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Abstract— This paper studies how a stochastic gradient
algorithm (SG) can be controlled to hide the estimate of the
local stationary point from an eavesdropper. Such problems
are of significant interest in distributed optimization settings
like federated learning and inventory management. A learner
queries a stochastic oracle and incentivizes the oracle to obtain
noisy gradient measurements and perform SG. The oracle
probabilistically returns either a noisy gradient of the function
or a non-informative measurement, depending on the oracle
state and incentive. The learner’s query and incentive are visible
to an eavesdropper who wishes to estimate the stationary point.
This paper formulates the problem of the learner performing
covert optimization by dynamically incentivizing the stochastic
oracle and obfuscating the eavesdropper as a finite-horizon
Markov decision process (MDP). Using conditions for interval-
dominance on the cost and transition probability structure, we
show that the optimal policy for the MDP has a monotone
threshold structure. We propose searching for the optimal
stationary policy with the threshold structure using a stochastic
approximation algorithm and a multi-armed bandit approach.
The effectiveness of our methods is numerically demonstrated
on a covert federated learning hate-speech classification task.

Keywords: Markov decision process, Covert optimization,

Structural results, Interval dominance

I. INTRODUCTION

The learner aims to obtain an estimate x̂ for a point x∗ ∈
argminx∈Rd f(x) 1 by querying a stochastic oracle. At each

time k = 1, 2, . . . , the learner sends query qk ∈ R
d and

incentive ik to a stochastic oracle in state ok. The oracle

returns a noisy gradient, rk evaluated at qk as follows:

rk =

{

∇f(qk) + ηk with prob. Γ(ok, ik)

0 (non-informative) with prob. 1− Γ(ok, ik)
.

(1)

Here (ηk) are independent, zero-mean finite-variance random

variables, and Γ denotes the probability that the learner gets

a noisy informative response from the oracle.

An eavesdropper observes query qk and incentive ik but

not response rk. The eavesdropper aims to estimate x̂, as an

approximation to the minimizer of the function the eaves-

dropper is interested in optimizing. This paper addresses

the question: Suppose the learner uses a stochastic gradient

(SG) algorithm to obtain an estimate x̂. How can the learner

control the SG to hide x̂ from an eavesdropper?

A. Jain and V. Krishnamurthy are with the School of Electrical and
Computer Engineering, Cornell University, Ithaca, NY, 14853, USA email:
aj457@cornell.edu, vikramk@cornell.edu

1By argmin or minimizer we mean a local stationary point of f ∈ C2.

Our proposed approach is to dynamically switch be-

tween two SGs. Let ak ∈ {0 = Obfuscate SG, 1 =
Learn SG} denote the chosen SG at time k. The first

SG minimizes function f and updates the learner estimate

x̂k. The second SG is for obfuscating the eavesdropper

with estimates ẑk. The update of both SGs is given by the

equation,
[
x̂k+1

ẑk+1

]

=

[
x̂k
ẑk

]

− µk

[
1(ak = 1) 0

0 1(ak = 0)

] [
rk
r̄k

]

, (2)

where µk is the step size, r̄k is a synthetic gradient response

discussed later and ak controls the SG to update.

The query qk by the learner to the oracle is given by,

qk = x̂k1(ak = 1) + ẑk1(ak = 0). (3)

and uk = (ak, ik) is the control learner variable (action).

The learner needs M informative updates of (2) to achieve

the learning objective in N queries. We formulate an MDP

whose policy π controls the switching of SGs and incen-

tivization by the learner, to minimize the expected cost

balancing obfuscation and learning. The optimal policy π∗

solving the MDP is shown to have a threshold structure

(Theorem 2) of the form,

π∗(b, o, n) =

{

a = 0 (obfuscate), b ≤ b̄(o, n)

a = 1 (learn), b > b̄(o, n)
,

where b is the number of informative learning steps left, n
is the number of queries left and b̄ is the threshold function

dependent on the oracle state o and n. Note that the exact

dependence on the incentive is discussed later. We propose

a stochastic approximation algorithm to estimate the optimal

stationary policy with a threshold structure. We propose a

multi-armed bandits based approach with finite-time regret

bounds in Theorem 3. The optimal stationary policy with a

threshold structure is benchmarked in a numerical study for

covert federated hate-speech classification.

Motivation: The main application of covert (or learner-

private) optimization is in centralized distributed optimiza-

tion [12], [10], [9]. One motivating example is in pricing

optimization and inventory management, the learner (e.g.,

e-retailer) queries the distributed oracle (e.g., customers)

pricing and product preferences to estimate the optimal price

and quantity of a product to optimize the profit function [10],

[1]. A competitor could spoof as a customer and use the

optimal price and quantity for their competitive advantage.

