

A GRAPH LAPLACIAN EIGENVECTOR-BASED PRE-TRAINING METHOD FOR GRAPH NEURAL NETWORKS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 We propose the Laplacian Eigenvector Learning Module (LELM), a novel pre-
 012 training module for graph neural networks (GNNs). Traditional message-passing
 013 GNNs often struggle to capture global and regional graph structure due to over-
 014 smoothing risk as network depth increases. Because the low-frequency eigenvectors
 015 of the graph Laplacian matrix encode global information, pre-training GNNs
 016 to predict these eigenvectors encourages the network to naturally learn large-scale
 017 structural patterns over each graph. Empirically, we show that models pre-trained
 018 via our framework outperform baseline models on a variety of graph structure-
 019 based tasks. While most existing pre-training methods focus on domain-specific
 020 tasks such as feature reconstruction, our self-supervised pre-training framework
 021 is structure-based and highly flexible; we show that LELM can be used both as
 022 an independent pre-training task and as a plug-in addition to a variety of existing
 023 pre-training pipelines.

1 INTRODUCTION

024 Graph Neural Networks (GNNs) have become a powerful tool in node and graph representation
 025 learning, with successful applications across domains ranging from biomedicine (Cantürk et al.,
 026 2023; Yan et al., 2024; Hu et al., 2019; Sun et al., 2022) to social networks (Fan et al., 2019). More
 027 recently, graph foundation models (GFM) are emerging as an exciting field; inspired by the success
 028 of large language models (LLMs), researchers are exploring the possibility of creating large graph-
 029 based models with emergent capabilities across a wide variety of domains (Liu et al., 2025; Xie
 030 et al., 2022; Wang et al., 2025).

031 A key ingredient in this effort is the creation of self-supervised tasks which can be performed on
 032 large unlabelled graph datasets (Liu et al., 2022). A variety of pre-training methods have been pro-
 033 posed, but the majority of such methods are based in contrastive losses and graph reconstruction (Liu
 034 et al., 2025; Xie et al., 2022). A few structure-based methods, which precompute labels based on
 035 graph topology, have been proposed (Peng et al., 2020a; Hwang et al., 2020). However, this category
 036 of pre-training approach, recently termed as *graph property prediction* (Liu et al., 2025), remains
 037 unexplored largely due to the limitations of GNNs in capturing global and regional information.

038 In traditional message passing GNNs, node representations are updated via aggregating neighboring
 039 node embeddings. Typically, this involves taking an average or sum of neighboring node embed-
 040 dings and then passing the new embedding through an MLP. However, for one node to incorporate
 041 information from more distant nodes, multiple layers of message passing are required (Alon & Ya-
 042 hav). Increasing the number of layers in a GNN leads to a phenomenon known as oversmoothing:
 043 the representations of nodes within a k -hop neighborhood become increasingly indistinguishable
 044 ?Oono & Suzuki (2019); Keriven (2022).

045 We propose LELM, a Laplacian eigenvector-based pre-training module for GNNs and GFM. Lapla-
 046 cian eigenvectors capture a range of global, regional and local graph structure, making them well-
 047 suited as a graph property prediction target. Moreover, LELM utilizes a global MLP prediction head
 048 during pre-training that allows the GNN model to learn long-range relationships without requiring
 049 excessively deep networks, and augments pre-training data with positional features to overcome ex-
 050 pressivity limits of GNNs. LELM is highly flexible: it can be used with any feature types across all
 051 graph-based datasets, and can be used both as an independent pre-training method and as a plug-in
 052 addition to existing graph pre-training pipelines to improve downstream performance.

054 Our main contributions are as follows:
 055

056 1. We introduce LELM as a Laplacian eigenvector-based pre-training module for GNNs.
 057 2. Within LELM, we introduce a global MLP head that enables long-range interaction be-
 058 tween vertices within the graph, as well as a set of augmented pre-training features based
 059 on the graph diffusion operator.
 060 3. We demonstrate that our pre-training module provides performance improvements over
 061 baseline models both as a standalone pre-training task and as an augmentation to existing
 062 pre-training pipelines.
 063

064 2 RELATED WORKS

066 2.1 GRAPH PRE-TRAINING METHODS

068 Towards the goal of improving graph foundation models, a variety of self-supervised graph pre-
 069 training tasks have been proposed. According to the taxonomy provided by Liu et al. (2025); Xie
 070 et al. (2022), existing graph pre-training methods can be categorized into two broad categories:
 071 *contrastive* and *predictive* methods.

072 Contrastive methods maximize mutual information between pairs of data views using objectives like
 073 Jensen-Shannon estimator (Nowozin et al., 2016) or InfoNCE (Oord et al., 2018). Methods can be
 074 categorized by the types of views used: graph-node (Sun et al.; Veličković et al.; Peng et al., 2020b),
 075 subgraph-node (Hu et al.; Jiao et al., 2020), and subgraph-subgraph Qiu et al. (2020). Some methods
 076 also employ graph augmentation to generate two views (You et al., 2020).

077 Predictive methods, also referred to as generative methods (Liu et al., 2025), self-generate labels and
 078 train to predict these labels. A first class of predictive models uses graph reconstruction, whether by
 079 using node/edge masking (Xie et al., 2020; Batson & Royer, 2019; Hu et al.) or using autoencoders
 080 (Wang et al., 2017; Kipf & Welling, 2016). A second class of predictive methods are *property*
 081 *prediction* methods, which precompute underlying graph properties as labels. Examples include
 082 statistical properties such as k-hop connectivity (Peng et al., 2020a) or topological properties like
 083 a meta-path (Hwang et al., 2020). Overall, there are a lack of works on property prediction-based
 084 methods, with the majority of predictive pre-training methods falling under the former category of
 085 graph reconstruction (Liu et al., 2025). Our method, LELM, is the first property prediction method
 086 to use the graph Laplacian eigenvectors as a pre-training target.
 087

088 3 BACKGROUND

090 3.1 NOTATION

091 The unnormalized Laplacian L of a graph G is defined as:
 092

$$093 L = D - A$$

094 where D is the diagonal degree matrix and A is the unnormalized adjacency matrix of G .
 095

