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Abstract

Spectral anomalies in graph shift operators may expose meaningful deviations
from expected behavior, offering insights into learned structures, overfitting, or
instability in associated graph transformers. We leverage tools from random
matrix theory to identify statistically significant deviations in spectral distribu-
tions of graph transformer architectures, using the GraphGPS graph transformer
architecture as a case study. Matrices extracted from various stages of the
training process, such as attention maps, layer outputs, or learned weights, are
analyzed to assess whether statistically significant spectral deviations correspond
to high-information components or key learning dynamics. We comment on our
preliminary work applying random matrix theory in this domain, which reveals
distinct spectral signatures across different phases of model learning, and high-
lights open challenges in extending symmetric random matrix theory frameworks
to the inherently non-symmetric matrices found in graph transformers.

1 Introduction

Graph-structured data is ubiquitous in various disciplines, from multi-agent traffic systems to chemical
bonds to social networks [1]. Thus, graph representation learning has the potential to provide a huge
impact. There are various types of graph neural networks (GNNs), the majority of which are based
on a message passing scheme where node representations are computed iteratively by aggregating
the embeddings of neighboring nodes. Yet this mechanism in its basic form has limited theoretical
expressive power, as these message passing algorithms are not more powerful than the first-order
Weisfeiler-Lehman test [2]. Further intrinsic limitations like over-smoothing [3] and over-squashing
[4] make it challenging for GNNs to capture long-range dependencies within graphs.

Transformer models have gained popularity in graph learning, due to their potential to capture long-
range dependencies. Graph Transformers (GTs) adapt the Transformer architecture [5] to operate on
fully connected computational graphs. GT’s integrate graph-specific information indirectly using
modified attention mechanisms and positional encodings. Despite their success [6, 7], understanding
how graph transformer models encode and propagate information is challenging, particularly as they
scale in depth and complexity. One promising approach to gain deeper insight is the application of
random matrix theory. In deep neural networks, random matrix theory (RMT) has been successfully
applied to identify statistically significant deviations from the theoretical asymptotic spectral distribu-
tions [8]. Deviations from RMT predictions indicate where feature learning occurs, as opposed to
lazy learning [9] where weights remain close to their initialized state.

As demonstrated in [10], the initialization of weights in a deep neural network will also follow RMT
predictions. Building on these insights, we use RMT to evaluate the self-attention weight matrices in
a classical graph transformer architecture, GraphGPS [11]. We evaluate the statistical significance of
spectral deviations of architectural elements across multiple datasets and comment on the differences.
By analyzing the spectral and RMT properties of graph transformer weight matrices at the beginning
and end of training, we identify patterns that offer insights into learning dynamics and functional
characteristics. As a preliminary work, there are many interesting areas to explore. Thus, in Section
5, we highlight these areas of future work.
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2 Related Work

Graph Transformer models use a basic form of node positional encoding to capture graph elements
by encoding the eigenvectors of the graph Laplacian. This approach equips the structure-agnostic
Transformer with spatial awareness of node positions within the graph [12]. Expanding on this idea,
SAN [13] introduced a more refined method by aggregating Laplacian eigenvectors in a permutation-
invariant manner for PE. They further enhanced the model with a conditional attention mechanism
that distinguishes between real and virtual edges, leading to notable performance gains. In subsequent
work [14], a hybrid architecture was proposed that combined message-passing neural networks
(MPNNG5s) with Transformer layers in a modular design. Each layer consists of an MPNN component
to encode edge features, a Transformer block to model global interactions, and a linear readout
module to integrate their outputs.

RMT has been extensively utilized as a statistical framework for analyzing machine learning models,
particularly through the spectral analysis of weight matrices and loss landscapes. Initial applications
of RMT, such as in [15], investigated the eigenvalue spectra of loss surfaces, yielding valuable insights
into optimization dynamics and generalization. Expanding on this foundation, [16] characterized
universal features of outliers within these spectra. More recent studies have applied RMT to trained
weight matrices [17], with [8] examining spectral dynamics across training in image classification
models. This line of research led to findings such as those in [18], where large singular value
outliers were identified as markers of well-trained representations. Further empirical studies [19, 20]
have reinforced the idea that deviations from classical RMT predictions signal non-trivial feature
learning. Gueddari et al. address non-symmetric RMT, particularly the complexity arising from
complex-valued eigenvalues, and propose an approximate message passing algorithm [21].

