
Robust Sampling for Active Statistical Inference

Puheng Li
Department of Statistics

Stanford University
Stanford, CA 94305

puhengli@stanford.edu

Tijana Zrnic
Department of Statistics and Stanford Data Science

Stanford University
Stanford, CA 94305

tijana.zrnic@stanford.edu

Emmanuel J. Candès
Department of Statistics and Department of Mathematics

Stanford University
Stanford, CA 94305

candes@stanford.edu

Abstract

Active statistical inference [51] is a new method for inference with AI-assisted
data collection. Given a budget on the number of labeled data points that can be
collected and assuming access to an AI predictive model, the basic idea is to im-
prove estimation accuracy by prioritizing the collection of labels where the model
is most uncertain. The drawback, however, is that inaccurate uncertainty esti-
mates can make active sampling produce highly noisy results, potentially worse
than those from naive uniform sampling. In this work, we present robust sam-
pling strategies for active statistical inference. Robust sampling ensures that the
resulting estimator is never worse than the estimator using uniform sampling. Fur-
thermore, with reliable uncertainty estimates, the estimator usually outperforms
standard active inference. This is achieved by optimally interpolating between
uniform and active sampling, depending on the quality of the uncertainty scores,
and by using ideas from robust optimization. We demonstrate the utility of the
method on a series of real datasets from computational social science and survey
research.

1 Introduction

Collecting high-quality labeled data remains a challenge in data-driven research, especially when
each label is costly and time-consuming to obtain. In response, many fields have embraced machine
learning as a practical solution for predicting unobserved labels, such as annotating satellite imagery
in remote sensing [46] and predicting protein structures in proteomics [24]. Prediction-powered
inference [1] is a methodological framework showing how to perform valid statistical inference
despite the inherent biases in such predicted labels.

Active statistical inference [51] was recently introduced to further enhance inference by actively
selecting which data points to label. The basic idea is to compute the model’s uncertainty scores for
all data points and prioritize collecting those labels for which the predictive model is most uncertain.
When the uncertainty scores appropriately reflect the model’s errors, Zrnic and Candès [51] show
that active inference can significantly outperform prediction-powered inference (which can essen-
tially be thought of as active inference with naive uniform sampling), meaning it results in more
accurate estimates and narrower confidence intervals. However, when uncertainty scores are of poor
quality, active inference can result in overly noisy estimates and large confidence intervals. This
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Figure 1: Effective sample size and coverage on Pew post-election survey data. We compare
uniform, active, and robust active sampling, for different values of the sampling budget nb. The
target of inference is the approval rate of a presidential candidate. We show one standard deviation
around the effective sample size.

is an important limitation, seeing that there is widespread recognition that measuring model uncer-
tainty is challenging. Large language models, for example, are often overconfident in their answers
[10, 47, 48]. Miscalibrated uncertainty scores also arise when there is a distribution shift between
the training data and the test domain.

To illustrate the issue empirically, consider the problem of estimating the approval rate of a pres-
idential candidate: θ∗ = E[Y ], where Y ∈ {0, 1} is the binary indicator of approval, using Pew
post-election survey data [32]. Here, we have demographic covariates X1, . . . , Xn corresponding
to n people, but we do not observe the approval indicator Yi for everyone. Rather, we have a budget
nb < n on how many people we can survey and collect their Yi. In addition, we have a machine
learning model f that we can use to obtain a cheap prediction f(Xi) of Yi from the available covari-
ates. Active inference suggests surveying those individuals where f is uncertain. For example, if
f(Xi) is obtained by thresholding a continuous score p(Xi) ∈ [0, 1] representing the probability the
model assigns to the missing label taking on the value 1, this could mean prioritizing the collection
of labels where p(Xi) is close to 0.5. In Figure 1, we show the effective sample size and coverage of
prediction-powered inference (uniform sampling), standard active inference, and our robust active
inference method, for varying values of the budget nb. The effective sample size is formally de-
fined in Section 4; it is the number of samples the method that samples uniformly at random would
need to use to achieve the accuracy of the labeling method under study. To demonstrate a challenge
for active inference, we train f on a small dataset, resulting in poorly estimated uncertainties. We
see that active sampling results in a smaller effective sample size than simple uniform sampling.
This is because the variance of the active sampling strategy is large. Meanwhile, the robust method
outperforms both baselines. This is achieved by estimating the quality of the uncertainty scores
and optimally interpolating between uniform and active sampling. All three methods come with
provable validity guarantees, as confirmed by the achieved target coverage of 90%.

The source code for all experiments is available at https://github.com/lphLeo/

Robust-Active-Statistical-Inference.

1.1 Related work

Our paper builds on active statistical inference [51], which itself builds on prediction-powered in-
ference [1] and, more generally, statistical inference assisted by predictive models [29, 40, 45].
There is a growing literature in this space, aimed at ensuring robustness against poor predic-
tions [2, 16, 19, 23, 30, 31], sample efficiency when there is no good pre-trained model f [52],
simplicity and applicability to more general estimation problems [25, 50], and handling missing
covariates [25, 31]. Notably, several works study adaptive label collection strategies [3, 14, 17].

Zooming out further, at a technical level this line of work relates to semiparametric inference, miss-
ing data, and causality [34, 35, 37, 44]. In particular, the prediction-powered and active inference
estimators closely resemble the augmented inverse probability weighting (AIPW) estimator [35].
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Our work also connects with many areas in machine learning and statistics that study adaptive data
collection; most notably, active learning [36, 39] and adaptive experimental design [13, 21]. We
collect data based on model uncertainty, akin to active learning; however, our objective is statistical
inference on typically low-dimensional parameters, rather than prediction. Active testing [26] also
involves adaptive data collection, but it pursues a different objective of high-precision risk estimation
for a fixed model and uses a distinct estimator. Our approach can be seen as an adaptive design
assisted by a powerful predictive model, with a robustness wrapper for improved performance.

More distantly, our work also relates to robust statistics and robust machine learning [8, 20, 22, 33,
41, 42, 49]. In particular, our method provides a safeguard against poor uncertainty estimation by
solving a robust optimization problem [5, 6, 15].

1.2 Problem setup

We follow the problem setting from [51]. We observe unlabeled instances X1, . . . , Xn drawn i.i.d.
from a distribution PX , but we do not observe their labels Yi. We use P = PX × PY |X to denote
the joint distribution of (Xi, Yi). Our goal is to perform inference for a parameter θ∗ that depends
on the distribution of the unobserved labels; that is, the parameter is a functional of P . In particular,
we assume that θ∗ can be written as:

θ∗ = argmin
θ

E [ℓθ(X,Y )] , where (X,Y ) ∼ P.

Here, ℓθ is a convex loss function. This is a broad class of estimands, known as M-estimation, and it
includes means, medians, linear and logistic regression coefficients, and more. We have a budget nb

on the number of labels we can collect in expectation, and typically nb ≪ n. To assist in imputing
the missing labels, we also have a black-box predictive model f at our disposal.

