2019), PIQA (Bisk et al., 2020),557

SIQA (Sap et al., 2019), HellaSwag (Zellers et al.,558

2019), WinoGrande (Sakaguchi et al., 2020), ARC-559

e, ARC-c (Clark et al., 2018), and OBQA (Mi-560

haylov et al., 2018). Similar to the multiple arith-561

metic reasoning tasks, we follow the setting of Hu562

et al. (2023), finetune a single QLLM on the com- 563

bined training sets from these tasks, and report the 564

accuracy of the test sets. 565

As shown in Table 2, ApiQ-bw consistently 566

achieves the best average accuracy. For the 4-bit 567

quantization, ApiQ-bw is the only method compa- 568

rable to LoRA in Float16. For the 2-bit quantiza- 569

tion, ApiQ-bw outperforms both GPTQ-LoRA and 570

LoftQ by a large margin with an average accuracy 571

improvement > 10%. 572

We have discussed the most pertinent works in 573

Section §3, and provide additional related works in 574

Appendix §A due to space limitations. For further 575

discussions, we recommend readers refer to (1) 576

Appendix §B.3 for applying ApiQ to other PEFTs; 577

(2) Appendix §B.4 for a discussion why ApiQ is 578

effective for finetuning; and (3) Appendix §B.5 for 579

ApiQ’s sensitivity to the LoRA rank. 580

6 Conclusion 581

In this work, we propose ApiQ, a novel frame- 582

work that aims to reduce the activation error dur- 583

ing quantization by jointly quantizing the LLM’s 584

weights and initializing the LoRA’s components. 585

Extensive experiments, on five tasks across vari- 586

ous encoder-only and decoder-only models, demon- 587

strate ApiQ’s effectiveness in adapting QLLM. It 588

works extremely well with lower-bit quantization 589

and larger models than the strong baselines. Further 590

experiments also demonstrate ApiQ’s capability as 591

a pure PTQ method (Appendix §B.1). 592

8

Ethical Considerations593

Finetuned QLLMs can improve accessibility tools,594

such as text-to-speech and translation services, ben-595

efiting individuals with disabilities and non-native596

language speakers. These models can also assist597

in educational settings by providing personalized598

tutoring and facilitating research through advanced599

data analysis capabilities. In healthcare, QLLMs600

can support professionals by synthesizing medical601

literature and aiding in patient communication, ulti-602

mately contributing to better healthcare outcomes.603

However, the ability of QLLMs to generate604

human-like text raises concerns about the spread605

of misinformation. We advocate for the responsi-606

ble deployment of these models, including mech-607

anisms to detect and prevent the dissemination of608

false information. The powerful capabilities of609

QLLMs could be misused for malicious purposes,610

such as generating deceptive content or facilitating611

cyber-attacks. It is essential to develop robust se-612

curity measures and ethical guidelines to prevent613

such misuse.614

Limitations615

Although ApiQ demonstrates impressive finetuning616

results, some limitations are inherited from its im-617

plementation. Compared to LoftQ (Li et al., 2023),618

ApiQ requires a calibration dataset to determine619

the clipping range of W and to initialize A and B.620

This implementation has one obvious drawback:621

It requires more time for quantization, as shown622

in Table B.3. Since we only need to quantize the623

LLM once for finetuning various tasks, and the du-624

ration and GPU memory used for quantization are625

reasonable, we deem this limitation acceptable.626

Secondly, we only evaluate ApiQ on a limited627

number of tasks with a total number of 5 models628

due to time and resource limitations. We couldn’t629

guarantee its effectiveness on the other tasks and630

LLMs, and are still working on including more631

tasks and models, trying to show its generaliza-632

tion. For the post-training quantization results (Ap-633

pendix §B.1), we didn’t make sure ApiQ shares634

the same bit per parameter as our baselines, which635

makes the direct comparison unfair. Since the main636

focus of this research is about finetuning, we add637

these results mainly to raise attention to this new638

method for PTQ. In the future, we aim to apply639

ApiQ to quantize both weight and activation for640

faster inference.641

References 642

Armen Aghajanyan, Sonal Gupta, and Luke Zettle- 643
moyer. 2021. Intrinsic dimensionality explains the 644
effectiveness of language model fine-tuning. In Pro- 645
ceedings of the 59th Annual Meeting of the Asso- 646
ciation for Computational Linguistics and the 11th 647
International Joint Conference on Natural Language 648
Processing, ACL/IJCNLP 2021, (Volume 1: Long 649
Papers), Virtual Event, August 1-6, 2021, pages 7319– 650
7328. Association for Computational Linguistics. 651

Yoshua Bengio, Nicholas Léonard, and Aaron C. 652
Courville. 2013. Estimating or propagating gradients 653
through stochastic neurons for conditional computa- 654
tion. CoRR, abs/1308.3432. 655

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng 656
Gao, and Yejin Choi. 2020. PIQA: reasoning about 657
physical commonsense in natural language. In The 658
Thirty-Fourth AAAI Conference on Artificial Intelli- 659
gence, AAAI 2020, The Thirty-Second Innovative Ap- 660
plications of Artificial Intelligence Conference, IAAI 661
2020, The Tenth AAAI Symposium on Educational 662
Advances in Artificial Intelligence, EAAI 2020, New 663
York, NY, USA, February 7-12, 2020, pages 7432– 664
7439. AAAI Press. 665

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie 666
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind 667
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 668
Askell, Sandhini Agarwal, Ariel Herbert-Voss, 669
Gretchen Krueger, Tom Henighan, Rewon Child, 670
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, 671
Clemens Winter, Christopher Hesse, Mark Chen, Eric 672
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, 673
Jack Clark, Christopher Berner, Sam McCandlish, 674
Alec Radford, Ilya Sutskever, and Dario Amodei. 675
2020. Language models are few-shot learners. CoRR, 676
abs/2005.14165. 677

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos 678
Guestrin. 2016. Training deep nets with sublinear 679
memory cost. CoRR, abs/1604.06174. 680

Jungwook Choi, Zhuo Wang, Swagath Venkataramani, 681
Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and 682
Kailash Gopalakrishnan. 2018. PACT: parameterized 683
clipping activation for quantized neural networks. 684
CoRR, abs/1805.06085. 685

Christopher Clark, Kenton Lee, Ming-Wei Chang, 686
Tom Kwiatkowski, Michael Collins, and Kristina 687
Toutanova. 2019. Boolq: Exploring the surprising 688
difficulty of natural yes/no questions. In Proceedings 689
of the 2019 Conference of the North American Chap- 690
ter of the Association for Computational Linguistics: 691
Human Language Technologies, NAACL-HLT 2019, 692
Minneapolis, MN, USA, June 2-7, 2019, Volume 1 693
(Long and Short Papers), pages 2924–2936. Associa- 694
tion for Computational Linguistics. 695

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, 696
Ashish Sabharwal, Carissa Schoenick, and Oyvind 697

9

https://doi.org/10.18653/V1/2021.ACL-LONG.568
https://doi.org/10.18653/V1/2021.ACL-LONG.568
https://doi.org/10.18653/V1/2021.ACL-LONG.568
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://doi.org/10.1609/AAAI.V34I05.6239
https://doi.org/10.1609/AAAI.V34I05.6239
https://doi.org/10.1609/AAAI.V34I05.6239
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/1805.06085
https://arxiv.org/abs/1805.06085
https://arxiv.org/abs/1805.06085
https://doi.org/10.18653/V1/N19-1300
https://doi.org/10.18653/V1/N19-1300
https://doi.org/10.18653/V1/N19-1300

Tafjord. 2018. Think you have solved question an-698
swering? try arc, the AI2 reasoning challenge. CoRR,699
abs/1803.05457.700

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,701
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias702
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro703
Nakano, Christopher Hesse, and John Schulman.704
2021. Training verifiers to solve math word prob-705
lems. CoRR, abs/2110.14168.706

Tim Dettmers, Mike Lewis, Younes Belkada, and707
Luke Zettlemoyer. 2022. Llm.int8(): 8-bit ma-708
trix multiplication for transformers at scale. CoRR,709
abs/2208.07339.710

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and711
Luke Zettlemoyer. 2023a. Qlora: Efficient finetuning712
of quantized llms. CoRR, abs/2305.14314.713

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian,714
Denis Kuznedelev, Elias Frantar, Saleh Ashkboos,715
Alexander Borzunov, Torsten Hoefler, and Dan Alis-716
tarh. 2023b. Spqr: A sparse-quantized representation717
for near-lossless LLM weight compression. CoRR,718
abs/2306.03078.719