096 Let $\lambda_1, \lambda_2, \dots, \lambda_k$ denote the k lowest eigenvalues of L in nondecreasing order. Let $\psi_1, \psi_2, \dots, \psi_k$
 097 denote the corresponding eigenvectors, such that we have:
 098

$$L\psi_i = \lambda_i\psi_i$$

099 Note that for the unnormalized Laplacian, the first eigenvector and eigenvalue are trivial:
 100

$$101 \psi_1 = \frac{1}{n} \mathbb{1}, \lambda_1 = 0$$

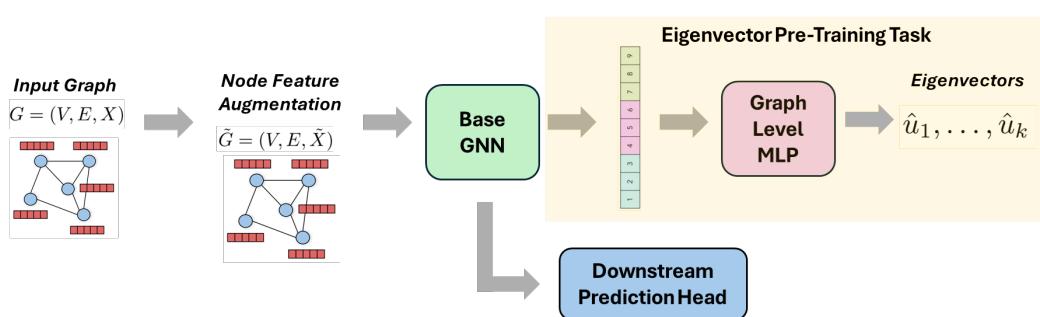
102 By Courant-Fischer, the eigenvectors of L (and the eigenvectors of any Hermitian matrix) can be
 103 equivalently expressed as solutions to the following iterative optimization problem:
 104

$$105 \psi_k \in \arg \min_{\substack{\|x\|=1 \\ x \perp \psi_1, \dots, \psi_{k-1}}} x^\top L x.$$

106 The term $\frac{x^\top L x}{x^\top x}$ is known as the Rayleigh quotient; because we normalize our predicted eigenvectors,
 107 we simply treat this as $x^\top L x$.
 108

108 3.2 GRAPH LAPLACIAN EIGENVECTORS
109110 Our use of the low-frequency graph Laplacian eigenvectors is motivated by their close relationship
111 to structural and positional properties of graphs.112 **Provably minimal graph cuts:** The second-lowest eigenvector ψ_2 , known as the Fiedler vector,
113 can be used to generate a provably “good” cut on a graph; in particular, for some arbitrary threshold
114 $s \in \mathbb{R}$, we can define a Fiedler cut C to be:
115

116
$$C = (\{i : \psi_2(i) < s\}, \{i : \psi_2(i) \geq s\})$$

117 On any bounded-degree n -vertex planar graph, the optimal Fiedler cut has ratio $O(\frac{1}{n})$ (Spielman &
118 Teng, 1996).119 **Positional encodings:** The low-frequency Laplacian eigenvectors naturally encode a global position
120 on the graph. As a result, Laplacian positional encodings (LapPE) have been used as a standard
121 positional encoding for graph transformer models (Dwivedi & Bresson, 2020; Rampášek et al.,
122 2022). In practice, directly using the Laplacian eigenvectors as positional encodings creates sign and
123 basis ambiguity issues, as ψ_i is an eigenvector of $L \iff -\psi_i$ is an eigenvector of L . Approaches to
124 solving this problem include designing an architecture which processes the Laplacian eigenvectors
125 in a sign- and basis-invariant manner (Lim et al., 2022) or defining canonical directions for the
126 eigenvectors (Ma et al., 2023).127 **Spectral GNNs:** A variety of methods, known as spectral graph neural networks, use the Laplacian
128 eigendecomposition to learn filters in signal domain (Bo et al., 2023b). Some methods explicitly
129 compute or approximate the k lowest-frequency Laplacian eigenvectors, learning advanced filters on
130 the corresponding eigenvalues (Bruna et al., 2013; Liao et al., 2019; Bo et al., 2023a). Other methods
131 instead learn polynomial filters on the graph (Defferrard et al., 2016; He et al., 2022), circumventing
132 the expensive process of eigendecomposition by learning a k -degree polynomial function with
133 respect to L , i.e. $p(L) = \theta_0 I + \theta_1 L + \dots + \theta_k L^k$.134 **Spectral clustering:** The Laplacian eigenvectors have also been used for clustering applications.
135 Given a set of data x_1, \dots, x_n , Belkin & Niyogi (2001) construct a weighted graph G with n nodes
136 using a heat kernel. Then to generate a k -dimensional embedding, Belkin & Niyogi (2001) compute
137 the k -lowest eigenvectors $\psi_2, \dots, \psi_{k+1}$ (omitting the trivial eigenvector) of the graph Laplacian and
138 assign data point x_i the embedding $(\psi_2(i), \psi_3(i), \dots, \psi_{k+1}(i))$. Shaham et al. (2018); Chen et al.
139 (2022) learn this spectral map using a neural network, allowing for a natural extension of this map
140 to new datapoints.141
142 4 METHOD
143156 Figure 1: Overview of the LELM pre-training pipeline. Here, “Base GNN” and “Downstream
157 Prediction Head” can be any user-defined model architecture.
158160 4.1 OVERVIEW
161

The LELM pre-training framework consists of three primary components:

- **Node feature augmentation:** We provide initial features based on the diffusion operator: (1) wavelet positional embeddings, and (2) diffused dirac embeddings.
- **Eigenvector prediction:** During pre-training, we task the model to predict the k lowest-frequency eigenvectors of the graph Laplacian.
- **Graph-level MLP:** We pass a graph-level aggregated representation into our prediction MLP head.

4.2 MODEL ARCHITECTURE

Base GNN: The base GNN model takes in a graph with augmented node features and generates learned node representations via neighborhood message passing and update steps. Any GNN architecture may be selected as the base model to fit the needs of the dataset and downstream application.

Graph-level MLP: We concatenate the node-wise output of the base GNN model to form a graph-level aggregated representation. We then pass the aggregated vector through an MLP model to produce the low-frequency Laplacian eigenvectors. Concatenating the node embeddings prior to applying the MLP allows the model to learn relationships between distant nodes without risking over-smoothing.

Previous eigenvector-learning methods use a node-wise MLP head, processing each node’s eigen-coordinates independently based on their learned hidden embedding (Shaham et al., 2018; Dwivedi et al., 2021; Cantürk et al., 2023).

4.3 NODE FEATURE AUGMENTATION

To provide the model with additional structural information, and to overcome well-known expressivity limits of GNNs (Morris et al., 2019; Maron et al., 2019; Xu et al., 2018), we augment node features with structure-based embeddings. We propose two kinds of embeddings: (1) **wavelet positional embeddings**, which encode relative positional information between nodes, and (2) **diffused dirac embeddings**, which encode local connectivity structures around each node. Both embeddings use the random walk matrix, and capture local aggregate information on each node. The diffusion operator P of a graph G is defined as:

$$P = D^{-1}A$$

Each entry P_{ij} represents the probability of starting a random walk at node i and ending at node j after one step. One can also take powers of the diffusion operator, P^t . Each entry of the powered matrix, P_{ij}^t , represents the probability of starting a random walk at node i and ending at node j after t steps

The j^{th} wavelet operator Ψ_j of a graph G is defined as:

$$\begin{aligned} \Psi_j &= P^{2^{j-1}} - P^{2^j} \\ \Psi_0 &= I - P \end{aligned}$$

A wavelet bank, \mathcal{W}_J is a collection of wavelet operators such that:

$$\mathcal{W}_J = \{\Psi_j\}_{0 \leq j \leq J} \cup P^{2^J}$$

Wavelet positional embeddings encode information about the relative position of each node within the graph. We randomly select two nodes from each graph, i and j , and start dirac signals δ_i, δ_j . We then apply these signals to each wavelet, Ψ_k , in our wavelet bank. The wavelet positional embedding for node m is the m^{th} row of the resulting matrix.

$$\begin{aligned} w_{m,k} &= \Psi_k(m, \cdot) \begin{bmatrix} | & | \\ \delta_i & \delta_j \\ | & | \end{bmatrix} \\ w_m &= [w_{m,1} \quad \dots \quad w_{m,J}] \end{aligned}$$

Diffused dirac embeddings encode information about the connectedness of each node and its neighbors. For each node, m , we apply the m^{th} row of the diffusion matrix P to each wavelet Ψ_k in our

wavelet bank. As above, the difused dirac embedding for node m is the m^{th} row of the resulting matrix.

$$d_{m,k} = \Psi_k(m, \cdot) P(m, \cdot)^\top$$

$$d_m = [d_{m,1} \ \dots \ d_{m,J}]$$

These node embeddings are unique up to co-spectrality of the graph Laplacian. The proof is provided in A.5.

