Under review as a conference paper at ICLR 2026

A GRAPH LAPLACIAN EIGENVECTOR-BASED PRE-
TRAINING METHOD FOR GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose the Laplacian Eigenvector Learning Module (LELM), a novel pre-
training module for graph neural networks (GNNs). Traditional message-passing
GNNs often struggle to capture global and regional graph structure due to over-
smoothing risk as network depth increases. Because the low-frequency eigenvec-
tors of the graph Laplacian matrix encode global information, pre-training GNNs
to predict these eigenvectors encourages the network to naturally learn large-scale
structural patterns over each graph. Empirically, we show that models pre-trained
via our framework outperform baseline models on a variety of graph structure-
based tasks. While most existing pre-training methods focus on domain-specific
tasks such as feature reconstruction, our self-supervised pre-training framework
is structure-based and highly flexible; we show that LELM can be used both as
an independent pre-training task and as a plug-in addition to a variety of existing
pre-training pipelines.

1 INTRODUCTION

Graph Neural Networks (GNNs) have become a powerful tool in node and graph representation
learning, with successful applications across domains ranging from biomedicine (Cantiirk et al.,
2023; | Yan et al., 2024 Hu et al.,[2019;|Sun et al., 2022) to social networks (Fan et al.,[2019). More
recently, graph foundation models (GFMs) are emerging as an exciting field; inspired by the success
of large language models (LLMs), researchers are exploring the possibility of creating large graph-
based models with emergent capabilities across a wide variety of domains (Liu et al., [2025; Xie
et al., [2022; |Wang et al.| |2025)).

A key ingredient in this effort is the creation of self-supervised tasks which can be performed on
large unlabelled graph datasets (Liu et al.,|2022). A variety of pre-training methods have been pro-
posed, but the majority of such methods are based in contrastive losses and graph reconstruction (Liu
et al., 2025} Xie et al., 2022). A few structure-based methods, which precompute labels based on
graph topology, have been proposed (Peng et al., 2020a; Hwang et al., 2020). However, this category
of pre-training approach, recently termed as graph property prediction (Liu et al) 2025)), remains
unexplored largely due to the limitations of GNNs in capturing global and regional information.

In traditional message passing GNNs, node representations are updated via aggregating neighboring
node embeddings. Typically, this involves taking an average or sum of neighboring node embed-
dings and then passing the new embedding through an MLP. However, for one node to incorporate
information from more distant nodes, multiple layers of message passing are required (Alon & Ya-
hav). Increasing the number of layers in a GNN leads to a phenomenon known as oversmoothing:
the representations of nodes within a k-hop neighborhood become increasingly indistinguishable
200no & Suzuki| (2019); Keriven| (2022).

We propose LELM, a Laplacian eigenvector-based pre-training module for GNNs and GFMs. Lapla-
cian eigenvectors capture a range of global, regional and local graph structure, making them well-
suited as a graph property prediction target. Moreover, LELM utilizes a global MLP prediction head
during pre-training that allows the GNN model to learn long-range relationships without requiring
excessively deep networks, and augments pre-training data with positional features to overcome ex-
pressivity limits of GNNs. LELM is highly flexible: it can be used with any feature types across all
graph-based datasets, and can be used both as an independent pre-training method and as a plug-in
addition to existing graph pre-training pipelines to improve downstream performance.

Under review as a conference paper at ICLR 2026

Our main contributions are as follows:

1. We introduce LELM as a Laplacian eigenvector-based pre-training module for GNNs.

2. Within LELM, we introduce a global MLP head that enables long-range interaction be-
tween vertices within the graph, as well as a set of augmented pre-training features based
on the graph diffusion operator.

3. We demonstrate that our pre-training module provides performance improvements over
baseline models both as a standalone pre-training task and as an augmentation to existing
pre-training pipelines.

2 RELATED WORKS

2.1 GRAPH PRE-TRAINING METHODS

Towards the goal of improving graph foundation models, a variety of self-supervised graph pre-
training tasks have been proposed. According to the taxonomy provided by [Liu et al.| (2025); Xie
et al.| (2022), existing graph pre-training methods can be categorized into two broad categories:
contrastive and predictive methods.

Contrastive methods maximize mutual information between pairs of data views using objectives like
Jensen-Shannon estimator (Nowozin et al., [2016) or InfoNCE (Oord et al., [2018)). Methods can be
categorized by the types of views used: graph-node (Sun et al.;|Velickovic et al.; |Peng et al.| 2020b),
subgraph-node (Hu et al.; Jiao et al.,[2020), and subgraph-subgraph|Qiu et al.| (2020). Some methods
also employ graph augmentation to generate two views (You et al., [2020).

Predictive methods, also referred to as generative methods (Liu et al., 2025)), self-generate labels and
train to predict these labels. A first class of predictive models uses graph reconstruction, whether by
using node/edge masking (Xie et al.,[2020; Batson & Royer;, [2019; Hu et al.) or using autoencoders
(Wang et al.| 2017} Kipf & Wellingl [2016). A second class of predictive methods are property
prediction methods, which precompute underlying graph properties as labels. Examples include
statistical properties such as k-hop connectivity (Peng et al., |2020a)) or topological properties like
a meta-path (Hwang et al.| [2020). Overall, there are a lack of works on property prediction-based
methods, with the majority of predictive pre-training methods falling under the former category of
graph reconstruction (Liu et al.|2025)). Our method, LELM, is the first property prediction method
to use the graph Laplacian eigenvectors as a pre-training target.

3 BACKGROUND

3.1 NOTATION

The unnormalized Laplacian L of a graph G is defined as:
L=D-A
where D is the diagonal degree matrix and A is the unnormalized adjacency matrix of G.

Let A1, Ag, ... \; denote the k lowest eigenvalues of L in nondecreasing order. Let 1,1, ... ¢y
denote the corresponding eigenvectors, such that we have:

Lipi = N
Note that for the unnormalized Laplacian, the first eigenvector and eigenvalue are trivial:
1
’(/}1 = 7]la)\l =0
n

By Courant-Fischer, the eigenvectors of L (and the eigenvectors of any Hermitian matrix) can be
equivalently expressed as solutions to the following iterative optimization problem:

Yp € argmin z' Lx.

llzll=1
Ly, b1
T
The term ””mTLI L is known as the Rayleigh quotient; because we normalize our predicted eigenvectors,

we simply treat this as z ' Lz.

