
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A GRAPH LAPLACIAN EIGENVECTOR-BASED PRE-
TRAINING METHOD FOR GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose the Laplacian Eigenvector Learning Module (LELM), a novel pre-
training module for graph neural networks (GNNs). Traditional message-passing
GNNs often struggle to capture global and regional graph structure due to over-
smoothing risk as network depth increases. Because the low-frequency eigenvec-
tors of the graph Laplacian matrix encode global information, pre-training GNNs
to predict these eigenvectors encourages the network to naturally learn large-scale
structural patterns over each graph. Empirically, we show that models pre-trained
via our framework outperform baseline models on a variety of graph structure-
based tasks. While most existing pre-training methods focus on domain-specific
tasks such as feature reconstruction, our self-supervised pre-training framework
is structure-based and highly flexible; we show that LELM can be used both as
an independent pre-training task and as a plug-in addition to a variety of existing
pre-training pipelines.

1 INTRODUCTION

Graph Neural Networks (GNNs) have become a powerful tool in node and graph representation
learning, with successful applications across domains ranging from biomedicine (Cantürk et al.,
2023; Yan et al., 2024; Hu et al., 2019; Sun et al., 2022) to social networks (Fan et al., 2019). More
recently, graph foundation models (GFMs) are emerging as an exciting field; inspired by the success
of large language models (LLMs), researchers are exploring the possibility of creating large graph-
based models with emergent capabilities across a wide variety of domains (Liu et al., 2025; Xie
et al., 2022; Wang et al., 2025).

A key ingredient in this effort is the creation of self-supervised tasks which can be performed on
large unlabelled graph datasets (Liu et al., 2022). A variety of pre-training methods have been pro-
posed, but the majority of such methods are based in contrastive losses and graph reconstruction (Liu
et al., 2025; Xie et al., 2022). A few structure-based methods, which precompute labels based on
graph topology, have been proposed (Peng et al., 2020a; Hwang et al., 2020). However, this category
of pre-training approach, recently termed as graph property prediction (Liu et al., 2025), remains
unexplored largely due to the limitations of GNNs in capturing global and regional information.

In traditional message passing GNNs, node representations are updated via aggregating neighboring
node embeddings. Typically, this involves taking an average or sum of neighboring node embed-
dings and then passing the new embedding through an MLP. However, for one node to incorporate
information from more distant nodes, multiple layers of message passing are required (Alon & Ya-
hav). Increasing the number of layers in a GNN leads to a phenomenon known as oversmoothing:
the representations of nodes within a k-hop neighborhood become increasingly indistinguishable
?Oono & Suzuki (2019); Keriven (2022).

We propose LELM, a Laplacian eigenvector-based pre-training module for GNNs and GFMs. Lapla-
cian eigenvectors capture a range of global, regional and local graph structure, making them well-
suited as a graph property prediction target. Moreover, LELM utilizes a global MLP prediction head
during pre-training that allows the GNN model to learn long-range relationships without requiring
excessively deep networks, and augments pre-training data with positional features to overcome ex-
pressivity limits of GNNs. LELM is highly flexible: it can be used with any feature types across all
graph-based datasets, and can be used both as an independent pre-training method and as a plug-in
addition to existing graph pre-training pipelines to improve downstream performance.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Our main contributions are as follows:

1. We introduce LELM as a Laplacian eigenvector-based pre-training module for GNNs.
2. Within LELM, we introduce a global MLP head that enables long-range interaction be-

tween vertices within the graph, as well as a set of augmented pre-training features based
on the graph diffusion operator.

3. We demonstrate that our pre-training module provides performance improvements over
baseline models both as a standalone pre-training task and as an augmentation to existing
pre-training pipelines.

2 RELATED WORKS

2.1 GRAPH PRE-TRAINING METHODS

Towards the goal of improving graph foundation models, a variety of self-supervised graph pre-
training tasks have been proposed. According to the taxonomy provided by Liu et al. (2025); Xie
et al. (2022), existing graph pre-training methods can be categorized into two broad categories:
contrastive and predictive methods.

Contrastive methods maximize mutual information between pairs of data views using objectives like
Jensen-Shannon estimator (Nowozin et al., 2016) or InfoNCE (Oord et al., 2018). Methods can be
categorized by the types of views used: graph-node (Sun et al.; Veličković et al.; Peng et al., 2020b),
subgraph-node (Hu et al.; Jiao et al., 2020), and subgraph-subgraph Qiu et al. (2020). Some methods
also employ graph augmentation to generate two views (You et al., 2020).

Predictive methods, also referred to as generative methods (Liu et al., 2025), self-generate labels and
train to predict these labels. A first class of predictive models uses graph reconstruction, whether by
using node/edge masking (Xie et al., 2020; Batson & Royer, 2019; Hu et al.) or using autoencoders
(Wang et al., 2017; Kipf & Welling, 2016). A second class of predictive methods are property
prediction methods, which precompute underlying graph properties as labels. Examples include
statistical properties such as k-hop connectivity (Peng et al., 2020a) or topological properties like
a meta-path (Hwang et al., 2020). Overall, there are a lack of works on property prediction-based
methods, with the majority of predictive pre-training methods falling under the former category of
graph reconstruction (Liu et al., 2025). Our method, LELM, is the first property prediction method
to use the graph Laplacian eigenvectors as a pre-training target.

3 BACKGROUND

3.1 NOTATION

The unnormalized Laplacian L of a graph G is defined as:
L = D −A

where D is the diagonal degree matrix and A is the unnormalized adjacency matrix of G.

Let λ1, λ2, . . . λk denote the k lowest eigenvalues of L in nondecreasing order. Let ψ1, ψ2, . . . ψk
denote the corresponding eigenvectors, such that we have:

Lψi = λiψi

Note that for the unnormalized Laplacian, the first eigenvector and eigenvalue are trivial:

ψ1 =
1

n
1, λ1 = 0

By Courant-Fischer, the eigenvectors of L (and the eigenvectors of any Hermitian matrix) can be
equivalently expressed as solutions to the following iterative optimization problem:

ψk ∈ argmin
∥x∥=1

x⊥ψ1,...,ψk−1

x⊤Lx.