4.4 LOSS FUNCTION

Let \hat{U} denote a matrix of k column vectors \hat{u}_i , where each \hat{u}_i denotes the i^{th} predicted eigenvector. Let Λ_k denote a diagonal matrix containing eigenvalues $\lambda_1, \dots, \lambda_k$.

We minimize a weighted sum of two loss functions: **(1) eigenvector loss** and **(2) energy loss**. Both loss functions respect necessary sign and basis invariances of Laplacian eigenvectors; full proofs can be found in A.4.

To ensure the model does not output k copies of the trivial eigenvector, we impose orthogonality on the final outputs of the model via QR decomposition, as proposed by Shaham et al. (2018).

Energy loss, used by Shaham et al. (2018); Dwivedi et al. (2021); Ma & Zhan (2023), aims to minimize the sum of Rayleigh quotients:

$$\mathcal{L}_{\text{energy}} = \frac{1}{k} \text{Tr}(\hat{U}^\top L \hat{U})$$

This loss function is motivated by the iterative optimization problem following from Courant-Fischer (3.1). However, minimizing this loss function only minimizes the *sum* of the first k Rayleigh quotients, meaning the minimizer (subject to orthogonality) is any set of vectors spanning same subspace spanned by the k lowest frequency eigenvectors. For applications in clustering, this is reasonable, as the exact basis in which embeddings are expressed is often irrelevant; however, to require the model to truly predict the k -lowest eigenvectors, we must include a more explicit penalty, such as **eigenvector loss**.

Eigenvector loss, used by Mishne et al. (2019), measures the difference between each $L\hat{u}_i$ and $\lambda_i\hat{u}_i$:

$$\mathcal{L}_{\text{eigvec}} = \frac{1}{k} \|(L\hat{U} - \hat{U}\Lambda_k)\|$$

Eigenvector loss enforces both the correct basis and a strict ordering (up to eigenvalue multiplicity) on the predicted eigenvectors. Our final loss function is then:

$$\mathcal{L} = \alpha \cdot \mathcal{L}_{\text{energy}} + \beta \cdot \mathcal{L}_{\text{eigvec}}$$

4.5 PRE-TRAINING ALGORITHM

Algorithm 1 Eigenvector Prediction

Require: Graph $G = (V, E)$; augmented node features $\tilde{X} = \{\tilde{x}_j\}$; Base GNN

Ensure: Output Pre-trained GNN model, k lowest-frequency eigenvectors

```

1: for  $i <$  Pre-Training Epochs do
2:    $\vec{z}_0, \dots, \vec{z}_n \leftarrow \text{BASEGNN}(G, \tilde{X})$ 
3:    $\vec{Z} \leftarrow [\vec{z}_1, \dots, \vec{z}_n] \in \mathbb{R}^{nd}$ 
4:    $\tilde{U} \leftarrow \text{MLP}(\vec{Z})$ 
5:    $\hat{U} = \text{QR}(\tilde{U})$ 
6:    $\text{Loss} = \alpha \cdot \text{ENERGYLOSS}(\hat{U}) + \beta \cdot \text{EIGVECLOSS}(\hat{U})$ 
7:   Back-propagate Loss, update model weights
8: end for
9: return BASEGNN

```

270

5 EXPERIMENTAL RESULTS

271
 272 To evaluate the effectiveness of our framework, we conduct experiments across multiple graph learning
 273 use-cases. First, we apply our pre-training framework directly to several GNN models and assess
 274 its impact on downstream performance. Second, we integrate our pre-training method with existing
 275 pre-training frameworks and examine how our approach can complement established methods. Fi-
 276 nally, we pre-train a positional and structural encoder for Graph Transformer networks. Collectively,
 277 these approaches provide a comprehensive assessment of the framework’s effectiveness across dif-
 278 ferent graph learning scenarios.

280

5.1 PRE-TRAINING GRAPH NEURAL NETWORKS

281
 282 We pre-train a standard Graph Isomorphism Network (GIN) (Xu et al., 2019) and GPS, a graph
 283 transformer using LELM. Once the model has been pre-trained, we replace the graph-level MLP
 284 head with a downstream prediction MLP and fine-tune model weights. We evaluate our pre-training
 285 framework on three molecular datasets ZINC, ZINC-12k (Sterling & Irwin, 2015) and QM9 (Ra-
 286 makrishnan et al., 2014). For each of these models, we compare LELM against the same GNN
 287 model without pre-training. For each of these models, pre-training improves performance for all but
 288 one of the downstream targets. We record results of our experiments in Table 1. In addition, for the
 289 GIN model we compare LELM to various structure-based pre-training targets including node de-
 290 gree, local clustering coefficient, random walk structural encodings, cycle counting, and Laplacian
 291 eigenvalues. Results are recorded in Table 2.

292
 293 Table 1: Test MAE (↓) performance comparison on ZINC (single metric) and QM9 (first seven target
 294 properties).

295 296 Model	ZINC full	ZINC subset	QM9						
	Penalized log p	Penalized log p	μ	α	$\varepsilon_{\text{HOMO}}$	$\varepsilon_{\text{LUMO}}$	Δ_{ε}	R^2	ZPVE
297 Pre-Trained GIN	0.130	0.353	0.484	0.489	0.00353	0.00371	0.00513	28.103	0.000477
298 GIN (baseline)	0.228	0.438	0.472	1.132	0.00386	0.00399	0.00562	50.909	0.002400
299 Pre-Trained GPS	0.104	0.210	0.5021	0.5922	0.0037	0.0040	0.0051	33.606	0.00178
GPS (baseline)	0.150	0.358	0.413	0.718	0.00434	0.00442	0.00592	80.503	0.00111

300
 301
 302 Table 2: Test MAE (↓) performance comparison on ZINC with alternative structural targets.