Under review as a conference paper at ICLR 2026

3.2 GRAPH LAPLACIAN EIGENVECTORS

Our use of the low-frequency graph Laplacian eigenvectors is motivated by their close relationship
to structural and positional properties of graphs.

Provably minimal graph cuts: The second-lowest eigenvector 1, known as the Fiedler vector,
can be used to generate a provably “good” cut on a graph; in particular, for some arbitrary threshold
s € R, we can define a Fiedler cut C to be:

C=({i: (i) < s} {i: (i) > s})

On any bounded-degree n-vertex planar graph, the optimal Fiedler cut has ratio O(%) (Spielman &
Teng, |1996).

Positional encodings: The low-frequency Laplacian eigenvectors naturally encode a global position
on the graph. As a result, Laplacian positional encodings (LapPE) have been used as a standard
positional encoding for graph transformer models (Dwived: & Bresson, 2020; Rampasek et al.|
2022). In practice, directly using the Laplacian eigenvectors as positional encodings creates sign and
basis ambiguity issues, as ; is an eigenvector of L <= -1); is an eigenvector of L. Approaches to
solving this problem include designing an architecture which processes the Laplacian eigenvectors
in a sign- and basis-invariant manner (Lim et al. 2022) or defining canonical directions for the
eigenvectors (Ma et al.| [2023)).

Spectral GNNs: A variety of methods, known as spectral graph neural networks, use the Laplacian
eigendecomposition to learn filters in signal domain (Bo et al., 2023b). Some methods explicitly
compute or approximate the k lowest-frequency Laplacian eigenvectors, learning advanced filters on
the corresponding eigenvalues (Bruna et al., 2013} Liao et al.|[2019;Bo et al.|[2023a)). Other methods
instead learn polynomial filters on the graph (Defferrard et al [2016; He et al.l |2022), circumvent-
ing the expensive process of eigendecomposition by learning a k-degree polynomial function with
respect to L, i.e. p(L) = 0ol + 61 L + -+ + O LF.

Spectral clustering: The Laplacian eigenvectors have also been used for clustering applications.
Given a set of data x4, . .. z,, Belkin & Niyogi| (2001) construct a weighted graph G with n nodes
using a heat kernel. Then to generate a k-dimensional embedding, Belkin & Niyogi|(2001) compute
the k-lowest eigenvectors s, . . . P41 (omitting the trivial eigenvector) of the graph Laplacian and
assign data point z; the embedding (12(7), ¥3(4), ..., ¥k+1(7)). [Shaham et al.| (2018); [Chen et al.
(2022) learn this spectral map using a neural network, allowing for a natural extension of this map
to new datapoints.

4 METHOD
Eigenvector Pre-Training Task
Input Graph Node Feature Eigenvectors
Augmentation
G=(V.E,X) ~g R Base '&1 o0 ﬂk
G=(V,E,X) GNN [=] ’ ’

Q O

% ~€DJID = |
O
o S O
Downstream
PredictionHead

Figure 1: Overview of the LELM pre-training pipeline. Here, “Base GNN” and “Downstream
Prediction Head” can be any user-defined model architecture.

4.1 OVERVIEW

The LELM pre-training framework consists of three primary components:

Under review as a conference paper at ICLR 2026

* Node feature augmentation: We provide initial features based on the diffusion operator:
(1) wavelet positional embeddings, and (2) diffused dirac embeddings.

* Eigenvector prediction: During pre-training, we task the model to predict the k& lowest-
frequency eigenvectors of the graph Laplacian.

* Graph-level MLP: We pass a graph-level aggregated representation into our prediction
MLP head.

4.2 MODEL ARCHITECTURE

Base GNN: The base GNN model takes in a graph with augmented node features and generates
learned node representations via neighborhood message passing and update steps. Any GNN archi-
tecture may be selected as the base model to fit the needs of the dataset and downstream application.

Graph-level MLP: We concatenate the node-wise output of the base GNN model to form a graph-
level aggregated representation. We then pass the aggregated vector through an MLP model to
produce the low-frequency Laplacian eigenvectors. Concatenating the node embeddings prior to
applying the MLP allows the model to learn relationships between distant nodes without risking
over-smoothing.

Previous eigenvector-learning methods use a node-wise MLP head, processing each node’s eigen-
coordinates independently based on their learned hidden embedding (Shaham et al., [2018; Dwivedi
et al., [2021}; [Cantiirk et al., [2023)).

4.3 NODE FEATURE AUGMENTATION

To provide the model with additional structural information, and to overcome well-known expres-
sivity limits of GNNs (Morris et al., 2019; Maron et al., |[2019; | Xu et al., |2018)), we augment node
features with structure-based embeddings. We propose two kinds of embeddings: (1) wavelet posi-
tional embeddings, which encode relative positional information between nodes, and (2) diffused
dirac embeddings, which encode local connectivity structures around each node. Both embeddings
use the random walk matrix, and capture local aggregate information on each node. The diffusion
operator P of a graph G is defined as:
P=D"1A

Each entry P;; represents the probability of starting a random walk at node ¢ and ending at node j
after one step. One can also take powers of the diffusion operator, P!. Each entry of the powered
matrix, Pfj, represents the probability of starting a random walk at node 7 and ending at node j after
t steps

The ;" wavelet operator ¥ ; of a graph G is defined as:
v, =p¥ " —p¥
Vg=I—-P
A wavelet bank, W; is a collection of wavelet operators such that:

J
Wy = {¥;}o<j<cs U P?

