
Under review as submission to TMLR

Robust Weight Imprinting: Insights from Neural Collapse
and Proxy-Based Aggregation

Anonymous authors
Paper under double-blind review

Abstract

The capacity of foundation models allows for their application to new, unseen tasks. The
adaptation to such tasks is called transfer learning. An efficient transfer learning method
that circumvents parameter optimization is imprinting. It has been reinvented several times,
but not systematically studied. In this work, we propose the general IMPRINT framework,
identifying three main components: generation, normalization, and aggregation. Through
the lens of this framework, we conduct an in-depth analysis and a comparison of the existing
methods. Our findings reveal the benefits of representing novel data with multiple proxies in
the generation step and show the importance of proper normalization. Beyond an extensive
analytical grounding, our framework enables us to propose a novel variant of imprinting
which outperforms previous work on transfer learning tasks by 4%. This variant determines
proxies through clustering motivated by the neural collapse phenomenon – a connection that
we draw for the first time. We publicly release our code at (link removed for review).

1 Introduction

In machine learning applications, training models from scratch is often not viable due to limitations in data
and compute. A popular solution is to apply transfer learning (Bengio, 2012; Yosinski et al., 2014) based
on foundation models (FMs) (Bommasani et al., 2021) that are pre-trained on a large amount of data. To
tune a FM to a novel task, e.g., for classification, a common procedure is to freeze the model parameters and
replace the output layer with a new head. A particularly simple method for implementing such a new head
was proposed by Qi et al. (2018) and coined imprinting.

Imprinting. In the original work by Qi et al. (2018), the last-layer weight vector of a novel class is set to the
normalized average of its scaled embedding vectors, i.e., its class mean. These class means are representatives
of the classes, which we denote as proxies. In general, we refer to imprinting as efficient learning methods
without the need for cross-class statistics or gradient-based optimization. A plethora of studies have emerged
surveying this technique by adding complexity and adaptability (Gidaris & Komodakis, 2018; Siam et al.,
2019; Passalis et al., 2020; Khan et al., 2021; Li et al., 2021; Cristovao et al., 2022; Yan et al., 2023). Despite its
many adaptations, imprinting lacks a systematic comparison that unifies them. Understanding its variations
could unlock greater efficiency across many fields, making the method even more versatile and impactful.

Applications. In particular, while in some practical applications, accuracy is prioritized over computational
efficiency, the latter does become a critical requirement in scenarios where computational resources are
severely constrained, e.g., in the chemical and polymer processing industries. Here, battery-powered edge
compute is essential and frequent retraining or large-scale optimization is infeasible. Imprinting has proven
particularly effective in these contexts of edge-embedded devices (Passalis et al., 2020). For instance, Zhu
et al. (2022) implement a vision-based robotic force grasping with a variable-stiffness gripper that can safely
handle both fragile and heavy objects by rapidly adapting to novel categories without retraining (Continual
Learning (CL) setting). Industrial adoption also underscores this trend with Google’s Coral Edge TPU
including an ImprintingEngine API (Coral), that allows users to add new classes from a few examples
without recompiling the model. Very recently, (Belal et al., 2025) apply imprinting to spectrogram embeddings

1

Under review as submission to TMLR

Foundation

Model

Training data from

novel task

Neural collapse in

 embeddings
Training

Inference

Test data from

novel task

output

Weight

Generator

Our Framework

class

Imprinted

Weights

Imprinted

Weights

class 1

Figure 1: Overview of our IMPRINT framework. The foundation model FM is frozen and shows neural collapse.
The weight generator (GEN) uses training data from a novel task T to consecutively generate one or more
weight vectors (proxies) per class 1, . . . , C. In inference, the final output for the test data in T is computed
by an aggregation (AGG) mechanism. Embeddings and generated weights are normalized according to NORMpre
and NORMpost , respectively. During inference, embeddings are normalized according to NORMinf .

from IMU/EMG gait data, achieving efficient classification in low-data Human Activity Recognition (HAR)
tasks. Apart from that, Janson et al. (2022) extend imprinting to CL, establishing a simple baseline with
competitive performance compared to more sophisticated state-of-the-art CL algorithms.

Framework. We present IMPRINT, a framework that enables a comprehensive analysis of existing imprinting
techniques. More precisely, we generalize prior work by decomposing imprinting into three principal steps
(see fig. 1). During generation (GEN) of weights, the method selects representative data samples and generates
one or more weight vectors (proxies) per class. Normalization (NORM) is crucial, as the generated weights
need to be balanced. Aggregation (AGG) entails the computation of the final output, e.g., a class label. The
computational efficiency of imprinting allows us to perform a large number of experiments. Through IMPRINT,
we are able to propose a novel, best-performing imprinting strategy using multi-proxy weight imprinting in
combination with L2 normalization, outperforming previously studied methods, as depicted in fig. 2.

Neural Collapse. When neural networks are trained to reach near-zero loss, their penultimate-layer
embeddings collapse to the class means (Papyan et al., 2020; Zhu et al., 2021). We investigate this phenomenon
as a potential explanation for when and why imprinting works. Our analysis proves that there exists a
relationship between a measure of neural collapse and the success of imprinting. Since quantification of
this phenomenon is possible in a post-hoc fashion over the FM features, we believe that these insights will
contribute to further development of imprinting methods, as well as, training regimes of FMs that are more
suitable for transfer learning via imprinting.

Contributions. In summary, our main results and contributions are:

• We deconstruct weight imprinting into the IMPRINT framework composed of generation, normalization,
and aggregation, and discuss variations for each of them, while identifying prior work as special cases
(section 3.1). To the best of our knowledge, we are the first to conduct a comprehensive analysis of
imprinting to this scale (section 4).

• We present a new, outperforming imprinting method utilizing k-means clustering for weight generation
(section 5.1) and show its benefits in certain low-data regimes (section 5.2).

• As far as we are aware, we are the first to identify a relationship between the degree of neural collapse
and imprinting success (section 5.3).

2

Under review as submission to TMLR

Table 1 & Figure 2: Previously studied imprinting strategies are special cases within IMPRINT. We evaluate
on 12 different classification tasks Ts derived from MNIST , FashionMNIST , and CIFAR-10 , each with 10
classes or subsets thereof, and 4 pre-trained models (resnet18, resnet50, vit_b_16, swin_b). The proposed
configuration (“Ours”) derived from IMPRINT outperforms previous work across FMs and Ts by a large margin
with statistical significance. Here, k = 20 is used, highlighting the gain of using multiple proxies per class.

Work NORMpre GEN NORMpost NORMinf AGG Avg. acc. %
Qi et al. (2018) L2 mean L2 L2 max 86.79
Hosoda et al. (2024) none mean quantile none max 82.90
Janson et al. (2022) none mean none none 1-nn 86.64
Ours L2 k-means L2 L2 max 91.06

1234

3.27Hosoda et al.
2.92Jason et al. 2.67 Qi et al.

1.00 Ours

Average rank

2 Related Work

Imprinting and Low-Data Regimes. Weight imprinting is implemented by setting the final layer weights
for the novel classes to the scaled average of the embedding vectors of their training samples and was first
introduced by Qi et al. (2018) for the few-shot learning scenario. The authors find that for up to 20 samples,
using a combination of imprinting and fine-tuning outperforms other state-of-the-art methods, including
nearest neighbor algorithms. In contract, in our work we do not limit the number of samples and perform no
fine-tuning on the imprinted weights to maintain efficiency.

Imprinting has been applied to object detection (Li et al., 2021; Yan et al., 2023), multi-label classification
(Khan et al., 2021), semantic segmentation (Siam et al., 2019), and combined with an attention mechanism
to generate weights for the novel classes in a few-shot classification task (Gidaris & Komodakis, 2018).

Hosoda et al. (2024) apply imprinting using quantile normalization to ensure statistical similarity between
new and existing weights. We consider this as one normalization scheme in our framework. Zhang et al. (2021)
apply imprinting in chest radiography for detection of COVID-19 and find that it yields better results than
joint gradient descent training of all classes when only few samples are available. They speculate whether
normalization is a constraint in their imprinting model.

Before the era of deep learning, Mensink et al. (2013) analyze the transferability of hand-crafted image
features. They use a “nearest class multiple centroids” (NCMC) classifier with multiple proxies generated
from a k-means clustering algorithm. In combination with metric learning, they compare favorably against
the m-nearest neighbor algorithm. Our work, on the other hand, highlights efficient transfer learning provided
by foundation models.