303 Alternative targets	ZINC full	ZINC subset
304 LELM	0.130	0.353
305 Node degree	0.238	0.471
306 Local clustering coefficient	1.493	1.551
307 RWSE (Dwivedi)	1.493	1.551
308 Cycle counting	0.285	0.420
309 Lap Eigenvalues	0.250	0.520

313

5.2 ENHANCING AN EXISTING GRAPH NEURAL NETWORK PRE-TRAINING METHOD

314
 315 We augment the existing molecular pre-training methods proposed by Hu et al. (2019) with
 316 eigenvector-learning. In particular, Hu et al. (2019) propose node-level pre-training tasks (context
 317 prediction and masking) on ZINC15 (Sterling & Irwin, 2015), followed by a graph-level supervised
 318 pre-training task on ChEMBL (Mayr et al., 2018; Gaulton et al., 2012). We augment the graph-
 319 level supervised pre-training step by adding an additional MLP head to predict eigenvectors, and we
 320 evaluate on five downstream datasets based on work by Sun et al. (2022).

321
 322 Detailed results are shown in Table 3. Eigenvector-learning consistently improves performance for
 323 the masking pre-training pipeline, but achieves mixed results on the context prediction pipeline.
 Notably, performance for the masking pipeline was increased for all five datasets when performing
 324 eigenvector pre-training with the graph-level MLP head.

324
 325 Table 3: Test ROC-AUC (% , \uparrow) performance on 5 molecular prediction tasks when **augmenting an**
 326 **existing pre-training method** on a GIN base model. *Sup.* refers to the original supervised pre-
 327 training as implemented by Hu et al. (2019), and *Sup.+* refers to supervised training with LELM.
 328 Results for *no pre-training* are taken directly from Sun et al. (2022). All methods are tuned over
 329 seven learning rates and averaged over three seeds.

330	Dataset	BACE	BBBP	Tox21	ToxCast	SIDER	
331	Pretrain method	MLP Head					
332	ContextPred, Sup.+	Graph-level	79.62 ± 3.63	70.76 ± 1.64	77.94 ± 0.11	66.13 ± 0.34	60.05 ± 0.99
333	ContextPred, Sup.+	Node-wise	75.87 ± 3.11	68.74 ± 1.07	78.86 ± 0.06	63.78 ± 0.32	59.83 ± 0.53
334	ContextPred, Sup.	-	84.98 ± 1.28	68.25 ± 0.48	77.44 ± 0.19	64.01 ± 0.81	62.87 ± 0.89
335	Masking, Sup.+	Graph-level	80.71 ± 3.84	68.33 ± 0.89	79.09 ± 0.25	65.96 ± 0.20	62.41 ± 1.77
336	Masking, Sup.+	Node-wise	81.02 ± 1.67	69.94 ± 1.76	79.33 ± 0.41	65.14 ± 0.44	59.38 ± 1.11
337	Masking, Sup.	-	75.42 ± 2.64	67.36 ± 4.60	78.33 ± 0.24	64.88 ± 0.82	61.6 ± 1.78
338	No pre-training	-	75.77 ± 4.29	69.62 ± 1.05	75.52 ± 0.67	63.67 ± 0.32	59.07 ± 1.13

339 5.3 PRE-TRAINING STRUCTURAL ENCODER

340
 341 Table 4: Test MAE (\downarrow) performance on ZINC (12k subset) dataset when **augmenting a graph**
 342 **structural encoder**. All results using no structural encoder or the base GPSE are taken directly from
 343 Cantürk et al. (2023). *GPSE+* refers to GPSE with LELM. Our experimental results are averaged
 344 over three seeds.

345	Base model	Structural encoder	MLP Head	MAE
346	GPS	GPSE+	Graph-level	0.0629 ± 0.0016
347		GPSE+	Node-wise	0.0663 ± 0.0024
348		GPSE	-	0.0648 ± 0.0030
349		None	-	0.118 ± 0.005
350	GIN	GPSE+	Graph-level	0.1231 ± 0.0026
351		GPSE+	Node-wise	0.1299 ± 0.0010
352		GPSE	-	0.124 ± 0.002
353		None	-	0.285 ± 0.004
354				

355
 356 We modify Graph Positional and Structural Encoder (GPSE) (Cantürk et al., 2023). While GPSE
 357 already incorporates eigenvector-learning by including Laplacian positional encodings (LapPE) as
 358 a prediction target, GPSE uses MAE and cosine similarity loss on the absolute value of each eigen-
 359 vector and a node-wise prediction head for every node property. We replace GPSE’s eigenvector-
 360 learning component with our own, using a separate MLP head and eigenvector loss. We keep all
 361 other GPSE model settings the same.

362
 363 Following Cantürk et al. (2023), we pre-train our modified GPSE model on MolPCBA (Hu et al.,
 364 2020). We evaluate the effectiveness of these encodings by training both the Transformer model GPS
 365 (Rampášek et al., 2022) and a standard GIN, augmented with these encodings, on the downstream
 366 molecule property prediction task for the ZINC 12k (Sterling & Irwin, 2015) subset.

367
 368 We report results on the effectiveness of these new learned encodings in Table 4. Modified
 369 eigenvector-learning with a graph-level MLP improves performance on downstream performance
 370 for both the GIN and GPS models, with our graph-level GPS+GPSE+ configuration achieving SOTA
 371 performance over all model and encoding configurations tested by Cantürk et al. (2023). We also
 372 demonstrate that our choice of loss function is crucial for eigenvector-learning in A.9.

373 6 LIMITATIONS AND FUTURE WORK

374
 375 There are several promising future directions toward improving the Laplacian eigenvector pre-
 376 training framework. We have demonstrated the effectiveness of the framework for pre-training and
 377 fine-tuning a GNN on the same dataset, or on domain-related datasets. However, we are yet to
 378 explore the effectiveness of eigenvector pre-training as a *transfer learning* framework.

378 Further, the practical implementation of the graph-level MLP requires adding padding to the concatenated node embeddings to accommodate for graphs of differing sizes. This creates an additional
 379 challenge for the MLP to learn meaningful relationships between the individual node embeddings
 380 within the graph-level vector. One could explore other ways of creating a rich graph-level repres-
 381 entation while avoiding this challenge.
 382

383
 384 **REFERENCES**
 385

386 Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
 387 In *International Conference on Learning Representations*.

388 Joshua Batson and Loic Royer. Noise2self: Blind denoising by self-supervision. In *International*
 389 *conference on machine learning*, pp. 524–533. PMLR, 2019.

390
 391 Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embedding and
 392 clustering. *Advances in neural information processing systems*, 14, 2001.

393
 394 Deyu Bo, Chuan Shi, Lele Wang, and Renjie Liao. Specformer: Spectral graph neural networks
 395 meet transformers. *arXiv preprint arXiv:2303.01028*, 2023a.

396
 397 Deyu Bo, Xiao Wang, Yang Liu, Yuan Fang, Yawen Li, and Chuan Shi. A survey on spectral graph
 398 neural networks. *arXiv preprint arXiv:2302.05631*, 2023b.

399
 400 Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
 401 connected networks on graphs. *arXiv preprint arXiv:1312.6203*, 2013.

401
 402 Semih Cantürk, Renming Liu, Olivier Lapointe-Gagné, Vincent Létourneau, Guy Wolf, Dominique
 403 Beaini, and Ladislav Rampášek. Graph positional and structural encoder. In *Forty-first Interna-*
 404 *tional Conference on Machine Learning*, 2023.