The term x⊤Lx
x⊤x

is known as the Rayleigh quotient; because we normalize our predicted eigenvectors,
we simply treat this as x⊤Lx.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3.2 GRAPH LAPLACIAN EIGENVECTORS

Our use of the low-frequency graph Laplacian eigenvectors is motivated by their close relationship
to structural and positional properties of graphs.

Provably minimal graph cuts: The second-lowest eigenvector ψ2, known as the Fiedler vector,
can be used to generate a provably “good” cut on a graph; in particular, for some arbitrary threshold
s ∈ R, we can define a Fiedler cut C to be:

C = ({i : ψ2(i) < s}, {i : ψ2(i) ≥ s})

On any bounded-degree n-vertex planar graph, the optimal Fiedler cut has ratio O(1n) (Spielman &
Teng, 1996).

Positional encodings: The low-frequency Laplacian eigenvectors naturally encode a global position
on the graph. As a result, Laplacian positional encodings (LapPE) have been used as a standard
positional encoding for graph transformer models (Dwivedi & Bresson, 2020; Rampášek et al.,
2022). In practice, directly using the Laplacian eigenvectors as positional encodings creates sign and
basis ambiguity issues, as ψi is an eigenvector of L ⇐⇒ -ψi is an eigenvector of L. Approaches to
solving this problem include designing an architecture which processes the Laplacian eigenvectors
in a sign- and basis-invariant manner (Lim et al., 2022) or defining canonical directions for the
eigenvectors (Ma et al., 2023).

Spectral GNNs: A variety of methods, known as spectral graph neural networks, use the Laplacian
eigendecomposition to learn filters in signal domain (Bo et al., 2023b). Some methods explicitly
compute or approximate the k lowest-frequency Laplacian eigenvectors, learning advanced filters on
the corresponding eigenvalues (Bruna et al., 2013; Liao et al., 2019; Bo et al., 2023a). Other methods
instead learn polynomial filters on the graph (Defferrard et al., 2016; He et al., 2022), circumvent-
ing the expensive process of eigendecomposition by learning a k-degree polynomial function with
respect to L, i.e. p(L) = θ0I + θ1L+ · · ·+ θkL

k.

Spectral clustering: The Laplacian eigenvectors have also been used for clustering applications.
Given a set of data x1, . . . xn, Belkin & Niyogi (2001) construct a weighted graph G with n nodes
using a heat kernel. Then to generate a k-dimensional embedding, Belkin & Niyogi (2001) compute
the k-lowest eigenvectors ψ2, . . . ψk+1 (omitting the trivial eigenvector) of the graph Laplacian and
assign data point xi the embedding (ψ2(i), ψ3(i), . . . , ψk+1(i)). Shaham et al. (2018); Chen et al.
(2022) learn this spectral map using a neural network, allowing for a natural extension of this map
to new datapoints.

4 METHOD

Figure 1: Overview of the LELM pre-training pipeline. Here, “Base GNN” and “Downstream
Prediction Head” can be any user-defined model architecture.

4.1 OVERVIEW

The LELM pre-training framework consists of three primary components:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

• Node feature augmentation: We provide initial features based on the diffusion operator:
(1) wavelet positional embeddings, and (2) diffused dirac embeddings.

• Eigenvector prediction: During pre-training, we task the model to predict the k lowest-
frequency eigenvectors of the graph Laplacian.

• Graph-level MLP: We pass a graph-level aggregated representation into our prediction
MLP head.

4.2 MODEL ARCHITECTURE

Base GNN: The base GNN model takes in a graph with augmented node features and generates
learned node representations via neighborhood message passing and update steps. Any GNN archi-
tecture may be selected as the base model to fit the needs of the dataset and downstream application.

Graph-level MLP: We concatenate the node-wise output of the base GNN model to form a graph-
level aggregated representation. We then pass the aggregated vector through an MLP model to
produce the low-frequency Laplacian eigenvectors. Concatenating the node embeddings prior to
applying the MLP allows the model to learn relationships between distant nodes without risking
over-smoothing.

Previous eigenvector-learning methods use a node-wise MLP head, processing each node’s eigen-
coordinates independently based on their learned hidden embedding (Shaham et al., 2018; Dwivedi
et al., 2021; Cantürk et al., 2023).

4.3 NODE FEATURE AUGMENTATION

To provide the model with additional structural information, and to overcome well-known expres-
sivity limits of GNNs (Morris et al., 2019; Maron et al., 2019; Xu et al., 2018), we augment node
features with structure-based embeddings. We propose two kinds of embeddings: (1) wavelet posi-
tional embeddings, which encode relative positional information between nodes, and (2) diffused
dirac embeddings, which encode local connectivity structures around each node. Both embeddings
use the random walk matrix, and capture local aggregate information on each node. The diffusion
operator P of a graph G is defined as:

P = D−1A

Each entry Pij represents the probability of starting a random walk at node i and ending at node j
after one step. One can also take powers of the diffusion operator, P t. Each entry of the powered
matrix, P tij , represents the probability of starting a random walk at node i and ending at node j after
t steps

The jth wavelet operator Ψj of a graph G is defined as:

Ψj = P 2j−1

− P 2j

Ψ0 = I − P

A wavelet bank,WJ is a collection of wavelet operators such that:

WJ = {Ψj}0≤j≤J ∪ P 2J

Wavelet positional embeddings encode information about the relative position of each node within
the graph. We randomly select two nodes from each graph, i and j, and start dirac signals δi, δj . We
then apply these signals to each wavelet, Ψk, in our wavelet bank. The wavelet positional embedding
for node m is the mth row of the resulting matrix.

wm,k = Ψk(m, ·)

[| |
δi δj
| |

]
wm = [wm,1 . . . wm,J]

Diffused dirac embeddings encode information about the connectedness of each node and its neigh-
bors. For each node, m, we apply the mth row of the diffusion matrix P to each wavelet Ψk in our

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

wavelet bank. As above, the difused dirac embedding for node m is the mth row of the resulting
matrix.

dm,k = Ψk(m, ·) P (m, ·)⊤

dm = [dm,1 . . . dm,J]

These node embeddings are unique up to co-spectrality of the graph Laplacian. The proof is provided
in A.5.