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and720
Kristina Toutanova. 2019. BERT: pre-training of721
deep bidirectional transformers for language under-722
standing. In Proceedings of the 2019 Conference of723
the North American Chapter of the Association for724
Computational Linguistics: Human Language Tech-725
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,726
June 2-7, 2019, Volume 1 (Long and Short Papers),727
pages 4171–4186. Association for Computational728
Linguistics.729

Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani,730
Rathinakumar Appuswamy, and Dharmendra S.731
Modha. 2020. Learned step size quantization. In732
8th International Conference on Learning Represen-733
tations, ICLR 2020, Addis Ababa, Ethiopia, April734
26-30, 2020. OpenReview.net.735

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and736
Dan Alistarh. 2022. GPTQ: accurate post-training737
quantization for generative pre-trained transformers.738
CoRR, abs/2210.17323.739

Aidan N. Gomez, Mengye Ren, Raquel Urtasun, and740
Roger B. Grosse. 2017. The reversible residual net-741
work: Backpropagation without storing activations.742
In Advances in Neural Information Processing Sys-743
tems 30: Annual Conference on Neural Information744
Processing Systems 2017, December 4-9, 2017, Long745
Beach, CA, USA, pages 2214–2224.746

Han Guo, Philip Greengard, Eric P. Xing, and Yoon Kim.747
2023. Lq-lora: Low-rank plus quantized matrix de-748
composition for efficient language model finetuning.749
CoRR, abs/2311.12023.750

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian751
Sun. 2015. Delving deep into rectifiers: Surpassing752
human-level performance on imagenet classification.753

In 2015 IEEE International Conference on Computer 754
Vision, ICCV 2015, Santiago, Chile, December 7-13, 755
2015, pages 1026–1034. IEEE Computer Society. 756

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2023. 757
Debertav3: Improving deberta using electra-style 758
pre-training with gradient-disentangled embedding 759
sharing. In The Eleventh International Conference 760
on Learning Representations, ICLR 2023, Kigali, 761
Rwanda, May 1-5, 2023. OpenReview.net. 762

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 763
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges- 764
mundo, Mona Attariyan, and Sylvain Gelly. 2019. 765
Parameter-efficient transfer learning for NLP. In Pro- 766
ceedings of the 36th International Conference on Ma- 767
chine Learning, ICML 2019, 9-15 June 2019, Long 768
Beach, California, USA, volume 97 of Proceedings 769
of Machine Learning Research, pages 2790–2799. 770
PMLR. 771

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan 772
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and 773
Weizhu Chen. 2022. Lora: Low-rank adaptation of 774
large language models. In The Tenth International 775
Conference on Learning Representations, ICLR 2022, 776
Virtual Event, April 25-29, 2022. OpenReview.net. 777

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee- 778
Peng Lim, Lidong Bing, Xing Xu, Soujanya Po- 779
ria, and Roy Ka-Wei Lee. 2023. Llm-adapters: An 780
adapter family for parameter-efficient fine-tuning of 781
large language models. In Proceedings of the 2023 782
Conference on Empirical Methods in Natural Lan- 783
guage Processing, EMNLP 2023, Singapore, Decem- 784
ber 6-10, 2023, pages 5254–5276. Association for 785
Computational Linguistics. 786

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong 787
Zhu, Matthew Tang, Andrew G. Howard, Hartwig 788
Adam, and Dmitry Kalenichenko. 2018. Quanti- 789
zation and training of neural networks for efficient 790
integer-arithmetic-only inference. In 2018 IEEE Con- 791
ference on Computer Vision and Pattern Recognition, 792
CVPR 2018, Salt Lake City, UT, USA, June 18-22, 793
2018, pages 2704–2713. Computer Vision Founda- 794
tion / IEEE Computer Society. 795

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men- 796
sch, Chris Bamford, Devendra Singh Chaplot, Diego 797
de Las Casas, Florian Bressand, Gianna Lengyel, 798
Guillaume Lample, Lucile Saulnier, Lélio Re- 799
nard Lavaud, Marie-Anne Lachaux, Pierre Stock, 800
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo- 801
thée Lacroix, and William El Sayed. 2023. Mistral 802
7b. CoRR, abs/2310.06825. 803

Albert Q. Jiang, Alexandre Sablayrolles, Antoine 804
Roux, Arthur Mensch, Blanche Savary, Chris Bam- 805
ford, Devendra Singh Chaplot, Diego de Las Casas, 806
Emma Bou Hanna, Florian Bressand, Gianna 807
Lengyel, Guillaume Bour, Guillaume Lample, 808
Lélio Renard Lavaud, Lucile Saulnier, Marie- 809
Anne Lachaux, Pierre Stock, Sandeep Subramanian, 810
Sophia Yang, Szymon Antoniak, Teven Le Scao, 811

10

https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.48550/ARXIV.2208.07339
https://doi.org/10.48550/ARXIV.2208.07339
https://doi.org/10.48550/ARXIV.2208.07339
https://doi.org/10.48550/ARXIV.2305.14314
https://doi.org/10.48550/ARXIV.2305.14314
https://doi.org/10.48550/ARXIV.2305.14314
https://doi.org/10.48550/ARXIV.2306.03078
https://doi.org/10.48550/ARXIV.2306.03078
https://doi.org/10.48550/ARXIV.2306.03078
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://openreview.net/forum?id=rkgO66VKDS
https://doi.org/10.48550/ARXIV.2210.17323
https://doi.org/10.48550/ARXIV.2210.17323
https://doi.org/10.48550/ARXIV.2210.17323
https://proceedings.neurips.cc/paper/2017/hash/f9be311e65d81a9ad8150a60844bb94c-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f9be311e65d81a9ad8150a60844bb94c-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f9be311e65d81a9ad8150a60844bb94c-Abstract.html
https://doi.org/10.48550/ARXIV.2311.12023
https://doi.org/10.48550/ARXIV.2311.12023
https://doi.org/10.48550/ARXIV.2311.12023
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://openreview.net/pdf?id=sE7-XhLxHA
https://openreview.net/pdf?id=sE7-XhLxHA
https://openreview.net/pdf?id=sE7-XhLxHA
https://openreview.net/pdf?id=sE7-XhLxHA
https://openreview.net/pdf?id=sE7-XhLxHA
http://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.319
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.319
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.319
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.319
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.319
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825

Théophile Gervet, Thibaut Lavril, Thomas Wang,812
Timothée Lacroix, and William El Sayed. 2024. Mix-813
tral of experts. CoRR, abs/2401.04088.814

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A815
method for stochastic optimization. In 3rd Inter-816
national Conference on Learning Representations,817
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,818
Conference Track Proceedings.819

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate820
Kushman, and Hannaneh Hajishirzi. 2016. MAWPS:821
A math word problem repository. In NAACL HLT822
2016, The 2016 Conference of the North American823
Chapter of the Association for Computational Lin-824
guistics: Human Language Technologies, San Diego825
California, USA, June 12-17, 2016, pages 1152–1157.826
The Association for Computational Linguistics.827

Yixiao Li, Yifan Yu, Chen Liang, Pengcheng He, Nikos828
Karampatziakis, Weizhu Chen, and Tuo Zhao. 2023.829
Loftq: Lora-fine-tuning-aware quantization for large830
language models. CoRR, abs/2310.08659.831

Baohao Liao, Yan Meng, and Christof Monz. 2023a.832
Parameter-efficient fine-tuning without introducing833
new latency. In Proceedings of the 61st Annual Meet-834
ing of the Association for Computational Linguis-835
tics (Volume 1: Long Papers), ACL 2023, Toronto,836
Canada, July 9-14, 2023, pages 4242–4260. Associa-837
tion for Computational Linguistics.838

Baohao Liao, Shaomu Tan, and Christof Monz. 2023b.839
Make your pre-trained model reversible: From pa-840
rameter to memory efficient fine-tuning. CoRR,841
abs/2306.00477.842

Baohao Liao, David Thulke, Sanjika Hewavitharana,843
Hermann Ney, and Christof Monz. 2022. Mask more844
and mask later: Efficient pre-training of masked lan-845
guage models by disentangling the [MASK] token.846
In Findings of the Association for Computational847
Linguistics: EMNLP 2022, Abu Dhabi, United Arab848
Emirates, December 7-11, 2022, pages 1478–1492.849
Association for Computational Linguistics.850

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang,851
Xingyu Dang, and Song Han. 2023. AWQ: activation-852
aware weight quantization for LLM compression and853
acceleration. CoRR, abs/2306.00978.854

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-855
som. 2017. Program induction by rationale genera-856
tion: Learning to solve and explain algebraic word857
problems. In Proceedings of the 55th Annual Meet-858
ing of the Association for Computational Linguistics,859
ACL 2017, Vancouver, Canada, July 30 - August 4,860
Volume 1: Long Papers, pages 158–167. Association861
for Computational Linguistics.862