2 Warm-up: robust sampling for mean estimation

Consider the case where θ∗ is the label mean, θ∗ = E[Y ]. The active inference estimator for θ∗ is
given by:

θ̂π =
1

n

n∑
i=1

(
f (Xi) + (Yi − f (Xi))

ξi
π (Xi)

)
. (1)

Here, π(·) is any sampling rule that satisfies E[π(X)] ≤ nb

n so that the budget constraint is met on
average, and ξi ∼ Bern(π(Xi)) is the indicator of whether the label Yi is sampled. Since the number
of labeled data points is a sum of independent Bernoullis, a standard Hoeffding argument guarantees
that the realized labeling rate will closely match the budget with high probability. Specifically, the
labeling ratio will not exceed nb

n + ϵ with probability 1 − δ, provided that n > log(1/δ)
2ϵ2 for any

ϵ, δ > 0. As shown in [51], the variance of this estimator is

Var
(
θ̂π

)
=

1

n

(
Var(Y ) + E

[
(Y − f(X))2

(
1

π(X)
− 1

)])
, (2)

and the optimal sampling rule is πopt(Xi) ∝
√
E[(Yi − f(Xi))2|Xi]. In other words, it is optimal

to upsample where the model f makes the largest errors.

The most straightforward sampling rule that satisfies the budget constraint is the uniform rule:
πunif(X) = nb/n. However, if we have access to a good measure of model uncertainty that can
serve as a proxy for the model error

√
E[(Yi − f(Xi))2|Xi], then we can obtain a rule that is closer

to πopt. For example, we might prompt a large language model for its uncertainty about Xi or look
at the softmax output of a neural network, and upsample where the uncertainty is high. The issue is
that if we severely underestimate the model error, then the estimator’s variance can blow up: clearly,
if π(Xi) is small when the actual error (Yi − f(Xi))

2 is large, the variance will be large as well.
This is the reason why we saw poor performance in Figure 1.

Given any initial sampling rule π, our approach is to find an improved, robust sampling rule πrobust

that is never worse than either π or πunif . By that we mean that the resulting active inference
estimator will have a variance that is no worse that with either π or πunif used for label collection:
Var(θ̂π

robust

) ≤ min{Var(θ̂π),Var(θ̂πunif

)}.
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2.1 Budget-preserving path

Since our goal is to find a sampling rule πrobust that performs no worse than πunif and an arbitrary
given π, it is natural to consider a path that connects π and πunif , while preserving the sampling
budget along the path.

Definition 1 (Budget-preserving path). We call a continuous path π(ρ), ρ ∈ [0, 1], a budget-
preserving path connecting π and πunif if π(0) = π, π(1) = πunif , and E[π(ρ)(X)] = E[π(X)]
for all ρ ∈ [0, 1].

Correspondingly, given a point ρ along the path, we compute the estimator θ̂π
(ρ)

, obtained as the
active inference estimator (1) with sampling rule π(ρ). The following are some examples of valid
budget-preserving paths.

Example 1 (Linear path). π(ρ) = (1− ρ)π + ρπunif .

Example 2 (Geometric path). π(ρ) ∝ π1−ρ(πunif)ρ. The “∝” hides the normalization factor that
ensures E[π(ρ)(X)] = E[π(X)] for all ρ.

A natural family of budget-preserving paths can be recovered via the “least-action” principle, yield-
ing the definition of geodesic paths. See Appendix B for a general definition of geodesic paths,
details of how Examples 1 and 2 can be recovered as special cases, as well as further examples.

Of course, if we consistently estimate the optimal point ρ∗ ∈ [0, 1] along the path, we are guaranteed
to find an estimator that outperforms naive active inference and uniform sampling. Moreover, the
resulting estimator is still asymptotically normal, which permits the construction of valid confidence
intervals. We formalize this key result below in which σ2

ρ = nVar(θ̂π
(ρ)

).

Theorem 1. Suppose π(ρ) is a budget-preserving path connecting π and πunif . Let ρ∗ =

argmin
ρ

Var(θ̂π
(ρ)

), and suppose ρ̂ = ρ∗ + oP (1). Then,

√
n
(
θ̂π

(ρ̂)

− θ∗
)

d−→ N
(
0, σ2

ρ∗

)
,

where σ2
ρ∗ ≤ min{σ2

0 , σ
2
1}.

Theorem 1 shows that consistently estimating ρ∗ will result in an estimator that is no worse than
either endpoint. If ρ∗ is additionally unique and within (0, 1), then the resulting sampling will
strictly outperform both active sampling with π and uniform sampling. The theoretical results in
this paper are asymptotic; however, validity in the finite-sample regime is shown empirically in the
experiments in Section 4.

It remains to explain how to estimate ρ̂. Recall from (2) that Var(θ̂π
(ρ)

) = 1
nE[

e2(X)
π(ρ)(X)

] +C, where

e2(X) = E[(Y −f(X))2|X] and C is a quantity that has no dependence on π(ρ). Therefore, to fit ρ̂,
we fit an error function ê2(·) ≈ e2(·) and solve for the ρ that minimizes the empirical approximation
of Var(θ̂π

(ρ)

):

ρ̂ = argmin
ρ

1

n

n∑
i=1

ê2(Xi)

π(ρ)(Xi)
. (3)

We can find the solution by performing a grid search over ρ ∈ [0, 1]. The error ê2(·) can be fit
on historical or held-out data, or it can be gradually fine-tuned during the data collection process.
Notice that, if the error estimation is consistent in the sense that ∥ê2(X)−e2(X)∥∞

p→ 0 and if ρ∗ is
unique, then ρ̂

p→ ρ∗, as assumed in Theorem 1. Here, the assumption that ê converges to e follows
from classical arguments of uniform approximation of flexible estimators, and is common in the
field of semiparametric inference. For instance, the widely-used doubly robust estimator [18, 35],
which is closely related to our estimator, relies on consistent estimation of nuisance functions.

2.2 Robustness to error function misspecification

Given a path π(ρ), the previous discussion suggests finding ρ̂ that minimizes an empirical approxi-
mation of the variance Var(θ̂π

(ρ)

). This empirical approximation relies on an error estimate ê(·). If
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this function is severely misspecified, then the computed ρ̂ might be far from ρ∗; more importantly,
it might not even outperform uniform sampling.

To mitigate this concern, we instead consider a robust optimization problem that incorporates the
possibility of ê being misspecified:

ρrobust = argmin
ρ

max
ϵ∈C

1

n

n∑
i=1

ê2(Xi) + ϵi
π(ρ)(Xi)

. (4)

Here, ϵ = (ϵ1, . . . , ϵn) is the misspecification vector and C is the admissible set of misspecifications.
This method allows for setting π(ρ) close to uniform if the misspecification set C is permissive
enough. Solving this minimax problem is computationally efficient, as long as C is a convex set.
The outer problem can be solved via a one-dimensional grid search, while the inner problem is
tractable due to convexity.