Transfer Learning. Using embedding vectors from pre-trained models is a simple and widely used transfer
learning approach, established in the seminal works on computer vision (Donahue et al., 2014) and natural
language processing (Devlin et al., 2019). Kornblith et al. (2019) show that pre-training performance of a
model is highly correlated with the performance of the resulting embedding vectors in downstream tasks.
In addition, Huh et al. (2016) provide insights into the required quality of pre-training data. Our work is
orthogonal to these studies, since we focus on studying weight generation, normalization, and aggregation
techniques applied later on for new task adaptation.

Continual Learning (CL). Although we investigate transfer learning scenarios, we review the imprinting
applications and results from CL. Rebuffi et al. (2017) dynamically select a subset of examples for each
class and update internal representations via gradient descent. They use a nearest mean classifier (NMC)
with respect to the saved examples. Janson et al. (2022) use an NMC classifier as well and achieve good

3

Under review as submission to TMLR

performance on CL benchmarks without any fine-tuning of the embeddings. However, they do not investigate
the effect of normalization and using multiple proxies.

Findings of Prabhu et al. (2023) show that a simple, approximate m-nearest neighbor classifier outperforms
existing methods in an Online CL setting when all data can be stored. In our work, however, we compare
imprinting all data to a limited number of more representative proxies striving for efficiency.

Neural Collapse (NC). The phenomenon of NC was identified by Papyan et al. (2020) and refers to the
convergence of the last-layer weight vectors to class means. It was shown that, regardless of the loss function,
optimizer, batch-normalization, or regularization, NC will eventually occur (provided the training data has a
balanced distribution) (Zhu et al., 2021; Han et al., 2022; Kothapalli, 2023). Nevertheless, complete neural
collapse is practically unrealistic (Tirer et al., 2023). In transfer learning, Galanti et al. (2022) show that NC
occurs on new samples and classes from the same distribution as the pre-training dataset, highlighting the
usability of foundational models in such scenarios. In our work, we expand the survey on NC by experimenting
with out-of-distribution classes belonging to different datasets and linking their degree of collapse to the
success of certain imprinting strategies.

3 Methods

3.1 IMPRINT

In order to find out how to best and efficiently set the classifier weights of a foundational model in new,
previously unseen tasks T, we create the IMPRINT framework (see fig. 1) that generalizes previous work,
specifically all the methods that work without access to cross-class statistics and gradient-based training.
Thereby, we unify all the existing imprinting strategies described in section 2.

Overview. We analyze the effect of weight generation (GEN), normalizations (NORM =
{NORMpre, NORMpost , NORMinf }), and aggregation (AGG). The IMPRINT framework depicted in fig. 1 con-
sists of three main building blocks: a foundation model FM, a weight generator GEN, and extendable classifier
weights that are imprinted. The FM remains frozen throughout the experiments. It receives data from T as
inputs and produces embedding vectors. The training process generates weight vectors for each of the C
classes in T. Hereby, embeddings from the FM are normalized before the generation (GEN) step according to
NORMpre. The generated weight vectors per class are referred to as proxies, prototypes, or representatives
(Movshovitz-Attias et al., 2017; Snell et al., 2017; Yang et al., 2018; Yu et al., 2020). These proxies are
normalized according to NORMpost . As in the work by Qi et al. (2018), we do not use bias values. To classify
the test data in T during inference, it is first embedded by the FM, normalized according to NORMinf , and
finally aggregated by AGG, resulting in a predicted class label.

Generalization of Previous Methods. Previously proposed imprinting methods can be defined as special
cases of our framework. We design IMPRINT such that every method can be defined by a single combination
of GEN, NORM, and AGG, of which we inspect all possible combinations.

Weight Generation (GEN). The purpose of GEN is to determine how the embeddings of the training data
in T are used to form the new weights. In contrast to Qi et al. (2018) which only incorporates one proxy per
class (the mean), we add flexibility by allowing each class to have multiple proxies as in Mensink et al. (2013)
and enable non-linear classification. We denote the number of proxies per class as k, ranging between 1 and
the number of samples, and investigate the following operations conducted per class to generate those:

• all: All embeddings (denoted as k = all).
• k-random: k random embeddings.
• mean: The mean of all embeddings.
• k-means: k-means cluster centers using KMeans from sklearn (Pedregosa et al., 2011). k = 1 is the

same as mean.
• k-medoids: k-medoids cluster centers using KMedoids from sklearn.

4

Under review as submission to TMLR

• k-cov-max (covariance-maximization): Top k embeddings by covariance (in code: proxies =
embeddinbs[torch.argsort(torch.sum(torch.cov(embeddings), dim=0), descending=True)[:k]]).

• k-fps (farthest-point sampling): Iteratively selecting k embeddings, such that it maximizes the
distance from already selected ones (starting with a random sample).

We choose this diverse list of methods to cover a wide range of approaches, ranging from heuristics (e.g., k-fps)
to more complex algorithms (e.g., k-means). Note that only mean and k-means generate proxies beyond
existing samples by producing synthetic cluster centers in embedding space. In comparison, k-medoids must
choose actual samples as cluster centers (analogous to a median). None of these methods use cross-class
statistics or gradient-based optimization. We also note an analogy to associative memory models, interpreting
imprinting as a memory update process following a covariance rule, as detailed in appendix A.3.

Normalization (NORM). The main reason for applying normalization is to allow each embedding and
weight vector to contribute equally on the same scale. The modes we allow are no normalization (none), L2

normalization (L2), and quantile normalization (quantile).

L2 normalization can be applied to embeddings before GEN via NORMpre, to the generated weights via NORMpost ,
and to embeddings in inference via NORMinf . In any case, the vector is L2-normalized by dividing it by its
Euclidean length ∥ · ∥2.

quantile normalization (Amaratunga & Cabrera, 2001; Bolstad et al., 2003) can only be applied to generated
weights. This non-linear operation distributes weights equally. Recall that if more than one class is contained
in T (c > 1), GEN is performed for each class consecutively, and the reference distribution changes accordingly.
In particular, for the first class there is no reference distribution to map to. This is different from Hosoda
et al. (2024), where new weights are matched to the distribution of the original classifier weights of the FM.
Since we do not consider the classes used for pre-training the FM and especially do not assume access to their
last-layer weights, this is not possible in our scenario.

Aggregation (AGG). There are various ways to use the generated weights (proxies) per class during inference,
especially when k > 1. We focus on two different modes, max and m-nearest neighbor (m-nn). The former,
max, computes the inner product of the input embedding and the imprinted weights and outputs the class
label with the maximum activation. The latter, m-nn, uses the class weights as keys and the embeddings as
values, and chooses the final winning output class via the m-nearest neighbor algorithm. The m-nn voting is
weighted by the inverse of the Euclidean distances to their nearest neighbor, turning it into weighted majority
voting.

We also experimented with alternative distance functions (Cosine, Manhattan) and uniform weighting, but
found differences well within statistical noise. Using the Mahalanobis distance proved computationally
prohibitive. More elaborate voting mechanisms, such as learned top-k attention or entropy-based filtering, are
conceivable, but extend well beyond the minimalist imprinting paradigm and therefore left for future work.

Note that max is the same as 1-nn in the case of L2 for NORMpost , since for any fixed embedding vector v and
variable proxy w, the argmin of ∥v−w∥2 = ∥v∥2 − 2⟨v, w⟩+ ∥w∥2, calculated by 1-nn, is the same as the
argmax of the inner product ⟨v, w⟩ calculated in max.

3.2 Quantifying Neural Collapse

Neural collapse (NC) (Papyan et al., 2020) characterizes the state of the features produced by a classification
neural network after training to near zero training loss. Namely, the learned embeddings of each class
converge, i.e., collapse, to their class means. These globally centered class means and classifier weights form a
simplex equiangular tight frame (ETF) – a collection of equal length and maximally equiangular vectors, that
maximize the between-class variability. This results in an optimal linearly separable state for classification.
In fig. 3 (left), we illustrate the collapse of a FM on its pre-training data. The newly arrived data T from a
different dataset is distributed more unevenly across the embedding space (right).