404
 405 Ziyu Chen, Yingzhou Li, and Xiuyuan Cheng. Specnet2: Orthogonalization-free spectral embedding
 406 by neural networks. In *Mathematical and Scientific Machine Learning*, pp. 33–48. PMLR, 2022.

407
 408 Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
 409 graphs with fast localized spectral filtering. *Advances in neural information processing systems*,
 410 29, 2016.

410
 411 Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
 412 *arXiv preprint arXiv:2012.09699*, 2020.

413
 414 Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
 415 Graph neural networks with learnable structural and positional representations. In *International*
 416 *Conference on Learning Representations*.

416
 417 Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
 418 Graph neural networks with learnable structural and positional representations. In *International*
 419 *Conference on Learning Representations*, 2021.

420
 421 Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
 422 networks for social recommendation. In *The world wide web conference*, pp. 417–426, 2019.

422
 423 Anna Gaulton, Louisa J Bellis, A Patricia Bento, Jon Chambers, Mark Davies, Anne Hersey, Yvonne
 424 Light, Shaun McGlinchey, David Michalovich, Bissan Al-Lazikani, et al. Chemb: a large-scale
 425 bioactivity database for drug discovery. *Nucleic acids research*, 40(D1):D1100–D1107, 2012.

426
 427 Mingguo He, Zhewei Wei, and Ji-Rong Wen. Convolutional neural networks on graphs with cheby-
 428 shov approximation, revisited. *Advances in neural information processing systems*, 35:7264–
 429 7276, 2022.

430
 431 Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
 432 Leskovec. Strategies for pre-training graph neural networks. In *International Conference on*
 433 *Learning Representations*.

432 Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
 433 Leskovec. Strategies for pre-training graph neural networks. In *International Conference on*
 434 *Learning Representations*, 2019.

435 Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
 436 and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. *Advances*
 437 *in neural information processing systems*, 33:22118–22133, 2020.

438 Dasol Hwang, Jinyoung Park, Sunyoung Kwon, KyungMin Kim, Jung-Woo Ha, and Hyunwoo J
 439 Kim. Self-supervised auxiliary learning with meta-paths for heterogeneous graphs. *Advances in*
 440 *neural information processing systems*, 33:10294–10305, 2020.

441 Yizhu Jiao, Yun Xiong, Jiawei Zhang, Yao Zhang, Tianqi Zhang, and Yangyong Zhu. Sub-graph
 442 contrast for scalable self-supervised graph representation learning. In *2020 IEEE international*
 443 *conference on data mining (ICDM)*, pp. 222–231. IEEE, 2020.

444 Nicolas Keriven. Not too little, not too much: a theoretical analysis of graph (over) smoothing.
 445 *Advances in Neural Information Processing Systems*, 35:2268–2281, 2022.

446 Thomas N Kipf and Max Welling. Variational graph auto-encoders. *arXiv preprint*
 447 *arXiv:1611.07308*, 2016.

448 Michael Kuhn, Ivica Letunic, Lars Juhl Jensen, and Peer Bork. The sider database of drugs and side
 449 effects. *Nucleic acids research*, 44(D1):D1075–D1079, 2016.

450 Renjie Liao, Zhizhen Zhao, Raquel Urtasun, and Richard S Zemel. Lanczosnet: Multi-scale deep
 451 graph convolutional networks. *arXiv preprint arXiv:1901.01484*, 2019.

452 Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and Stefanie
 453 Jegelka. Sign and basis invariant networks for spectral graph representation learning. *arXiv*
 454 *preprint arXiv:2202.13013*, 2022.

455 Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting Bai, Yuan Fang,
 456 Lichao Sun, Philip S Yu, et al. Graph foundation models: Concepts, opportunities and challenges.
 457 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2025.

458 Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng, Feng Xia, and Philip S Yu. Graph self-
 459 supervised learning: A survey. *IEEE transactions on knowledge and data engineering*, 35(6):
 460 5879–5900, 2022.

461 George Ma, Yifei Wang, and Yisen Wang. Laplacian canonization: A minimalist approach to sign
 462 and basis invariant spectral embedding. *Advances in Neural Information Processing Systems*, 36:
 463 11296–11337, 2023.

464 Yixuan Ma and Kun Zhan. Self-contrastive graph diffusion network. In *Proceedings of the 31st*
 465 *ACM International Conference on Multimedia*, pp. 3857–3865, 2023.

466 Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
 467 networks. *Advances in neural information processing systems*, 32, 2019.

468 Ines Filipa Martins, Ana L Teixeira, Luis Pinheiro, and Andre O Falcao. A bayesian approach to in
 469 silico blood-brain barrier penetration modeling. *Journal of chemical information and modeling*,
 470 52(6):1686–1697, 2012.

471 Andreas Mayr, Günter Klambauer, Thomas Unterthiner, and Sepp Hochreiter. Deeptox: toxicity
 472 prediction using deep learning. *Frontiers in Environmental Science*, 3:80, 2016.

473 Andreas Mayr, Günter Klambauer, Thomas Unterthiner, Marvin Steijaert, Jörg K Wegner, Hugo
 474 Ceulemans, Djork-Arné Clevert, and Sepp Hochreiter. Large-scale comparison of machine learn-
 475 ing methods for drug target prediction on chembl. *Chemical science*, 9(24):5441–5451, 2018.

476 Gal Mishne, Uri Shaham, Alexander Cloninger, and Israel Cohen. Diffusion nets. *Applied and*
 477 *Computational Harmonic Analysis*, 47(2):259–285, 2019.

486 Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
 487 Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
 488 In *Proceedings of the AAAI conference on artificial intelligence*, volume 33, pp. 4602–4609, 2019.
 489

490 Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers
 491 using variational divergence minimization. *Advances in neural information processing systems*,
 492 29, 2016.

493 Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
 494 classification. *arXiv preprint arXiv:1905.10947*, 2019.

495

496 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
 497 tive coding. *arXiv preprint arXiv:1807.03748*, 2018.

498

499 Zhen Peng, Yixiang Dong, Minnan Luo, Xiao-Ming Wu, and Qinghua Zheng. Self-supervised graph
 500 representation learning via global context prediction. *arXiv preprint arXiv:2003.01604*, 2020a.

501

502 Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang Xu, and Junzhou
 503 Huang. Graph representation learning via graphical mutual information maximization. In *Pro-
 ceedings of the web conference 2020*, pp. 259–270, 2020b.

504

505 Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang,
 506 and Jie Tang. Gcc: Graph contrastive coding for graph neural network pre-training. In *Proceed-
 507 ings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining*,
 508 pp. 1150–1160, 2020.

509

510 Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
 511 chemistry structures and properties of 134 kilo molecules. *Scientific data*, 1(1):1–7, 2014.

512

513 Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
 514 minique Beaini. Recipe for a general, powerful, scalable graph transformer. *Advances in Neural
 Information Processing Systems*, 35:14501–14515, 2022.