Wavelet positional embeddings encode information about the relative position of each node within
the graph. We randomly select two nodes from each graph, 7 and j, and start dirac signals d;, ;. We
then apply these signals to each wavelet, Uy, in our wavelet bank. The wavelet positional embedding
for node m is the m™ row of the resulting matrix.

|
Wy jp = V(- hz 53‘]

W = [Wm1 .. Wy, J]

Diffused dirac embeddings encode information about the connectedness of each node and its neigh-
bors. For each node, m, we apply the m™ row of the diffusion matrix P to each wavelet ¥, in our

Under review as a conference paper at ICLR 2026

wavelet bank. As above, the difused dirac embedding for node m is the m™ row of the resulting
matrix.
k. = Ui(m,-) P(m,-)"

Ay =[dm1 .. dm,J]

These node embeddings are unique up to co-spectrality of the graph Laplacian. The proof is provided
in

4.4 LOSS FUNCTION

Let U denote a matrix of k column vectors i;, where each @; denotes the ith predicted eigenvector.
Let A denote a diagonal matrix containing eigenvalues Aq, . .., Ag.

We minimize a weighted sum of two loss functions: (1) eigenvector loss and (2) energy loss. Both
loss functions respect necessary sign and basis invariances of Laplacian eigenvectors; full proofs
can be found in[A. 4

To ensure the model does not output k copies of the trivial eigenvector, we impose orthogonality on
the final outputs of the model via QR decomposition, as proposed by [Shaham et al.|(2018)).

Energy loss, used by [Shaham et al| (2018); [Dwivedi et al.| (2021); Ma & Zhan| (2023), aims to
minimize the sum of Rayleigh quotients:
1

CMM%::ETHUTLU)

This loss function is motivated by the iterative optimization problem following from Courant-Fischer
(3.1). However, minimizing this loss function only minimizes the sum of the first k& Rayleigh quo-
tients, meaning the minimizer (subject to orthogonality) is any set of vectors spanning same subspace
spanned by the k lowest frequency eigenvectors. For applications in clustering, this is reasonable,
as the exact basis in which embeddings are expressed is often irrelevant; however, to require the
model to truly predict the k-lowest eigenvectors, we must include a more explicit penalty, such as
eigenvector loss.

Eigenvector loss, used byMishne et al.| (2019)), measures the difference between each Li; and \;4;:

1 N
‘Ceigvec = EH(LU - UAk)H

Eigenvector loss enforces both the correct basis and a strict ordering (up to eigenvalue multiplicity)
on the predicted eigenvectors. Our final loss function is then:

L=a- Eenergy + 6 ' Leigvec

4.5 PRE-TRAINING ALGORITHM

Algorithm 1 Eigenvector Prediction

Require: Graph G = (V, E); augmented node features X = {7;}; Base GNN
Ensure: Output Pre-trained GNN model, k£ lowest-frequency eigenvectors
1: for ¢ < Pre-Training Epochs do

Loss = a - ENERGYLOsS(U) + 3 - EIGVECLOss (U)
Back-propagate Loss, update model weights

8: end for

9: return BASEGNN

2. Z,...,Z, + BASEGNN(G, X)
3: Z(—[Zh,_,,Zn]ERnd

4: U+ MLP(Z)

s U=QR(®)

6:

7:

Under review as a conference paper at ICLR 2026

5 EXPERIMENTAL RESULTS

To evaluate the effectiveness of our framework, we conduct experiments across multiple graph learn-
ing use-cases. First, we apply our pre-training framework directly to several GNN models and assess
its impact on downstream performance. Second, we integrate our pre-training method with existing
pre-training frameworks and examine how our approach can complement established methods. Fi-
nally, we pre-train a positional and structural encoder for Graph Transformer networks. Collectively,
these approaches provide a comprehensive assessment of the framework’s effectiveness across dif-
ferent graph learning scenarios.

5.1 PRE-TRAINING GRAPH NEURAL NETWORKS

We pre-train a standard Graph Isomorphism Network (GIN) (Xu et al., 2019) and GPS, a graph
transformer using LELM. Once the model has been pre-trained, we replace the graph-level MLP
head with a downstream prediction MLP and fine-tune model weights. We evaluate our pre-training
framework on three molecular datasets ZINC, ZINC-12k (Sterling & Irwin, 2015) and QM9 (Ra-
makrishnan et al., [2014). For each of these models, we compare LELM against the same GNN
model without pre-training. For each of these models, pre-training improves performance for all but
one of the downstream targets. We record results of our experiments in Table (I} In addition, for the
GIN model we compare LELM to various structure-based pre-training targets including node de-
gree, local clustering coefficient, random walk structural encodings, cycle counting, and Laplacian
eigenvalues. Results are recorded in Table 2}

Table 1: Test MAE () performance comparison on ZINC (single metric) and QM9 (first seven target
properties).

ZINC full ZINC subset QM9
Model Penalized logp Penalized log p I « EHOMO ELUMO A, R? ZPVE
Pre-Trained GIN 0.130 0.353 0484 0.489 0.00353 0.00371 0.00513 28.103 0.000477
GIN (baseline) 0.228 0.438 0.472 1.132 0.00386 0.00399 0.00562 50.909 0.002400
Pre-Trained GPS 0.104 0.210 0.5021 0.5922 0.0037 0.0040 0.0051 33.606 0.00178
GPS (baseline) 0.150 0.358 0413 0.718 0.00434 0.00442 0.00592 80.503 0.00111

Table 2: Test MAE (|) performance comparison on ZINC with alternative structural targets.

Alternative targets ZINC full ZINC subset
LELM 0.130 0.353
Node degree 0.238 0.471
Local clustering coefficient 1.493 1.551
RWSE (Dwivedi) 1.493 1.551
Cycle counting 0.285 0.420
Lap Eigenvalues 0.250 0.520

5.2 ENHANCING AN EXISTING GRAPH NEURAL NETWORK PRE-TRAINING METHOD

We augment the existing molecular pre-training methods proposed by Hu et al.| (2019) with
eigenvector-learning. In particular, |[Hu et al.|[(2019) propose node-level pre-training tasks (context
prediction and masking) on ZINC15 (Sterling & Irwin, [2015), followed by a graph-level supervised
pre-training task on ChEMBL (Mayr et al.l 2018} |Gaulton et al., |2012). We augment the graph-
level supervised pre-training step by adding an additional MLP head to predict eigenvectors, and we
evaluate on five downstream datasets based on work by [Sun et al.| (2022).