Two important characteristics of NC are variability collapse, i.e., the within-class variability of the
penultimate-layer embeddings collapses to zero, and convergence to nearest-mean-classification. We

5

Under review as submission to TMLR

New task

containing classes
Collapsed embeddings Non-collapsed new

embeddings

Pre-training data

containing classes

Figure 3: Left: The embeddings of the pre-training data, after being used to train the foundation model
FM, show neural collapse, as each class (o1, . . . , o4) is evenly separated in space and accumulates around
their respective class means. Right: For a novel task with classes c1, c2 (pink and brown) scatter around the
collapsed pre-trained classes (gray).

focus on variability collapse (NC1) as in Zhu et al. (2021). Given a foundation model FM and a finite
dataset containing C classes with (for simplicity) N samples per class, we use its l-dimensional embeddings
{hc,i}1≤c≤C, 1≤i≤N given by FM to define the global feature mean hG := 1

CN

∑C
c=1

∑N
i=1 hc,i, class means

hc := 1
N

∑N
i=1 hc,i, the within-class covariance matrix ΣW := 1

CN

∑C
c=1

∑N
i=1

(
hc,i − hc

)(
hc,i − hc

)⊤, and
the between-class covariance matrix ΣB := 1

C

∑C
c=1

(
hc − hG

)(
hc − hG

)⊤ to finally compute

NC1 = 1
C trace(ΣWΣ+

B), (1)

where + symbolizes the pseudo-inverse.

Based on eq. (1), an NC1 score closer to zero signifies a higher collapse. In contrast, an increase in multi-
modality of data leads to a higher NC1 score (as analyzed in fig. 11a). Note that this measurement is not
independent of the embedding dimension l and the number of classes C. According to NC, imprinting the
mean, as originally done by Qi et al. (2018), is best when NC1 is small. We claim that when the data is not
fully collapsed (as is often the case in practice), the scale of NC1 could guide the proxy generation method,
e.g., having multiple proxies k > 1 per class. We investigate this in section 5.3.

4 Experimental Setup

Foundation Models FM. We use resnet18, resnet50 (He et al., 2016), vit_b_16 (Dosovitskiy et al.,
2021), and swin_b (Liu et al., 2021) as FMs, two CNN-based and two Transformer-based architectures. All
four models are pre-trained on ImageNet-1K (ILSVRC 2012) (Deng et al., 2009). To generate the embeddings,
we use PyTorch’s torchvision models.

Tasks T. We analyze multi-class classification scenarios without separating base and new classes, instead
focusing on all classes within a novel T at the same time. To investigate the effect of the number of samples
given, we look at n-shot (n ∈ N) scenarios. For that, we randomly pre-sample the training data of T to n
samples per class – transitioning into the low-data regime.

To find out the best imprinting strategy within our IMPRINT framework, we focus on tasks T created from
the datasets MNIST (Deng, 2012), FashionMNIST (Xiao et al., 2017), and CIFAR-10 (Krizhevsky et al.,
2009), each containing 10 classes. We mainly focus on the three T containing all ten classes. Furthermore, we
look at smaller tasks only containing classes {0, 1, 2}, and the two tasks containing classes {1, 3, 5, 7, 9} resp.
{0, 2, 4, 6, 8}. This random selection of 3 · 4 = 12 tasks adds variation to our evaluations.

Neural Collapse. In the analysis of neural collapse (NC), we also look at the FMs’ pre-training data
(ImageNet). As its test set is not available, we use its validation set in NC1 computations. Furthermore,
for ImageNet, we relabel data by combining multiple classes into one label to simulate multi-modal class

6

Under review as submission to TMLR

distributions for an in-depth NC analysis. These tasks are called “d in 1”, d = 1, . . . , 10, each containing 10
different labels. More precisely, we take 100 random classes from ImageNet and sequentially map the first d
to label 1, the second d to label 2, etc., until we reach 10 distinct labels. See fig. 4 for a simplified illustration.

Moreover, we construct a new out-of-distribution, non-collapsed dataset by merging all classes from four digit
datasets: MNIST , MNIST-M (Ganin et al., 2016), SVHN (Netzer et al., 2011), and USPS (Hull, 1994). The
resulting dataset, which we refer to as CombiDigits, exhibits reduced collapse due to the greater distributional
diversity within each class. To ensure scale invariance in covariance-based NC measurements, all embeddings
are L2-normalized before computing NC1.

Scale. In total, we ran approximately 500 000 experiments, varying imprinting components, foundation
models, tasks, and seeds. This is feasible with minimal effort as imprinting is a highly efficient method: core
steps such as weight generation (GEN), normalization (NORM), and aggregation (AGG) are linear in dataset size
or number of proxies and parallelize efficiently within each step. Details on experimental infrastructure and
parallelization are provided in appendix A.6.

0 1

2 in 1

3 in 1

0

2 4 53 ...

1 ...

...

class labels

1 in 1

10

Figure 4: Combining multiple classes into one to create tasks with multi-modal class distributions. Simplified
example for “d in 1”, d = 1, 2, 3, with only six (instead of 100) original classes.

Evaluation. Throughout our experiments, the median accuracy on the test set for three different seeds is
reported, if not otherwise specified. In sections 5.1 and 5.2, we investigate the imprinting performance by
varying the FM (4) and T (12). We then sort the combinations by their final accuracy. There are 4 · 12 = 48
potentially different ranks for each of the combinations. We show the average rank, average accuracy, and
statistical significance in ranking (dis-)agreements through critical difference (CD) diagrams as presented by
Demšar (2006). The code used to generate these diagrams is inspired by Ismail Fawaz et al. (2019). In the
CD diagrams, a thick horizontal line indicates a group of combinations that are not significantly different
from each other in terms of ranking accuracy. We consider differences significant if p < 0.05.

In experiments with neural collapse (section 5.3), we investigate the four FMs on 100 random ImageNet tasks
with remapped labels (as explained above) and the four tasks containing all of MNIST , FashionMNIST ,
CIFAR-10 , and CombiDigits, respectively.

5 Results

Our main experimental insights are: 1. Our IMPRINT framework generalizes previous methods, and we find
a new superior imprinting strategy (section 5.1). 2. We show that our novel strategy is even beneficial in
low-data regimes with as little as 50 samples per class (section 5.2). 3. We identify a correlation between
imprinting success utilizing multiple proxies and measures of neural collapse (section 5.3).

5.1 Best Imprinting Strategy

We provide a comparison between existing memory-constrained methods used for imprinting on foundation
models in fig. 2, namely, the work by Qi et al. (2018); Hosoda et al. (2024); Janson et al. (2022), as well as a
novel, best-performing configuration (“Ours”) that results from IMPRINT. We investigate the impact of using

7

Under review as submission to TMLR

the unconstrained m-nn aggregation on all data afterward. We focus on k = 20 and find that our method,
consisting of k-means weight generation, L2 normalizations, and max aggregation, outperforms all previously
studied approaches by a margin of 6% on average with statistical significance. Next, we analyze each of the
components of IMPRINT separately.

Table 2 & Figure 5: Benchmarking GEN mechanism for k ≤ 20 across FMs and Ts. Best NORM combination
for each row used implicitly. AGG is fixed to max. CD diagram proves that k-means weight generation is
significantly better than all other methods.

GEN k Avg. acc. %
k-means 20 91.04
k-medoids 20 87.01
mean 1 86.84
k-cov-max 20 83.98
k-random 20 82.14
k-fps 20 65.56

123456

5.98k-fps (k = 20)
4.79k-random (k = 20)
4.00k-cov-max (k = 20) 2.71 mean

2.46 k-medoids (k = 20)
1.00 k-means (k = 20)

Average rank

Weight Generation (GEN). To assess the impact of GEN, we first focus on the max aggregation and do
not fix NORM, but simply show the run with the best NORM combination, if not otherwise specified. The m-nn
aggregation and different values for NORM are analyzed later in this section.

Initially, we limit the number of generated proxies to k ≤ 20. Results in fig. 5 show how k-means, using
as many proxies as possible (in this case, 20) outperforms by 4% on average accuracy compared to all
the other GEN methods. The CD diagram illustrates its statistical significance in ranking. Furthermore,
while k-medoids with 20 proxies (which necessarily have to be among the given samples, see section 3.1) is
computationally expensive, it is on par with mean, and covariance maximization, furthest-point sampling
and random selection show even weaker performances. We find similar results for k ≤ 5, where k-means
outperforms the other methods as well (see fig. A.1).

0 20 40 60 80 100
number of proxies k

40

50

60

70

80

ac
c

% k-means
k-medoids
k-cov-max
k-random
k-fps
mean
all

Figure 6: Benchmarking different GEN methods with resnet18 on all of CIFAR-10 shows superiority of
k-means proxies. All combinations employ L2 for all NORM and max as AGG.

As the number of proxies k increases, k-means continues to be the best GEN method. An example for resnet18
and CIFAR-10 can be found in fig. 6. All methods converge towards the point of imprinting (saving) all
data (k = all), even surpassing it in the case of k-means. Due to its superior performance, we mainly focus
on k-means in the remainder of the analysis.

8

Under review as submission to TMLR

Normalization (NORM). We compare all the different NORM methods, focusing on k-means as GEN. For k = 1
and varying NORMpost (while taking best values for NORMpre and NORMinf implicitly), fig. 7 shows that L2 is the
best choice for weight normalization. quantile and none normalization both perform worse.