Now, the question is how we should set C in practice. Our default will be to simply use C =
{ϵ : ∥ϵ∥2 ≤ c}, for some hyperparameter c > 0. Empirically, c can be set by cross-validation.
Other choices of the set C are possible, such as bounding other norms of ϵ, for example ∥ϵ∥1 < c.
Empirically we found the ℓ2 norm to work the best, and in illustrative theoretical examples we reach
the same conclusion; see Appendix C for details. We also tried relative misspecification, in the sense
that ϵi = ê2(Xi)(1+ ηi), and constrained either the ℓ1 or ℓ2 norm of the relative perturbation η. We
found that this does not perform as well.

Zrnic and Candès [51] briefly discussed a robustness proposal with linear interpolation. It assumes
access to historical data, and otherwise it selects a default value for the coefficient, which has no
guarantee to outperform uniform and active sampling. Our analysis is far more thorough and sys-
tematic, expanding the set of interpolating paths, not requiring historical data but incorporating a
burn-in period, and adding a robustness constraint. These are all crucial for the practicality and
reliability of the method; see Section 4 for details.

There are other potential optimization objectives to take into account robustness constraints. For
example, one may penalize small values of ρ in the objective (3) with regularization, and similarly
use cross-validation to choose the penalty parameter. We leave the investigation of such alternatives
for future work.

3 Robust sampling for general M-estimation

Our sampling principle can be directly extended to general convex M-estimation, as considered in
[51]. We explain this step-by-step for completeness.

Recall that we consider all inferential targets of the form θ∗ = argminθ E [ℓθ(X,Y )], for a convex
loss ℓθ. Denote ℓθ,i = ℓθ (Xi, Yi) , ℓ

f
θ,i = ℓθ (Xi, f (Xi)), and define ∇ℓθ,i and ∇ℓfθ,i similarly. For

an active sampling strategy π, the general active inference estimator is defined as:

θ̂π = argmin
θ

Lπ(θ), where Lπ(θ) =
1

n

n∑
i=1

(
ℓfθ,i +

(
ℓθ,i − ℓfθ,i

) ξi
π(Xi)

)
. (5)

As before, ξi ∼ Bern(π(Xi)) is the indicator of whether the label Yi is sampled. Following [51],
we know that the asymptotic covariance matrix of θ̂π equals:

Σπ = H−1
θ∗ Var

(
∇ℓfθ∗ +

(
∇ℓθ∗ −∇ℓfθ∗

) ξ

π(X)

)
H−1

θ∗ ,

where Hθ∗ is the Hessian Hθ∗ = ∇2E [ℓθ∗(X,Y )].

We again consider budget-preserving paths π(ρ) and tune the parameter ρ such that we minimize the
variance of the resulting estimator θ̂π

(ρ)

. Denote by Σ0 and Σ1 the asymptotic covariance matrices
of the active inference estimator (5) using π(0) = π and π(1) = πunif , respectively.

Theorem 2. Suppose π(ρ) is a budget-preserving path connecting π and πunif . Given a coordinate j
of interest, let ρ∗ = argmin

ρ
Σπ(ρ)

jj , and suppose ρ̂ = ρ∗ + oP (1). Suppose further that θ̂π
(ρ∗) p−→ θ∗.

5



Then,
√
n
(
θ̂π

(ρ̂)

− θ∗
)

d−→ N (0,Σρ∗) ,

where Σρ∗,jj ≤ min{Σ0,jj ,Σ1,jj}.

The consistency condition θ̂π
(ρ∗) p−→ θ∗ is standard; see the corresponding discussion in [51] and

[2]. For example, it is ensured when Lπ is convex, such as in the case of generalized linear models
(GLMs), or when the parameter space is compact.

As in the case of mean estimation, we fit ρ̂ by approximating the variance of the estimator Σπ(ρ)

and searching over ρ. However, here the notion of error e2(·) we need to estimate is different. In
particular, given the form of Σπ , we let

ρ̂ = argmin
ρ

1

n

n∑
i=1

ê2(Xi)

π(ρ)(Xi)
,

where ê2(X) aims to approximate e2(X) = E[((∇ℓθ∗ − ∇ℓfθ∗)⊤h(j))2|X] and h(j) is the j-th
column of H−1

θ∗ . In the context of generalized linear models (GLMs), this error simplifies to
e2(X) = E[(Y − f(X))2|X] · (X⊤h(j))2. Therefore, as for mean estimation, the problem es-
sentially reduces to estimating the error E[(Y − f(X))2|X]. As before, if ê2 consistently estimates
e2, then ρ̂ consistently estimates ρ∗.

Finally, to protect against poorly estimated errors ê, we can incorporate an uncertainty set C around
the error estimates just as before (4). Again, the only difference here is that the ê2(Xi)’s are esti-
mating a different notion of model error tailored to the inference problem at hand.

We summarize our general robust active inference algorithm in Algorithm 1.

Algorithm 1: Robust Active Inference
Input: unlabeled data X1, . . . , Xn, labeling budget nb, predictive model f , initial sampling

rule π, budget-preserving path π(ρ), error estimator ê2(·), robustness constraint C
1 Solve the minimax problem ρrobust = argmin

ρ∈[0,1]

max
ϵ∈C

1
n

∑n
i=1

ê2(Xi)+ϵi
π(ρ)(Xi)

2 Sample labeling decisions according to π(ρrobust)(Xi): ξi ∼ Bern
(
π(ρrobust)(Xi)

)
, i ∈ [n]

3 Collect labels {Yi : ξi = 1}
Output: estimator θ̂π

(ρrobust) = argmin
θ

Lπ(ρrobust) , as defined in Eq. (5)

4 Experiments

We turn to evaluating the performance of our robust sampling approach empirically. Each of the fol-
lowing subsections is dedicated to a different experiment using social science research data. Section
4.1 measures presidential approval, Section 4.2 analyzes US age–income patterns, and Section 4.3
applies language models to score text on social attributes such as political bias. On each of these
datasets, we use the following methods to collect labels: (1) uniform sampling, which essentially
recovers prediction-powered inference [1]; (2) standard uncertainty-based active sampling [51]; and
(3) our robust active method as per Algorithm 1. Each dataset will use a different base predictive
model f , which we describe therein. We set the target coverage level to be 0.9 throughout.

The main metric used for the comparison is effective sample size. To define this metric formally,
consider the baseline estimator that samples uniformly at random, i.e., according to πunif . Its effec-
tive sample size is simply its budget nb. For other estimators, we say that the effective sample size is
equal to neff if the estimator achieves the same variance as the baseline estimator with budget neff .
For example, if given budget nb = 100 the estimator achieves the same variance as the baseline
estimator with double the budget, then the estimator has neff = 200. A larger neff indicates a more
efficient estimator. In the case where the effective sample size falls below the budget, neff < nb, the
estimator performs worse than the baseline. We show one standard deviation around the effective
sample size in all plots.
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Figure 2: Effective sample size on Pew post-election survey data, for different dataset sizes used
to train f . We compare uniform, active, and robust active sampling, for different values of the
sampling budget nb. The target of inference is the approval rate of a presidential candidate.