515

516 Ann M Richard, Richard S Judson, Keith A Houck, Christopher M Grulke, Patra Volarath, Inthirany
 517 Thillainadarajah, Chihae Yang, James Rathman, Matthew T Martin, John F Wambaugh, et al.
 518 Toxcast chemical landscape: paving the road to 21st century toxicology. *Chemical research in
 toxicology*, 29(8):1225–1251, 2016.

519

520 Uri Shaham, Kelly Stanton, Henry Li, Ronen Basri, Boaz Nadler, and Yuval Kluger. Spectralnet:
 521 Spectral clustering using deep neural networks. In *International Conference on Learning Repre-
 522 sentations*, 2018.

523

524 Daniel A Spielman and Shang-Hua Teng. Spectral partitioning works: Planar graphs and finite
 525 element meshes. In *Proceedings of 37th conference on foundations of computer science*, pp.
 526 96–105. IEEE, 1996.

527

528 Teague Sterling and John J Irwin. Zinc 15-ligand discovery for everyone. *Journal of chemical
 529 information and modeling*, 55(11):2324–2337, 2015.

530

531 Govindan Subramanian, Bharath Ramsundar, Vijay Pande, and Rajiah Aldrin Denny. Computational
 532 modeling of β -secretase 1 (bace-1) inhibitors using ligand based approaches. *Journal of chemical
 533 information and modeling*, 56(10):1936–1949, 2016.

534

535 Fan-Yun Sun, Jordan Hoffman, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-
 536 supervised graph-level representation learning via mutual information maximization. In *Inter-
 537 national Conference on Learning Representations*.

538

539 Ruoxi Sun, Hanjun Dai, and Adams Wei Yu. Does gnn pretraining help molecular representation?
 540 *Advances in Neural Information Processing Systems*, 35:12096–12109, 2022.

541

542 Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
 543 Hjelm. Deep graph infomax. In *International Conference on Learning Representations*.

540 Chun Wang, Shirui Pan, Guodong Long, Xingquan Zhu, and Jing Jiang. Mgae: Marginalized graph
 541 autoencoder for graph clustering. In *Proceedings of the 2017 ACM on Conference on Information*
 542 *and Knowledge Management*, pp. 889–898, 2017.

543 Zehong Wang, Zheyuan Liu, Tianyi Ma, Jiazheng Li, Zheyuan Zhang, Xingbo Fu, Yiyang Li,
 544 Zhengqing Yuan, Wei Song, Yijun Ma, et al. Graph foundation models: A comprehensive survey.
 545 *arXiv preprint arXiv:2505.15116*, 2025.

546 Yaochen Xie, Zhengyang Wang, and Shuiwang Ji. Noise2same: Optimizing a self-supervised bound
 547 for image denoising. *Advances in neural information processing systems*, 33:20320–20330, 2020.

548 Yaochen Xie, Zhao Xu, Jingtun Zhang, Zhengyang Wang, and Shuiwang Ji. Self-supervised learning
 549 of graph neural networks: A unified review. *IEEE transactions on pattern analysis and machine*
 550 *intelligence*, 45(2):2412–2429, 2022.

551 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 552 networks? *arXiv preprint arXiv:1810.00826*, 2018.

553 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 554 networks? In *International Conference on Learning Representations*, 2019.

555 Pengwei Yan, Kaisong Song, Zhuoren Jiang, Yangyang Kang, Tianqianjin Lin, Changlong Sun, and
 556 Xiaozhong Liu. Empowering dual-level graph self-supervised pretraining with motif discovery.
 557 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 9223–9231,
 558 2024.

559 Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
 560 contrastive learning with augmentations. *Advances in neural information processing systems*, 33:
 561 5812–5823, 2020.

562

A APPENDIX

A.1 LLM USAGE

562 We used ChatGPT-5 to give our final paper a readthrough and check for blatant typos and errors.
 563 Here is the prompt used, which accompanied our attached (anonymous) paper draft:

564 Check for any blatant typos or mistakes, and point to exact page numbers or line
 565 numbers. Do not make suggestions on any other aspect of the paper.

A.2 FULL EIGENVECTOR PRE-TRAINING PIPELINE

577 We provide a broad algorithmic outline of eigenvector pre-training process in Algorithm 2.

579 **Algorithm 2** Structure-Informed Graph Pre-training Framework

580 **Input:** Graph $G = (V, E)$; node features $X = \{x_j\}$; training labels Y ; untrained Base GNN;
 581 untrained Downstream Prediction Head

582 **Output:** Trained Base GNN and Downstream Prediction Head

- 583 1: $\tilde{X} \leftarrow \text{AUGMENTFEATURES}(G, X)$
- 584 2: $\text{BASEGNN} \leftarrow \text{EIGVECPRETRAIN}(G, \tilde{X}, \text{BASEGNN})$
- 585 3: **for** $i < \text{Fine-tuning Epochs}$ **do**
- 586 4: $\vec{z}_0, \dots, \vec{z}_n \leftarrow \text{BASEGNN}(G, \tilde{X})$
- 587 5: $\vec{Z} \leftarrow [\vec{z}_1, \dots, \vec{z}_n]$
- 588 6: $\hat{Y} \leftarrow \text{DOWNSTREAMHEAD}(\vec{Z})$
- 589 7: $\text{Loss} = \text{LOSSCRITERION}(\hat{Y}, Y)$
- 590 8: Backpropagate Loss, update model weights
- 591 9: **end for**
- 592 10: **return** BASEGNN , DOWNSTREAMHEAD

594 A.3 LOSS FUNCTION
595596 Eigenvector loss, per-vector form:
597

598
$$\mathcal{L}_{eigvec} = \frac{1}{k} \sum_{i=1}^k \|L\hat{u}_i - \lambda_i \hat{u}_i\|$$

600

601 Eigenvector loss, matrix form:
602

603
$$\mathcal{L}_{eigvec} = \frac{1}{k} \|(L\hat{U} - \hat{U}\Lambda_k)\|$$

604

605 Energy loss, per-vector form:
606

607
$$\mathcal{L}_{energy} = \frac{1}{k} \sum_{i=1}^k \hat{u}_i^\top L \hat{u}_i$$

608
609

610 Energy loss, matrix form:
611

612
$$\mathcal{L}_{energy} = \frac{1}{k} \text{Tr}(\hat{U}^\top L \hat{U})$$

613

614 Energy loss is order-invariant and rotation invariant (see A.4); for applications in clustering, this is
615 reasonable. However, we would like the model to learn the eigenvectors in their specific order, so we
616 also define **absolute energy loss**, matching the Rayleigh quotient with the ground-truth eigenvalue:

617
$$\mathcal{L}_{energy_abs} = \frac{1}{k} \sum_{i=1}^k |\hat{u}_i^\top L \hat{u}_i - \lambda_i|$$

618
619

620 This can be written as, in matrix form:
621

622
$$\mathcal{L}_{energy_abs} = \frac{1}{k} \text{Tr}|\hat{U}^\top L \hat{U} - \Lambda_k|$$