Table 3 & Figure 7: Benchmarking NORMpost mechanism across FMs and Ts. The best NORMpre and NORMinf
combinations for each row are used implicitly. GEN is fixed to mean (that is, k = 1) and AGG is fixed to max.
The CD diagram shows the statistical significance of L2 as the best weight normalization NORMpost .

NORMpost Avg. acc. %
L2 86.84
quantile 82.90
none 83.26

123

2.67none
2.04quantile

1.23 L2

Average rank

Table 4: Benchmarking NORMpre and NORMinf mechanisms across FMs and Ts. NORMpost is fixed to L2, GEN to
mean, and AGG to max. No statistically significant differences were found.

NORMpre NORMinf Avg. acc.
none L2 86.84
none none 86.84
L2 L2 86.79

Keeping L2 for NORMpost fixed, we find no statistical differences between the different combinations of NORMpre
and NORMinf (see table 4). For larger values of k, the differences among NORMpost become even more pronounced.
However, the performance of NORMpre and NORMinf remains statistically indifferent for L2 weight normalization
(see fig. A.2 for all combinations at once with k = 1, and fig. A.3 for k = 20).

We restrict all the subsequent experiments to using L2 across all NORM following Qi et al. (2018). This
combination of normalizations is chosen to specifically model cosine similarity within max aggregation.

Table 5 & Figure 8: Benchmarking AGG mechanism across FMs and Ts. GEN is fixed to all (k = all), that
is, imprinting (saving) all data to weights. L2 normalization is used for all NORM. The CD diagram shows
statistical significance of 3-nn, 5-nn, and 20-nn over max aggregation.

AGG Avg. acc. %
5-nn 93.74
3-nn 93.50
20-nn 93.56
1-nn 92.81
max 92.81
50-nn 92.91

123456

4.3550-nn
3.961-nn
3.96max 2.48 20-nn

2.31 3-nn
1.54 5-nn

Average rank

Aggregation (AGG). In addition to max, we study the effect of using m-nearest neighbor (m-nn) as an
aggregation method. Recall that max is a special case of m-nn when m = 1 (as NORMpost is set to L2). We
investigate different values for m ∈ {1, 3, 5, 20, 50}.

When all data is imprinted, fig. 8 shows that using m-nn aggregation for m ∈ {3, 5, 20} is slightly better than
max. With k = 20 and k-means as GEN, max (=1-nn) aggregation becomes the top performing combination
(see fig. 9). Furthermore, the reduction of proxies (from all (≈ 6000 per class) to k = 20) leads to a decrease
in accuracy of less than 3%.

Learned Weights. Employing gradient-based methods – such as setting weights via the analytical least-
squares initialization proposed by Harun & Kanan (2025), which uses data and labels from all classes jointly –
can be seen as an upper bound for the unsupervised weight imprinting approach discussed here. We extend

9

Under review as submission to TMLR

Table 6 & Figure 9: Benchmarking AGG mechanism across FMs and Ts. GEN is fixed to k-means with k = 20.
L2 normalization is used for all NORM. The CD diagram shows that max is the best-performing aggregation
method.

AGG Avg. acc. %
1-nn 91.06
max 91.06
3-nn 90.59
5-nn 90.12
20-nn 87.05

12345

3.9820-nn
2.905-nn
2.003-nn

1.08 1-nn
1.08 max

Average rank

this method by combining it with k-means, forming k-least-squares, and observe in appendix A.5 that
using multiple proxies per class instead of a single weight vector can still improve performance, particularly
on datasets with high NC1.

40

50

60

70

80

90

ac
c

%

resnet18, MNIST

60

70

80

resnet18, FashionMNIST

40

50

60

70

80

resnet18, CIFAR-10

10
0

10
1

10
2

10
3

#samples n

50

60

70

80

90

ac
c

%

vit_b_16, MNIST

10
0

10
1

10
2

10
3

50

60

70

80

vit_b_16, FashionMNIST

10
0

10
1

10
2

10
3

60

70

80

90

vit_b_16, CIFAR-10

k = n k = 1 k = 5 k = 20

Figure 10: k-means with different values for k in n-shot scenarios. 95% CIs are shown in shaded colors.
Other variables are fixed to our previously described best method of using L2 normalizations and max as AGG.
Note that only data for the meaningful case of k ≤ n is shown. For MNIST and FashionMNIST , mean is not
the best strategy anymore starting at only roughly 50 samples.

5.2 Low-Data Regime

We analyze the n-shot scenario with our method (k-means as GEN, L2 as NORM, and max as AGG). Furthermore,
we focus on the large tasks T containing all ten classes of MNIST , FashionMNIST , resp. CIFAR-10 at once.
In this scenario, due to sampling only a few examples n, we average over five (instead of three) different seeds.

From the results in fig. 10, we find that as the number of samples n increases, k-means starts to outperform
mean imprinting. The use of more proxies k further amplifies this performance gain. The shift occurs at
roughly 50 samples per class for MNIST and FashionMNIST , while for CIFAR-10 , k > 1 becomes prominently
better at around 200 samples per class (see fig. A.4 for a display of all FMs focused on 10 ≤ n ≤ 400).

10

Under review as submission to TMLR

5.3 Neural Collapse and Number of Proxies

Figure 11a depicts the neural collapse measurement NC1 (see eq. (1)) for the 100 random ImageNet tasks with
remapped labels as explained in section 4, as well as the four tasks containing all of MNIST , FashionMNIST ,
CIFAR-10 , resp. CombiDigits. It can be inferred that ImageNet has a close-to-zero NC1 score, which
increases linearly when adding more classes to each label (i.e., increasing multi-modality). As for the other
datasets, CIFAR-10 is generally more collapsed according to its low value of NC1, which even falls below 1
for the Transformer-based FMs. We hypothesize that this is due to the similarity of its categories to those
appearing in ImageNet. By design, the synthetic CombiDigits dataset, introduced in section 4, has a very
high NC1. Apart from that, NC1 of the ImageNet data for the Transformer-based architectures are much
lower and therefore they are more collapsed compared to the CNN-based FMs. These architectural differences
are further investigated in appendix A.4.

1 5 10
ImageNet ("d in 1")

0

1

2

3

4

5

1

resnet18
vit_b_16

resnet50
swin_b

0

10
0

10
1

1

MNIST FashionMNIST CIFAR-10 CombiDigits

(a) A clear linear relationship between the neural
collapse measure N C1 and d can be inferred for
all FMs, i.e., increased multi-modality implies less
collapse. The N C1 of other datasets (CombiDigits
in particular) is much higher across all FMs, while
only vit_b_16 and swin_b get an N C1 of less than
one on CIFAR-10 .

1 in 1 10 in 1

d in 1 (ImageNet)

75

80

85

90

95

100

ac
c

%

resnet18

30

40

50

resnet50

75

80

85

90

95

100

ac
c

%

vit_b_16

5 10 15
number of proxies k

30

40

50

swin_b

5 10 15

MNIST FashionMNIST CIFAR-10 CombiDigits

(b) Accuracy over number of proxies k used in k-means together
with L2 for all NORM and max as aggregation. In all four subplots,
peaks in accuracy at k = d can be inferred. This confirms the
connection between the effect of using multiple proxies and the
collapse of the data.

Figure 11: Averaged NC1 resp. accuracy of ten random ImageNet label remappings (“d in 1”) for
every d = 1, . . . , 10. 95% CIs are shown in shaded colors. Values for the tasks containing all of MNIST ,
FashionMNIST , CIFAR-10 , resp. CombiDigits at once are shown in dotted styles.

For the same data, fig. 11b depicts accuracy over a varying number of proxies k inferred from k-means. A
prominent peak at k = d can be inferred for every FM and reflects that d class proxies lead to the best result
for d-modal class distributions. Furthermore, increasing k for the ImageNet sets has a much larger effect
on the CNN-based FMs. We argue that this is because of their higher values of NC1, indicating less neural
collapse. In appendix A.4, we analyze architectural differences and training setups to explain these variations.
The fact that CIFAR-10 has the lowest NC1 scores (see fig. 11a) is reflected by flat green curves over k.

11

Under review as submission to TMLR

Figure 12 renders this connection more precise: Once NC1 exceeds 1, i.e., when intra-class variability surpasses
inter-class variability, using more than a single proxy per class (k > 1) yields a clear performance gain over
mean imprinting (k = 1).