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-863
hta, Tenghao Huang, Mohit Bansal, and Colin Raffel.864
2022a. Few-shot parameter-efficient fine-tuning is865
better and cheaper than in-context learning. In Ad-866
vances in Neural Information Processing Systems 35:867

Annual Conference on Neural Information Process- 868
ing Systems 2022, NeurIPS 2022, New Orleans, LA, 869
USA, November 28 - December 9, 2022. 870

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo 871
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting 872
Cheng, and Min-Hung Chen. 2024. Dora: 873
Weight-decomposed low-rank adaptation. CoRR, 874
abs/2402.09353. 875

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 876
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 877
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 878
Roberta: A robustly optimized BERT pretraining 879
approach. CoRR, abs/1907.11692. 880

Zechun Liu, Kwang-Ting Cheng, Dong Huang, Eric P. 881
Xing, and Zhiqiang Shen. 2022b. Nonuniform-to- 882
uniform quantization: Towards accurate quantiza- 883
tion via generalized straight-through estimation. In 884
IEEE/CVF Conference on Computer Vision and Pat- 885
tern Recognition, CVPR 2022, New Orleans, LA, 886
USA, June 18-24, 2022, pages 4932–4942. IEEE. 887

Ilya Loshchilov and Frank Hutter. 2019. Decoupled 888
weight decay regularization. In 7th International 889
Conference on Learning Representations, ICLR 2019, 890
New Orleans, LA, USA, May 6-9, 2019. OpenRe- 891
view.net. 892

Stephen Merity, Caiming Xiong, James Bradbury, and 893
Richard Socher. 2017. Pointer sentinel mixture mod- 894
els. In 5th International Conference on Learning 895
Representations, ICLR 2017, Toulon, France, April 896
24-26, 2017, Conference Track Proceedings. Open- 897
Review.net. 898

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish 899
Sabharwal. 2018. Can a suit of armor conduct elec- 900
tricity? A new dataset for open book question an- 901
swering. In Proceedings of the 2018 Conference on 902
Empirical Methods in Natural Language Processing, 903
Brussels, Belgium, October 31 - November 4, 2018, 904
pages 2381–2391. Association for Computational 905
Linguistics. 906

Markus Nagel, Marios Fournarakis, Yelysei Bon- 907
darenko, and Tijmen Blankevoort. 2022. Overcom- 908
ing oscillations in quantization-aware training. In In- 909
ternational Conference on Machine Learning, ICML 910
2022, 17-23 July 2022, Baltimore, Maryland, USA, 911
volume 162 of Proceedings of Machine Learning 912
Research, pages 16318–16330. PMLR. 913

OpenAI. 2023. GPT-4 technical report. CoRR, 914
abs/2303.08774. 915

Adam Paszke, Sam Gross, Francisco Massa, Adam 916
Lerer, James Bradbury, Gregory Chanan, Trevor 917
Killeen, Zeming Lin, Natalia Gimelshein, Luca 918
Antiga, Alban Desmaison, Andreas Köpf, Edward Z. 919
Yang, Zachary DeVito, Martin Raison, Alykhan Te- 920
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, 921
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An 922
imperative style, high-performance deep learning li- 923
brary. In Advances in Neural Information Processing 924

11

https://doi.org/10.48550/ARXIV.2401.04088
https://doi.org/10.48550/ARXIV.2401.04088
https://doi.org/10.48550/ARXIV.2401.04088
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/V1/N16-1136
https://doi.org/10.18653/V1/N16-1136
https://doi.org/10.18653/V1/N16-1136
https://doi.org/10.48550/ARXIV.2310.08659
https://doi.org/10.48550/ARXIV.2310.08659
https://doi.org/10.48550/ARXIV.2310.08659
https://doi.org/10.18653/V1/2023.ACL-LONG.233
https://doi.org/10.18653/V1/2023.ACL-LONG.233
https://doi.org/10.18653/V1/2023.ACL-LONG.233
https://doi.org/10.48550/ARXIV.2306.00477
https://doi.org/10.48550/ARXIV.2306.00477
https://doi.org/10.48550/ARXIV.2306.00477
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.106
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.106
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.106
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.106
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.106
https://doi.org/10.48550/ARXIV.2306.00978
https://doi.org/10.48550/ARXIV.2306.00978
https://doi.org/10.48550/ARXIV.2306.00978
https://doi.org/10.48550/ARXIV.2306.00978
https://doi.org/10.48550/ARXIV.2306.00978
https://doi.org/10.18653/V1/P17-1015
https://doi.org/10.18653/V1/P17-1015
https://doi.org/10.18653/V1/P17-1015
https://doi.org/10.18653/V1/P17-1015
https://doi.org/10.18653/V1/P17-1015
http://papers.nips.cc/paper_files/paper/2022/hash/0cde695b83bd186c1fd456302888454c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/0cde695b83bd186c1fd456302888454c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/0cde695b83bd186c1fd456302888454c-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2402.09353
https://doi.org/10.48550/ARXIV.2402.09353
https://doi.org/10.48550/ARXIV.2402.09353
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.1109/CVPR52688.2022.00489
https://doi.org/10.1109/CVPR52688.2022.00489
https://doi.org/10.1109/CVPR52688.2022.00489
https://doi.org/10.1109/CVPR52688.2022.00489
https://doi.org/10.1109/CVPR52688.2022.00489
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://doi.org/10.18653/V1/D18-1260
https://doi.org/10.18653/V1/D18-1260
https://doi.org/10.18653/V1/D18-1260
https://doi.org/10.18653/V1/D18-1260
https://doi.org/10.18653/V1/D18-1260
https://proceedings.mlr.press/v162/nagel22a.html
https://proceedings.mlr.press/v162/nagel22a.html
https://proceedings.mlr.press/v162/nagel22a.html
https://doi.org/10.48550/ARXIV.2303.08774
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html

Systems 32: Annual Conference on Neural Informa-925
tion Processing Systems 2019, NeurIPS 2019, De-926
cember 8-14, 2019, Vancouver, BC, Canada, pages927
8024–8035.928

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.929
2021. Are NLP models really able to solve simple930
math word problems? In Proceedings of the 2021931
Conference of the North American Chapter of the932
Association for Computational Linguistics: Human933
Language Technologies, NAACL-HLT 2021, Online,934
June 6-11, 2021, pages 2080–2094. Association for935
Computational Linguistics.936

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,937
Dario Amodei, Ilya Sutskever, et al. 2019. Language938
models are unsupervised multitask learners. OpenAI939
blog, 1(8):9.940

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine941
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,942
Wei Li, and Peter J. Liu. 2020. Exploring the limits943
of transfer learning with a unified text-to-text trans-944
former. J. Mach. Learn. Res., 21:140:1–140:67.945

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-946
ula, and Yejin Choi. 2020. Winogrande: An adver-947
sarial winograd schema challenge at scale. In The948
Thirty-Fourth AAAI Conference on Artificial Intelli-949
gence, AAAI 2020, The Thirty-Second Innovative Ap-950
plications of Artificial Intelligence Conference, IAAI951
2020, The Tenth AAAI Symposium on Educational952
Advances in Artificial Intelligence, EAAI 2020, New953
York, NY, USA, February 7-12, 2020, pages 8732–954
8740. AAAI Press.955

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le956
Bras, and Yejin Choi. 2019. Socialiqa: Common-957
sense reasoning about social interactions. CoRR,958
abs/1904.09728.959

Teven Le Scao, Angela Fan, Christopher Akiki, El-960
lie Pavlick, Suzana Ilic, Daniel Hesslow, Roman961
Castagné, Alexandra Sasha Luccioni, François Yvon,962
Matthias Gallé, Jonathan Tow, Alexander M. Rush,963
Stella Biderman, Albert Webson, Pawan Sasanka Am-964
manamanchi, Thomas Wang, Benoît Sagot, Niklas965
Muennighoff, Albert Villanova del Moral, Olatunji966
Ruwase, Rachel Bawden, Stas Bekman, Angelina967
McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile968
Saulnier, Samson Tan, Pedro Ortiz Suarez, Vic-969
tor Sanh, Hugo Laurençon, Yacine Jernite, Julien970
Launay, Margaret Mitchell, Colin Raffel, Aaron971
Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri972
Aji, Amit Alfassy, Anna Rogers, Ariel Kreisberg973
Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue,974
Christopher Klamm, Colin Leong, Daniel van Strien,975
David Ifeoluwa Adelani, and et al. 2022. BLOOM:976
A 176b-parameter open-access multilingual language977
model. CoRR, abs/2211.05100.978

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng979
Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang, Peng980
Gao, Yu Qiao, and Ping Luo. 2023a. Omniquant:981
Omnidirectionally calibrated quantization for large982
language models. CoRR, abs/2308.13137.983