We also plot empirical estimates of the methods’ coverage. We estimate the coverage by resampling
the data, constructing confidence intervals for each resampling, and calculating the proportion of
times the true parameter value (approximated by the full-data estimate of the target θ∗) falls within
the constructed intervals. This approach allows us to assess how reliably each method achieves the
target coverage level. We resample 500 times to estimate the coverage. (We note that this approach
yields conservative coverage estimates when nb is large, because we have n − nb “fresh” labels to
approximate θ∗.) From the theory, we know that the coverage should be exactly 0.9 for all baselines.

4.1 Post-election survey research

Following [51], we evaluate the different methods on survey data collected by the Pew Research
Center following the 2020 United States presidential election, aiming at gauging people’s approval
of the presidential candidates’ political messaging [32]. We aim to estimate the approval rate
θ∗ = E[Y ], where Y ∈ {0, 1} is a binary indicator of approval of Biden’s political messaging.
We use a multilayer perceptron (MLP) as our predictive model f . At the beginning, we have a
“burn-in” period where we collect all burn-in labels Yi and we use this burn-in data to estimate
the error function ê(·). Afterwards, we use the fitted function to run robust active inference, as per
Algorithm 1. Naturally, the burn-in period counts towards the overall labeling budget nb.

We study three questions: (1) the effect of tuning ρ along the budget-preserving path, without incor-
porating a robustness constraint C; (2) the effect of tuning ρ along the path and the robust optimiza-
tion over C combined; and (3) the performance of different budget-preserving paths.

Tuning along the budget-preserving path. First, we conduct an experiment without the robust-
ness set C, only tuning the parameter ρ̂ along the budget-preserving path. We choose the geometric
path from Example 2. To implement active inference, we use π(x) ∝ min{f(x), 1 − f(x)}, in
which f(x) is the predicted probability that the label takes on the value 1, as considered in [51]. See
Figure 2 for the results. We consider two training dataset sizes used to train f , allowing us to see
the results for a less accurate f (left) and a more accurate one (right). We find that, even without
robust optimization but only optimizing along the budget-preserving path, robust active inference
can lead to noticeable improvements in terms of power compared to naive uncertainty-based active
sampling and uniform sampling. The performance of standard active inference crucially depends on
the quality of f and its uncertainties. We defer the corresponding coverage plots to Appendix E.

Incorporating robustness. One strategy proposed by Zrnic and Candès [51] is to estimate ê and
set π proportional to ê. With this choice, without the additional step of robust optimization, our
robust sampling approach would trivially estimate ρ̂ = 0 (a proof of this claim can be found in
Appendix A). We show that incorporating the robustness constraint resolves this issue when π(x) ∝
ê(x). As in the previous case, we use the geometric path and an MLP as the predictive model. The
results are shown in Figure 3. Recall, ê is estimated from the burn-in data. Thus, the longer the burn-
in period, the better the fit ê. This is consistent with the observation that active inference gradually
outperforms uniform sampling as the burn-in period grows. However, when there is little data to fit ê,
active sampling leads to a significantly higher variance than uniform sampling. Our robust sampling
approach is never worse than either baseline, across all burn-in data sizes. This is explained by the
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Figure 3: Effective sample size (top) and coverage (bottom) on Pew post-election survey data,
for varying burn-in dataset sizes with respect to different proportions of the data. We compare
uniform, active, and robust active sampling, for different values of the sampling budget nb. The
target of inference is the approval rate of a presidential candidate.
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Figure 4: Effective sample size for different budget-preserving paths on Pew post-election sur-
vey data, without (left) and with (right) a robustness constraint C. In both cases, the geometric path
leads to the largest effective sample size. The target of inference is the same as in Figure 3.

fact that, when the fit ê is poor, the constraint set C chosen via cross-validation is large, resulting
in a large ρrobust, thus pushing the sampling rule closer to uniform. In Figure 6 (left), we plot the
optimized value ρrobust for different burn-in sizes. As expected, ρrobust decreases, which means
that the optimal strategy gradually moves from uniform sampling toward standard active sampling
as the quality of ê improves.

Choice of budget-preserving path. We have thus far used the geometric path as our budget-
preserving path. In Figure 4 we compare three budget-preserving paths: the linear path, the geo-
metric path, and the Hellinger path (see Appendix B). On the post-election survey dataset, Figure 4
shows that the geometric path is the best of the three chosen paths, regardless of whether or not
robust optimization over C is used. Therefore, as a practical default, we recommend using the geo-
metric path. It has been stress-tested and has consistently demonstrated strong performance in our
evaluations. We believe this is a good tradeoff between simplicity and performance. For improved
performance with a better choice of path, the practitioner might want to tune it in a data-driven way;
for example, based on the estimated variance on a small held-out dataset.

4.2 Census data analysis

We study the annual American Community Survey (ACS) Public Use Microdata Sample (PUMS)
collected by the US Census Bureau [12]. We are interested in investigating the relationship between

8



1728 1958 2218
402

569

805

1140

1614

2284

3233

E
ffe

ct
iv

e 
sa

m
pl

e 
si

ze Burn-in size = 140

1443 1744 2109
542

737

1001

1361

1850

2515

3418
Burn-in size = 280

1576 1874 2230
723

938

1217

1579

2048

2657

3446
Burn-in size = 420

1478 1773 2127
831

1050

1327

1676

2118

2676

3382
Burn-in size = 560

1746 2036 2375
1102

1348

1649

2017

2467

3017

3691
Burn-in size = 840

nb

uniform active robust active

Figure 5: Effective sample size on US Census data, for varying burn-in dataset sizes. We compare
uniform, active, and robust active sampling, for different values of the sampling budget nb. The
target of inference is the relationship between age and income, estimated via a linear regression.
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Figure 6: Optimized value ρrobust along the geometric path as a function of the size of the burn-in
data for the post-election survey data (left) and US Census data (right).

age and income in survey data collected in California in 2019, controlling for sex. We estimate the
age coefficient θ∗ of the linear regression vector when regressing income on age and sex. We use an
XGBoost model [9] to predict income Y from available demographic covariates. As in the previous
problem, we set π(x) ∝ ê(x), as in [51], and fit ê using burn-in data. We use the geometric path and
incorporate the robust optimization over C. We show the results in Figure 5. Again, we observe that
the robust approach outperforms both standard active sampling and uniform sampling for different
qualities of the error estimate ê(·), corresponding to different burn-in dataset sizes. Standard active
inference, on the other hand, is very sensitive to the quality of ê. In Figure 6 (right), we plot the
optimized value ρrobust for different burn-in sizes. As in the previous example, ρrobust decreases as
the quality of ê improves, as expected. We include corresponding coverage plots in Appendix E.