Detailed results are shown in Table 3| Eigenvector-learning consistently improves performance for
the masking pre-training pipeline, but achieves mixed results on the context prediction pipeline.
Notably, performance for the masking pipeline was increased for all five datasets when performing
eigenvector pre-training with the graph-level MLP head.

Under review as a conference paper at ICLR 2026

Table 3: Test ROC-AUC (%, 1) performance on 5 molecular prediction tasks when augmenting an
existing pre-training method on a GIN base model. Sup. refers to the original supervised pre-
training as implemented by Hu et al| (2019), and Sup.+ refers to supervised training with LELM.
Results for no pre-training are taken directly from Sun et al.| (2022)). All methods are tuned over
seven learning rates and averaged over three seeds.
Dataset BACE BBBP Tox21 ToxCast SIDER
Pretrain method MLP Head

ContextPred, Sup.+ Graph-level 79.62+3.63 70.76£1.64 77.94+£0.11 66.13+0.34 60.05+0.99
ContextPred, Sup.+ Node-wise 75.87£3.11 68.74+1.07 78.86+0.06 63.78+0.32 59.83 4+ 0.53
ContextPred, Sup. - 84.98+1.28 68.25+048 77.44+0.19 64.01+0.81 62.87+£0.89
Masking, Sup.+ Graph-level 80.71+£3.84 6833+0.89 79.09+0.25 65.96+0.20 62.41+1.77

Masking, Sup.+ Node-wise 81.02 £1.67 69.94+1.76 79.33+£041 65.14+0.44 59.38 £1.11
Masking, Sup. - 75424264 6736 £4.60 78.33+0.24 64.884+0.82 61.6 £1.78
No pre-training - 75.77+429 69.62+1.05 75.52+0.67 63.67+0.32 59.07£1.13

5.3 PRE-TRAINING STRUCTURAL ENCODER

Table 4: Test MAE ({) performance on ZINC (12k subset) dataset when augmenting a graph
structural encoder. All results using no structural encoder or the base GPSE are taken directly from
Cantiirk et al.| (2023). GPSE+ refers to GPSE with LELM. Our experimental results are averaged
over three seeds.

Base model Structural encoder MLP Head MAE
GPS GPSE+ Graph-level 0.0629 + 0.0016
GPSE+ Node-wise 0.0663 + 0.0024
GPSE - 0.0648 = 0.0030
None - 0.118 £ 0.005
GIN GPSE+ Graph-level 0.1231 + 0.0026
GPSE+ Node-wise 0.1299 + 0.0010
GPSE - 0.124 + 0.002
None - 0.285 + 0.004

We modify Graph Positional and Structural Encoder (GPSE) (Cantiirk et al.l 2023). While GPSE
already incorporates eigenvector-learning by including Laplacian positional encodings (LapPE) as
a prediction target, GPSE uses MAE and cosine similarity loss on the absolute value of each eigen-
vector and a node-wise prediction head for every node property. We replace GPSE’s eigenvector-
learning component with our own, using a separate MLP head and eigenvector loss. We keep all
other GPSE model settings the same.

Following |Cantiirk et al.| (2023), we pre-train our modified GPSE model on MolPCBA (Hu et al.,
2020). We evaluate the effectiveness of these encodings by training both the Transformer model GPS
(Rampasek et al., 2022) and a standard GIN, augmented with these encodings, on the downstream
molecule property prediction task for the ZINC 12k (Sterling & Irwin, 2015)) subset.

We report results on the effectiveness of these new learned encodings in Table] Modified
eigenvector-learning with a graph-level MLP improves performance on downstream performance
for both the GIN and GPS models, with our graph-level GPS+GPSE+ configuration achieving SOTA
performance over all model and encoding configurations tested by |Cantiirk et al.| (2023). We also
demonstrate that our choice of loss function is crucial for eigenvector-learning in|A.9

6 LIMITATIONS AND FUTURE WORK

There are several promising future directions toward improving the Laplacian eigenvector pre-
training framework. We have demonstrated the effectiveness of the framework for pre-training and
fine-tuning a GNN on the same dataset, or on domain-related datasets. However, we are yet to
explore the effectiveness of eigenvector pre-training as a transfer learning framework.

Under review as a conference paper at ICLR 2026

Further, the practical implementation of the graph-level MLP requires adding padding to the con-
catenated node embeddings to accommodate for graphs of differing sizes. This creates an additional
challenge for the MLP to learn meaningful relationships between the individual node embeddings
within the graph-level vector. One could explore other ways of creating a rich graph-level represen-
tation while avoiding this challenge.

REFERENCES

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
In International Conference on Learning Representations.

Joshua Batson and Loic Royer. Noise2self: Blind denoising by self-supervision. In International
conference on machine learning, pp. 524-533. PMLR, 2019.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embedding and
clustering. Advances in neural information processing systems, 14, 2001.

Deyu Bo, Chuan Shi, Lele Wang, and Renjie Liao. Specformer: Spectral graph neural networks
meet transformers. arXiv preprint arXiv:2303.01028, 2023a.

Deyu Bo, Xiao Wang, Yang Liu, Yuan Fang, Yawen Li, and Chuan Shi. A survey on spectral graph
neural networks. arXiv preprint arXiv:2302.05631, 2023b.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

Semih Cantiirk, Renming Liu, Olivier Lapointe-Gagné, Vincent Létourneau, Guy Wolf, Dominique
Beaini, and Ladislav Rampasek. Graph positional and structural encoder. In Forty-first Interna-
tional Conference on Machine Learning, 2023.

Ziyu Chen, Yingzhou Li, and Xiuyuan Cheng. Specnet2: Orthogonalization-free spectral embedding
by neural networks. In Mathematical and Scientific Machine Learning, pp. 33-48. PMLR, 2022.

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on

graphs with fast localized spectral filtering. Advances in neural information processing systems,
29, 2016.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699, 2020.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. In International
Conference on Learning Representations.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. In International
Conference on Learning Representations, 2021.

Wengqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The world wide web conference, pp. 417-426, 2019.

Anna Gaulton, Louisa J Bellis, A Patricia Bento, Jon Chambers, Mark Davies, Anne Hersey, Yvonne
Light, Shaun McGlinchey, David Michalovich, Bissan Al-Lazikani, et al. Chembl: a large-scale
bioactivity database for drug discovery. Nucleic acids research, 40(D1):D1100-D1107, 2012.

Mingguo He, Zhewei Wei, and Ji-Rong Wen. Convolutional neural networks on graphs with cheby-
shev approximation, revisited. Advances in neural information processing systems, 35:7264—

7276, 2022.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In International Conference on
Learning Representations.

Under review as a conference paper at ICLR 2026

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In International Conference on
Learning Representations, 2019.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 33:22118-22133, 2020.

Dasol Hwang, Jinyoung Park, Sunyoung Kwon, KyungMin Kim, Jung-Woo Ha, and Hyunwoo J
Kim. Self-supervised auxiliary learning with meta-paths for heterogeneous graphs. Advances in
neural information processing systems, 33:10294-10305, 2020.

Yizhu Jiao, Yun Xiong, Jiawei Zhang, Yao Zhang, Tianqi Zhang, and Yangyong Zhu. Sub-graph
contrast for scalable self-supervised graph representation learning. In 2020 IEEE international
conference on data mining (ICDM), pp. 222-231. IEEE, 2020.

Nicolas Keriven. Not too little, not too much: a theoretical analysis of graph (over) smoothing.
Advances in Neural Information Processing Systems, 35:2268-2281, 2022.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

Michael Kuhn, Ivica Letunic, Lars Juhl Jensen, and Peer Bork. The sider database of drugs and side
effects. Nucleic acids research, 44(D1):D1075-D1079, 2016.

Renjie Liao, Zhizhen Zhao, Raquel Urtasun, and Richard S Zemel. Lanczosnet: Multi-scale deep
graph convolutional networks. arXiv preprint arXiv:1901.01484, 2019.

Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and Stefanie
Jegelka. Sign and basis invariant networks for spectral graph representation learning. arXiv
preprint arXiv:2202.13013, 2022.

Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting Bai, Yuan Fang,
Lichao Sun, Philip S Yu, et al. Graph foundation models: Concepts, opportunities and challenges.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025.

Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng, Feng Xia, and Philip S Yu. Graph self-
supervised learning: A survey. IEEE transactions on knowledge and data engineering, 35(6):
5879-5900, 2022.

George Ma, Yifei Wang, and Yisen Wang. Laplacian canonization: A minimalist approach to sign
and basis invariant spectral embedding. Advances in Neural Information Processing Systems, 36:
11296-11337, 2023.

Yixuan Ma and Kun Zhan. Self-contrastive graph diffusion network. In Proceedings of the 31st
ACM International Conference on Multimedia, pp. 3857-3865, 2023.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. Advances in neural information processing systems, 32, 2019.

Ines Filipa Martins, Ana L Teixeira, Luis Pinheiro, and Andre O Falcao. A bayesian approach to in
silico blood-brain barrier penetration modeling. Journal of chemical information and modeling,
52(6):1686-1697, 2012.

Andreas Mayr, Giinter Klambauer, Thomas Unterthiner, and Sepp Hochreiter. Deeptox: toxicity
prediction using deep learning. Frontiers in Environmental Science, 3:80, 2016.

Andreas Mayr, Giinter Klambauer, Thomas Unterthiner, Marvin Steijaert, Jorg K Wegner, Hugo
Ceulemans, Djork-Arné Clevert, and Sepp Hochreiter. Large-scale comparison of machine learn-
ing methods for drug target prediction on chembl. Chemical science, 9(24):5441-5451, 2018.

Gal Mishne, Uri Shaham, Alexander Cloninger, and Israel Cohen. Diffusion nets. Applied and
Computational Harmonic Analysis, 47(2):259-285, 2019.

Under review as a conference paper at ICLR 2026

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 4602-4609, 2019.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers
using variational divergence minimization. Advances in neural information processing systems,

29, 2016.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. arXiv preprint arXiv:1905.10947, 2019.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Zhen Peng, Yixiang Dong, Minnan Luo, Xiao-Ming Wu, and Qinghua Zheng. Self-supervised graph
representation learning via global context prediction. arXiv preprint arXiv:2003.01604, 2020a.

Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang Xu, and Junzhou
Huang. Graph representation learning via graphical mutual information maximization. In Pro-
ceedings of the web conference 2020, pp. 259-270, 2020b.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang,
and Jie Tang. Gcc: Graph contrastive coding for graph neural network pre-training. In Proceed-
ings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining,
pp. 1150-1160, 2020.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1-7, 2014.

Ladislav RampasSek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501-14515, 2022.

Ann M Richard, Richard S Judson, Keith A Houck, Christopher M Grulke, Patra Volarath, Inthirany
Thillainadarajah, Chihae Yang, James Rathman, Matthew T Martin, John F Wambaugh, et al.
Toxcast chemical landscape: paving the road to 21st century toxicology. Chemical research in
toxicology, 29(8):1225-1251, 2016.

Uri Shaham, Kelly Stanton, Henry Li, Ronen Basri, Boaz Nadler, and Yuval Kluger. Spectralnet:
Spectral clustering using deep neural networks. In International Conference on Learning Repre-
sentations, 2018.

Daniel A Spielman and Shang-Hua Teng. Spectral partitioning works: Planar graphs and finite
element meshes. In Proceedings of 37th conference on foundations of computer science, pp.
96-105. IEEE, 1996.

Teague Sterling and John J Irwin. Zinc 15-ligand discovery for everyone. Journal of chemical
information and modeling, 55(11):2324-2337, 2015.

Govindan Subramanian, Bharath Ramsundar, Vijay Pande, and Rajiah Aldrin Denny. Computational
modeling of 3-secretase 1 (bace-1) inhibitors using ligand based approaches. Journal of chemical
information and modeling, 56(10):1936-1949, 2016.