10
1

10
0

10
1

1

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

ac
c

%
 in

cr
ea

se
 (k

=
5

vs
. k

=
1)

resnet18
resnet50
swin_b
vit_b_16

ImageNet
Non-ImageNet

Figure 12: Accuracy gain when using k = 5 instead of k = 1 proxies per class with k-means, plotted
against the neural collapse measure NC1. Colors indicate different FMs. Outlined markers correspond to
non-ImageNet datasets (MNIST , FashionMNIST , CIFAR-10 , and CombiDigits), while filled markers denote
averaged results from our random ImageNet label remappings. A clear change in behavior emerges around
NC1 ≈ 1, where single-proxy mean imprinting (k = 1) appears to become substantially suboptimal.

6 Conclusion

We present a new framework, IMPRINT, to analyze three main components relevant to weight imprinting,
namely, weight generation, normalization, and aggregation. Within IMPRINT, state-of-the-art imprinting
strategies become special cases. This allows for a comprehensive analysis of different approaches through
systematic experiments and leads us to generalize to a new, best-performing imprinting variant. That is, using
k-means weight generation with L2 normalizations and max aggregation, which outperforms all previously
studied methods (see fig. 2).

k-means generates better weights than mean. In particular, we find that the mean weight generation
(GEN) method, despite its prominence in previous work, falls short compared to k-means – even when the
number of proxies k is very small. Remarkably, with as little as 50 samples per class, k-means can already
outperform the original imprinting method proposed by Qi et al. (2018), highlighting its advantage in low-data
regimes.

L2 weight normalization is essential for strong performance. The max aggregation directly scales
with the magnitude of the weights. Normalization (NORMpost) ensures that all proxies have the same magnitude,
preventing differences in vector norms from disproportionately affecting classifier predictions. Nearest neighbor
(l-nn) aggregation is not as affected by the lack of normalization, since it uses Euclidean distance. Although
still part of common procedure, normalizations for embeddings (NORMpre and NORMinf) appear to have minimal
impact on performance.

12

Under review as submission to TMLR

With max aggregation, there is no need to store all data. While nearest neighbor (m-nn) aggregation
(AGG) performs well when all data is saved (e.g., when there are no storage constraints), max aggregation
with limited number of representative proxies (e.g., through k-means) is an efficient alternative without a
substantial loss in performance.

Neural collapse proves the efficacy of imprinting. During training, the last-layer weights of a FM
collapse to their respective class means. This proves the success of mean imprinting on known classes. New,
out-of-distribution data, however, often shows less collapse, making it beneficial to imprint more than one
proxy. While from a practical perspective, choosing the number of proxies k based on pure greedy search
with validation data (or as part of any AutoML pipeline) is still a valid option, our analysis provides insights
into the underlying mechanism. In particular, we find that once NC1 exceeds 1, using more than a single
proxy per class yields a clear gain in performance.

Limitations. Our experiments are limited to foundation models for image classification and do not cover
other data modalities such as audio, text, or sensor inputs. While IMPRINT is agnostic to modality, empirical
validation of our results outside of vision is needed. Although imprinting alone provides an efficient solution to
transfer learning, when compared to purely gradient-based learning, a gap still remains. We do not investigate
the benefit of combining it with optimization methods such as gradient-based learning, and the choice of k
still requires heuristic or empirical selection rather than direct prediction.

Future Work. The usage of both weight and activation sparsity as Shen et al. (2023) could change the
within- and between-class variability in favor of using a higher number of proxies. Besides only using the
penultimate layer embeddings for generating the classifier weights, an interesting area of study could be
extracting embeddings from previous layers of the FM for this purpose. Recently, the study by Marczak et al.
(2025) showed that adding a multi-layer perceptron projector between the penultimate and classification
layers results in representations that are more transferable. Another avenue of research is to thoroughly
analyze imprinting the weights of other layers as well (Siam et al., 2019).

13

Under review as submission to TMLR

References
Dhammika Amaratunga and Javier Cabrera. Analysis of data from viral dna microchips. Journal of the American

Statistical Association, 96(456):1161–1170, 2001.

James A Anderson. A simple neural network generating an interactive memory. Mathematical biosciences, 14(3-4):
197–220, 1972.

James A Anderson, Jack W Silverstein, Stephen A Ritz, and Randall S Jones. Distinctive features, categorical
perception, and probability learning: Some applications of a neural model. Psychological review, 84(5):413, 1977.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova, Michael Kopp, Günter
Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended long short-term memory. In Amir
Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang
(eds.), Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information Processing
Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024, 2024. URL http://papers.nips.
cc/paper_files/paper/2024/hash/c2ce2f2701c10a2b2f2ea0bfa43cfaa3-Abstract-Conference.html.

Mohammad Belal, Taimur Hassan, Abdelfatah Hassan, Divya Velayudhan, Noureldin Elhendawi, Ahmad Aljarah, and
Irfan Hussain. Fsid: a novel approach to human activity recognition using few-shot weight imprinting. Scientific
Reports, 15(1):20865, 2025.

Yoshua Bengio. Deep learning of representations for unsupervised and transfer learning. In Proceedings of ICML
workshop on unsupervised and transfer learning, pp. 17–36. JMLR Workshop and Conference Proceedings, 2012.

Benjamin M Bolstad, Rafael A Irizarry, Magnus Åstrand, and Terence P. Speed. A comparison of normalization
methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19(2):185–193,
2003.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S Bernstein,
Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportunities and risks of foundation models.
arXiv preprint arXiv:2108.07258, 2021.

Google Coral. Retrain a classification model on-device with weight imprinting. https://coral.ai/docs/edgetpu/
retrain-classification-ondevice.

Paulino Cristovao, Hidemoto Nakada, Yusuke Tanimura, and Hideki Asoh. Few shot model based on weight imprinting
with multiple projection head. In 2022 16th International Conference on Ubiquitous Information Management and
Communication (IMCOM), pp. 1–7. IEEE, 2022.

Peter Dayan and David J Willshaw. Optimising synaptic learning rules in linear associative memories. Biological
cybernetics, 65(4):253–265, 1991.

Janez Demšar. Statistical comparisons of classifiers over multiple data sets. The Journal of Machine learning research,
7:1–30, 2006.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255, 2009.

Li Deng. The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE signal
processing magazine, 29(6):141–142, 2012.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. In NAACL-HLT, pp. 4171–4186, 2019.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor Darrell. DeCAF: A
Deep Convolutional Activation Feature for Generic Visual Recognition. In ICML, pp. 647–655, 2014.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. In International Conference on Learning Representations, 2021.

Tomer Galanti, András György, and Marcus Hutter. On the role of neural collapse in transfer learning. In International
Conference on Learning Representations, 2022.

14

http://papers.nips.cc/paper_files/paper/2024/hash/c2ce2f2701c10a2b2f2ea0bfa43cfaa3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/c2ce2f2701c10a2b2f2ea0bfa43cfaa3-Abstract-Conference.html
https://coral.ai/docs/edgetpu/retrain-classification-ondevice
https://coral.ai/docs/edgetpu/retrain-classification-ondevice

Under review as submission to TMLR

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario
March, and Victor Lempitsky. Domain-adversarial training of neural networks. Journal of machine learning research,
17(59):1–35, 2016.

Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learning without forgetting. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 4367–4375, 2018.

X. Y. Han, Vardan Papyan, and David L. Donoho. Neural collapse under MSE loss: Proximity to and dynamics on
the central path. In The Tenth International Conference on Learning Representations, ICLR, 2022.

Md Yousuf Harun and Christopher Kanan. A good start matters: Enhancing continual learning with data-driven
weight initialization. arXiv preprint arXiv:2503.06385, 2025.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Kazufumi Hosoda, Keigo Nishida, Shigeto Seno, Tomohiro Mashita, Hideki Kashioka, and Izumi Ohzawa. A single
fast hebbian-like process enabling one-shot class addition in deep neural networks without backbone modification.
Frontiers in Neuroscience, 18:1344114, 2024.

Minyoung Huh, Pulkit Agrawal, and Alexei A. Efros. What makes ImageNet good for transfer learning?, 2016.
arXiv:1608.08614.

Jonathan J. Hull. A database for handwritten text recognition research. IEEE Transactions on pattern analysis and
machine intelligence, 16(5):550–554, 1994.

Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain Muller. Deep
learning for time series classification: a review. Data mining and knowledge discovery, 33(4):917–963, 2019.

Paul Janson, Wenxuan Zhang, Rahaf Aljundi, and Mohamed Elhoseiny. A simple baseline that questions the use of
pretrained-models in continual learning. In NeurIPS 2022 Workshop on Distribution Shifts: Connecting Methods
and Applications, 2022.