623

624 In practice, we do not show any results using absolute energy loss, and instead linearly combine
625 energy loss with eigenvector loss to avoid order and rotation invariance. However, absolute energy
626 loss remains an interesting avenue to explore.
627628 A.3.1 ORTHOGONALITY
629630 To ensure the model does not output k copies of the trivial eigenvector, we must give the model
631 orthogonality constraints on the output vectors. There are again two reasonable choices here: **(1)**
632 **forced orthogonality** and **(2) orthogonality loss**.633 **Forced orthogonality**, used in Shaham et al. (2018), imposes orthogonality on the final outputs of
634 the model via QR decomposition. In other words, if \hat{U}' is the initial output to the model, Q is an
635 $n \times k$ matrix with orthonormal columns, and R is a $k \times k$ upper triangular matrix, then we achieve
636 the final output \hat{U} as such:

637
$$QR = \hat{U}'$$

638

639
$$\hat{U} = Q$$

640

641 **Orthogonality loss**, used in Dwivedi et al. (2021); Ma & Zhan (2023); Mishne et al. (2019) im-
642 poses a softer constraint, encouraging orthogonality by penalizing the model for producing pairwise
643 similar vectors. This can be written as:

644
$$\mathcal{L}_{ortho} = \frac{1}{k} \|\hat{U}^\top \hat{U} - I\|$$

645

646 Based on preliminary testing, we found that forced orthogonality improved performance on the
647 eigenvector-learning, and thus use forced orthogonality in all of our experiments.

648 A.4 ENERGY AND EIGENVECTOR LOSSES ARE SIGN AND BASIS INVARIANT
649650 A.4.1 DEFINITION OF BASIS INVARIANCE
651652 Consider any eigenspace spanned by ground truth eigenvectors $[\psi_j, \psi_{j+1}, \dots, \psi_{j+k-1}] = V$. Also
653 recall that, by Spectral Theorem, we can decompose any vector u into a linear combination of all
654 eigenvectors:
655

656
$$u = \sum_{i=1}^n c_i \psi_i$$

657 Then a loss function is basis invariant if any rotation of the projected component $VV^\top u$ does not
658 change the loss incurred by u . In other words, u gets to arbitrarily “choose” with what basis it
659 wants to express its $VV^\top u$ component. Sign invariance is a special case of basis invariance, where
660 changing sign is equivalent to rotating over a one-dimensional subspace (note that this is slightly
661 stronger than the most apparent form of sign invariance, where we would say $\mathcal{L}(u) = \mathcal{L}(-u)$;
662 instead, we can flip any component $c_i \psi_i$ of u when decomposed in terms of eigenvectors).663 **Definition 1** (Basis invariance). *Consider an eigenspace spanned by ground truth eigenvectors*
664 $[\psi_j, \psi_{j+1}, \dots, \psi_{j+k-1}] = \Psi \in \mathbb{R}^{n \times k}$. *Consider an eigenspace rotation R_Ψ defined as such:*

665
$$R_\Psi = \Psi A \Psi^\top + (I_n - \Psi \Psi^\top), A \in \text{SO}(k)$$

666 A loss function $\mathcal{L}(u)$ is basis invariant if, for all such $\Psi, R_\Psi, u \in \mathbb{R}^n$, we have:
667

668
$$L(u) = L(R_\Psi u)$$

669 A.4.2 PROOFS
670671 **Lemma 1** (Energy loss is basis invariant). *For any R_Ψ and a single eigenvector prediction $u \in \mathbb{R}^n$,*
672 *we have:*

673
$$u^\top L u = (R_\Psi u)^\top L (R_\Psi u)$$

674 *Proof.* First note that R_Ψ is orthogonal; the set of all R_Ψ describes a subset of $SO(k)$ where only
675 the k basis vectors in Ψ are rotated. Thus, we have $R_\Psi^\top R_\Psi = I$.676 In addition, because Ψ is an eigenspace, all columns are eigenvectors with a shared eigenvalue λ .
677 Then we have:
678

679
$$R_\Psi L = \Psi A \Psi^\top L + L - \Psi \Psi^\top L = \lambda \Psi A \Psi^\top + L - \lambda \Psi \Psi^\top = L \Psi A \Psi^\top + L - L \Psi \Psi^\top = L R_\Psi$$

680 Then we have:
681

682
$$R_\Psi^\top L R_\Psi = R_\Psi^\top R_\Psi L = L$$

683 Thus, for any u , we have:
684

685
$$u^\top L u = u^\top R_\Psi^\top L R_\Psi u = (R_\Psi u)^\top L (R_\Psi u)$$

686 \square 687 **Lemma 2** (Eigenvector loss is basis invariant). *For any R_Ψ and a single eigenvector prediction*
688 *$u \in \mathbb{R}^n$ and ground truth eigenvalue λ , we have:*

689
$$\|Lu - \lambda u\| = \|L(R_\Psi u) - \lambda(R_\Psi u)\|$$

690 *Proof.* We know, from our proof above in Lemma 1, that $R_\Psi L = L R_\Psi$. Because $R_\Psi \in \text{SO}(k)$, we
691 have $\|R_\Psi x\| = \|x\|$ for any $x \in \mathbb{R}^n$. Then we have:
692

693
$$\|Lu - \lambda u\| = \|R_\Psi(Lu - \lambda u)\|$$

694
$$\|Lu - \lambda u\| = \|L(R_\Psi u) - \lambda(R_\Psi u)\|$$

695 \square 696 We have an even stronger statement of invariance for energy loss: **given a predicted set of k or-**
697 **thogonal vectors, rotating the vectors within the same subspace does not impact loss.** In other
698 words, a model trained on energy loss only needs to predict the correct *subspace* of k eigenvectors.
699 This is clearly not true of eigenvector loss. Depending on the application, this kind of invariance can
700 be good or bad.
701

702 **Lemma 3** (Energy loss is rotation invariant). *Let L be a Laplacian matrix and $V \subseteq \mathbb{R}^n$ be some
 703 k -dimensional subspace. Suppose $U = [u_1, u_2, \dots, u_k], W = [w_1, w_2, \dots, w_k] \in \mathbb{R}^{n \times k}$ are both
 704 orthonormal bases for V . Then we have:*

$$706 \quad \frac{1}{k} \text{Tr}(U^\top LU) = \frac{1}{k} \text{Tr}(W^\top LW)$$

708 *Proof.* Note that $UU^\top = WW^\top$, as they are both orthogonal projectors for the same subspace.
 709 Then we have, by the cyclic property of trace:

$$711 \quad \frac{1}{k} \text{Tr}(U^\top LU) = \frac{1}{k} \text{Tr}(UU^\top L) = \frac{1}{k} \text{Tr}(WW^\top L) = \frac{1}{k} \text{Tr}(W^\top LW)$$

□

716 A.5 NODE FEATURE AUGMENTATION

718 **Lemma 4** (Uniqueness up to co-spectrality). *Let G_1, G_2 be graphs of size n with Laplacian matrices
 719 L_1, L_2 respectively. Let d_m^1, d_m^2 represent the diffused dirac embeddings for each node in G_1, G_2 .
 720 Then if L_1 and L_2 have different eigenvalues, $\{d_m^1 : m \leq n\} \neq \{d_m^2 : m \leq n\}$*