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng 984
Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang, Peng 985
Gao, Yu Qiao, and Ping Luo. 2023b. Omniquant: 986
Omnidirectionally calibrated quantization for large 987
language models. CoRR, abs/2308.13137. 988

Shyam Anil Tailor, Javier Fernández-Marqués, and 989
Nicholas Donald Lane. 2021. Degree-quant: 990
Quantization-aware training for graph neural net- 991
works. In 9th International Conference on Learning 992
Representations, ICLR 2021, Virtual Event, Austria, 993
May 3-7, 2021. OpenReview.net. 994

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 995
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 996
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 997
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard 998
Grave, and Guillaume Lample. 2023a. Llama: Open 999
and efficient foundation language models. CoRR, 1000
abs/2302.13971. 1001

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 1002
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 1003
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 1004
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton- 1005
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 1006
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, 1007
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An- 1008
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan 1009
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, 1010
Isabel Kloumann, Artem Korenev, Punit Singh Koura, 1011
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di- 1012
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar- 1013
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly- 1014
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen- 1015
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten, 1016
Ruan Silva, Eric Michael Smith, Ranjan Subrama- 1017
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay- 1018
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu, 1019
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, 1020
Melanie Kambadur, Sharan Narang, Aurélien Ro- 1021
driguez, Robert Stojnic, Sergey Edunov, and Thomas 1022
Scialom. 2023b. Llama 2: Open foundation and 1023
fine-tuned chat models. CoRR, abs/2307.09288. 1024

Mart van Baalen, Andrey Kuzmin, Markus Nagel, Pe- 1025
ter Couperus, Cédric Bastoul, Eric Mahurin, Tij- 1026
men Blankevoort, and Paul N. Whatmough. 2024. 1027
GPTVQ: the blessing of dimensionality for LLM 1028
quantization. CoRR, abs/2402.15319. 1029

Alex Wang, Amanpreet Singh, Julian Michael, Felix 1030
Hill, Omer Levy, and Samuel R. Bowman. 2019. 1031
GLUE: A multi-task benchmark and analysis plat- 1032
form for natural language understanding. In 7th In- 1033
ternational Conference on Learning Representations, 1034
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. 1035
OpenReview.net. 1036

Adina Williams, Nikita Nangia, and Samuel Bowman. 1037
2018. A broad-coverage challenge corpus for sen- 1038
tence understanding through inference. In Proceed- 1039
ings of the 2018 Conference of the North American 1040
Chapter of the Association for Computational Lin- 1041
guistics: Human Language Technologies, Volume 1042

12

https://doi.org/10.18653/V1/2021.NAACL-MAIN.168
https://doi.org/10.18653/V1/2021.NAACL-MAIN.168
https://doi.org/10.18653/V1/2021.NAACL-MAIN.168
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1609/AAAI.V34I05.6399
https://doi.org/10.1609/AAAI.V34I05.6399
https://doi.org/10.1609/AAAI.V34I05.6399
https://arxiv.org/abs/1904.09728
https://arxiv.org/abs/1904.09728
https://arxiv.org/abs/1904.09728
https://doi.org/10.48550/ARXIV.2211.05100
https://doi.org/10.48550/ARXIV.2211.05100
https://doi.org/10.48550/ARXIV.2211.05100
https://doi.org/10.48550/ARXIV.2211.05100
https://doi.org/10.48550/ARXIV.2211.05100
https://doi.org/10.48550/ARXIV.2308.13137
https://doi.org/10.48550/ARXIV.2308.13137
https://doi.org/10.48550/ARXIV.2308.13137
https://doi.org/10.48550/ARXIV.2308.13137
https://doi.org/10.48550/ARXIV.2308.13137
https://doi.org/10.48550/ARXIV.2308.13137
https://doi.org/10.48550/ARXIV.2308.13137
https://doi.org/10.48550/ARXIV.2308.13137
https://doi.org/10.48550/ARXIV.2308.13137
https://doi.org/10.48550/ARXIV.2308.13137
https://openreview.net/forum?id=NSBrFgJAHg
https://openreview.net/forum?id=NSBrFgJAHg
https://openreview.net/forum?id=NSBrFgJAHg
https://openreview.net/forum?id=NSBrFgJAHg
https://openreview.net/forum?id=NSBrFgJAHg
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2402.15319
https://doi.org/10.48550/ARXIV.2402.15319
https://doi.org/10.48550/ARXIV.2402.15319
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101

1 (Long Papers), pages 1112–1122, New Orleans,1043
Louisiana. Association for Computational Linguis-1044
tics.1045

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien1046
Chaumond, Clement Delangue, Anthony Moi, Pier-1047
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,1048
Joe Davison, Sam Shleifer, Patrick von Platen, Clara1049
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le1050
Scao, Sylvain Gugger, Mariama Drame, Quentin1051
Lhoest, and Alexander M. Rush. 2020. Transform-1052
ers: State-of-the-art natural language processing. In1053
Proceedings of the 2020 Conference on Empirical1054
Methods in Natural Language Processing: System1055
Demonstrations, pages 38–45, Online. Association1056
for Computational Linguistics.1057

Guangxuan Xiao, Ji Lin, Mickaël Seznec, Hao Wu,1058
Julien Demouth, and Song Han. 2023. Smoothquant:1059
Accurate and efficient post-training quantization for1060
large language models. In International Conference1061
on Machine Learning, ICML 2023, 23-29 July 2023,1062
Honolulu, Hawaii, USA, volume 202 of Proceedings1063
of Machine Learning Research, pages 38087–38099.1064
PMLR.1065

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali1066
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a1067
machine really finish your sentence? In Proceedings1068
of the 57th Conference of the Association for Compu-1069
tational Linguistics, ACL 2019, Florence, Italy, July1070
28- August 2, 2019, Volume 1: Long Papers, pages1071
4791–4800. Association for Computational Linguis-1072
tics.1073

Susan Zhang, Stephen Roller, Naman Goyal, Mikel1074
Artetxe, Moya Chen, Shuohui Chen, Christopher1075
Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin,1076
Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shus-1077
ter, Daniel Simig, Punit Singh Koura, Anjali Srid-1078
har, Tianlu Wang, and Luke Zettlemoyer. 2022.1079
OPT: open pre-trained transformer language mod-1080
els. CoRR, abs/2205.01068.1081

A Related Work 1082

Large language models, trained on web-scale 1083

data for general tasks like masked word predic- 1084

tion (Liao et al., 2022; Devlin et al., 2019) or next- 1085

word prediction (Brown et al., 2020) in sentences, 1086

are crucial for transferring knowledge to various 1087

downstream tasks. These models have consistently 1088

achieved state-of-the-art results in a wide range of 1089

applications. Notably, scaling up LLMs has been 1090

observed to reliably improve performance in these 1091

downstream tasks. As a result, the size of LLMs 1092

has been steadily increasing, now reaching the re- 1093

markable scale of > 50 billion parameters (Jiang 1094

et al., 2024; Touvron et al., 2023b; Jiang et al., 1095

2023; Zhang et al., 2022). In addition, instruction- 1096

finetuned LLMs (Jiang et al., 2023; Touvron et al., 1097

2023b) reveal exceptional capabilities, such as en- 1098

abling zero-shot or in-context learning (Radford 1099

et al., 2019; Brown et al., 2020). 1100

Despite these advancements, transfer learning 1101

remains the predominant strategy for effectively 1102

applying these models to new task environments 1103

(Liu et al., 2022a; Brown et al., 2020). This ap- 1104

proach, however, imposes unprecedented demands 1105

on computational resources, highlighting the need 1106

for efficient adaptation strategies. ApiQ reduces 1107

the GPU memory requirement for finetuning by 1108

loading the LLM’s weights in a reduced bit format 1109

and reducing the number of trainable parameters. 1110

In addition, compared to QLoRA (Dettmers et al., 1111

2023a) and its variants (Li et al., 2023; Guo et al., 1112

2023), ApiQ demonstrates a very good manner for 1113

challenging lower-bit quantization, like 2 or 3 bits, 1114

which further reduces the GPU memory. 1115

Post-training quantization (PTQ) converts 1116

high-precision LLM’s weight values into discrete 1117

values for less memory usage. With the increasing 1118

size of LLMs, various PTQ methods (Xiao et al., 1119

2023; Lin et al., 2023; Shao et al., 2023b; Dettmers 1120

et al., 2023b; Frantar et al., 2022) have been pro- 1121

posed to retain the full-precision LLM’s perfor- 1122

mance while using less memory during inference. 1123

Notably, PTQ aims to maintain the performance 1124

of LLMs instead of adapting LLMs to new tasks. 1125

In addition, the performance of PTQ for lower bit- 1126

width degrades significantly. Even though ApiQ is 1127

a well-behaved PTQ method, its main purpose is 1128

to adapt LLMs to new tasks or retain full-precision 1129

LLM’s performance for lower-bit quantization. 1130

Quantization-aware training (QAT) is a tech- 1131

nique where the model is trained to take into ac- 1132

13

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://proceedings.mlr.press/v202/xiao23c.html
https://proceedings.mlr.press/v202/xiao23c.html
https://proceedings.mlr.press/v202/xiao23c.html
https://proceedings.mlr.press/v202/xiao23c.html
https://proceedings.mlr.press/v202/xiao23c.html
https://doi.org/10.18653/V1/P19-1472
https://doi.org/10.18653/V1/P19-1472
https://doi.org/10.18653/V1/P19-1472
https://doi.org/10.48550/ARXIV.2205.01068
https://doi.org/10.48550/ARXIV.2205.01068
https://doi.org/10.48550/ARXIV.2205.01068