Mina Khan, P Srivatsa, Advait Rane, Shriram Chenniappa, Asadali Hazariwala, and Pattie Maes. Personalizing
pre-trained models. arXiv preprint arXiv:2106.01499, 2021.

Teuvo Kohonen. Correlation matrix memories. IEEE transactions on computers, 100(4):353–359, 2009.

Simon Kornblith, Jonathon Shlens, and Quoc V. Le. Do Better ImageNet Models Transfer Better? In CVPR, pp.
2656–2666, Long Beach, CA, USA, 2019. IEEE.

Vignesh Kothapalli. Neural collapse: A review on modelling principles and generalization. Transactions on Machine
Learning Research, 2023. ISSN 2835-8856.

Alex Krizhevsky, Geoffrey Hinton, et al. CIFAR-10. https://www.cs.toronto.edu/~kriz/cifar.html, 2009.

Yiting Li, Haiyue Zhu, Jun Ma, Sichao Tian, Chek Sing Teo, Cheng Xiang, Prahlad Vadakkepa, and Tong Heng Lee.
Classification weight imprinting for data efficient object detection. In 2021 IEEE 30th International Symposium on
Industrial Electronics (ISIE), pp. 1–5. IEEE, 2021.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 10012–10022, 2021.

Daniel Marczak, Sebastian Cygert, Tomasz Trzciński, and Bartłomiej Twardowski. Revisiting supervision for continual
representation learning. In European Conference on Computer Vision, pp. 181–197. Springer, 2025.

Thomas Mensink, Jakob Verbeek, Florent Perronnin, and Gabriela Csurka. Distance-based image classification:
Generalizing to new classes at near-zero cost. IEEE transactions on pattern analysis and machine intelligence, 35
(11):2624–2637, 2013.

Yair Movshovitz-Attias, Alexander Toshev, Thomas K Leung, Sergey Ioffe, and Saurabh Singh. No fuss distance
metric learning using proxies. In Proceedings of the IEEE international conference on computer vision, pp. 360–368,
2017.

15

https://www.cs.toronto.edu/~kriz/cifar.html

Under review as submission to TMLR

Kaoru Nakano. Associatron-a model of associative memory. IEEE Transactions on systems, man, and cybernetics, pp.
380–388, 2007.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al. Reading digits in
natural images with unsupervised feature learning. In NIPS workshop on deep learning and unsupervised feature
learning, volume 2011, pp. 4. Granada, 2011.

Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal phase of deep
learning training. Proceedings of the National Academy of Sciences, 117(40):24652–24663, 2020.

Nikolaos Passalis, Alexandros Iosifidis, Moncef Gabbouj, and Anastasios Tefas. Hypersphere-based weight imprinting
for few-shot learning on embedded devices. IEEE Transactions on Neural Networks and Learning Systems, 32(2):
925–930, 2020.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

Ameya Prabhu, Zhipeng Cai, Puneet Dokania, Philip Torr, Vladlen Koltun, and Ozan Sener. Online continual learning
without the storage constraint. arXiv preprint arXiv:2305.09253, 2023.

Hang Qi, Matthew Brown, and David G Lowe. Low-shot learning with imprinted weights. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 5822–5830, 2018.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: Incremental classifier
and representation learning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pp. 2001–2010, 2017.

Terrence J Sejnowski. Storing covariance with nonlinearly interacting neurons. Journal of mathematical biology, 4(4):
303–321, 1977.

Yang Shen, Sanjoy Dasgupta, and Saket Navlakha. Reducing catastrophic forgetting with associative learning: a
lesson from fruit flies. Neural Computation, 35(11):1797–1819, 2023.

Mennatullah Siam, Boris N Oreshkin, and Martin Jagersand. Amp: Adaptive masked proxies for few-shot segmentation.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5249–5258, 2019.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Advances in neural
information processing systems, 30, 2017.

Tom Tirer, Haoxiang Huang, and Jonathan Niles-Weed. Perturbation analysis of neural collapse. In International
Conference on Machine Learning, pp. 34301–34329. PMLR, 2023.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Dingtian Yan, Jitao Huang, Hai Sun, and Fuqiang Ding. Few-shot object detection with weight imprinting. Cognitive
Computation, 15(5):1725–1735, 2023.

Hong-Ming Yang, Xu-Yao Zhang, Fei Yin, and Cheng-Lin Liu. Robust classification with convolutional prototype
learning. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3474–3482, 2018.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep neural networks?
Advances in neural information processing systems, 27, 2014.

Lu Yu, Bartlomiej Twardowski, Xialei Liu, Luis Herranz, Kai Wang, Yongmei Cheng, Shangling Jui, and Joost van de
Weijer. Semantic drift compensation for class-incremental learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 6982–6991, 2020.

Jianxing Zhang, Pengcheng Xi, Ashkan Ebadi, Hilda Azimi, Stéphane Tremblay, and Alexander Wong. Covid-19
detection from chest x-ray images using imprinted weights approach. arXiv preprint arXiv:2105.01710, 2021.

Haiyue Zhu, Xiong Li, Wenjie Chen, Xiaocong Li, Jun Ma, Chek Sing Teo, Tat Joo Teo, and Wei Lin. Weight
imprinting classification-based force grasping with a variable-stiffness robotic gripper. IEEE Transactions on
Automation Science and Engineering, 19(2):969–981, 2022.

16

Under review as submission to TMLR

Zhihui Zhu, Tianyu Ding, Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam, and Qing Qu. A geometric analysis of
neural collapse with unconstrained features. Advances in Neural Information Processing Systems, 34:29820–29834,
2021.

17

Under review as submission to TMLR

A Appendix

A.1 Additional Results

We provide additional tables and critical difference (CD) diagrams that expand on the results of section 5.

Table A.1 & Figure A.1: Benchmarking GEN mechanism for k ≤ 5 across FMs and Ts. Best NORM combination
for each row is used implicitly. AGG is fixed to max. CD diagram depicts statistical significance of k-means as
GEN. See fig. 5 for k ≤ 20.

GEN k Avg. acc. %

k-means 5 89.15
mean 1 86.84
k-medoids 5 84.87
k-cov-max 5 82.11
k-random 5 75.93
k-fps 5 63.64

123456

5.98k-fps (k = 5)
5.00k-random (k = 5)
3.92k-cov-max (k = 5) 2.96 k-medoids (k = 5)

2.06 mean
1.08 k-means (k = 5)

Average rank

Table A.2 & Figure A.2: Benchmarking NORM across FMs and Ts shows crucial effect of L2 normalization.
GEN is fixed to mean and AGG to max. CD diagram depicting statistical significance of L2 for NORMpost.
Combinations are listed as “NORMinf & NORMpre & NORMpost”.

NORMinf NORMpre NORMpost Avg. acc. %

L2 none L2 86.84
none none L2 86.84
L2 L2 L2 86.79
L2 none quantile 82.90
none none quantile 82.90
L2 L2 quantile 82.83
L2 L2 none 83.26
L2 none none 67.66
none none none 67.66

123456789

5.52L2 & none & none
5.52none & none & none
4.31L2 & L2 & none
3.31L2 & L2 & quantile
3.19L2 & none & quantile

3.19 none & none & quantile
2.12 L2 & L2 & L2
1.73 L2 & none & L2
1.73 none & none & L2

Average rank

Table A.3 & Figure A.3: Benchmarking NORM across FMs and Ts. GEN is fixed to k-means with k = 20
and AGG to max. CD diagram depicting statistical significance of L2 for NORMpost . Combinations are listed as
“NORMinf & NORMpre & NORMpost .”

NORMinf NORMpre NORMpost Avg. acc. %

L2 none L2 91.04
none none L2 91.04
L2 L2 L2 91.06
L2 L2 quantile 90.51
L2 L2 none 89.55
L2 none quantile 79.21
none none quantile 79.21
L2 none none 73.53
none none none 73.53

123456789

5.60L2 & none & none
5.60none & none & none
4.65L2 & none & quantile
4.65none & none & quantile
4.21L2 & L2 & none

2.96 L2 & L2 & quantile
1.62 L2 & L2 & L2
1.54 L2 & none & L2
1.54 none & none & L2

Average rank

A.2 Datasets

We briefly describe the datasets used in our experiments.