3 Preliminaries
Graph Transformers (GTs) utilize Transformer architecture [5] within graphs. Their core component
is multi-head self-attention, which is a map from the input X € R"*¢ to R"*% as:
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Here, @), K,V are linear projections of the input, and computed using learned weight matrices
W, WE WV ¢ R¥*4  The attention mechanism captures pairwise similarities between input
tokens. In the GT architecture studied in this work, GraphGPS [11], the graph transformer architecture
is combined with one round of local neighborhood aggregation via a MPNN layer. This hybrid
architecture is intended to reduce the initial representation bottleneck and enables iterative local and
global interactions. Assuming efficient representation encoding by the MPNN, the node features
can implicitly encode edge information. Thus, when concatenated with the transformer architecture,
edges can play a role in the key, query, or value matrices. In our experiments, we focus on analyzing
the output of the self-attention matrix.

Attn(Q, K, V) = softmax ( ) V, selfAttention(X) = Attn(XW®, XW*k XWV) (1)

Marcenko-Pastur Distribution. The Marcenko—Pastur distribution models the asymptotic eigen-
value spread of random matrices. As described by [22],if R = (1/T)XTX, where X isaT x N
matrix with i.i.d. entries of zero mean and fixed variance /2, then at the limit 7', N — oo with
ratio @ = T'/N > 1, the eigenvalue probability density function converges to the Maréenko-Pastur
distribution:
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The MP distribution defines the theoretical bounds \,,;, and A4, for the eigenvalues \; of purely
random matrices. Eigenvalues outside of these bounds indicate a deviation from the expected random
matrix behavior. Building on this idea, we can count the number of spikes that significantly deviate
from the bulk of this spectrum to estimate, M P, as an indicator of structured signal.

Empirical Spectral Density and Heavy Tailed Distributions. While classical random matrices often
exhibit well-known spectral laws (e.g., MarCenko-Pastur), matrices arising in learning systems often
display heavy-tailed spectral densities. This means that the distribution of eigenvalues decays slowly,
typically following a power law P(\) oc A\~<, where « is a parameter that governs the "heaviness" of
the tail, and \; is the eigenvalues of the weight matrix. In heavy tailed self regularization theory, it is
hypothesized that & models a networks ability to generalize, with high alpha values being an indicator
of poor learning [18]. To characterize the tail behavior of the power law fit, a cut-off ¢ is introduced,
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and only the eigenvalues \; > o are used to estimate the tail exponent . A pronounced heavy tail
in the spectrum suggests the presence of structured correlations or long-range dependencies in the
data or model, which are often indicative of meaningful learning or hierarchical representations in
the system. We also count the number of spikes in the PL distribution, P L. These spikes can signal
structures or anomalies that standard spectral statistics might miss.

4 Experiments

Heavy Tailed Distribution of Graph Trans-
former Layers. First, we analyze the power

5.0, —e_ CIFAR-10 law exponent « fitted to the spectral density of

: CLUSTER the singular value spectrum for each layer in the
4.51 e PATTERN self-attention matrix in the graph transformer.
4.0 This analysis aims to assess whether the heavy

S 351 tailed spectral properties observed in other deep
neural network architectures also manifest in

3.0 graph transformer self-attention layers. The ex-
2.5 ponent « serves as an indicator heavy tailed the
2.0 layer’s weight matrix spectrum is, which in turn
reflects the degree of correlation and informa-

2 4 6 8 10 12 14 16 tion structure captured by the layer. According

Graph Transformer Layer to the heavy tailed self regularization theory pro-

posed by [18], deep neural networks that gen-

Figure 1: Comparison of fitted power law ex- eralize well tend to exhibit spectral densities
ponent « for the eigenvalue density of the self- with power law behavior, where o € [2, 4] indi-
attention weight matrix in GraphGPS. cates a regime of strong correlation and efficient
learning. This region is highlighted in green in