Llama-2-7b Llama-2-13b
Method Bit WikiText ↓ C4 ↓ WikiText ↓ C4 ↓

- 16 5.47 6.97 4.88 6.46

QLoRA 4 5.65 7.16 4.98 6.57
LoftQ 4 5.62 7.16 4.96 6.55
ApiQ-lw 4 5.55 7.08 4.95 6.55
ApiQ-bw 4 5.53 7.06 4.93 6.53

QLoRA 3 1.8e5 2.4e5 9.6e4 1.2e5
LoftQ 3 10.72 12.79 6.89 8.72
ApiQ-lw 3 5.87 7.58 5.18 6.88
ApiQ-bw 3 5.77 7.48 5.12 6.83

QLoRA 2 1.8e5 2.4e5 9.7e4 1.3e5
LoftQ 2 1.0e3 6.7e2 59.94 72.64
ApiQ-lw 2 16.25 23.93 10.89 15.83
ApiQ-bw 2 7.59 10.56 6.44 8.93

Table B.1: The perplexity of ApiQ as a post-training
quantization method without the finetuning step. The
best and second-best results are in bold and underlined,
respectively.

count the effects of quantization, typically reducing1133

the precision of the model’s parameters, to ensure1134

minimal loss in performance when the model is de-1135

ployed in a resource-constrained environment (Tai-1136

lor et al., 2021; Nagel et al., 2022). Although QAT1137

can be employed to adapt LLM to downstream1138

tasks, it is memory-intensive because it involves1139

quantization and full finetuning at the same time. In1140

addition, some techniques, like straight-through es-1141

timator (Liu et al., 2022b), are required during full1142

finetuning to calculate the gradients, being unstable1143

for the training of LLM. In contrast, ApiQ sepa-1144

rates the quantization and finetuning steps, making1145

the finetuning stable, efficient and effective.1146

B More Results and Discussions1147

B.1 Quantization quality1148

In Section §4, we have demonstrated the superior1149

quantization quality of ApiQ by comparing the1150

weight and activation error after quantization. Here,1151

we further evaluate ApiQ as a post-training quanti-1152

zation (PTQ) method, comparing it with other PTQ1153

methods in a language modeling task.1154

We begin by comparing QLoRA (Dettmers et al.,1155

2023a), LoftQ (Li et al., 2023) and ApiQ on the1156

WikiText-2 test set (Merity et al., 2017) and the1157

C4 validation set (Raffel et al., 2020), following1158

the implementation details outlined in Appendix1159

§C.2. For all methods, the quantization group size1160

is set to 64, and the LoRA rank r is 64. As shown1161

in Table B.1, ApiQ-bw and ApiQ-lw consistently1162

achieve the best and second-best perplexity across1163

various bit levels. Notably, the performance gap1164

between ApiQ and the baselines widens at lower1165

Figure B.1: Histogram of Q, A and B for the 2-bit
quantized output projection layer in the 30th block of
Llama-2-7b. Upper: LoftQ. Lower: ApiQ-lw. Refer to
Figure C.2, C.3, C.4 and C.5 for all layers.

bit levels. 1166

Next, we compare ApiQ to other standard PTQ 1167

methods such as round-to-nearest quantization 1168

(RTN), GPTQ (Frantar et al., 2022), AWQ (Lin 1169

et al., 2023), and OmniQuant (Shao et al., 2023a). 1170

We exclude ApiQ-lw in this comparison as ApiQ- 1171

bw demonstrates superior performance (refer to 1172

Table B.1). It is crucial to note that our objective 1173

is not to merely outperform existing PTQ meth- 1174

ods. This is because the LoRA components in 1175

ApiQ are stored in FP16 format, inherently increas- 1176

ing the average bit-width per parameter, which 1177

makes direct comparisons with other PTQ methods 1178

less fair. Instead, our goal is to introduce a novel 1179

PTQ approach that mitigates quantization difficulty 1180

through the integration of LoRA components. 1181

As illustrated in Table B.2, ApiQ-bw consis- 1182

tently delivers the smallest perplexity, with a more 1183

significant advantage at lower bit levels. ApiQ-bw 1184

can be viewed as a combination of OmniQuant 1185

and a new initialization of LoRA, as OmniQuant 1186

employs a similar quantization algorithm as Algo- 1187

rithm 1 without LoRA parameters. Nonetheless, 1188

ApiQ-bw outperforms OmniQuant, highlighting 1189

the effectiveness of jointly initializing the LoRA 1190

modules and quantizing the LLM weights. 1191

A critical question arises: how does ApiQ com- 1192

14

Llama-2-7b Llama-2-13b
Method Bit Group size WikiText ↓ C4 ↓ WikiText ↓ C4 ↓

- 16 - 5.47 6.97 4.88 6.46

RTN 4 128 5.72 7.24 4.98 6.58
GPTQ 4 128 5.61 7.12 4.98 6.56
AWQ 4 128 5.62 7.13 4.97 6.56
OmniQuant 4 128 5.58 7.12 4.95 6.56
ApiQ-bw 4 128 5.54 7.09 4.94 6.55

RTN 3 128 6.66 8.40 5.51 7.18
GPTQ 3 128 6.29 7.89 5.42 7.00
AWQ 3 128 6.24 7.84 5.32 6.94
OmniQuant 3 128 6.03 7.75 5.28 6.98
ApiQ-bw 3 128 5.86 7.63 5.20 6.92

RTN 2 64 431.97 475.35 26.22 28.69
GPTQ 2 64 20.85 19.40 22.44 12.48
AWQ 2 64 2.1e5 1.6e5 1.2e5 9.5e4
OmniQuant 2 64 9.62 12.72 7.56 10.05
ApiQ-bw 2 64 7.59 10.56 6.44 8.93

RTN 2 128 4.2e3 4.9e3 122.08 139.65
GPTQ 2 128 36.77 33.70 28.14 20.97
AWQ 2 128 2.2e5 1.7e5 1.2e5 9.4e4
OmniQuant 2 128 11.06 15.02 8.26 11.05
ApiQ-bw 2 128 8.25 12.04 6.71 9.13

Table B.2: The comparison between ApiQ and other standard post-training quantization methods.

Size Method Duration Peak GPU memory

GPTQ 0.2h 6GB
OmniQuant 1.1h 12GB

7b LoftQ 0.6h 14GB
ApiQ-lw 4.1h 6GB
ApiQ-bw 1.3h 12GB

GPTQ 0.4h 9GB
OmniQuant 2.2h 16GB

13b LoftQ 1.3h 27GB
ApiQ-lw 6.5h 9GB
ApiQ-bw 2.4h 17GB

Table B.3: The duration and peak GPU memory used
for quantizing Llama-2.