4.4 LOSS FUNCTION

Let Û denote a matrix of k column vectors ûi, where each ûi denotes the ith predicted eigenvector.
Let Λk denote a diagonal matrix containing eigenvalues λ1, . . . , λk.

We minimize a weighted sum of two loss functions: (1) eigenvector loss and (2) energy loss. Both
loss functions respect necessary sign and basis invariances of Laplacian eigenvectors; full proofs
can be found in A.4.

To ensure the model does not output k copies of the trivial eigenvector, we impose orthogonality on
the final outputs of the model via QR decomposition, as proposed by Shaham et al. (2018).

Energy loss, used by Shaham et al. (2018); Dwivedi et al. (2021); Ma & Zhan (2023), aims to
minimize the sum of Rayleigh quotients:

Lenergy =
1

k
Tr(Û⊤LÛ)

This loss function is motivated by the iterative optimization problem following from Courant-Fischer
(3.1). However, minimizing this loss function only minimizes the sum of the first k Rayleigh quo-
tients, meaning the minimizer (subject to orthogonality) is any set of vectors spanning same subspace
spanned by the k lowest frequency eigenvectors. For applications in clustering, this is reasonable,
as the exact basis in which embeddings are expressed is often irrelevant; however, to require the
model to truly predict the k-lowest eigenvectors, we must include a more explicit penalty, such as
eigenvector loss.

Eigenvector loss, used by Mishne et al. (2019), measures the difference between each Lûi and λiûi:

Leigvec =
1

k
∥(LÛ − ÛΛk)∥

Eigenvector loss enforces both the correct basis and a strict ordering (up to eigenvalue multiplicity)
on the predicted eigenvectors. Our final loss function is then:

L = α · Lenergy + β · Leigvec

4.5 PRE-TRAINING ALGORITHM

Algorithm 1 Eigenvector Prediction

Require: Graph G = (V,E); augmented node features X̃ = {x̃j}; Base GNN
Ensure: Output Pre-trained GNN model, k lowest-frequency eigenvectors

1: for i < Pre-Training Epochs do
2: z⃗0, . . . , z⃗n ← BASEGNN(G, X̃)

3: Z⃗ ← [z⃗1, . . . , z⃗n] ∈ Rnd

4: Ũ ← MLP(Z⃗)
5: Û = QR(Ũ)

6: Loss = α · ENERGYLOSS(Û) + β · EIGVECLOSS(Û)
7: Back-propagate Loss, update model weights
8: end for
9: return BASEGNN

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5 EXPERIMENTAL RESULTS

To evaluate the effectiveness of our framework, we conduct experiments across multiple graph learn-
ing use-cases. First, we apply our pre-training framework directly to several GNN models and assess
its impact on downstream performance. Second, we integrate our pre-training method with existing
pre-training frameworks and examine how our approach can complement established methods. Fi-
nally, we pre-train a positional and structural encoder for Graph Transformer networks. Collectively,
these approaches provide a comprehensive assessment of the framework’s effectiveness across dif-
ferent graph learning scenarios.

5.1 PRE-TRAINING GRAPH NEURAL NETWORKS

We pre-train a standard Graph Isomorphism Network (GIN) (Xu et al., 2019) and GPS, a graph
transformer using LELM. Once the model has been pre-trained, we replace the graph-level MLP
head with a downstream prediction MLP and fine-tune model weights. We evaluate our pre-training
framework on three molecular datasets ZINC, ZINC-12k (Sterling & Irwin, 2015) and QM9 (Ra-
makrishnan et al., 2014). For each of these models, we compare LELM against the same GNN
model without pre-training. For each of these models, pre-training improves performance for all but
one of the downstream targets. We record results of our experiments in Table 1. In addition, for the
GIN model we compare LELM to various structure-based pre-training targets including node de-
gree, local clustering coefficient, random walk structural encodings, cycle counting, and Laplacian
eigenvalues. Results are recorded in Table 2.

Table 1: Test MAE (↓) performance comparison on ZINC (single metric) and QM9 (first seven target
properties).

ZINC full ZINC subset QM9

Model Penalized log p Penalized log p µ α εHOMO εLUMO ∆ε R2 ZPVE

Pre-Trained GIN 0.130 0.353 0.484 0.489 0.00353 0.00371 0.00513 28.103 0.000477
GIN (baseline) 0.228 0.438 0.472 1.132 0.00386 0.00399 0.00562 50.909 0.002400
Pre-Trained GPS 0.104 0.210 0.5021 0.5922 0.0037 0.0040 0.0051 33.606 0.00178
GPS (baseline) 0.150 0.358 0.413 0.718 0.00434 0.00442 0.00592 80.503 0.00111

Table 2: Test MAE (↓) performance comparison on ZINC with alternative structural targets.
Alternative targets ZINC full ZINC subset

LELM 0.130 0.353
Node degree 0.238 0.471
Local clustering coefficient 1.493 1.551
RWSE (Dwivedi) 1.493 1.551
Cycle counting 0.285 0.420
Lap Eigenvalues 0.250 0.520

5.2 ENHANCING AN EXISTING GRAPH NEURAL NETWORK PRE-TRAINING METHOD

We augment the existing molecular pre-training methods proposed by Hu et al. (2019) with
eigenvector-learning. In particular, Hu et al. (2019) propose node-level pre-training tasks (context
prediction and masking) on ZINC15 (Sterling & Irwin, 2015), followed by a graph-level supervised
pre-training task on ChEMBL (Mayr et al., 2018; Gaulton et al., 2012). We augment the graph-
level supervised pre-training step by adding an additional MLP head to predict eigenvectors, and we
evaluate on five downstream datasets based on work by Sun et al. (2022).