ImageNet (Deng et al., 2009). We use the ILSVRC 2012 version (commonly called ImageNet-1K)
containing 1 000 classes and 1.2M training images. Since the test set is not publicly available, we use the

18

Under review as submission to TMLR

75

80

85

90
ac

c
%

resnet18, MNIST

68

70

72

74

76

78

80

82
resnet18, FashionMNIST

55

60

65

70

75

resnet18, CIFAR-10

70

75

80

85

ac
c

%

resnet50, MNIST

68

70

72

74

76

78

80

resnet50, FashionMNIST

60

65

70

75

80
resnet50, CIFAR-10

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

ac
c

%

vit_b_16, MNIST

70

72

74

76

78

80

82

vit_b_16, FashionMNIST

82

84

86

88

90

vit_b_16, CIFAR-10

10
1

10
2

#samples n

65

70

75

80

85

ac
c

%

swin_b, MNIST

10
1

10
2

70

72

74

76

78

80

82
swin_b, FashionMNIST

10
1

10
2

80

82

84

86

88

90

swin_b, CIFAR-10

k = n k = 1 k = 5 k = 20

Figure A.4: k-means with different values for k in n-shot scenarios with focus on 10 ≤ n ≤ 400. 95%
confidence intervals shown in shaded colors. Other variables are fixed to our previously described best method
of using L2 for NORM and max as AGG. Note that only data for the meaningful case of k ≤ n is shown. It can
be inferred that, across FMs, for MNIST and FashionMNIST , mean is not the best strategy anymore starting
at only roughly 50 samples. See fig. 10 for more values of n.

19

Under review as submission to TMLR

validation set (50 000 images) as a stand-in. For neural collapse investigations, we construct tasks by randomly
grouping d classes into one label, producing “d in 1” tasks as explained in section 4.

MNIST (Deng, 2012). A benchmark dataset of handwritten digits (0–9), consisting of 60 000 training
and 10 000 test grayscale images of size 28× 28.

FashionMNIST (Xiao et al., 2017). A drop-in replacement for MNIST with the same format and
number of samples, containing grayscale images of fashion items across 10 classes.

CIFAR-10 (Krizhevsky et al., 2009). A dataset of 32 × 32 RGB images covering 10 object classes,
with 50 000 training and 10 000 test samples.

MNIST-M (Ganin et al., 2016), SVHN (Netzer et al., 2011), USPS (Hull, 1994). Digit
classification datasets each containing digits 0-9 with domain-specific visual characteristics. MNIST-M applies
color and texture transformations to MNIST digits, yielding 60 000 training and 10 000 RGB images of size
28× 28. SVHN consists of digit crops from house numbers in Google Street View, totaling 73 257 training
and 26 032 test images of 32 × 32 in RGB. USPS contains scanned and normalized handwritten digits in
16× 16 grayscale, split into 7 219 training and 2 007 test images.

CombiDigits (Ours). A synthetic dataset constructed by merging all classes from MNIST , MNIST-M ,
SVHN , and USPS . Each class label corresponds to a digit (0–9) and fig. A.5 shows example images of class
“6”. The dataset includes significant visual heterogeneity across sources and thus simulates multi-modal,
non-collapsed class distributions.

Figure A.5: Twenty sample images from class “6” of the CombiDigits dataset. Each row corresponds to
one of the four source datasets: MNIST , MNIST-M , SVHN , and USPS (top to bottom), illustrating the
intra-class heterogeneity across domains.

A.3 Imprinting as Memory

We revisit the classical idea of Bidirectional Associative Memories (BAMs) (Kohonen, 2009; Anderson, 1972;
Nakano, 2007; Anderson et al., 1977) and the associated update rule (Sejnowski, 1977; Dayan & Willshaw,
1991) for storing key-value pairs as in

W←W + vk⊤,

where W ∈ Rl×l is a matrix and k, v ∈ Rd are key and value vectors, respectively, to be stored therein.

Throughout this work, imprinting can be interpreted as inserting such key-value associations into the classifier
weights. More precisely, the generation (GEN) component extends the linear classification head by setting v

20

Under review as submission to TMLR

as a one-hot vector representing the class, and k as the corresponding proxy previously computed. While we
focus on this simple linear setting, imprinting is not limited to it, as discussed in section 2.

Notably, this form of direct memory update has seen renewed attention in modern architectures beyond
standard query-key-value attention. In particular, the xLSTM model (Beck et al., 2024) implements this
mechanism within its mLSTM memory blocks, where the matrix memory cell is updated by gated key-value
associations, closely following this classical covariance rule, indicating a broader resurgence of associative
memory principles in contemporary sequence modeling.

A.4 Differences between Foundation Models

While an in-depth comparison of foundation models is beyond the scope of this work, we believe it is important
to highlight key observations we have made. In particular, fig. 11a shows significantly lower NC1 scores for
vit_b_16 and swin_b on their pre-training ImageNet data compared to the resnet models. We hypothesize
that this difference is primarily due to model size and training regimes. The Transformer-based architectures
(vit_b_16 and swin_b) have a considerably higher parameter count (≈ 87M) than the resnet models (11.7M
and 25.6M, respectively). Additionally, vit_b_16 and swin_b were trained for more than three times as
many epochs (300 vs. 90) while using a substantially lower learning rate (0.003 and 0.01 vs. 0.1). Notably,
the embedding dimensions of these models are comparable, meaning that the observed differences in NC1
scores cannot be attributed to differences in representation dimensionality. Instead, we argue that the
combination of larger model size, extended training duration, and lower learning rates likely contributes
to greater overfitting, leading to more pronounced collapse. As discussed in section 5.3, this enables the
Transformer-based FMs to handle the ImageNet tasks with remapped labels more effectively and to achieve
significantly better performance on the similarly distributed CIFAR-10 dataset.

Figure A.6a, similar to fig. 11b, illustrates the impact of varying the number of proxies on imprinting accuracy
across different foundation models (FMs). The key difference in this figure is the use of none for NORMpre
instead of L2. This seemingly minor change reveals a striking contrast between CNN- and Transformer-based
architectures: a distinct and consistent dip between k = 1 and k = d appears in Transformer-based models,
whereas this dip is absent in fig. 11b, where L2 is used as NORMpre, and does not occur at all in the resnet
models. We hypothesize that this difference arises from the distinct embedding distributions of CNN- and
Transformer-based architectures (see, e.g., Hosoda et al. (2024, Figure S2)).

A.5 Learned Weights (with Multiple Proxies) and Comparisons

Harun & Kanan (2025) recently studied the initialization of classifier weights for novel categories in a
Continual Learning (CL) setting using the least squares algorithm, comparing it to random initialization
and class mean imprinting across various loss functions. In contrast, our work centers on imprinting-based
approaches, which avoid using gradient-based optimization and cross-class statistics, operating instead on a
per-class basis with immediate availability of data. Nonetheless, we include the least-squares method as a
supervised oracle baseline – explicitly not an imprinting method – fine-tuned for classification accuracy.

We evaluate the performance of least-squares on the same tasks as defined in section 4. Additionally, we
introduce a multi-proxy extension, k-least-squares, which combines least squares with k-means clustering.
As in the case of weight generation GEN in imprinting (where k-means outperforms mean), we find that using
multiple proxies per class improves performance in settings with high NC1 as well, indicating that the benefits
of multi-prototype representations persist even in this non-imprinting, supervised context.

All experiments use no normalization (none as NORM), based on ablations confirming that additional normal-
ization impairs performance. This matches expectations, since least squares outputs are already calibrated,
and normalization distorts them.

Least Squares Weights. For all data contained in task T, define H ∈ Rl×N as the collection of all feature
vectors of the N training samples in T obtained by applying a fixed FM, i.e., hc,i ∈ Rl is the feature vector of
the i-th sample in the c-th class. Recall from section 3.2 that the within-class covariance matrix ΣW is given
as Ec,i[(hc,i − hc)(hc,i − hc)⊤] and additionally define the total covariance matrix ΣT and the class-means

21

Under review as submission to TMLR

1 in 1 10 in 1

d in 1 (ImageNet)

75

80

85

90

95

100

ac
c

%
resnet18

30

40

50

resnet50

75

80

85

90

95

100

ac
c

%

vit_b_16

5 10 15
number of proxies k

30

40

50

swin_b

5 10 15

MNIST FashionMNIST CIFAR-10 CombiDigits

(a) k-means used as GEN. NORMpost and NORMinf are set to
L2, and NORMpre to none. Besides the prominent peaks
in accuracy at k = d (as already observed in fig. 11b),
a consistent dip between k = 1 and k = d appears in
Transformer-based models, which was not to be seen with
NORMpre set to L2 as well. In appendix A.4 we hypothesize
that this is due to the distinct embeddings distributions
of CNN- and Transformer-based architectures.