4.3 Computational social science with language models

We study three text annotation tasks used for computational social science research. In each task,
we have text instances Xi and we seek to collect labels Yi related to the text’s sentiment, political
leaning, and so on. We wish to use a large language model (LLM) f to predict the high-quality
annotations Yi, which are typically collected through laborious human annotation. A natural way of
actively sampling human annotations is according to the confidence of the language model [17, 27].
Tian et al. [43] propose prompting LLMs to verbalize their confidence in the provided answer, and
they find that this results in fairly calibrated confidence scores. Gligorić et al. [17] find that such
scores can be useful in actively sampling human annotations. We use GPT-4o annotations and
confidences collected by Gligorić et al. [17]. We apply active inference with π(Xi) ∝ (1 − Ci),
where Ci is the collected confidence score of the language model for prompt Xi. This can be a brittle
strategy, since the scores are often overconfident and thus result in very small sampling probabilities,
which can blow up the estimator variance through inverse probability weighting. For robust active
inference, we use the geometric path and robust optimization with an ℓ2 constraint set C, as before.
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Figure 7: Effective sample size on social science text annotation datasets. We compare uniform,
active, and robust active sampling, for different values of the sampling budget nb. The targets of
inference are (left to right) the prevalence of right-leaning political bias, the relationship between
hedging and politeness, and the prevalence of misinformation.

Political bias. In the first task, the goal is to study the political leaning of media articles, using the
data curated by Baly et al. [4]. The labels Y are one of left, centrist, or right. The inferential
target is the prevalence of right-leaning articles: θ∗ = E[1{Y = right}].

Politeness. The next task is to estimate how certain linguistic devices impact the perceived polite-
ness of online requests. We use the dataset of requests from Wikipedia and StackExchange curated
by Danescu-Niculescu-Mizil et al. [11]. We study how the presence of hedging in the request,
Xhedge ∈ {0, 1}, impacts whether a text is seen as polite, Y ∈ {0, 1}. Formally, θ∗ is this effect
estimated via a logistic regression with an intercept: logit (P (Y = 1 | Xhedge )) = θ0+ θ∗Xhedge .

Misinformation. Finally, we study the prevalence of misinformation in news headlines, using the
dataset collected by Gabrel et al. [15]. The labels Y ∈ {0, 1} indicate whether a headline contains
misinformation. The inferential target is the prevalence of misinformation, θ∗ = E[Y ].

We show the results in Figure 7. Across all tasks, the robust approach is essentially never worse than
uniform sampling or active inference, in cases even outperforming both by a large margin. Standard
active inference often leads to large intervals, given that sampling directly according to the model’s
verbalized uncertainty leads to instability through inverse probability weighting. We include the
corresponding coverage plots in Appendix E.

5 Conclusion

We presented robust sampling strategies for active inference: a principled hedge between uniform
and conventional active sampling. By selecting an optimal tuning parameter ρ along a budget-
preserving path, robust active inference ensures performance that is no worse than with standard
active sampling, and it reduces to near-uniform sampling when uncertainty scores are unreliable.
Furthermore, the estimator can even surpass standard active inference given reliable uncertainties.

Many directions remain for future work. For example, it would be valuable to understand how to
optimally choose the constraint set C, or at least how to choose between several different constraint
sets. As presented, our procedure is sensitive to the choice of C and may result in sampling rules that
are too close or too far from uniform if this set is chosen poorly. We also leave investigations into
the optimal budget-preserving path, and practical heuristics for how a practitioner might effectively
choose a good path in a data-driven way, for future work.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. The claims
made match theoretical and experimental results, and reflect how much the results can be
expected to generalize to other settings.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations and future work are discussed in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: See Theorems in Section 2 and 3, with proofs provided in Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Experiments are introduced in detail in Section 4 with all the information
needed to reproduce the main experimental results of the paper to the extent that it affects
the main claims and/or conclusions of the paper. Additional experiments are included in
Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Open access to data and code are provided in supplementary materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Experiments are introduced in detail in Section 4 with all the training and
test details necessary to understand the results. Additional experiments are included in
Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All the methods introduced in the paper are assessed with confidence inter-
vals, and achieved the prescribed statistical coverage level, with results shown in Section 4
and Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: It was mentioned in Section 2 that the algorithm is computationally efficient
and cheap.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Positive impacts are discussed throughout the paper. There are no negative
societal impacts of the work performed.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cited all used datasets appropriately.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: Included in supplementary file.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is used only for writing, editing, or formatting purposes and does not
impact the core methodology, scientific rigor, or originality of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proofs

A.1 Proof of Theorem 1

By the definition of θ̂π
(ρ)

, we have

θ̂π
(ρ)

=
1

n

n∑
i=1

(
f (Xi) + (Yi − f (Xi))

ξi
π(ρ) (Xi)

)
.

From the assumption, we have ρ̂ = ρ∗ + oP (1). By the continuity of the budget-preserving path
π(ρ), it follows that π(ρ̂)(Xi) = π(ρ∗)(Xi) + oP (1) for any i ∈ {1, . . . , n}. This, as a result, gives
θ̂π

(ρ̂)

= θ̂π
(ρ∗)

+ oP (1) by the continuity of θ̂π
(ρ)

.

It follows from Proposition 1 in [51] that we have
√
n
(
θ̂π

(ρ∗)

− θ∗
)

d−→ N
(
0, σ2

ρ∗

)
, σ2

ρ∗ = Var(θ̂π
(ρ∗)

).

Since θ̂π
(ρ̂) p−→ θ̂π

(ρ∗)

, √
n
(
θ̂π

(ρ̂)

− θ∗
)

d−→ N
(
0, σ2

ρ∗

)
.

By the definition of ρ∗, ρ∗ = argmin
ρ

Var(θ̂π
(ρ)

), we have

σ2
ρ∗ = Var(θ̂π

(ρ∗)

) ≤ min{Var(θ̂π
(0)

),Var(θ̂π
(1)

)} = min{σ2
0 , σ

2
1}.

This completes the proof.

A.2 A sufficient condition for ρ̂ = ρ∗ + oP (1)

Proposition 1. Suppose ê2(X) = e2(X) + oP (1), and ρ∗ is unique. Suppose ê(X) is uniformly
upper bounded by M > 0. Suppose further that π(ρ)(X) is uniformly lower-bounded by m > 0,
then we have ρ̂ = ρ∗ + oP (1).

Proof. Denote

F =

{
fρ(x) =

ê2(x)

π(ρ)(x)
: ρ ∈ [0, 1]

}
.

We first show that F is a P-Glivenko-Cantelli class.