pensate for the information loss inherent in quanti-1193

zation? The histograms of Q, A, and B in Figure1194

B.1 provide insights into this process. Uniform1195

quantization causes many values in W near the1196

center to be mapped to the same value, leading1197

to quantization error. ApiQ addresses this by cen-1198

tering AB⊤ in this critical region. Additionally,1199

the distribution span of ApiQ’s A and B is signif-1200

icantly narrower compared to W and LoftQ, sug-1201

gesting the potential for further quantizing A and1202

B to reduce the overall bit-width per parameter.1203

B.2 Quantization efficiency1204

In this section, we compare the duration and GPU1205

memory usage of quantization between ApiQ and1206

other baseline methods. Detailed implementation1207

procedures for quantization are provided in Ap- 1208

pendix §C.1. It is worth noting that an LLM needs 1209

to be quantized only once and can then be saved 1210

for finetuning across various downstream tasks. 1211

As shown in Table B.3, GPTQ stands out as the 1212

most efficient PTQ method, requiring the least time 1213

and GPU memory. ApiQ-lw uses a similar amount 1214

of GPU memory as GPTQ but requires more time 1215

due to its layer-by-layer sequential optimization. 1216

Similar to OmniQuant, ApiQ-bw consumes more 1217

memory than ApiQ-lw because it needs to cache 1218

more activations within a transformer block. How- 1219

ever, ApiQ-bw is significantly more time-efficient 1220

than ApiQ-lw due to its block-by-block quanti- 1221

zation approach. LoftQ requires the most GPU 1222

memory because of SVD. Overall, the resources 1223

required for ApiQ’s quantization are reasonable 1224

and considerably lower than those needed for the 1225

finetuning step. 1226

Based on the quantization quality, efficiency, and 1227

finetuning results (§5), we recommend using ApiQ- 1228

bw over ApiQ-lw. 1229

B.3 ApiQ-bw for other PEFT 1230

As discussed in Section §4.2, ApiQ-bw can eas- 1231

ily be applied to other PEFT methods, because 1232

its block-by-block quantization manner is very 1233

friendly to them. Here we apply ApiQ-bw to a re- 1234

cent variant of LoRA, i.e. DoRA (Liu et al., 2024), 1235

15

Method BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg. ↑

QDoRA 62.2 49.7 33.2 24.4 48.8 24.4 22.8 27.2 36.6
ApiQ-bw with DoRA 68.7 78.8 76.9 85.5 79.8 78.5 62.8 78.4 76.2

Table B.4: ApiQ-bw with DoRA on the commonsense reasoning tasks with 2-bit quantized Llama-2-7b. QDoRA
here means that we use QLoRA to quantize the LLM, initialize the LoRA module with default B = 0, and train
QLLM in the DoRA way, i.e. training the direction and magnitude separately. LoftQ can’t be directly applied to
DoRA, because DoRA has both addition and multiplication relation between the PEFT parameters and W , and
SVD can’t be applied.

Method GSM8K SVAMP MAWPS AQuA Avg. ↑

QDoRA 0.68 0.5 1.7 2.8 1.4
ApiQ-bw for DoRA 32.0 49.9 80.1 23.4 46.4

Table B.5: ApiQ-bw with DoRA on the arithmetic reasoning tasks with 2-bit quantized Llama-2-7b.

and show the finetuning results in Table B.4 and1236

B.5. ApiQ-bw with DoRA outperforms QDoRA by1237

a large margin, on average 76.2 vs. 36.6 for com-1238

monsense reasoning and 46.4 v.s. 1.4 for arithmetic1239

reasoning.1240

B.4 Why ApiQ works so well1241

In this section, we discuss the reasons for the effec-1242

tiveness of ApiQ.1243

The first reason is the smaller activation error1244

of ApiQ. Compared to LoftQ and QLoRA, ApiQ’s1245

activation error is way more smaller. As shown1246

in Table B.1, ApiQ has a much smaller perplexity.1247

Maintaining a small activation error means that the1248

learned knowledge from the full-precision LLM is1249

preserved, thus facilitating the transfer learning for1250

downstream tasks.1251

However, maintaining a smaller activation er-1252

ror is not the only reason for better finetuning re-1253

sults. Compared to LoftQ in Table B.1, GPTQ1254

has a smaller perplexity in Table B.2. For example,1255

GPTQ’s perplexity is 20.85 for WikiText-2 on the 2-1256

bit quantized Llama-2-7b, while LoftQ’s perplexity1257

is larger than 1000. Nevertheless, GPTQ-LoRA’s 21258

finetuning results are worse than LoftQ’s, e.g. 39.91259

vs. 45.6 for arithmetic reasoning and 36.8 vs. 67.01260

for commonsense reasoning.1261

We hypothesize that the second reason is the1262

better initialization of A and B. The default ini-1263

tialization of B = 0 is not friendly to training1264

because of the constant value. A and B in ApiQ1265

and LoftQ are initialized similarly to a Gaussian1266

distribution (Figure B.1), which has been shown1267

better for training (He et al., 2015).1268

2GPTQ-LoRA is LLM quantized by GPTQ and the LoRA’s
B = 0.

8 16 32 64
LoRA rank

7.5

8.0

8.5

9.0

Pe
rp

le
xi

ty

ApiQ-lw
LoftQ

Figure B.2: Perplexity on WikiText-2 with 2-bit quan-
tized Llama-2-7b for different LoRA ranks.

B.5 Performance vs. LoRA rank 1269

In Figure B.2, we show the influence of LoRA rank 1270

for different methods. ApiQ is not sensitive to the 1271

LoRA rank, implying that ApiQ can be a more 1272

parameter-efficient finetuning method. 1273

C Experimental Details 1274

Like QLoRA (Dettmers et al., 2023a), LoftQ (Li 1275

et al., 2023) and LQ-LoRA (Guo et al., 2023), 1276

ApiQ consists of two steps: the quantization step 1277

and the finetuning step. During the quantization 1278

step, we initialize Q, A and B in a way to pre- 1279

serve the starting point and mitigate the propaga- 1280

tion of quantization error. For the finetuning step, 1281

we freeze Q in a lower bit and train A and B in 1282

half-precision (BFloat16). In this section, we de- 1283

scribe the implementation details of these two steps 1284

for different tasks and LLMs. We run all experi- 1285

ments on NVIDIA A100-80GB or A6000-48GB 1286

with the training framework, Transformers (Wolf 1287

et al., 2020). 1288

16

Hyper-parameter DeBERTa & RoBERTa Llama-2 & Mistral Llama-2 & Mistral

ApiQ choice ApiQ-lw ApiQ-lw ApiQ-bw

Optimizer AdamW AdamW AdamW
Weight decay for Θ 0.1 0.1 {0, 0.001, 0.1}
Static LR for Θ 0.005 0.005 {0.001, 0.005, 0.01, 0.05}
Weight decay for A and B 0.1 0.1 {0, 0.001, 0.1}
Static LR for A and B 0.001 0.001 {0.0001, 0.0005, 0.001, 0.005}
Sequence length for calibration 128 1024 2048
Number of calibration samples 128 128 128
Epochs 20 20 20
Batch size 32 8 1

Group/block size for quantization 64 64 64
LoRA rank r 32 & 64 64 64

Table C.1: Hyper-parameter search space of the quantization step on different LLMs. Since ApiQ-bw is more
time-efficient than ApiQ-lw, we conducted a more thorough search for ApiQ-bw. The best setting for ApiQ-bw is
listed in Table C.2.

Llama-2-7b Llama-2-13b Mistral-7b-v0.1
Hyper-parameter 4 Bits 3 Bits 2 Bits 4 Bits 3 Bits 2 Bits 4 Bits 3 Bits 2 Bits

Weight decay for Θ 0.001 0.1 0.1 0.001 0.1 0.1 0.001 0.1 0.1
Static LR for Θ 0.05 0.001 0.005 0.01 0.001 0.005 0.01 0.001 0.005
Weight decay for A and B 0.1 0 0.1 0 0 0.1 0 0 0.1
Static LR for A and B 0.0001 0.0005 0.0005 0.0001 0.0005 0.0005 0.0001 0.0001 0.0005

Table C.2: Best hyper-parameter setting for different LLMs with ApiQ-bw. If one wants to apply ApiQ-bw to other
LLMs, the settings from Llama-2-7b are universally well-performed and should be the first choice.