Fan-Yun Sun, Jordan Hoffman, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-
supervised graph-level representation learning via mutual information maximization. In Interna-
tional Conference on Learning Representations.

Ruoxi Sun, Hanjun Dai, and Adams Wei Yu. Does gnn pretraining help molecular representation?
Advances in Neural Information Processing Systems, 35:12096-12109, 2022.

Petar Velickovié, William Fedus, William L Hamilton, Pietro Lio, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In International Conference on Learning Representations.

10

Under review as a conference paper at ICLR 2026

Chun Wang, Shirui Pan, Guodong Long, Xingquan Zhu, and Jing Jiang. Mgae: Marginalized graph
autoencoder for graph clustering. In Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management, pp. 889-898, 2017.

Zehong Wang, Zheyuan Liu, Tianyi Ma, Jiazheng Li, Zheyuan Zhang, Xingbo Fu, Yiyang Li,
Zhengqing Yuan, Wei Song, Yijun Ma, et al. Graph foundation models: A comprehensive survey.
arXiv preprint arXiv:2505.15116, 2025.

Yaochen Xie, Zhengyang Wang, and Shuiwang Ji. Noise2same: Optimizing a self-supervised bound
for image denoising. Advances in neural information processing systems, 33:20320-20330, 2020.

Yaochen Xie, Zhao Xu, Jingtun Zhang, Zhengyang Wang, and Shuiwang Ji. Self-supervised learning
of graph neural networks: A unified review. IEEFE transactions on pattern analysis and machine
intelligence, 45(2):2412-2429, 2022.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Pengwei Yan, Kaisong Song, Zhuoren Jiang, Yangyang Kang, Tiangianjin Lin, Changlong Sun, and
Xiaozhong Liu. Empowering dual-level graph self-supervised pretraining with motif discovery.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 9223-9231,
2024.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. Advances in neural information processing systems, 33:
5812-5823, 2020.

A APPENDIX

A.1 LLM USAGE

We used ChatGPT-5 to give our final paper a readthrough and check for blatant typos and errors.
Here is the prompt used, which accompanied our attached (anonymous) paper draft:

Check for any blatant typos or mistakes, and point to exact page numbers or line
numbers. Do not make suggestions on any other aspect of the paper.

A.2 FULL EIGENVECTOR PRE-TRAINING PIPELINE

We provide a broad algorithmic outline of eigenvector pre-training process in Algorithm 2}

Algorithm 2 Structure-Informed Graph Pre-training Framework

Input: Graph G = (V, E); node features X = {x;}; training labels Y’; untrained Base GNN;
untrained Downstream Prediction Head

Output: Trained Base GNN and Downstream Prediction Head

1: X + AUGMENTFEATURES(G, X)

2: BASEGNN < EIGVECPRETRAIN(G, X, BASEGNN)
3: for ¢ < Fine-tuning Epochs do

4 Z,...,Z, < BASEGNN(G, X)

55 Z+[&,..., 2]

6: Y <+ DOWNSTREAMHEAD(Z)
7
8
9
10

Loss = LOSSCRITERION(Y,Y))
: Backpropagate Loss, update model weights
: end for
. return BASEGNN, DOWNSTREAMHEAD

11

Under review as a conference paper at ICLR 2026

A.3 LOSS FUNCTION

Eigenvector loss, per-vector form:

k
1 . .
‘Ceigvec = E E ||L’U/1 -)\zuz”
=1
Eigenvector loss, matrix form:

1
ACeigvec = E|

(LU = UMW)

Energy loss, per-vector form:
k
1
ACene'f‘gy = E Z ﬁ;rLﬂl
i=1
Energy loss, matrix form:
1 N ~
Eene'rgy = E TI‘(UTLU)

Energy loss is order-invariant and rotation invariant (see[A.4)); for applications in clustering, this is
reasonable. However, we would like the model to learn the eigenvectors in their specific order, so we
also define absolute energy loss, matching the Rayleigh quotient with the ground-truth eigenvalue:

k
ZW;L%‘ = Aif
i=1

=

‘Cenergy,abs =

This can be written as, in matrix form:

1 N N
‘Cenergy,abs = E TI‘|UTLU - Ak|

In practice, we do not show any results using absolute energy loss, and instead linearly combine
energy loss with eigenvector loss to avoid order and rotation invariance. However, absolute energy
loss remains an interesting avenue to explore.

A.3.1 ORTHOGONALITY

To ensure the model does not output k copies of the trivial eigenvector, we must give the model
orthogonality constraints on the output vectors. There are again two reasonable choices here: (1)
forced orthogonality and (2) orthogonality loss.

Forced orthogonality, used in Shaham et al.| (2018)), imposes orthogonality on the final outputs of

the model via QR decomposition. In other words, if U’ is the initial output to the model, @ is an
n x k matrix with orthonormal columns, and R is a £ X k upper triangular matrix, then we achieve

the final output U as such:
QR=U'

U=Q
Orthogonality loss, used in |[Dwivedi et al.| (2021); Ma & Zhan| (2023); Mishne et al| (2019) im-
poses a softer constraint, encouraging orthogonality by penalizing the model for producing pairwise
similar vectors. This can be written as:
1 A+
Lortho = EHUTU - IH

Based on preliminary testing, we found that forced orthogonality improved performance on the
eigenvector-learning, and thus use forced orthogonality in all of our experiments.

12

Under review as a conference paper at ICLR 2026

A.4 ENERGY AND EIGENVECTOR LOSSES ARE SIGN AND BASIS INVARIANT

A.4.1 DEFINITION OF BASIS INVARIANCE

Consider any eigenspace spanned by ground truth eigenvectors [¢¥;, ¥j41, ... ¥j4k—1] = V. Also
recall that, by Spectral Theorem, we can decompose any vector v into a linear combination of all

eigenvectors:
n
u = g cii
i=1

Then a loss function is basis invariant if any rotation of the projected component V'V T« does not
change the loss incurred by w. In other words, u gets to arbitrarily “choose” with what basis it
wants to express its V'V T u component. Sign invariance is a special case of basis invariance, where
changing sign is equivalent to rotating over a one-dimensional subspace (note that this is slightly
stronger than the most apparent form of sign invariance, where we would say L(u) = L(—u);
instead, we can flip any component c;1); of u when decomposed in terms of eigenvectors).