Since π(ρ) is continuous, and supported on [0, 1], it is uniformly continuous on [0, 1]. Hence for any
δ > 0, there exists η > 0 such that |π(ρ1)(X) − π(ρ2)(X)| ≤ m2

M2 δ whenever |ρ1 − ρ2| ≤ η. Now,
we cover [0, 1] with a grid 0 = ρ0 < ρ1 < · · · < ρK = 1, where ρk − ρk−1 = η for k ≤ K − 1.
Then, for any ρ ∈ [ρk−1, ρk], we have

|fρ(x)− fρk−1
(x)| =

∣∣∣∣ ê2(x)

π(ρ)(x)
− ê2(x)

π(ρk−1)(x)

∣∣∣∣ ≤ M2

m2

∣∣∣π(ρ)(x)− π(ρk−1)(x)
∣∣∣ ≤ δ.

Hence [fρk−1
− δ, fρk−1

+ δ] is an 2δ-bracket in L1(P ) that contains every fρ with ρ ∈ [ρk−1, ρk].
So the bracketing number N[] is finite, N[](2δ,F , L1(P )) ≤ K ≤ 1

η + 1 < ∞. We thus conclude
from the Blum-DeHardt theorem that F is a P-Glivenko-Cantelli class. Consequently, we have

sup
ρ∈[0,1]

∣∣∣∣∣ 1n
n∑

i=1

ê2(Xi)

π(ρ)(Xi)
− E

ê2(X)

π(ρ)(X)

∣∣∣∣∣ p−→ 0.

This implies that ∣∣∣∣∣ inf
ρ∈[0,1]

1

n

n∑
i=1

ê2(Xi)

π(ρ)(Xi)
− inf

ρ∈[0,1]
E

ê2(X)

π(ρ)(X)

∣∣∣∣∣ p−→ 0.
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By definition, ρ̂ = argmin
ρ

1
n

∑n
i=1

ê2(Xi)
π(ρ)(Xi)

. Denote S = argmin
ρ

E ê2(X)
π(ρ)(X)

. Then, by continuity

of π(ρ)(X), we have d(ρ̂, S)
p−→ 0, for d(ρ̂, S) = inf{|ρ̂− ρ̂∗| : ρ̂∗ ∈ S}.

Now, for any ρ̂∗ ∈ S, we have

E
e2(X)

π(ρ̂∗)(X)
≤ E

ê2(X) + oP (1)

π(ρ̂∗)(X)

≤ E
ê2(X)

π(ρ∗)(X)
+ oP (1)E

1

π(ρ̂∗)(X)

≤ E
e2(X) + oP (1)

π(ρ∗)(X)
+ oP (1)E

1

π(ρ̂∗)(X)

= E
e2(X)

π(ρ∗)(X)
+ oP (1)E

[
1

π(ρ∗)(X)
+

1

π(ρ̂∗)(X)

]
= E

e2(X)

π(ρ∗)(X)
+ oP (1).

Since

Var(θ̂π
(ρ)

) = E
(

e2(X)

π(ρ)(X)

)
+ C,

where C is a constant independent of ρ, we have

Var(θ̂π
(ρ̂∗)

) ≤ Var(θ̂π
(ρ∗)

) + oP (1).

On the other hand, by the definition of ρ∗,

Var(θ̂π
(ρ̂∗)

) ≥ Var(θ̂π
(ρ∗)

)

also holds. Whence Var(θ̂π
(ρ̂∗)

)
p−→ Var(θ̂π

(ρ∗)

).

Since ρ∗ is the unique minimizer of Var(θ̂π
(ρ)

), ρ̂∗
p−→ ρ∗ by continuity. Since d(ρ̂, S)

p−→ 0 and ρ̂∗

is an arbitrary element in S, we immediately conclude that

ρ̂
p−→ ρ∗.

A.3 Proof of Theorem 2

By the definition of θ̂π
(ρ)

, we have

θ̂π
(ρ)

= argmin
θ

1

n

n∑
i=1

(
ℓfθ,i +

(
ℓθ,i − ℓfθ,i

) ξi
π(ρ)(Xi)

)
.

We assume ρ̂ = ρ∗ + oP (1). By the continuity of the budget-preserving path π(ρ), it follows that
π(ρ̂)(Xi) = π(ρ∗)(Xi)+oP (1) for any i ∈ {1, . . . , n}. This, as a result, gives θ̂π

(ρ̂)

= θ̂π
(ρ∗)

+oP (1)

by the continuity of ℓfθ,i +
(
ℓθ,i − ℓfθ,i

)
ξi

π(ρ)(Xi)
with respect to θ.

Given the assumption that θ̂π
(ρ∗) p−→ θ∗, from Theorem 1 in [51], we have

√
n
(
θ̂π

(ρ∗)

− θ∗
)

d−→ N (0,Σρ∗) ,

where Σρ∗ = H−1
θ∗ Var

(
∇ℓfθ∗,i +

(
∇ℓθ∗,i −∇ℓfθ∗,i

)
ξ

π(ρ∗)(Xi)

)
H−1

θ∗ .

Since θ̂π
(ρ̂) p−→ θ̂π

(ρ∗)

, √
n
(
θ̂π

(ρ̂)

− θ∗
)

d−→ N (0,Σρ∗) .
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The definition ρ∗ = argmin
ρ

Σπ(ρ)

jj yields

Σρ∗,jj = Σπ(ρ∗)

jj ≤ min{Σπ(0)

jj ,Σπ(1)

jj } = min{Σ0,jj ,Σ1,jj}.
This completes the proof.

A.4 Setting π ∝ ê leads to a trivial choice of ρ̂ = 0 when not incorporating robustness
constraint

Starting from the variance estimate used in the optimization objective

ρ̂ = argmin
ρ

1

n

n∑
i=1

ê2(Xi)

π(ρ)(Xi)
,

by the Cauchy-Schwarz inequality, for any π such that
∑n

i=1 π (Xi) = nb (i.e. satisfying the budget

constraint),
∑n

i=1
ê2(Xi)
π(Xi)

≥ (
∑n

i=1 ê(Xi))
2∑n

i=1 π(Xi)
=

(
∑n

i=1 ê(Xi))
2

nb
. The equality holds when π ∝ ê, which

corresponds to π(ρ) with ρ = 0.

B A natural family of budget-preserving paths

Among the diverse set of possible paths [28, 38], it is natural to consider geodesic paths, which are
a family of “shortest paths.”
Definition 2 (Geodesic [7]). A curve γ : I → M from an interval I ⊆ R to a metric space M with
metric d is a geodesic if there is a constant v ≥ 0 such that for any ρ ∈ I there is a neighborhood J
of ρ in I such that for any ρ1, ρ2 ∈ J we have

d (γ (ρ1) , γ (ρ2)) = v |ρ1 − ρ2| .

We revisit the examples from Section 2 and provide more geodesic paths.

In all the following examples, we assume P and Q have the same support.
Example 3 (Linear path). The linear path, π(ρ) ∝ (1 − ρ)π + ρπunif , is the geodesic path with
respect to d(P,Q) = ∥P −Q∥ with v = ∥π − πunif∥. Here, ∥ · ∥ is any norm.
Example 4 (Geometric path). The geometric path, π(ρ) ∝ π1−ρ(πunif)ρ, is the geodesic path with
respect to d(P,Q) = ∥ logP − logQ∥ with v = ∥ log π − log πunif∥. Here, log is taken element-
wise.