Our numerical experiment illustrates another application in

federated learning, a form of distributed machine learning.

http://arxiv.org/abs/2405.07415v1
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The current literature on covert optimization has been

focused on deriving upper and lower bounds on the query

complexity for a given obfuscation level [12]. Query com-

plexity for binary and convex covert optimization with a

Bayesian eavesdropper has been studied in [10], [12]. These

bounds assume a static oracle and a random querying policy

can be used to randomly obfuscate and learn. In contrast, the

authors have looked at dynamic covert optimization where

stochastic control is used to query a stochastic oracle opti-

mally [4]. This is starkly different than the current literature

since a stochastic oracle models situations where the quality

of gradient responses may vary (e.g., due to Markovian client

participation). The success of a response can be determined

by the learner (e.g., based on gradient quality [4]) or by the

oracle (e.g., based on computational resources availability).

Differences from previous work [4]: To prove that the

optimal policy has a monotone threshold structure, [4] re-

quires supermodularity conditions. This paper proves results

under more relaxed conditions using interval dominance [8]

in Theorem 2, which can incorporate convex cost functions

and more general transition probabilities [5]. The action

space in this work includes an incentive the learner provides

to the oracle. An incentive that the learner pays is motivated

by the learner’s cost for obtaining a gradient evaluation of

desired quality, it could be a monetary compensation the

learner pays or non-monetary, e.g., controlling latency of

services to participating clients [11]. We had a generic cost

function in [4], but the costs considered in this paper are

exact regarding the learner’s approximation of the eavesdrop-

per’s estimate of x̂.

II. COVERT OPTIMIZATION FOR FIRST-ORDER

STOCHASTIC GRADIENT DESCENT

This section describes the two stochastic gradient algo-

rithms, between which the learner dynamically switches to

either learn or obfuscate using the MDP formulation of the

next section. This section states the assumptions about the

oracle, the learner, the eavesdropper, and the obfuscation

strategy. We state the result on the number of successful

gradient steps the learner needs to achieve the learning

objective. The problem formulation for covert optimization

is illustrated in Fig. 1.

A. Oracle

The oracle evaluates the gradient of the function f . The

following is assumed about the oracle and the function f ,

O1: Function f : R
d → R is continously differentiable

and is lower bounded by f∗. Function f is γ-Lipschitz

continuous, ‖∇f(x)−∇f(z)‖ ≤ γ‖x−z‖ ∀x, z ∈ R
d.

O2: At time k, the oracle is in state ok ∈ {1, . . . , R}, where

R are the number of oracle states and for the incentive

ik ∈ {i1, . . . , ini}, replies with probability Γ(ok, ik).
sk ∼ Bernoulli(Γ(ok, ik)) denotes success of the reply.

O3: For a reply with success sk to the query qk ∈ R
d, the

oracle returns a noisy gradient response rk according

to (1). The noise terms ηk are independent 2, have

2A slightly weaker assumption based on conditional independence was
considered in our paper [4]. We consider independence here for brevity.

Oracle (∇̃f )

qk

sk

rk

ak

ok

Type of Query

Query

Noisy Gradient

Response Success

Learner

bk

ikIncentive

Visible to Eavesdropper

Fig. 1. Dynamic Covert Optimization: Learner sends query qk and
incentive ik to oracle in state ok . The oracle evaluates noisy gradient of
f at qk, rk according to (1). An eavesdropper observes qk and ik and
aims to approximate the learner’s estimate. The learner needs to control the
incentive ik and type of SG (ak) to query using (3) to achieve the learning
objective of (4) and obfuscate the eavesdropper with belief (5).

zero-mean and finite-variance, E[rk] = ∇f(qk) and

E[‖ηk‖
2] ≤ σ2.

O1 and O3 are standard assumptions for analyzing oracle-

based gradient descent [3]. O2 is motivated by an oracle with

a stochastic state (e.g., client participation), and the success

is determined by the oracle or by the learner.

B. Learner

Similar to oracle-based first-order gradient descent [3], the

learner aims to estimate x̂ ∈ R
d which is a ǫ-close critical

point of the function f ,

E
[
‖∇f(x̂)‖2

]
≤ ǫ. (4)

Since f is non-convex and not known in closed-form to

the learner, in general, the gradient at z1 is non-informative

about the gradient at z2 far from z1. Hence, at time k, the

learner can either send a learning or an obfuscating query. We

propose controlling the gradient descent of the learner by the

query action ak ∈ {0 = obfuscating, 1 = learning}.

While learning, the learner updates its estimate, x̂k by

performing the controlled stochastic gradient step of (2).

Here, µk is the step size chosen to be constant in this paper.

In the next section, we will formally state the action space

composed of the type of query ak and the incentive ik. In

order to estimate the number of queries to the oracle that

the learner has to spend on learning queries, we first define

the successful gradient step. We then state the result on the

order of the number of successful gradient steps required for

achieving the objective.