C.1 Quantization details for different LLMs1289

For all LLMs, 128 calibration sentences for the1290

quantization step are randomly selected from the1291

WikiText-2 training set (Merity et al., 2017). The1292

hyper-parameters for the quantization step are de-1293

tailed in Table C.1. By default, we incorporate the1294

LoRA module into every linear layer.1295

DeBERTa and RoBERTa with ApiQ-lw. We1296

apply ApiQ-lw to DeBERTa-v3-base (He et al.,1297

2023) and RoBERTa-large (Liu et al., 2019), as1298

these models are relatively small and efficiency con-1299

cerns in quantization are minimal. Specifically, the1300

duration for ApiQ-lw is 12 minutes for DeBERTa-1301

v3-base and 1 hour for RoBERTa-large. The LoRA1302

rank r is set to 32 for DeBERTa-v3-base, following1303

Li et al. (2023), and 64 for RoBERTa-large, as per1304

Guo et al. (2023). Given the relative simplicity of1305

the GLUE tasks (Wang et al., 2019), we only em-1306

ploy 2-bit and 3-bit quantization. Unlike Li et al.1307

(2023), we do not quantize the embedding layer1308

and instead reproduce their experiments.1309

Llama-2 and Mistral with ApiQ-lw. We ap-1310

ply ApiQ-lw to Llama-2-7b, Llama-2-13b (Tou-1311

vron et al., 2023b) and Mistral-7b-v0.1 (Jiang et al.,1312

2023), with settings detailed in Table C.1.1313

Llama-2 and Mistral with ApiQ-bw. We also1314

apply ApiQ-bw to Llama-2-7b, Llama-2-13b and 1315

Mistral-7b-v0.1, with the settings outlined in Ta- 1316

ble C.1. Compared to ApiQ-lw, we conduct an 1317

extensive search for the optimal learning rate and 1318

weight decay due to the time efficiency of ApiQ-bw. 1319

For instance, Llama-2-7b with ApiQ-lw requires 4 1320

hours, whereas Llama-2-7b with ApiQ-bw requires 1321

only 1 hour. 1322

To determine the best hyper-parameters, we eval- 1323

uate the QLLM on the WikiText-2 test set (Merity 1324

et al., 2017) and the C4 validation set (Raffel et al., 1325

2020), similar to the evaluation of post-training 1326

QLLM (see §C.2). The optimal hyper-parameter 1327

settings, determined by the lowest average perplex- 1328

ity across these two datasets, are listed for different 1329

LLMs in Table C.2. 1330

C.2 Evaluation of QLLM 1331

To assess the effectiveness of quantization, we 1332

adhere to the evaluation approach used in post- 1333

training quantization methods (van Baalen et al., 1334

2024; Shao et al., 2023a; Xiao et al., 2023; Fran- 1335

tar et al., 2022; Dettmers et al., 2022). For the 1336

WikiText-2 test set (Merity et al., 2017), we apply 1337

the QLLM to all sentences and calculate the aver- 1338

age perplexity. For the validation set of C4 (Raffel 1339

et al., 2020), we use the “en/c4-validation.00000- 1340

17

Hyper-parameter RTE, MRPC, STS-B, CoLA SST-2, QNLI, QQP, MNLI

Optimizer AdamW AdamW
Weight decay 0.1 0.1
LR {0.1, 0.5, 1, 5}×10−4 {0.1, 0.5, 1, 5}×10−4

LR scheduler Linear Linear
Warmup ratio 10% 10%
Epochs 20 10
Batch size 32 32

Table C.3: Hyper-parameter search space for the finetuning on GLUE. For tasks with a number of training samples
> 10K, we set the number of epochs as 10.

Model Method Bit MNLI QNLI QQP SST-2 CoLA RTE MRPC STS-B Avg. ↑
m/mm Acc Acc/F1 Acc Matt Acc Acc/F1 Pea/Spe

Full FT∗ 16 90.5/90.6 94.0 92.4/89.8 95.3 69.2 82.0 89.5/93.3 91.6/91.1 88.1

ApiQ-lw 3 90.3/90.2 93.9 92.6/90.1 95.8 71.9 85.9 91.7/94.0 91.5/91.3 89.2
DeBERTa-base QLoRA∗ 2 79.9/79.5 83.7 88.6/84.7 86.9 N.A. 57.8 76.5/84.5 84.1/84.0 69.9

LoftQ 2 88.5/88.5 92.7 91.6/88.7 94.7 63.6 64.6 88.5/91.8 89.2/89.0 84.2
ApiQ-lw 2 88.4/88.7 92.3 91.7/89.0 94.6 64.2 67.1 89.5/92.4 90.2/89.9 84.8

Full FT† 16 89.7 94.1 89.8 95.8 70.2 84.1 92.0 92.2 88.5

QLoRA⋄ 4 - - - - - - - - 88.6
RoBERTa-large QLoRA† 3 89.8 94.3 89.9 96.4 64.3 70.8 92.0 91.6 86.1

LQ-LoRA† 3 90.3 94.6 89.7 96.2 63.5 80.5 92.2 91.8 87.3
ApiQ-lw 3 90.1/90.0 94.4 91.8/89.1 96.2 64.6 84.8 91.4/93.7 92.3/92.0 88.2

Table C.4: Results of encoder-only models on the GLUE development set. The LoRA rank r is 32 for DeBERTa-
v3-base and 64 for RoBERTa-large. The median of three random runs is reported. We reproduce LoftQ because
the published results are about quantizing both linear layers and the token embeddings. Here we only quantize the
linear layers, keeping the same setting for all models in this paper. Results denoted by ∗, † and ⋄ are from Li et al.
(2023), Guo et al. (2023) and Dettmers et al. (2023a), respectively. When there is only one number for two metrics,
it is an average over these two metric.

of-00008.json.gz” split, concatenate all sentences,1341

randomly cut off 256 sentences with a sequence1342

length of 2048, and compute the average perplexity1343

using the QLLM on these samples.1344

C.3 Natural language understanding1345

To study the language understanding ability of1346

LLMs, we finetune quantized DeBERTa-v3-base1347

(He et al., 2023) and RoBERTa-large (Liu et al.,1348

2019) on the GLUE benchmark (Wang et al., 2019).1349

Finetuning details. The hyper-parameters for1350

finetuning are outlined in Table C.3. We save the1351

checkpoint every epoch, evaluate it on the develop-1352

ment set, and report the best result. After deciding1353

the best learning rate, three random runs are con-1354

ducted and the median is reported in Table C.4.1355

C.4 Language modeling1356

To study whether the QLLM can preserve the1357

language modeling ability after finetuning, we1358

finetune quantized Llama-2-7b, Llama-2-13b and1359

Mistral-7b-v0.1 on the WikiText-2 (Merity et al.,1360

2017) training set and report the perplexity on the1361

validation set.1362

Finetuning details. The hyper-parameters for 1363

finetuning are listed in Table C.5. We evaluate the 1364

finetuned QLLM on the validation set every epoch 1365

and report the best perplexity. After determining 1366

the best learning rate, we conduct three random 1367

runs and report the mean and standard deviation in 1368

Table C.7. 1369

C.5 Arithmetic reasoning (single-task) 1370

To study the arithmetic reasoning ability of 1371

QLLMs, we finetune quantized Llama-2-7b, 1372

Llama-2-13b and Mistral-7b-v0.1 on the GSM8K 1373

(Cobbe et al., 2021) training set and report the ac- 1374

curacy on the test set. 1375

Finetuning details. The hyper-parameters for 1376

finetuning are listed in Table C.5. We evaluate the 1377

finetuned QLLM on the test set every epoch and 1378

report the best accuracy. After determining the best 1379

learning rate, we conduct three random runs and 1380

report the mean and standard deviation in Table 1381

C.7. 1382

C.6 Arithmetic reasoning 1383

The setting here contrasts with the previous ex- 1384

periments where each task involves finetuning a 1385

18

Hyper-parameter WikiText-2 GSM8K Arithmetic reasoning Commonsense reasoning

Optimizer AdamW AdamW
Weight decay 0.1 1.0
LR {0.1, 0.5, 0.7, 1, 3, 4}×10−4 3× 10−4

LR scheduler cosine linear
Warmup ratio 3% 10%
Epochs 3 6 3
Batch size 64 16 16
Max sequence length 1024 512 512

Table C.5: Hyper-parameter search space for the finetuning of Llama-2 and Mistral. Please refer to Table C.6 for the
best learning rate for different LLMs on WikiText-2 and GSM8K.

Llama-2-7b Llama-2-13b Mistral-7b-v0.1
Task Method 4 Bits 3 Bits 2 Bits 4 Bits 3 Bits 2 Bits 4 Bits 3 Bits 2 Bits

WikiText-2 ApiQ-lw 4e-4 3e-4 4e-4 3e-4 3e-4 3e-4 1e-4 7e-5 7e-5
ApiQ-bw 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 1e-4 1e-4 1e-4

GSM8K ApiQ-lw 3e-4 3e-4 3e-4 4e-4 4e-4 3e-4 7e-5 7e-5 7e-5
ApiQ-bw 4e-4 4e-4 4e-4 3e-4 3e-4 4e-4 7e-5 7e-5 7e-5

Table C.6: Best learning rate for different LLMs on the WikiText-2 and GSM8K tasks.