Example 5 (Hellinger path). The Hellinger path, π(ρ) ∝
(
(1− ρ)

√
π + ρ

√
πunif

)2

, is the geodesic

path with respect to d(P,Q) = ∥
√
P −

√
Q∥ with v = ∥

√
π −

√
πunif∥. Here, the square root is

taken element-wise.

Note (more examples). Some distance metrics may not have an analytical characterization for their
corresponding geodesic path, such as the Wasserstein and Jensen-Shannon distances. However, it is
computationally tractable to solve for a geodesic path numerically up to a tolerance margin for many
well-defined distance metrics. For example, when computing the geodesic for the Jensen-Shannon
distance, we can discretize the interval [0, 1] into N segments so that P0 = P and PN = Q,
and we define a series of intermediate distributions P1, P2, . . . , PN−1. The task is then cast as an
optimization problem: we minimize the total path length computed as the sum of the square roots
of the Jensen-Shannon divergences between successive distributions, i.e.,

∑N−1
i=0

√
JS(Pi, Pi+1).

Here, JS(P∥Q) = 1
2D(P∥M) + 1

2D(Q∥M), where M = 1
2 (P + Q). This is a constrained

optimization problem and can be solved by standard gradient-based methods.

B.1 Uniqueness of ρ∗

In Section 2, we saw that the uniqueness of the optimal ρ∗ and the consistency of ê are sufficient
conditions for the consistency of ρ̂. In the case of all three budget-preseving paths from the previous
section, it can be easily verified by computing the second derivative of Var(θ̂π

(ρ)

) that this variance
is strictly convex and thus ρ∗ is unique. We include the corresponding proofs for completeness.
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Linear path. We have π(ρ)(X) = (1− ρ)π(X) + ρnb

n . The problem of minimizing Var(θ̂π
(ρ)

) is
equivalent to

argmin
ρ

E
[

(Y − f(X))2

(1− ρ)π(X) + ρnb

n

]
.

Denoting g(ρ) = E
[

(Y−f(X))2

(1−ρ)π(X)+ρ
nb
n

]
, we have

g′(ρ) = E

[
− (Y − f(X))

2 (nb

n − π(X)
)(

(1− ρ)π(X) + ρnb

n

)2
]
,

and

g′′(ρ) = E

[
2 (Y − f(X))

2 (nb

n − π(X)
)2(

(1− ρ)π(X) + ρnb

n

)3
]
.

Clearly, g′′(ρ) > 0, which means that g(ρ) is convex. Hence, there is a unique optimal value of ρ in
[0, 1].

Notice that g′(1) = n2

n2
b
E
[
(Y − f(X))2

(
π(X)− nb

n

)]
. Hence, if E

[
(Y − f(X))2π(X)

]
>

nb

n E
[
(Y − f(X))2

]
, then g′(1) > 0, which implies that the optimal ρ lies in [0, 1).

Geometric path. Consider the path π(ρ)(X) ∝ π(X)1−ρ(πunif)ρ; in particular, π(ρ)(X) =
nb

n
π(X)1−ρ

E[π(X)1−ρ] .

Similar to the last example, we denote g(ρ) = E
[
(Y−f(X))2

π(ρ)(X)

]
= n

nb
E
[
(Y−f(X))2

π(X)1−ρ

]
E
[
π(X)1−ρ

]
.

Then, we have

g′(ρ) =
n

nb
E
[
(Y − f(X))2

π(X)1−ρ
log π(X)

]
E
[
π(X)1−ρ

]
− n

nb
E
[
(Y − f(X))2

π(X)1−ρ

]
E
[
π(X)1−ρ log π(X)

]
,

and

g′′(ρ) =
n

nb
E
[
(Y − f(X))2

π(X)1−ρ
log2 π(X)

]
E
[
π(X)1−ρ

]
+

n

nb
E
[
(Y − f(X))2

π(X)1−ρ

]
E
[
π(X)1−ρ log2 π(X)

]
− 2

n

nb
E
[
(Y − f(X))2

π(X)1−ρ
log π(X)

]
E
[
π(X)1−ρ log π(X)

]
.

Since (Y − f(X))2 ≥ 0, π(X) > 0, and log2 π(X) ≥ 0, we have that

E
[
(Y − f(X))2

π(X)1−ρ
log2 π(X)

]
E
[
π(X)1−ρ

]
+ E

[
(Y − f(X))2

π(X)1−ρ

]
E
[
π(X)1−ρ log2 π(X)

]
≥2

√
E
[
(Y − f(X))2

π(X)1−ρ
log2 π(X)

]
E [π(X)1−ρ]E

[
(Y − f(X))2

π(X)1−ρ

]
E
[
π(X)1−ρ log2 π(X)

]
=2

√
E
[
(Y − f(X))2

π(X)1−ρ
log2 π(X)

]
E
[
(Y − f(X))2

π(X)1−ρ

]
E [π(X)1−ρ]E

[
π(X)1−ρ log2 π(X)

]
≥2

√
E2

[
(Y − f(X))2

π(X)1−ρ
log π(X)

]
E2 [π(X)1−ρ log π(X)]

=E
[
(Y − f(X))2

π(X)1−ρ
log π(X)

]
E
[
π(X)1−ρ log π(X)

]
.
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The last inequality follows from the Cauchy-Schwarz inequality. Therefore, we have g′′(ρ) ≥ 0.
Further, if π(X) ̸= πunif , the inequality is strict, which means g(ρ) is convex. Thus, there is a
unique optimal value of ρ in [0, 1].

Hellinger path. Suppose P and Q are two discrete distributions. The Hellinger distance between
P and Q is H(P,Q) = 1√

2
∥
√
P −

√
Q∥2. The geodesic connecting π(X) and πunif = nb

n is:

π(ρ)(X) =

(
sin((1− ρ)β)

sinβ

√
π(X) +

sin(ρβ)

sinβ

√
nb

n

)2

,

where β = arccos

(∑n
i=1

√
π(Xi)

n · nb

)
.

Similarly as above, minimizing the variance Var(θ̂π
(ρ)

) amounts to minimizing the function

g(ρ) = E

 (Y − f(X))2(
sin((1−ρ)β)

sin β

√
π(X) + sin(ρβ)

sin β

√
nb

n

)2


over ρ. The derivative g′(ρ) is given by

−2E

[
(Y − f(X))2

(
sin((1− ρ)β)

sinβ

√
π(X) +

sin(ρβ)

sinβ

√
nb

n

)−3 (
−β

cos((1− ρ)β)

sinβ

√
π(X) + β

cos(ρβ)

sinβ

√
nb

n

)]
,

while the second g′′(ρ) is given by

E

[
(Y − f(X))2

(
sin((1− ρ)β)

sinβ

√
π(X) +

sin(ρβ)

sinβ

√
nb

n

)−4
[
6

(
−β

cos((1− ρ)β)

sinβ

√
π(X)

+β
cos(ρβ)

sinβ

√
nb

n

)2

+ 2β2

(
sin((1− ρ)β)

sinβ

√
π(X) +

sin(ρβ)

sinβ

√
nb

n

)2
]]

> 0.