Definition 1: (Successful Gradient Step) A gradient

step of (2) is successful when the learner queries the oracle

with a learning query (ak = 1) and gets a successful reply

(sk = 1).

Theorem 1: For an oracle with assumptions (O1-O3),

to obtain an estimate x̂ which achieves the objective (4),

the learner needs to perform M successful gradient steps

(Def. 1) with a step size (µ = min( 1
γ
, ǫ
2σ2γ

)) where M is

of the order, O
(

σ2

ǫ2
+ 1

ǫ

)

. The exact expression is M =

max
(

4Fγ
ǫ
, 8Fγσ2

ǫ2

)

where F = (Ef(x0)− f∗).

Proof for a general setting can be found in [4] and in [3].

Theorem 1 characterizes the number of successful gradient
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steps, M that the learner needs to perform to achieve the

learning objective of (4). Theorem 1 guarantees the existence

of a finite queue state space in the next section, which models

the number of successful gradient steps left to be taken. M
in the MDP formulation of the next section can be chosen

heuristically or be computed exactly if the parameters of

the function are known. It also shows that M is inversely

dependent on ǫ and incorporates the descent dynamics in the

structure of the optimal policy.

C. Obfuscation Strategy

Based on the chosen SG ak, the learner poses queries

using (3) and provides incentives to the oracle. To obfuscate

the eavesdropper, the learner runs a parallel stochastic gra-

dient with synthetic responses, r̄k. The synthetic responses

can be generated by suitably simulating an oracle, for e.g.,

the learner can train a neural network separately with an

unbalanced subset of as was done in [4]. If the learner is sure

that the eavesdropper has no public dataset to validate, the

learner can simply take mirrored gradients with (1). When

obfuscating, the learner poses queries from the estimates of

the second SG, ẑk.

The parallel stochastic gradient ensures that the eaves-

dropper cannot infer the true learning trajectory from the

shape of the trajectory. In summary, the learner obfuscates

and learns by dynamically chooses the query qk, as the

current estimate x̂k from the controlled stochastic gradient

step or as the estimate ẑk of parallel SG. We assume

that the learner queries such that the two trajectories are

sufficiently separated from each other, and the eavesdropper

can cluster the queries and distinguish them uniquely into

two trajectories as described next.

D. Eavesdropper

At time k, the eavesdropper observes query qk and the

incentive ik by the learner. We use the following assumptions

to approximate the posterior belief of the eavesdropper,

E1: The eavesdropper is passive, does not affect the oracle,

and can not observe the oracle’s responses, rk.

E2: For k > 0, the eavesdropper can classify each query

of the observed query sequence (q1, . . . , qk) into two

unique trajectory sequences, J k
1 and J k

2 which can be

separated by a hyperplane in R
d.

E3: The eavesdropper knows that either of J k
1 and J k

2 is a

learning trajectory. Given the information till time k,

the eavesdropper computes a posterior belief, δk for

trajectory J k
1 being the learning trajectory as,

δk = P(x̂ ∈ J k
1 |(q1, i1, . . . , qk, ik)).

Assumption E1 holds if the eavesdropper is considered an

insignificant part of the oracle and can not observe the

aggregated response. Assumptions E2 and E3 ensure the

dynamic obfuscation is for a worst-case eavesdropper 3.

We consider the eavesdropper using an incentive-weighed

3As mentioned above, it is assumed that the queries are posed such that
the two trajectories are sufficiently separated (by a metric known to the
eavesdropper). One of the trajectories can be empty for the initial queries.

proportional sampling estimator for the posterior δk [12],

[4],

δk =

∑

1≤t≤k it1(qt ∈ J t
1 )

∑

1≤t≤k it
. (5)

The learner has access to the queries and the incentives

and uses (5) as an approximation for the eavesdropper’s

argmin estimate to compute the cost incurred when learning.

The following section formulates an MDP to perform covert

optimization using stochastic control. M from Theorem 1

and oracle state are used to model the state space, while the

incentives ik and the type of SG ak in (2) model the action

space.

III. MDP FOR ACHIEVING COVERT OPTIMIZATION

We formulate a finite-horizon MDP to solve the learner’s

decision problem. The learner chooses an incentive, and

dynamically either minimizes the function using the estimate

x̂k or obfuscates the eavesdropper using ẑk. The learner

wants to perform M successful gradient steps in N total

queries. Using interval dominance, we show that the optimal

policy of the finite-horizon MDP has a threshold structure.

The stochastic control approach for the same is described in

Algorithm 1.