Definition 1 (Basis invariance). Consider an eigenspace spanned by ground truth eigenvectors
Wi, Vjt1s- . Vjpp—1] =T € R"™**_ Consider an eigenspace rotation Ry defined as such:

Ry = VAU 4 (I, — VT ") A e SO(k)
A loss function L(u) is basis invariant if, for all such ¥, Ry, u € R™, we have:

A.4.2 PROOFS

Lemma 1 (Energy loss is basis invariant). For any Ry and a single eigenvector prediction u € R,
we have:
u' Lu = (Ryu) " L(Rgu)

Proof. First note that Ry is orthogonal; the set of all Ry describes a subset of SO(k) where only
the k basis vectors in V¥ are rotated. Thus, we have R$ Ry = 1.

In addition, because W is an eigenspace, all columns are eigenvectors with a shared eigenvalue .
Then we have:

RyL=UAV 'L+ L - OO L=AVAU" + L - AOU" = LUVAV" + L — LUU " = LRy
Then we have:
RyLRy = RyRyL =L
Thus, for any u, we have:
uw'Lu=u"Ry,LRyu = (Ryu)" L(Ryu)
O

Lemma 2 (Eigenvector loss is basis invariant). For any Ry and a single eigenvector prediction
u € R™ and ground truth eigenvalue \, we have:

[Lu = dull = [[L(Ryu) = M(Ryu)||

Proof. We know, from our proof above in Lemma 1, that Ry L = LRy. Because Ry € SO(k), we
have ||Ryx| = ||z|| for any 2 € R™. Then we have:
[Lu — Aul| = [[Re(Lu — Au)|
[Lu — Aul| = || L(Ryu) — A(Ryu)||
O

We have an even stronger statement of invariance for energy loss: given a predicted set of & or-
thogonal vectors, rotating the vectors within the same subspace does not impact loss. In other
words, a model trained on energy loss only needs to predict the correct subspace of k eigenvectors.
This is clearly not true of eigenvector loss. Depending on the application, this kind of invariance can
be good or bad.

13

Under review as a conference paper at ICLR 2026

Lemma 3 (Energy loss is rotation invariant). Let L be a Laplacian matrix and V- C R"™ be some
k-dimensional subspace. Suppose U = [uy,usa, ..., ux], W = [wy,ws, ..., w;] € R™*k are both
orthonormal bases for V. Then we have:

% Tr(U'TLU) = % Te(W T LW)

Proof. Note that UUT = WW T, as they are both orthogonal projectors for the same subspace.
Then we have, by the cyclic property of trace:

% Tr(UTLU) = % Tr(UU'L) = % Tr(WW'L) = % Te(W T LW)

A.5 NODE FEATURE AUGMENTATION

Lemma 4 (Uniqueness up to co-spectrality). Let G1, Ga be graphs of size n with Laplacian matrices
L1, Ly respectively. Let d}. , d? represent the diffused dirac embeddings for each node in G1, G.

m? 'm

Then if Ly and Ly have different eigenvalues, {d, : m < n} # {d?, : m <n}

Proof. Consider the random-walk Laplacian of a graph: L,., := I — D™'A = I — P. Moreover,
note that L,.,, = D~ L. Observe that

LywDv=D"'LDv

=D 'UAU" Dv

= Buw for some diagonalizable matrix B with eigenvalues A;, ..., A,
Where U = [)1 ...], with ¢; orthonormal eigenvectors of L and A is the diagonal matrix of
eigenvalues A1, ..., A\, of L. Any change to the eigenspectrum of L, clearly results in a change to
L,.,, and therefore P. Since ¥y = I — P, any two graphs with distinct Laplacian eigenspectra will
have distinct diffused dirac node embeddings. O

A.6 DETAILED EXPERIMENTAL SETTINGS

A complete overview of model hyperparameters and settings can be found in Table[5] Heuristically,
the Graph-level MLP head hidden dimension is chosen to be the max # nodes multiplied by the
hidden dimension size of the base GNN. We do NOT omit the trivial eigenvector when counting
number of eigenvectors predicted.

A.7 ALTERNATIVE STRUCTURAL PRE-TRAINING TARGETS

Here, we formally define and provide details for the alternative pre-training targets used in section

* Node degree: A node-level label representing the degree of each node

* Local clustering coefficient: A node-level label computing the local clustering coefficient
of each node. For a fixed node u, the coefficient C'is given by:

2|{ejr : vj, vk € Ny, ej, € EY}|

C:

* RWSE: A node-level label computing self-walk probabilities at varying step counts for the
diffusion operator (Dwivedi et al.). In our experiments, we use step counts from the interval
2, 22].

* Cycle counting: A graph-level label computing cycle counts of varying lengths. In our
experiments, we count cycles up to length 9.

14

Under review as a conference paper at ICLR 2026

* Lap Eigenvalues: A graph-level label computing the k-lowest Laplacian eigenvalues
Al, ..., A\k. We use the same k = 6 as we do with LELM.

For all alternative structural pre-training tasks, we use the same hyperparameters for GIN as dis-
played in[5] with no initial features and using a standard MAE loss instead of eigenvector + energy
loss. We train on the full ZINC dataset. All structural pre-training targets are normalized to have
mean 0 and standard deviation 1 across the entire dataset.

Table 5: A comprehensive list of all model hyperparameters used during the eigenvector pre-training
step. All hyperparameters highlighted in gray are specific to eigenvector-learning, while other listed
configs reflect general GNN settings (and are set to match default values in each respective baseline

work).