Therefore, g(ρ) is strictly convex, and there is a unique optimal value of ρ in [0, 1].

C Perturbed model errors after robust optimization

It is natural to choose the constraint C by upper-bounding the norm of ϵ. Our default choice is the
ℓ2 norm, i.e. ∥ϵ∥2 ≤ c. The ℓ2 norm can be roughly thought of as controlling the variance of the
errors in ê2. In particular, imagine ê2(Xi) can be viewed as a noisy version of e2(Xi): ê2(Xi) =
e2(Xi) + ξi, where the (Xi, ξi) pairs are i.i.d. and ξi have mean zero. Then, by concentration,
∥ϵ∥22 ≈

∑
i Var(ξi).

In Figure 8 we illustrate how robust optimization over the ℓ2 set C recovers errors ê2(Xi) + ϵi that
are much closer to e2(Xi) than simply using ê2(Xi).

D A toy example: choice of C

A simple ℓ2 norm constraint may not always be the most powerful choice of C. Zooming out,
our method can in principle be combined with any choice of C, including one where we learn
regions of the space where scores are systematically overconfident or underconfident. At a high
level, our method (1) learns C (in our experiment, the “learning” is a simple fitting of c through
cross-validation), and (2) solves a robust optimization problem with C in place. Your suggestion is
an interesting choice of step (1).

We developed a dataset featuring a central “hard” region (|X| ≤ 2) flanked by two “easy” regions
(2 < |X| < 5). In the easy regions, error data was sampled from N (2, 0.05). In the hard region,
error was drawn from N (1, 0.25). The estimator of error, ϵ̂(X), is designed to underestimate the

25



1 2 3 4 5 6 7 8 9 10
Index

0

1

2

3

4

5

6

Er
ro

r

True error
Robust error (L2)
Estimated error

Figure 8: Perturbed errors ê2(Xi)+ ϵi vs naive errors ê2(Xi) with ℓ2 constraint C. We consider
a regime where we underestimate the true error (for example, due to the model being overconfident).
We let e(Xi) ∼ N (5, 0.25) and ê(Xi) ∼ N (3, 0.25), and π(ρ) is the linear path with ρ = 0.5. The
robustness constraint is C = {ϵ : ∥ϵ∥2 ≤ 50}. Each index i corresponds to one sample Xi. The
robust error (green bar) is the error after perturbation, ê2(Xi)+ ϵi, and the estimated error (blue bar)
is the error before perturbation, ê2(Xi). The robust errors are much closer to the estimated errors.

error in the hard region and overestimate the error in the easy region. Specifically, ϵ̂(X) = 0.5 for
|X| ≤ 2, and ϵ̂(X) = 2.5 otherwise.

Subsequently, we trained a meta-classifier, a gradient boost classifier, h(X), to identify these regions
solely based on the performance of ϵ̂(X), without prior knowledge of the region boundaries.

This approach proved highly effective, with the meta-classifier achieving over 99% accuracy in
identifying the regions. This demonstrates our success in learning the error regions and enables
us to separate the constraint set C based on these distinctions. For instance, C can be defined
as ∥ϵeasy∥2 ≤ ceasy for the easy region (2 < |X| < 5) and ∥ϵhard∥2 ≤ chard for the hard region
(|X| ≤ 2). Or even simpler, we can only optimize over hard regions, i.e. ceasy = 0. While these
regions’ dimensions are not fixed and depend on X , this presents no practical difficulties because
we have complete information about X .

Next, we compared this structured constraint with the global constraint. Here, for the structured
constraint, we only optimize over the hard region. The following table shows the result when n =
7000, nh = 1400, and π ∝ ϵ̂.

Method ESS ESS Gain (%)
Uniform 1400 0.00%
Active 1213 -13.3%
Robust active (global) 1491 6.5%
Robust active (structured) 1495 6.8%

We found that incorporating the structured constraint provided a slight gain in ESS over the global
constraint while reducing the constraint size (cglobal = 85 vs. chard = 75). This suggests that a more
focused perturbation can be beneficial when we have strong knowledge of confident regions. How-
ever, we note that the global constraint remains a simple and practical approach given the limited
gain.
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E Additional experimental results

E.1 Plots with coverage

In this subsection, we provide figures corresponding to the figures in the main text, where in addition
to the effective sample size we also plot coverage.
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Figure 9: Effective sample size and coverage on Pew post-election survey data, for different
dataset sizes used to train f . We compare uniform, active, and robust active sampling, for different
values of the sampling budget nb. The target of inference is the approval rate of a presidential
candidate.
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Figure 10: Effective sample size and coverage for different budget-preserving paths on Pew
post-election survey data, without (left) and with (right) a robustness constraint C. In both cases,
the geometric path leads to the largest effective sample size. The target of inference is the same as
in Figure 3.
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Figure 11: Effective sample size and coverage on US Census data, for varying burn-in dataset
sizes. We compare uniform, active, and robust active sampling, for different values of the sampling
budget nb. The target of inference is the relationship between age and income, estimated via a linear
regression.
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Figure 12: Effective sample size and coverage on social science text annotation datasets. We
compare uniform, active, and robust active sampling, for different values of the sampling budget
nb. The targets of inference are (left to right) the prevalence of right-leaning political bias, the
relationship between hedging and politeness, and the prevalence of misinformation.
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Figure 13: Effective sample size (top) and coverage (bottom) on Pew post-election survey data,
for varying burn-in dataset sizes with respect to different proportions of the data. We compare
uniform, active, and robust active sampling with geometric and linear paths, for different values of
the sampling budget nb. The target of inference is the approval rate of a presidential candidate.

E.2 Burn-in size v.s. robustness constraint C

In addition to optimized ρrobust along the path, we also provided the optimized value c in the ro-
bustness constraint C = {ϵ : ∥ϵ∥2 ≤ c}. As expected, we observe a more conservative constraint
when the errors are poorly estimated.
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Figure 14: Optimized value c along the geometric path as a function of the size of the burn-in
data for the post-election survey data.

E.3 Sensitivity to step size

When we solve the optimization problem 4, we employ a grid search for ρ in the outer loop. We
conducted experiments to explore different step sizes of the grid search and confirmed the robustness
of our results to step-size selection, as shown below. The ESS gap between these two estimators is
minimal, and both significantly outperform uniform and active baselines.
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Figure 15: Effective sample size on Pew post-election survey data, for different step sizes in grid
search for ρ. We compare uniform, active, and robust active sampling with grid search step sizes of
0.01 and 0.1. The target of inference is the approcal rate of a presidential candidate.
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