Detailed results are shown in Table 3. Eigenvector-learning consistently improves performance for
the masking pre-training pipeline, but achieves mixed results on the context prediction pipeline.
Notably, performance for the masking pipeline was increased for all five datasets when performing
eigenvector pre-training with the graph-level MLP head.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Test ROC-AUC (%, ↑) performance on 5 molecular prediction tasks when augmenting an
existing pre-training method on a GIN base model. Sup. refers to the original supervised pre-
training as implemented by Hu et al. (2019), and Sup.+ refers to supervised training with LELM.
Results for no pre-training are taken directly from Sun et al. (2022). All methods are tuned over
seven learning rates and averaged over three seeds.

Dataset BACE BBBP Tox21 ToxCast SIDER

Pretrain method MLP Head

ContextPred, Sup.+ Graph-level 79.62± 3.63 70.76± 1.64 77.94± 0.11 66.13± 0.34 60.05± 0.99
ContextPred, Sup.+ Node-wise 75.87± 3.11 68.74± 1.07 78.86± 0.06 63.78± 0.32 59.83± 0.53
ContextPred, Sup. - 84.98± 1.28 68.25± 0.48 77.44± 0.19 64.01± 0.81 62.87± 0.89
Masking, Sup.+ Graph-level 80.71± 3.84 68.33± 0.89 79 .09 ± 0 .25 65 .96 ± 0 .20 62 .41 ± 1 .77
Masking, Sup.+ Node-wise 81 .02 ± 1 .67 69 .94 ± 1 .76 79.33± 0.41 65.14± 0.44 59.38± 1.11
Masking, Sup. - 75.42± 2.64 67.36± 4.60 78.33± 0.24 64.88± 0.82 61.6± 1.78
No pre-training - 75.77± 4.29 69.62± 1.05 75.52± 0.67 63.67± 0.32 59.07± 1.13

5.3 PRE-TRAINING STRUCTURAL ENCODER

Table 4: Test MAE (↓) performance on ZINC (12k subset) dataset when augmenting a graph
structural encoder. All results using no structural encoder or the base GPSE are taken directly from
Cantürk et al. (2023). GPSE+ refers to GPSE with LELM. Our experimental results are averaged
over three seeds.

Base model Structural encoder MLP Head MAE

GPS GPSE+ Graph-level 0.0629± 0.0016
GPSE+ Node-wise 0.0663± 0.0024
GPSE - 0 .0648 ± 0 .0030
None - 0.118± 0.005

GIN GPSE+ Graph-level 0.1231± 0.0026
GPSE+ Node-wise 0.1299± 0.0010
GPSE - 0.124± 0.002
None - 0.285± 0.004

We modify Graph Positional and Structural Encoder (GPSE) (Cantürk et al., 2023). While GPSE
already incorporates eigenvector-learning by including Laplacian positional encodings (LapPE) as
a prediction target, GPSE uses MAE and cosine similarity loss on the absolute value of each eigen-
vector and a node-wise prediction head for every node property. We replace GPSE’s eigenvector-
learning component with our own, using a separate MLP head and eigenvector loss. We keep all
other GPSE model settings the same.

Following Cantürk et al. (2023), we pre-train our modified GPSE model on MolPCBA (Hu et al.,
2020). We evaluate the effectiveness of these encodings by training both the Transformer model GPS
(Rampášek et al., 2022) and a standard GIN, augmented with these encodings, on the downstream
molecule property prediction task for the ZINC 12k (Sterling & Irwin, 2015) subset.

We report results on the effectiveness of these new learned encodings in Table 4. Modified
eigenvector-learning with a graph-level MLP improves performance on downstream performance
for both the GIN and GPS models, with our graph-level GPS+GPSE+ configuration achieving SOTA
performance over all model and encoding configurations tested by Cantürk et al. (2023). We also
demonstrate that our choice of loss function is crucial for eigenvector-learning in A.9.

6 LIMITATIONS AND FUTURE WORK

There are several promising future directions toward improving the Laplacian eigenvector pre-
training framework. We have demonstrated the effectiveness of the framework for pre-training and
fine-tuning a GNN on the same dataset, or on domain-related datasets. However, we are yet to
explore the effectiveness of eigenvector pre-training as a transfer learning framework.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Further, the practical implementation of the graph-level MLP requires adding padding to the con-
catenated node embeddings to accommodate for graphs of differing sizes. This creates an additional
challenge for the MLP to learn meaningful relationships between the individual node embeddings
within the graph-level vector. One could explore other ways of creating a rich graph-level represen-
tation while avoiding this challenge.

REFERENCES

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
In International Conference on Learning Representations.

Joshua Batson and Loic Royer. Noise2self: Blind denoising by self-supervision. In International
conference on machine learning, pp. 524–533. PMLR, 2019.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embedding and
clustering. Advances in neural information processing systems, 14, 2001.

Deyu Bo, Chuan Shi, Lele Wang, and Renjie Liao. Specformer: Spectral graph neural networks
meet transformers. arXiv preprint arXiv:2303.01028, 2023a.

Deyu Bo, Xiao Wang, Yang Liu, Yuan Fang, Yawen Li, and Chuan Shi. A survey on spectral graph
neural networks. arXiv preprint arXiv:2302.05631, 2023b.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

Semih Cantürk, Renming Liu, Olivier Lapointe-Gagné, Vincent Létourneau, Guy Wolf, Dominique
Beaini, and Ladislav Rampášek. Graph positional and structural encoder. In Forty-first Interna-
tional Conference on Machine Learning, 2023.