Figure 1. Specifically, o ~ 2 corresponds to a

maximally heavy-tailed stable regime whose layers are highly expressive, capturing meaningful
long-range correlations without diverging variance. In contrast, @ > 6 suggests weak or absent
heavy-tailed structure, often associated with overfitting, whereas o < 2 may indicate overfitting
or memorization. We evaluate the performance of GraphGPS across three datasets: CIFAR-10,
CLUSTER, and PATTERN. Additional information about each dataset is provided in [23]. All results
generated are based on a single seed, as in experimental runs across multiple seeds, we did not
observe significant variations across results. In Figure 1, we observe that GraphGPS exhibits the
most stable and theoretically favorable architecture on the CLUSTER dataset. Its deepest layers
trend toward o == 2, implying effective information propagation. Conversely, for models trained on
CIFAR-10, early layers persistently show low « values, suggesting overfitting and poor generaliza-
tion. Additional experiments exploring a shallower transformer structure (e.g. 2 layers) found the
same overfitting issue in the initial layer, with subsequent layers exhibiting « values of > 4, and
similar final trained accuracy values in evaluation (0.72 vs 0.71). These results suggest a trade-off in
transformer model depth for this dataset: while the deeper architectures did not provide a significant
performance improvement, they did lead to more favorable spectral behavior. More experiments are
required to determine if this improved spectral behavior leads to generalizability in other evaluations.

The performance on the PATTERN dataset presents an interesting case, as the observed range
4 < o < 6 corresponds to a weakly heavy-tailed regime. While this range suggests a less pronounced
correlation structure than the optimal heavy-tailed regime, it does not necessarily imply poor learning.
Rather, it indicates that the layer weight matrices still exhibit some non-trivial spectra decay, capturing
moderately structured features with high-rank, highly correlated representations. Models operating
in this regime may still generalize reasonably well (confirmed by GraphGPS’s strong performance
in evaluation on this dataset), particularly on tasks where the input structure does not demand deep
hierarchical abstraction. This suggests that the PATTERN dataset benefits from models that capture
mid-level feature interactions, making it well-suited for graph transformers that can leverage such
moderately heavy-tailed spectra without requiring deep hierarchical abstractions.

Difference in Spectral and RMT Distributions Across Training. Next, we evaluate the difference
in spectral and RMT characteristics at the start and end of training to determine the shift from random
(e.g. Marcenko-Pastur distribution ) to learned behavior (e.g. power law). We use four metrics: «,
MP, PL, and 0. As in the previous analysis, « represents the power law exponent fitted to the
spectral density. M P is the number of spikes that occur within the Marcenko-Pastur distribution
and PL is the number of spikes outside of the power law distributions. The M P spikes represent
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Table 1: self-attention Layer metrics for layers 1-8 of the GraphGPS model applied to the CLUSTER
dataset.

Metric 1 2 3 4 5 6 7 8
g 30.342 5900 5.387 15.245 10.709 8.982 5.997 4.559
Q100 4.490 3.857 3.644 3.804 4.557 3959 4398 5275
MP, 0 0 0 0 0 0 0 0
M Pioo 0 0 0 0 0 0 0 10
PLg 5 17 19 7 13 14 16 19
PLiogo 12 15 15 17 13 18 12 10
oo 13.122 1.188 1.006 5.384 2.693 2.133 1.249 0.816
0100 1.008 0.738 0.683 0.680 0.986 0.697 0981 1.352

Table 2: self-attention Layer metrics for layers 9-16 of the GraphGPS model applied to the CLUSTER
dataset.

Metric 9 10 11 12 13 14 15 16
Qo 7.453 21984 2773 19.048 8.550 8.958 12.378 13.947
Q100 5.107 3.859 3.063 3.157 2.897 2426 2393 2.134
M P, 0 0 0 0 0 0 0 0
M Pioo 0 0 2 2 0 3 2 4
PLy 17 8 28 6 15 11 8 7
PLioo 13 14 15 21 24 22 23 27
o) 1.565 7.419 0335 7.368 1.949 2399 4.023 4.893
0100 1.139  0.764 0.533 0.471 0.387 0304 0290 0.218

deviations from the behavior expected of random matrices, and can be interpreted as the number of
learned features. The PL spikes represent deviations from the power law fit and may reflect either
meaningful learned features or potential mismatches in the accuracy of the « estimate. o represents
the threshold at which the singular values of the weight matrices begin to exhibit a power law behavior.
A smaller o indicates that more of the values are captured by the o power law distribution..