721 *Proof.* Consider the random-walk Laplacian of a graph: $L_{rw} := I - D^{-1}A = I - P$. Moreover,
 722 note that $L_{rw} = D^{-1}L$. Observe that

$$724 \quad L_{rw}Dv = D^{-1}LDv \\ 725 \quad = D^{-1}U\Lambda U^\top Dv \\ 726 \quad = Bv \text{ for some diagonalizable matrix } B \text{ with eigenvalues } \lambda_i, \dots, \lambda_n$$

729 Where $U = [\psi_1 \ \dots \ \psi_n]$, with ψ_i orthonormal eigenvectors of L and Λ is the diagonal matrix of
 730 eigenvalues $\lambda_1, \dots, \lambda_n$ of L . Any change to the eigenspectrum of L , clearly results in a change to
 731 L_{rw} , and therefore P . Since $\Psi_0 = I - P$, any two graphs with distinct Laplacian eigenspectra will
 732 have distinct diffused dirac node embeddings. □

734 A.6 DETAILED EXPERIMENTAL SETTINGS

736 A complete overview of model hyperparameters and settings can be found in Table 5. Heuristically,
 737 the Graph-level MLP head hidden dimension is chosen to be the max # nodes multiplied by the
 738 hidden dimension size of the base GNN. We do NOT omit the trivial eigenvector when counting
 739 number of eigenvectors predicted.

740 A.7 ALTERNATIVE STRUCTURAL PRE-TRAINING TARGETS

742 Here, we formally define and provide details for the alternative pre-training targets used in section
 743 5.1.

- 745 • **Node degree:** A node-level label representing the degree of each node
- 746 • **Local clustering coefficient:** A node-level label computing the local clustering coefficient
 747 of each node. For a fixed node u , the coefficient C is given by:

$$749 \quad C = \frac{2|\{e_{jk} : v_j, v_k \in N_u, e_{jk} \in E\}|}{|N_u|(|N_u| - 1)}.$$

- 752 • **RWSE:** A node-level label computing self-walk probabilities at varying step counts for the
 753 diffusion operator (Dwivedi et al.). In our experiments, we use step counts from the interval
 754 $[2, 22]$.
- 755 • **Cycle counting:** A graph-level label computing cycle counts of varying lengths. In our
 experiments, we count cycles up to length 9.

756 • **Lap Eigenvalues:** A graph-level label computing the k -lowest Laplacian eigenvalues
 757 $\lambda_1, \dots, \lambda_k$. We use the same $k = 6$ as we do with LELM.
 758

759 For all alternative structural pre-training tasks, we use the same hyperparameters for GIN as dis-
 760 played in 5, with no initial features and using a standard MAE loss instead of eigenvector + energy
 761 loss. We train on the full ZINC dataset. All structural pre-training targets are normalized to have
 762 mean 0 and standard deviation 1 across the entire dataset.

763
 764 Table 5: A comprehensive list of all model hyperparameters used during the eigenvector pre-training
 765 step. All hyperparameters highlighted in gray are specific to eigenvector-learning, while other listed
 766 configs reflect general GNN settings (and are set to match default values in each respective baseline
 767 work).

Method	GIN (5.1)	GPS (5.1)	GIN pre-training (5.2)	GPSE (5.3)
Pre-training dataset	ZINC-subset (12k), ZINC (250k), QM9 (134k)	ZINC-subset (12k), ZINC (250k), QM9 (134k)	ZINC15 (2M), ChEMBL (456K)	MoPBCA (324K)
Base architecture	GIN	Transformer/GIN	GIN	MPNN
# params	33543	157680	2252210	22075899
# layers of per-node feature update	3	3	2	
# layers of message passing	4	4	5	20
Hidden dim	60	60	200	512
Activation fn	ReLU	ReLU	ReLU	ReLU
Dropout	0.1	0.1	0.2	0.2
Batch size	128	128	32	1024
Learning rate	0.001	0.001	0.001	0.005
Optimizer	Adam	Adam	Adam	AdamW
Scheduler	ReduceLROnPlateau	ReduceLROnPlateau	None	CosineWithWarmup
Pre-Training Epochs	200	100	100	120
Fine Tuning Epochs	500	150	100	-
Laplacian norm type	Unnormalized	Unnormalized	Unnormalized	Symmetric
# eigenvectors predicted	6	6	5	5
Initial features	Diffused dirac + Wavelet pos.	Diffused dirac + Wavelet pos.	Molecule features	Random
MLP head type(s)	Graph-level	Graph-level	Graph-level per-node	Graph-level, per-node
Graph-level MLP max # nodes	40	20	50	50
MLP head # layers	5	5	1	2
MLP head hidden dim	2400	2400	N/A	1600, 32
MLP head activation fn	ReLU	ReLU	N/A	ReLU
Loss function (and coefficient)	2*Eigenvector + 1*energy	2*Eigenvector + 1*energy	0.25 * Eigenvector + 0.05 * ortho	0.25 * Eigenvector
Other features/notes		Removed graphs with less than six nodes during pre-training		Residual gating, virtual node

779 780 A.8 MODIFYING EXISTING PRE-TRAINING METHOD

781 A.8.1 LEARNING RATE TUNING

782 We keep the majority of the settings from Hu et al. (2019) the same. For downstream fine-tuning, we
 783 tune over 7 learning rates for fair comparison according to Sun et al. (2022). We run each method
 784 and learning rate over 3 seeds, and select the learning rate based on mean validation accuracy over
 785 all learning rates.

786 A.8.2 DOWNSTREAM DATASETS

787 We briefly list and cite the five downstream datasets here for reference. The five datasets are the
 788 datasets chosen in Sun et al. (2022), and are a subset of the eight primary downstream datasets
 789 evaluated in Hu et al. (2019).

790 • **BACE:** Qualitative binding results Subramanian et al. (2016)
 791 • **BBBP:** Blood-brain barrier penetration Martins et al. (2012)
 792 • **Tox21:** Toxicity data Mayr et al. (2016)
 793 • **Toxcast:** Toxicology measurements Richard et al. (2016)
 794 • **SIDER:** Database of adverse drug reactions (ADR) Kuhn et al. (2016)

800 A.9 MODIFYING EXISTING GRAPH STRUCTURAL ENCODER

801 A.9.1 LOSS FUNCTION COMPARISON

802 We claim that the sum of MAE and cosine similarity loss used in the structural encoder model GPSE
 803 (Cantürk et al., 2023) limits the model’s ability to predict the eigenvectors of a graph.

804 To address sign ambiguity, the original GPSE model only learns the absolute value of each Lapla-
 805 cian eigenvector as its target. This improves performance over training without absolute value, but
 806 two shortcomings still arise. This (1) provides strictly less information than learning the true eigen-
 807 vectors, and (2) does not capture basis ambiguity, making it ill-posed for eigenvectors with higher
 808 multiplicity (or eigenvectors with small eigengaps).