Ziyu Chen, Yingzhou Li, and Xiuyuan Cheng. Specnet2: Orthogonalization-free spectral embedding
by neural networks. In Mathematical and Scientific Machine Learning, pp. 33–48. PMLR, 2022.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
29, 2016.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699, 2020.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. In International
Conference on Learning Representations.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. In International
Conference on Learning Representations, 2021.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The world wide web conference, pp. 417–426, 2019.

Anna Gaulton, Louisa J Bellis, A Patricia Bento, Jon Chambers, Mark Davies, Anne Hersey, Yvonne
Light, Shaun McGlinchey, David Michalovich, Bissan Al-Lazikani, et al. Chembl: a large-scale
bioactivity database for drug discovery. Nucleic acids research, 40(D1):D1100–D1107, 2012.

Mingguo He, Zhewei Wei, and Ji-Rong Wen. Convolutional neural networks on graphs with cheby-
shev approximation, revisited. Advances in neural information processing systems, 35:7264–
7276, 2022.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In International Conference on
Learning Representations.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In International Conference on
Learning Representations, 2019.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 33:22118–22133, 2020.

Dasol Hwang, Jinyoung Park, Sunyoung Kwon, KyungMin Kim, Jung-Woo Ha, and Hyunwoo J
Kim. Self-supervised auxiliary learning with meta-paths for heterogeneous graphs. Advances in
neural information processing systems, 33:10294–10305, 2020.

Yizhu Jiao, Yun Xiong, Jiawei Zhang, Yao Zhang, Tianqi Zhang, and Yangyong Zhu. Sub-graph
contrast for scalable self-supervised graph representation learning. In 2020 IEEE international
conference on data mining (ICDM), pp. 222–231. IEEE, 2020.

Nicolas Keriven. Not too little, not too much: a theoretical analysis of graph (over) smoothing.
Advances in Neural Information Processing Systems, 35:2268–2281, 2022.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

Michael Kuhn, Ivica Letunic, Lars Juhl Jensen, and Peer Bork. The sider database of drugs and side
effects. Nucleic acids research, 44(D1):D1075–D1079, 2016.

Renjie Liao, Zhizhen Zhao, Raquel Urtasun, and Richard S Zemel. Lanczosnet: Multi-scale deep
graph convolutional networks. arXiv preprint arXiv:1901.01484, 2019.

Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and Stefanie
Jegelka. Sign and basis invariant networks for spectral graph representation learning. arXiv
preprint arXiv:2202.13013, 2022.

Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting Bai, Yuan Fang,
Lichao Sun, Philip S Yu, et al. Graph foundation models: Concepts, opportunities and challenges.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025.

Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng, Feng Xia, and Philip S Yu. Graph self-
supervised learning: A survey. IEEE transactions on knowledge and data engineering, 35(6):
5879–5900, 2022.

George Ma, Yifei Wang, and Yisen Wang. Laplacian canonization: A minimalist approach to sign
and basis invariant spectral embedding. Advances in Neural Information Processing Systems, 36:
11296–11337, 2023.

Yixuan Ma and Kun Zhan. Self-contrastive graph diffusion network. In Proceedings of the 31st
ACM International Conference on Multimedia, pp. 3857–3865, 2023.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. Advances in neural information processing systems, 32, 2019.

Ines Filipa Martins, Ana L Teixeira, Luis Pinheiro, and Andre O Falcao. A bayesian approach to in
silico blood-brain barrier penetration modeling. Journal of chemical information and modeling,
52(6):1686–1697, 2012.

Andreas Mayr, Günter Klambauer, Thomas Unterthiner, and Sepp Hochreiter. Deeptox: toxicity
prediction using deep learning. Frontiers in Environmental Science, 3:80, 2016.

Andreas Mayr, Günter Klambauer, Thomas Unterthiner, Marvin Steijaert, Jörg K Wegner, Hugo
Ceulemans, Djork-Arné Clevert, and Sepp Hochreiter. Large-scale comparison of machine learn-
ing methods for drug target prediction on chembl. Chemical science, 9(24):5441–5451, 2018.

Gal Mishne, Uri Shaham, Alexander Cloninger, and Israel Cohen. Diffusion nets. Applied and
Computational Harmonic Analysis, 47(2):259–285, 2019.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 4602–4609, 2019.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers
using variational divergence minimization. Advances in neural information processing systems,
29, 2016.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. arXiv preprint arXiv:1905.10947, 2019.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Zhen Peng, Yixiang Dong, Minnan Luo, Xiao-Ming Wu, and Qinghua Zheng. Self-supervised graph
representation learning via global context prediction. arXiv preprint arXiv:2003.01604, 2020a.

Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang Xu, and Junzhou
Huang. Graph representation learning via graphical mutual information maximization. In Pro-
ceedings of the web conference 2020, pp. 259–270, 2020b.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang,
and Jie Tang. Gcc: Graph contrastive coding for graph neural network pre-training. In Proceed-
ings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining,
pp. 1150–1160, 2020.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

Ann M Richard, Richard S Judson, Keith A Houck, Christopher M Grulke, Patra Volarath, Inthirany
Thillainadarajah, Chihae Yang, James Rathman, Matthew T Martin, John F Wambaugh, et al.
Toxcast chemical landscape: paving the road to 21st century toxicology. Chemical research in
toxicology, 29(8):1225–1251, 2016.

Uri Shaham, Kelly Stanton, Henry Li, Ronen Basri, Boaz Nadler, and Yuval Kluger. Spectralnet:
Spectral clustering using deep neural networks. In International Conference on Learning Repre-
sentations, 2018.

Daniel A Spielman and Shang-Hua Teng. Spectral partitioning works: Planar graphs and finite
element meshes. In Proceedings of 37th conference on foundations of computer science, pp.
96–105. IEEE, 1996.

Teague Sterling and John J Irwin. Zinc 15–ligand discovery for everyone. Journal of chemical
information and modeling, 55(11):2324–2337, 2015.