The high o values at the start of training are indicative of the random weight distribution. After
training, most layers converge to the range 2 < a < 5. The structure of the final layer suggests feature
flow, whereas the middle layers show a mild increase in over training, indicating regularization and
information compression. The increase in the number of power law (P L) spikes from initialization
to convergence indicates the development of dominant outlier modes in the singular value spectrum.
These spikes represent directions in weight space that capture strong, high-variance features learned
during training. The evolution of the o metric further supports this interpretation. In the early layers,
o values decrease sharply from initialization to convergence, signaling a regularization of the initially
over-parameterized layers. Meanwhile, deeper layers exhibit either stable or increasing o, consistent
with the consolidation of high-signal modes critical for task-specific generalization. We also evaluated
the fit of Marcenko-Pastur distribution to the spectral density spread of the self-attention weight
matrices. As expected at initialization, there were no significant spikes above the MP bulk. At the end
of training, deeper layers possess more spikes, indicating learned signal. Metrics like o and PL are
useful in this case, as they can provide deeper insight into the role of each layer and their associated
information flow. Future work will investigate the deviations between the Maréenko—Pastur fit and the
power-law behavior more systematically, to better understand how each technique captures different
aspects of learned structure in self-attention layers.

S Discussion

Our preliminary experiments show that observing spectral deviations in graph transformer weight
matrices could help dissect learning dynamics. Early layers often remain closer to a random matrix
theory-predicted spectra, whereas deeper layers show heavy-tailed regimes and outliers, potentially
signaling emergence of effective, identified training features. Moving forward, we aim to extend
sparse random matrix theory [24] to better align with dimensions of the attention matrices commonly
used in graph transformers. We aim to develop metrics that formally relate input graph structure
to random matrix theory, offering deeper insight into how graph properties affect learning. In the
short term, we will explore additional architectures and datasets (e.g. [25]) to study the relationship
between « and problem generalizability. Future work may also examine symmetric graph shift
operators, whose randomized spectra should follow Wigner or semicircle laws.
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A Appendix
A.1 Code

All code affiliated with this project is open source. It can be found in this repository: https:
//github.com/sydneyid/spectral_assess.

A.2 o Power Law Fitting Process

To estimate the power-law exponent o, we follow the maximum likelihood estimation (MLE) approach
described by Clauset et al. (2009) [26]. The estimator is given by:

Snz)]

where T; > Tyin, and n is the number of data points in the tail (i.e., those satisfying x; > ziy). In
the notation used in this paper, x,,;, is equal to o.

To determine the appropriate lower bound x,;,, we select the value that minimizes the Kol-
mogorov—Smirnov (KS) statistic, which quantifies the maximum distance between the empirical and
model cumulative distribution functions (CDFs). Specifically, we define:

D= max |S(z) — P(x)] 4)
where S(z) is the empirical CDF of the data for > @i, and P(z) is the CDF of the best-fit power
law model over the same region. The optimal threshold Z,;, iS chosen to minimize this distance D,
ensuring the best possible agreement between the empirical data and the model in the power law
region.

A.3 Effect of Model Depth on « in CIFAR-10 dataset

For the two-layer variant, since the as are increasing as we move down the model, this means that
the information is not flowing well through the model, and the network is not fully correlated. When
the number of model layers increases to three layers, the a parameters stabilizes, remaining in the
optimala € [2, 4] regime.
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Two Layer Three Layer
Metric | Layer 1 | Layer2 | Layer 1 | Layer 2 | Layer 3
o 1.775 4.629 1.689 3.095 2.027
PL 24 7 19 12 22
MP 3 1 4 2 1
o 0.158 1.37 0.158 0.604 0.219

Table 3: The effect of model depth on performance for the CIFAR-10 dataset. « is the power-law
exponent fitted to the spectral density. PL is the number of spikes in the power law distribution.
M P is the number of spikes that occur within the Marcenko-Pastur distribution. o is the threshold at
which the singular values of the weight matrix begin to exhibit power law behavior. The three layer
model was used to generate the results for CIFAR-10 on Figure 1.

A4 « across Training for the CLUSTER dataset.

Figure 2 has the plot of the model accuracy vs alpha variable over training for each layer in the graph
transformer self-attention matrix in the CLUSTER dataset.

(a) Layer 1 (b) Layer 2 (c) Layer 3 (d) Layer 4

(f) Layer 6

(i) Layer 9 (j) Layer 10 (k) Layer 11 (1) Layer 12

(m) Layer 13 (n) Layer 14 (o) Layer 15 (p) Layer 16

Figure 2: The o parameter across training epochs for the self-attention matrices of layers 1-16 in the
GraphGPS transformer on the CLUSTER dataset. The blue lines represent v values across training,
and the red lines show model accuracy during evaluation.
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