Method GIN GPS GIN pre-training GPSE
Pre-training dataset ZINC-subset (12k), ZINC (250k), QM9 (134k) ZINC-subset (12k), ZINC (250k), QM9 (134k) ZINCI5 (2M), ChEMBL (456K) MOolPCBA (324K)
Base architecture GIN Transformer/GIN GIN MPNN
params 33543 157680 2252210 22075899
layers of per-node feature update 3 3 2 1
#1layers of message passing 4 4 5 20
Hidden dim 60 60 300 512
Activation fn ReLU ReLU ReLU ReLU
Dropout 0.1 0.1 0.2 0.2
Batch size 128 128 32 1024
Learning rate 0.001 0.001 0.001 0.005
Optimizer Adam Adam Adam AdamW
Scheduler ReduceLROnPlateau ReduceLROnPlateau None CosineWithWarmup

patience=5, factor=0.9 patience=20, factor=0.5 - -

Pre-Training Epochs 200 100 100 120
Fine Tuning Epochs 500 150 100 -
Laplacian norm type Unnormalized Unnormalized Unnormalized Symmetric
eigenvectors predicted 6 6 5 5
Initial features Diffused dirac + Wavelet pos. Diffused dirac + Wavelet pos. Molecule features Random
MLP head type(s) Graph-level Graph-level Graph-level, per-node Graph-level, per-node
Graph-level MLP max # nodes 40 40 50 50
MLP head # layers 5 5 1 2
MLP head hidden dim 2400 2400 N/A 1600, 32
MLP head activation fn ReLU ReLU N/A ReLU
Loss function (and coefficient) 2*Eigenvector + 1*energy 2*Eigenvector + | *energy 0.25 * Eigenvector + 0.05 * ortho 0.25 * Eigenvector
Other features/notes Removed graphs with less than six nodes during pre-training Residual gating, virtual node

A.8 MODIFYING EXISTING PRE-TRAINING METHOD

A.8.1 LEARNING RATE TUNING

We keep the majority of the settings from Hu et al.|(2019)) the same. For downstream fine-tuning, we
tune over 7 learning rates for fair comparison according to |Sun et al.| (2022)). We run each method
and learning rate over 3 seeds, and select the learning rate based on mean validation accuracy over
all learning rates.

A.8.2 DOWNSTREAM DATASETS

We briefly list and cite the five downstream datasets here for reference. The five datasets are the
datasets chosen in |Sun et al.| (2022), and are a subset of the eight primary downstream datasets
evaluated in|Hu et al.| (2019).

* BACE: Qualitative binding results |Subramanian et al.| (2016)

* BBBP: Blood-brain barrier penetration Martins et al.[(2012)

» Tox21: Toxicity data Mayr et al.|(2016)

» Toxcast: Toxicology measurements Richard et al.|(2016)

SIDER: Database of adverse drug reactions (ADR) |[Kuhn et al.| (2016))

A.9 MODIFYING EXISTING GRAPH STRUCTURAL ENCODER

A.9.1 LOSS FUNCTION COMPARISON

We claim that the sum of MAE and cosine similarity loss used in the structural encoder model GPSE
(Cantiirk et al.l |2023) limits the model’s ability to predict the eigenvectors of a graph.

To address sign ambiguity, the original GPSE model only learns the absolute value of each Lapla-
cian eigenvector as its target. This improves performance over training without absolute value, but
two shortcomings still arise. This (1) provides strictly less information than learning the true eigen-
vectors, and (2) does not capture basis ambiguity, making it ill-posed for eigenvectors with higher
multiplicity (or eigenvectors with small eigengaps).

15

Under review as a conference paper at ICLR 2026

Energy/Eigvec loss when training on various loss functions

Energy loss per method (train) Eigvec loss per method (train)
0.0 A
14 —0.5 A
9 " -1.01
k=) - o
= —2 7 —— Eigvec loss (ours) o —1.54 —— Eigvec loss (ours)
g Cosine + MAE loss (GPSE) | 2 Cosine + MAE loss (GPSE)
2 g
[—— Random U _50p4 —— Random
o o
g 39 3
254
4] —3.0 A
735 -
Epoch
Energy loss per method (val) Eigvec loss per method (val)
0.0
_{]5 -
054
710 4
E -1.5 A 2 -1.04
- —— Eigvec loss (ours) o —— Eigvec loss (ours)
g -2.01 Cosine + MAE loss (GPSE) | 2 ~1] Cosine + MAE loss (GPSE)
b5 25 —— Random o —— Random
o —2.5 2 2.0
S 3
730 4
254
_3.5 4
3[)
740 L T T T T T T T T T T T T T T
0 100 200 300 400 500 600 0 100 200 300 400 500 600

Epoch

Figure 2: A comparison of energy loss and eigenvector loss, when the GPSE architecture is trained
on (1) eigenvector loss (ours), (2) cosine similarity + MAE |Cantiirk et al.| (2023), and (3) no loss
(outputting random vectors). All losses displayed are in natural log scale for visual purposes.

We demonstrate this claim experimentally in Figure 2] We train the default GPSE settings and
architecture using (1) eigenvector loss (ours), and the default cosine similarity + MAE loss (GPSE).
We train for 600 epochs on 1% of the MolPCBA dataset and plot eigenvector and energy losses
per-epoch. We also plot the loss when outputting random orthogonal vectors for comparison. While
training on cosine similarity + MAE achieves better-than-random results, sign and basis ambiguity
issues severely limit the model’s ability to learn meaningful eigenvectors.

16

	Introduction
	Related Works
	Graph pre-training methods

	Background
	Notation
	Graph Laplacian eigenvectors

	Method
	Overview
	Model Architecture
	Node feature augmentation
	Loss function
	Pre-Training Algorithm

	Experimental Results
	Pre-training Graph Neural Networks
	Enhancing an existing Graph Neural Network pre-training method
	Pre-training Structural Encoder

	Limitations and Future Work
	Appendix
	LLM usage
	Full eigenvector pre-training pipeline
	Loss function
	Orthogonality

	Energy and eigenvector losses are sign and basis invariant
	Definition of basis invariance
	Proofs

	Node feature augmentation
	Detailed experimental settings
	Alternative structural pre-training targets
	Modifying existing pre-training method
	Learning rate tuning
	Downstream datasets

	Modifying existing graph structural encoder
	Loss function comparison