Govindan Subramanian, Bharath Ramsundar, Vijay Pande, and Rajiah Aldrin Denny. Computational
modeling of β-secretase 1 (bace-1) inhibitors using ligand based approaches. Journal of chemical
information and modeling, 56(10):1936–1949, 2016.

Fan-Yun Sun, Jordan Hoffman, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-
supervised graph-level representation learning via mutual information maximization. In Interna-
tional Conference on Learning Representations.

Ruoxi Sun, Hanjun Dai, and Adams Wei Yu. Does gnn pretraining help molecular representation?
Advances in Neural Information Processing Systems, 35:12096–12109, 2022.

Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In International Conference on Learning Representations.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chun Wang, Shirui Pan, Guodong Long, Xingquan Zhu, and Jing Jiang. Mgae: Marginalized graph
autoencoder for graph clustering. In Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management, pp. 889–898, 2017.

Zehong Wang, Zheyuan Liu, Tianyi Ma, Jiazheng Li, Zheyuan Zhang, Xingbo Fu, Yiyang Li,
Zhengqing Yuan, Wei Song, Yijun Ma, et al. Graph foundation models: A comprehensive survey.
arXiv preprint arXiv:2505.15116, 2025.

Yaochen Xie, Zhengyang Wang, and Shuiwang Ji. Noise2same: Optimizing a self-supervised bound
for image denoising. Advances in neural information processing systems, 33:20320–20330, 2020.

Yaochen Xie, Zhao Xu, Jingtun Zhang, Zhengyang Wang, and Shuiwang Ji. Self-supervised learning
of graph neural networks: A unified review. IEEE transactions on pattern analysis and machine
intelligence, 45(2):2412–2429, 2022.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Pengwei Yan, Kaisong Song, Zhuoren Jiang, Yangyang Kang, Tianqianjin Lin, Changlong Sun, and
Xiaozhong Liu. Empowering dual-level graph self-supervised pretraining with motif discovery.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 9223–9231,
2024.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. Advances in neural information processing systems, 33:
5812–5823, 2020.

A APPENDIX

A.1 LLM USAGE

We used ChatGPT-5 to give our final paper a readthrough and check for blatant typos and errors.
Here is the prompt used, which accompanied our attached (anonymous) paper draft:

Check for any blatant typos or mistakes, and point to exact page numbers or line
numbers. Do not make suggestions on any other aspect of the paper.

A.2 FULL EIGENVECTOR PRE-TRAINING PIPELINE

We provide a broad algorithmic outline of eigenvector pre-training process in Algorithm 2.

Algorithm 2 Structure-Informed Graph Pre-training Framework
Input: Graph G = (V,E); node features X = {xj}; training labels Y ; untrained Base GNN;

untrained Downstream Prediction Head
Output: Trained Base GNN and Downstream Prediction Head

1: X̃ ← AUGMENTFEATURES(G,X)

2: BASEGNN← EIGVECPRETRAIN(G, X̃,BASEGNN)
3: for i < Fine-tuning Epochs do
4: z⃗0, . . . , z⃗n ← BASEGNN(G, X̃)

5: Z⃗ ← [z⃗1, . . . , z⃗n]

6: Ŷ ← DOWNSTREAMHEAD(Z⃗)

7: Loss = LOSSCRITERION(Ŷ , Y)
8: Backpropagate Loss, update model weights
9: end for

10: return BASEGNN, DOWNSTREAMHEAD

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A.3 LOSS FUNCTION

Eigenvector loss, per-vector form:

Leigvec =
1

k

k∑
i=1

∥Lûi − λiûi∥

Eigenvector loss, matrix form:

Leigvec =
1

k
∥(LÛ − ÛΛk)∥

Energy loss, per-vector form:

Lenergy =
1

k

k∑
i=1

û⊤i Lûi

Energy loss, matrix form:

Lenergy =
1

k
Tr(Û⊤LÛ)

Energy loss is order-invariant and rotation invariant (see A.4); for applications in clustering, this is
reasonable. However, we would like the model to learn the eigenvectors in their specific order, so we
also define absolute energy loss, matching the Rayleigh quotient with the ground-truth eigenvalue:

Lenergy abs =
1

k

k∑
i=1

|û⊤i Lûi − λi|

This can be written as, in matrix form:

Lenergy abs =
1

k
Tr|Û⊤LÛ − Λk|

In practice, we do not show any results using absolute energy loss, and instead linearly combine
energy loss with eigenvector loss to avoid order and rotation invariance. However, absolute energy
loss remains an interesting avenue to explore.

A.3.1 ORTHOGONALITY

To ensure the model does not output k copies of the trivial eigenvector, we must give the model
orthogonality constraints on the output vectors. There are again two reasonable choices here: (1)
forced orthogonality and (2) orthogonality loss.

Forced orthogonality, used in Shaham et al. (2018), imposes orthogonality on the final outputs of
the model via QR decomposition. In other words, if Û ′ is the initial output to the model, Q is an
n× k matrix with orthonormal columns, and R is a k × k upper triangular matrix, then we achieve
the final output Û as such:

QR = Û ′

Û = Q

Orthogonality loss, used in Dwivedi et al. (2021); Ma & Zhan (2023); Mishne et al. (2019) im-
poses a softer constraint, encouraging orthogonality by penalizing the model for producing pairwise
similar vectors. This can be written as:

Lortho =
1

k
∥Û⊤Û − I∥

Based on preliminary testing, we found that forced orthogonality improved performance on the
eigenvector-learning, and thus use forced orthogonality in all of our experiments.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A.4 ENERGY AND EIGENVECTOR LOSSES ARE SIGN AND BASIS INVARIANT