1 in 1 10 in 1

d in 1 (ImageNet)

50

60

70

80

90

100

ac
c

%

resnet18 resnet50

number of proxies k

50

60

70

80

90

100

ac
c

%

vit_b_16 swin_b

MNIST FashionMNIST CIFAR-10 CombiDigits

(b) k-least-squares (see appendix A.5) used as GEN and
all NORM are set to none. Here, the CNN-based FMs exhibit
a clear accuracy peak at k = d, with a consistent drop for
intermediate values 1 < k < d. For the Transformer-based
FMs, however, accuracy is typically highest at k = 1 and
only improves slightly around k = d but does not show a
pronounced peak. For all FMs, performance declines with
k > d, indicating that excessive proxy splitting harms gen-
eralization. This degradation does not occur in k-means
GEN, which remains robust even with large k (see figs. 11b
and A.6a).

Figure A.6: Averaged accuracy of ten random ImageNet label remappings (“d in 1”) for every d = 1, . . . , 10
over number of proxies k. 95% CIs are shown in shaded colors. Values for the tasks containing all of MNIST ,
FashionMNIST , CIFAR-10 , resp. CombiDigits at once are shown in dotted lines.

matrix M as

M = [h1, . . . , hC] ∈ Rl×C , ΣT = Ec,i[(hc,i − hG)(hc,i − hG)⊤] ∈ Rl×l.

From these feature statistics, we can obtain the least-squares weights via

WLS = 1
C

M⊤(ΣT + hGh⊤
G + λI)−1. (A.1)

Here, I is the identity matrix and λ is the weight decay. We set λ to match the value used during the original
training of each respective model. Table A.4 lists the specific λ values used for all models considered in our
experiments.

22

Under review as submission to TMLR

Table A.4: Weight decay values λ used for each model.

Model λ

resnet18, resnet50 (He et al., 2016) 0.0001
vit_b_16 (Dosovitskiy et al., 2021) 0.1
swin_b (Liu et al., 2021) 0.05

Equation (A.1) reveals that least-squares shares structural similarities with mean imprinting, but applies
a more sophisticated normalization scheme that includes both scaling and rotation. Crucially, it relies on
cross-class statistics computed across the entire dataset, and thus is incompatible with imprinting scenarios,
which operate by directly constructing class weights from the data of a single class without supervision or
access to other classes.

Algorithm 1 k-least-squares

Input: Class data {Hc}C
c=1, number of proxies k

Output: Weights {Wc}C
c=1 with shape [k, l] per class

1: if k = 1 then
2: return standard least squares weights WLS for each class (see eq. (A.1))
3: end if
4: for each class c do
5: Cluster Hc into k clusters via k-means
6: Assign each cluster j to proxy class (c, j)
7: Collect proxy samples {H(c,j)}k

j=1
8: end for
9: Compute least squares weights w(c,j) jointly for all proxy classes (c, j)

10: Assemble Wc = [w(c,1), . . . , w(c,k)] for each original class c
11: return {Wc}C

c=1

Combining k-means and least-squares into k-least-squares. To allow for multiple proxies per class,
we propose k-least-squares, a generalization of standard least squares (least-squares) that integrates
clustering. Instead of computing a single weight vector per class using all class samples, we first partition
each class’s feature set Hc into k clusters using k-means. Each cluster is treated as a separate proxy class,
effectively expanding the classification task from C to k · C proxy classes. We then solve a single regularized
least squares problem over all proxy classes at once, assigning a distinct target vector to each proxy. The
resulting weights are grouped by their original class to yield k weight vectors per class. The complete
procedure is given in algorithm 1.

The results in fig. A.6b extend previous findings from mean and k-means for the CNN-based FMs, as accuracy
increases with increasing proxy count k, peaks at k = d, and reveals a distinct dip between k = 1 and k = d,
confirming the weakness of using only one proxy per class. For Transformer-based FMs, by contrast, accuracy
is often highest at k = 1, improves slightly near k = d, but lacks a pronounced peak. Beyond k > d, accuracy
generally declines for k-least-squares, indicating diminishing returns from excessive proxy splitting. In
contrast, k-means GEN maintains stable performance even as k grows, demonstrating robustness to increasing
proxy counts.

Comparison with k-means. We now compare the performance of k-means and k-least-squares as
proxy generation methods, noting again that k-least-squares is not an imprinting scheme as it does not
operate on a class-by-class basis as the imprinting methods presented in section 3.1 do.

Upon proper comparison of the best performing k-means and k-least-squares configurations, as depicted
in fig. A.7, we observe that on our synthetic ImageNet tasks, k-least-squares does not consistently offer
a substantial improvement. In fact, it is only on resnet50, in a highly multi-modal setting (d = 10), that

23

Under review as submission to TMLR

k-least-squares reaches better accuracy. For the Transformer-based models, k-means even performs better
in these scenarios.

While the Transformer-based models generally achieve superior performance overall (note the different y-axis
scales for CNN- and Transformer-based models in fig. A.7), a consistent trend across all models is observed:
with increasing multi-modality (increasing d), using more than one proxy, whether through k-means or
k-least-squares, begins to outperform the single-proxy methods (mean and least-squares). Still, it is
striking to see how effective single weights with least-squares can be. However, it is also noteworthy how
easily k-means can bridge this gap, particularly considering that least-squares is not an actual imprinting
scheme, while k-means is.

5 10
d

50

60

70

80

90

100

ac
c

%

resnet18

5 10

resnet50

5 10

86

88

90

92

94

96

98

100
vit_b_16

5 10

swin_b

mean least-squares k-means k-least-squares

Figure A.7: Averaged accuracy of ten random ImageNet label remappings (“d in 1”) for every d = 1, . . . , 10
for mean and least-squares, and optimal k-means and k-least-squares (k ∈ {0, . . . , 15}) weights. 95%
confidence intervals are shown in shaded colors. Note the differing y-axis scales for CNN-based (resnet18,
resnet50) and Transformer-based (vit_b_16, swin_b) models. The figure illustrates that with increasing
multi-modality d, multi-proxy methods (k-means, k-least-squares) generally outperform single-proxy
methods (mean, least-squares), and that the k-means imprinting scheme is competitive with least-squares
approaches.

Furthermore, we evaluate the k-least-squares weight generation method (using none for all NORM) across
the 48 tasks proposed in the main part of our paper (see section 4). least-squares reaches an average
accuracy of 94.54%, while 20-least-squares drops to 91.20%. The observed decrease in accuracy can be
explained by the dynamics shown in fig. A.6b. In comparison to the numbers presented in fig. 2, this shows
that our k-means imprinting scheme significantly bridges the gap between single-proxy imprinting (k = 1)
and the optimal least squares weights.

A.6 Computational Efficiency

Clustering-based imprinting. Our k-means implementation in GEN uses sklearn.cluster.KMeans with
its default parameters. The cost is O(Nklt) for N samples, k clusters, feature dimension l, and t Lloyd
iterations. While k-means is not computationally negligible, both assignment and update steps in each
iteration parallelize naturally, and convergence typically requires only a few iterations. Similarly, the other
steps in our imprinting framework (NORM, AGG) scale linearly with dataset size or proxy count and parallelize
efficiently, resulting in no practical scalability bottlenecks even for larger or more complex datasets.

Gradient-based optimization. The closed-form least-squares costs O(Nl2 + l3 + NlC) from the
covariance computation and matrix inversion. If solved through stochastic gradient descent, the cost is
O(NlCt) with t epochs.

24

Under review as submission to TMLR

Empirical runtime. Table A.5 shows that least-squares is faster than k-means in practice, likely because
it processes all data in a single closed-form step rather than iterating class-by-class. Nevertheless, it should
be clarified again that least-squares represents the analytic, non-iterative optimum derived from gradient
minimization and lacks sequential class handling – precisely where imprinting excels (e.g., in continual or
edge-learning scenarios).

Table A.5: Average runtime in seconds for different GEN variants across all 48 tasks (see section 4). To
ensure transparency, all timing measurements were obtained on identical hardware (8 vCPUs on Intel Xeon
Gold 6438Y+ nodes (2 sockets, 64 physical cores/128 threads)). Cores were not pinned to processes, which
may introduce minor variance; however, we observed less than 10% variation across seeds.

GEN variant Runtime (s)
mean 0.0029
5-means 1.2249
20-means 1.7321
least-squares 0.1593
5-least-squares 1.3724
20-least-squares 2.3717

25

	Introduction
	Related Work
	Methods
	IMPRINT
	Quantifying Neural Collapse

	Experimental Setup
	Results
	Best Imprinting Strategy
	Low-Data Regime
	Neural Collapse and Number of Proxies

	Conclusion
	Appendix
	Additional Results
	Datasets
	Imprinting as Memory
	Differences between Foundation Models
	Learned Weights (with Multiple Proxies) and Comparisons
	Computational Efficiency