separate QLLM. Instead, we adopt a unified strat-1386

egy by finetuning a single QLLM across all tasks1387

as delineated in Hu et al. (2023). We finetune1388

Llama-2-7b and Llama-2-13b on Math10K (Hu1389

et al., 2023) which is constructed from the train-1390

ing sets of GSM8K (Cobbe et al., 2021), MAWPS,1391

MAWPS-single (Koncel-Kedziorski et al., 2016)1392

and AQuA (Ling et al., 2017). Then we evalu-1393

ate the finetuned QLLM on the test sets of AQuA,1394

GSM8K, MAWPS and SVAMP (Patel et al., 2021).1395

Such a setting is more practical as LLM is fre-1396

quently used as a general model for various tasks.1397

Finetuning details. We follow Hu et al. (2023)1398

to choose the hyper-parameters as in Table C.5.1399

Instead of evaluating the finetuned QLLM every1400

epoch, we only evaluate the trained model from1401

the last epoch, simulating the practical finetuning1402

scenario. We conduct three random runs and report1403

the mean and standard deviation in Table C.8.1404

C.7 Commonsense reasoning1405

In assessing the capacity of QLLM for common-1406

sense reasoning, we focus on eight representative1407

tasks: BoolQ (Clark et al., 2019), PIQA (Bisk et al.,1408

2020), SIQA (Sap et al., 2019), HellaSwag (Zellers1409

et al., 2019), WinoGrande (Sakaguchi et al., 2020),1410

ARC-e, ARC-c (Clark et al., 2018), and OBQA1411

(Mihaylov et al., 2018). Similar to the multiple1412

arithmetic reasoning tasks, we follow the setting1413

of Hu et al. (2023) and finetune a single QLLM1414

across all tasks. Specifically, the training and test1415

sets from these eight tasks are reformulated accord-1416

ing to a predefined template, so all tasks can be 1417

trained or evaluated in a generative way. Then we 1418

finetune Llama-2-7b and Llama-2-13b on the com- 1419

bined training set and report the accuracy on the 1420

test sets. 1421

Finetuning details. We also borrow the fine- 1422

tuning recipe of Hu et al. (2023) as in Table C.5. 1423

We only evaluate the trained model from the last 1424

epoch (simulate a practical finetuning scenario), 1425

conduct three random runs, and report the mean 1426

and standard deviation in Table 2. 1427

19

Llama-2-7b Llama-2-13b Mistral-7b-v0.1
Method Bit WikiText (ppl↓) GSM8K (acc↑) WikiText (ppl↓) GSM8K (acc↑) WikiText (ppl↓) GSM8K (acc↑)

LoRA 16 5.08 36.9 5.12 45.3 5.170.00 52.21.3

QLoRA 4 5.70 35.1 5.22 39.9 5.250.00 56.51.1
LoftQ 4 5.24 35.0 5.16 45.0 5.250.00 56.71.4
ApiQ-lw 4 5.280.00 36.40.5 4.780.00 50.41.3 5.320.00 57.20.3
ApiQ-bw 4 5.270.00 39.80.1 4.780.00 51.20.8 5.260.00 59.20.1

QLoRA 3 5.73 32.1 5.22 40.7 1540.2636.6 50.50.7
LoftQ 3 5.63 32.9 5.13 44.4 6.820.01 51.60.6
ApiQ-lw 3 5.530.01 36.00.3 4.980.00 45.41.1 5.550.00 54.81.7
ApiQ-bw 3 5.490.00 39.30.3 4.960.00 47.60.8 5.480.00 56.00.4

QLoRA 2 N.A. N.A. N.A. N.A. 1483.5612.2 2.00.3
LoftQ 2 7.85 20.9 7.69 25.4 1849.323.78 1.70.0
ApiQ-lw 2 7.460.00 26.00.4 6.290.00 36.30.5 7.180.00 41.30.8
ApiQ-bw 2 6.610.00 33.50.5 5.790.00 41.20.9 6.690.00 45.00.1

Table C.7: Finetuning results of WikiText and GSM8K on Llama-2-7b, Llama-2-13b and Mistral-7b-v0.1. Results
without standard deviation are from Li et al. (2023).

Llama-2-7b Llama-2-13b
Method Bit GSM8K SVAMP MAWPS AQuA Avg. ↑ GSM8K SVAMP MAWPS AQuA Avg. ↑

LoRA 16 43.60.7 59.41.7 85.01.7 27.02.0 53.70.6 55.30.5 67.70.9 87.40.7 24.40.9 58.70.2

QLoRA 4 42.70.4 58.70.7 87.31.9 26.41.6 53.70.6 54.80.5 69.40.3 87.00.7 26.81.0 59.50.3
GPTQ-LoRA 4 43.00.9 58.40.6 86.10.7 24.30.8 52.90.3 53.20.9 67.51.2 85.30.7 25.62.6 57.91.0
LoftQ 4 41.70.6 56.00.8 86.30.5 25.31.0 52.30.5 54.91.4 66.50.7 87.70.5 23.91.6 58.30.6
ApiQ-bw 4 43.20.9 59.00.9 85.70.7 26.01.8 53.50.8 55.30.6 67.40.5 87.80.9 25.60.2 59.00.4

QLoRA 3 1.40.2 1.40.3 0.70.5 3.41.5 1.70.5 0.80.6 2.52.2 0.30.2 6.26.8 2.42.0
GPTQ-LoRA 3 38.90.4 55.71.2 84.90.3 23.21.6 50.70.9 50.60.0 65.21.5 88.01.0 22.61.3 56.60.8
LoftQ 3 39.90.4 56.32.2 86.30.8 26.41.4 52.20.7 53.91.2 66.10.2 87.00.9 23.60.7 57.70.3
ApiQ-bw 3 41.41.5 55.90.3 87.01.4 25.20.9 52.40.6 51.50.8 67.40.3 88.51.2 25.61.3 58.30.3

QLoRA 2 0.90.4 1.51.1 0.80.7 5.14.9 2.11.7 0.50.4 0.70.9 0.10.2 0.91.3 0.60.4
GPTQ-LoRA 2 21.70.6 39.01.3 76.60.8 22.11.8 39.90.5 31.90.0 49.61.0 82.50.4 23.60.9 46.90.5
LoftQ 2 29.50.8 45.80.7 83.60.6 23.22.0 45.60.7 37.00.6 55.90.8 87.71.3 21.71.1 50.60.2
ApiQ-bw 2 31.20.5 51.01.1 82.91.6 23.91.0 47.30.5 43.10.8 59.21.2 85.11.1 23.41.4 52.70.5

Table C.8: Accuracy on four arithmetic reasoning tasks. All methods use the same hyper-parameters as listed in
Table C.5. The LoRA rank r is 64 for all methods.

5

10

15
QLoRA

q_proj k_proj v_proj o_proj gate_proj up_proj down_proj

LoftQ ApiQ-lw

0 5 10 15 20 25 30

20

40

60

80

0 5 10 15 20 25 30 0 5 10 15 20 25 30

Layer index

W
ei

gh
t e

rr
or

4
B

its
2

B
its

Figure C.1: The weight quantization error ||W − (Q+ABT)||F for different linear layers of Llama-2-7B. For
4-bit quantization, all methods are comparable, because 4-bit quantization doesn’t significantly break down the
starting point. For 2-bit quantization, ApiQ has the smallest quantization error for most layers, although its goal is
to minimize the activation error.

20

Figure C.2: Histogram of Q, A and B for the 4-bit quantized layer of Llama-2-7b with ApiQ-lw. Blue: W . Green:
Q. Red: AB⊤. Orange: A(Left) or B(Right). Compared to LoftQ, the distribution of B of ApiQ is symmetric
and doesn’t have outliers, which might be one reason why ApiQ outperforms LoftQ.

21

Figure C.3: Histogram of Q, A and B for the 3-bit quantized layer of Llama-2-7b with ApiQ-lw. Blue: W . Green:
Q. Red: AB⊤. Orange: A(Left) or B(Right). Compared to LoftQ, the distribution of B of ApiQ is symmetric
and doesn’t have outliers, which might be one reason why ApiQ outperforms LoftQ.

22

Figure C.4: Histogram of Q, A and B for the 2-bit quantized layer of Llama-2-7b with ApiQ-lw. Blue: W . Green:
Q. Red: AB⊤. Orange: A(Left) or B(Right). Compared to LoftQ, the distribution of B of ApiQ is symmetric
and doesn’t have outliers, which might be one reason why ApiQ outperforms LoftQ.

23

Figure C.5: Histogram of Q, A and B for the 2-bit quantized layer of Llama-2-7b with LoftQ. Blue: W . Green:
Q. Red: AB⊤. Orange: A(Left) or B(Right). Compared to ApiQ, the distribution of B of LoftQ is asymmetric
for most linear layers and has many outliers, which might be one reason why LoftQ performs worse for 2-bit
quantization.

24

	Introduction
	Preliminaries
	Challenges of Finetuning QLLM
	QLLM breaks down the starting point
	Accumulative quantization error
	SVD is not a universal solution

	Method: ApiQ
	Activation-preserved initialization
	Block-wise ApiQ
	Gradient-based optimization

	Experiments
	Finetuning results and discussion

	Conclusion
	Related Work
	More Results and Discussions
	Quantization quality
	Quantization efficiency
	ApiQ-bw for other PEFT
	Why ApiQ works so well
	Performance vs. LoRA rank

	Experimental Details
	Quantization details for different LLMs
	Evaluation of QLLM
	Natural language understanding
	Language modeling
	Arithmetic reasoning (single-task)
	Arithmetic reasoning
	Commonsense reasoning