A.4.1 DEFINITION OF BASIS INVARIANCE

Consider any eigenspace spanned by ground truth eigenvectors [ψj , ψj+1, . . . ψj+k−1] = V . Also
recall that, by Spectral Theorem, we can decompose any vector u into a linear combination of all
eigenvectors:

u =

n∑
i=1

ciψi

Then a loss function is basis invariant if any rotation of the projected component V V ⊤u does not
change the loss incurred by u. In other words, u gets to arbitrarily “choose” with what basis it
wants to express its V V ⊤u component. Sign invariance is a special case of basis invariance, where
changing sign is equivalent to rotating over a one-dimensional subspace (note that this is slightly
stronger than the most apparent form of sign invariance, where we would say L(u) = L(−u);
instead, we can flip any component ciψi of u when decomposed in terms of eigenvectors).
Definition 1 (Basis invariance). Consider an eigenspace spanned by ground truth eigenvectors
[ψj , ψj+1, . . . ψj+k−1] = Ψ ∈ Rn×k. Consider an eigenspace rotation RΨ defined as such:

RΨ = ΨAΨ⊤ + (In −ΨΨ⊤), A ∈ SO(k)

A loss function L(u) is basis invariant if, for all such Ψ, RΨ, u ∈ Rn, we have:

L(u) = L(RΨu)

A.4.2 PROOFS

Lemma 1 (Energy loss is basis invariant). For any RΨ and a single eigenvector prediction u ∈ Rn,
we have:

u⊤Lu = (RΨu)
⊤L(RΨu)

Proof. First note that RΨ is orthogonal; the set of all RΨ describes a subset of SO(k) where only
the k basis vectors in Ψ are rotated. Thus, we have R⊤

ΨRΨ = I .

In addition, because Ψ is an eigenspace, all columns are eigenvectors with a shared eigenvalue λ.
Then we have:

RΨL = ΨAΨ⊤L+ L−ΨΨ⊤L = λΨAΨ⊤ + L− λΨΨ⊤ = LΨAΨ⊤ + L− LΨΨ⊤ = LRΨ

Then we have:
R⊤

ΨLRΨ = R⊤
ΨRΨL = L

Thus, for any u, we have:

u⊤Lu = u⊤R⊤
ΨLRΨu = (RΨu)

⊤L(RΨu)

Lemma 2 (Eigenvector loss is basis invariant). For any RΨ and a single eigenvector prediction
u ∈ Rn and ground truth eigenvalue λ, we have:

∥Lu− λu∥ = ∥L(RΨu)− λ(RΨu)∥

Proof. We know, from our proof above in Lemma 1, that RΨL = LRΨ. Because RΨ ∈ SO(k), we
have ∥RΨx∥ = ∥x∥ for any x ∈ Rn. Then we have:

∥Lu− λu∥ = ∥RΨ(Lu− λu)∥
∥Lu− λu∥ = ∥L(RΨu)− λ(RΨu)∥

We have an even stronger statement of invariance for energy loss: given a predicted set of k or-
thogonal vectors, rotating the vectors within the same subspace does not impact loss. In other
words, a model trained on energy loss only needs to predict the correct subspace of k eigenvectors.
This is clearly not true of eigenvector loss. Depending on the application, this kind of invariance can
be good or bad.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Lemma 3 (Energy loss is rotation invariant). Let L be a Laplacian matrix and V ⊆ Rn be some
k-dimensional subspace. Suppose U = [u1, u2, . . . , uk],W = [w1, w2, . . . , wk] ∈ Rn×k are both
orthonormal bases for V . Then we have:

1

k
Tr(U⊤LU) =

1

k
Tr(W⊤LW)

Proof. Note that UU⊤ = WW⊤, as they are both orthogonal projectors for the same subspace.
Then we have, by the cyclic property of trace:

1

k
Tr(U⊤LU) =

1

k
Tr(UU⊤L) =

1

k
Tr(WW⊤L) =

1

k
Tr(W⊤LW)

A.5 NODE FEATURE AUGMENTATION

Lemma 4 (Uniqueness up to co-spectrality). LetG1, G2 be graphs of size nwith Laplacian matrices
L1, L2 respectively. Let d1m, d

2
m represent the diffused dirac embeddings for each node in G1, G2.

Then if L1 and L2 have different eigenvalues, {d1m : m ≤ n} ≠ {d2m : m ≤ n}

Proof. Consider the random-walk Laplacian of a graph: Lrw := I −D−1A = I − P . Moreover,
note that Lrw = D−1L. Observe that

LrwDv = D−1LDv

= D−1UΛU⊤Dv

= Bv for some diagonalizable matrix B with eigenvalues λi, . . . , λn

Where U = [ψ1 . . . ψn], with ψi orthonormal eigenvectors of L and Λ is the diagonal matrix of
eigenvalues λ1, . . . , λn of L. Any change to the eigenspectrum of L, clearly results in a change to
Lrw, and therefore P . Since Ψ0 = I − P , any two graphs with distinct Laplacian eigenspectra will
have distinct diffused dirac node embeddings.

A.6 DETAILED EXPERIMENTAL SETTINGS

A complete overview of model hyperparameters and settings can be found in Table 5. Heuristically,
the Graph-level MLP head hidden dimension is chosen to be the max # nodes multiplied by the
hidden dimension size of the base GNN. We do NOT omit the trivial eigenvector when counting
number of eigenvectors predicted.

A.7 ALTERNATIVE STRUCTURAL PRE-TRAINING TARGETS

Here, we formally define and provide details for the alternative pre-training targets used in section
5.1.

• Node degree: A node-level label representing the degree of each node

• Local clustering coefficient: A node-level label computing the local clustering coefficient
of each node. For a fixed node u, the coefficient C is given by:

C =
2|{ejk : vj , vk ∈ Nu, ejk ∈ E}|

|Nu|(|Nu| − 1)
.

• RWSE: A node-level label computing self-walk probabilities at varying step counts for the
diffusion operator (Dwivedi et al.). In our experiments, we use step counts from the interval
[2, 22].

• Cycle counting: A graph-level label computing cycle counts of varying lengths. In our
experiments, we count cycles up to length 9.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• Lap Eigenvalues: A graph-level label computing the k-lowest Laplacian eigenvalues
λ1, . . . , λk. We use the same k = 6 as we do with LELM.

For all alternative structural pre-training tasks, we use the same hyperparameters for GIN as dis-
played in 5, with no initial features and using a standard MAE loss instead of eigenvector + energy
loss. We train on the full ZINC dataset. All structural pre-training targets are normalized to have
mean 0 and standard deviation 1 across the entire dataset.

Table 5: A comprehensive list of all model hyperparameters used during the eigenvector pre-training
step. All hyperparameters highlighted in gray are specific to eigenvector-learning, while other listed
configs reflect general GNN settings (and are set to match default values in each respective baseline
work).

Method GIN (5.1) GPS (5.1) GIN pre-training (5.2) GPSE (5.3)

Pre-training dataset ZINC-subset (12k), ZINC (250k), QM9 (134k) ZINC-subset (12k), ZINC (250k), QM9 (134k) ZINC15 (2M), ChEMBL (456K) MolPCBA (324K)
Base architecture GIN Transformer/GIN GIN MPNN
params 33543 157680 2252210 22075899
layers of per-node feature update 3 3 2 1
layers of message passing 4 4 5 20
Hidden dim 60 60 300 512
Activation fn ReLU ReLU ReLU ReLU
Dropout 0.1 0.1 0.2 0.2
Batch size 128 128 32 1024
Learning rate 0.001 0.001 0.001 0.005
Optimizer Adam Adam Adam AdamW
Scheduler ReduceLROnPlateau ReduceLROnPlateau None CosineWithWarmup

patience=5, factor=0.9 patience=20, factor=0.5 - -
Pre-Training Epochs 200 100 100 120
Fine Tuning Epochs 500 150 100 -
Laplacian norm type Unnormalized Unnormalized Unnormalized Symmetric
eigenvectors predicted 6 6 5 5
Initial features Diffused dirac + Wavelet pos. Diffused dirac + Wavelet pos. Molecule features Random
MLP head type(s) Graph-level Graph-level Graph-level, per-node Graph-level, per-node
Graph-level MLP max # nodes 40 40 50 50
MLP head # layers 5 5 1 2
MLP head hidden dim 2400 2400 N/A 1600, 32
MLP head activation fn ReLU ReLU N/A ReLU
Loss function (and coefficient) 2*Eigenvector + 1*energy 2*Eigenvector + 1*energy 0.25 * Eigenvector + 0.05 * ortho 0.25 * Eigenvector
Other features/notes Removed graphs with less than six nodes during pre-training Residual gating, virtual node

A.8 MODIFYING EXISTING PRE-TRAINING METHOD

A.8.1 LEARNING RATE TUNING

We keep the majority of the settings from Hu et al. (2019) the same. For downstream fine-tuning, we
tune over 7 learning rates for fair comparison according to Sun et al. (2022). We run each method
and learning rate over 3 seeds, and select the learning rate based on mean validation accuracy over
all learning rates.

A.8.2 DOWNSTREAM DATASETS

We briefly list and cite the five downstream datasets here for reference. The five datasets are the
datasets chosen in Sun et al. (2022), and are a subset of the eight primary downstream datasets
evaluated in Hu et al. (2019).

• BACE: Qualitative binding results Subramanian et al. (2016)
• BBBP: Blood-brain barrier penetration Martins et al. (2012)
• Tox21: Toxicity data Mayr et al. (2016)
• Toxcast: Toxicology measurements Richard et al. (2016)
• SIDER: Database of adverse drug reactions (ADR) Kuhn et al. (2016)

A.9 MODIFYING EXISTING GRAPH STRUCTURAL ENCODER

A.9.1 LOSS FUNCTION COMPARISON

We claim that the sum of MAE and cosine similarity loss used in the structural encoder model GPSE
(Cantürk et al., 2023) limits the model’s ability to predict the eigenvectors of a graph.

To address sign ambiguity, the original GPSE model only learns the absolute value of each Lapla-
cian eigenvector as its target. This improves performance over training without absolute value, but
two shortcomings still arise. This (1) provides strictly less information than learning the true eigen-
vectors, and (2) does not capture basis ambiguity, making it ill-posed for eigenvectors with higher
multiplicity (or eigenvectors with small eigengaps).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 2: A comparison of energy loss and eigenvector loss, when the GPSE architecture is trained
on (1) eigenvector loss (ours), (2) cosine similarity + MAE Cantürk et al. (2023), and (3) no loss
(outputting random vectors). All losses displayed are in natural log scale for visual purposes.

We demonstrate this claim experimentally in Figure 2. We train the default GPSE settings and
architecture using (1) eigenvector loss (ours), and the default cosine similarity + MAE loss (GPSE).
We train for 600 epochs on 1% of the MolPCBA dataset and plot eigenvector and energy losses
per-epoch. We also plot the loss when outputting random orthogonal vectors for comparison. While
training on cosine similarity + MAE achieves better-than-random results, sign and basis ambiguity
issues severely limit the model’s ability to learn meaningful eigenvectors.

16

	Introduction
	Related Works
	Graph pre-training methods

	Background
	Notation
	Graph Laplacian eigenvectors

	Method
	Overview
	Model Architecture
	Node feature augmentation
	Loss function
	Pre-Training Algorithm

	Experimental Results
	Pre-training Graph Neural Networks
	Enhancing an existing Graph Neural Network pre-training method
	Pre-training Structural Encoder

	Limitations and Future Work
	Appendix
	LLM usage
	Full eigenvector pre-training pipeline
	Loss function
	Orthogonality

	Energy and eigenvector losses are sign and basis invariant
	Definition of basis invariance
	Proofs

	Node feature augmentation
	Detailed experimental settings
	Alternative structural pre-training targets
	Modifying existing pre-training method
	Learning rate tuning
	Downstream datasets

	Modifying existing graph structural encoder
	Loss function comparison