A. MDP formulation for optimally switching between

stochastic gradient algorithms

Algorithm 1 Stochastic Control for Covert Optimization

Input: Policy π, Queries N , Successful Gradient Steps

M
Initialize learner queue state bN =M
for k in 1, . . . , N do

Obtain type of SG and incentive, (ak, ik) = π(ok, bk)
Incur cost c((ak, ik), (ok, bk)) from (7)

Query oracle using query qk (3) and incentive ik
Receive response rk and success of reply sk
Update estimates of the two SGs using (2).

if sk=1 then bk+1 = bk − sk
Oracle state evolves, ok+1 ∼ ∆(·|ok)

end for

Incur terminal cost d(b0)

The dynamic programming index, n = N, . . . , 0 denotes

the number of queries left and decreases with time k.

State Space: The state space is denoted by Y = YB×YO

where YB = {0, 1, . . . ,M} is the learner queue state space

and YO = {0, 1, . . . , R} is the oracle state space. The learner

queue state bn ∈ YB denotes the number of successful

gradient steps (Def. 1) remaining to achieve (4). The oracle

state space YO discretizes the stochastic state of the oracle

into R levels (e.g., percentages of client participation in FL).

yn denotes the state with n queries remaining.

Action Space: The action space is U = {0 =
obfuscate, 1 = learn} × {i1, . . . , ini}. The action

when n queries are remaining is given by, un = (an, in)
where an ∈ {0 = obfuscate, 1 = learn} is the
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type of the query and in ∈ {i1, . . . , ini} is the incen-

tive. To derive structural results on the optimal policy, we

consider the following transformation of the action space,

U = {(0, i1), . . . , (0, ini), (1, i1), . . . , (1, ini)}. A determin-

istic policy for the finite-horizon MDP is denoted by π, a

sequence of functions π = (un : n = 0, . . . , N). Here,

un : Y → U maps the state space to the action space. Π
denotes the space of all policies.

Transition Probabilities: We assume that the evolution

of the oracle state and the learner queue state is Markovian.

The oracle state evolves independently of the queue state

evolution. In case of a successful gradient step (Def. 1), the

queue decreases by one, and the oracle state evolves to a

state o′ ∈ YO with probability ∆(o′|o)> 0. Let Po,o′

b (u) =
P((o′,·)|o,b,u)/∆(o′|o) denote the transition probability vector

of the buffer state with future oracle state o′ given (o, b, u).
The transition probability from the state y = (o, b) ∈ Y to

state y′ = (o′, b′) ∈ Y with action u = (a, i) can be written

as,

P(y′ = (o′, b− 1)|y, u) = ∆(o′|o)Γ(o, i)1(a) ∀o′,

P(y′ = (o, b)|y, u) = (1− Γ(o, i))1(a) + (1− 1(a)) ,
(6)

and is 0 otherwise. The first equation corresponds to a

successful gradient step, and the second to an unsuccessful

one. We assume that Γ(o, i) (from O2) is increasing in

incentive i.
Learning and Queueing Cost: The learning cost cn :

Y ×U → R, is the cost (with n queries remaining) incurred

after every action due to learning at the expense of reduced

obfuscation. We consider the following learning cost which

is proportional to the logarithm of the improvement in the

eavesdropper’s estimate (∝ log(δn/δn+1)) and is given by,

cn(yn, un) =
ψ1(bn)

ψ2(on)
log

(
In + in/δn

In + in

)

1(an)

+
ψ2(on)

ψ1(bn)
log

(
In

In + in

)

(1− 1(an))

, (7)

where ψ1 : YB → R
+ and ψ2 : YO → R

+ are positive,

convex and increasing cost functions, In =
∑n+1

k=N−1 ik is

the sum of the previous incentives and δn is the eavesdrop-

per’s estimate of the trajectory J1 being the true trajectory

computed using (5). ψ1 and ψ2 are used to incorporate

the cost with respect to the oracle and queue state, e.g.,

the functions ψ1, and ψ2 are considered quadratic in the

respective states in the experiments. The form of the fractions

ensures the structure as discussed next. The first term in (7)

denotes the cost incurred in a learning query and is non-

negative (0 ≤ δk ≤ 1). The second term corresponds to

an obfuscating query and is non-positive. The cost increases

with the queue state and decreases with the oracle state. This

incentivizes the learner to drive the system to a smaller queue

and learn when the oracle is in a good state. After N queries,

the learner pays a terminal queue cost computed using the

function d : Y → R. The queue cost accounts for learning

loss in terms of terminal successful gradient steps left, b0.

Remark: The incentive improves the response probability

Γ, but also allows for improved obfuscation than a non-

incentivized setup (a high incentive can be used to misdirect

the eavesdropper’s belief in (5)).

B. Optimization problem

The expected total cost for the finite-horizon MDP with

the initial state yN ∈ Y and policy π is given by,

V π(yN ) = E

[

1

N

N∑

n=1

cn (yn, un) + d(y0, u0) | yN , π

]

.

(8)

The optimization problem is to find the optimal policy π∗,

V π∗

(y) = inf
π∈Π

V π(y) ∀ y ∈ Y. (9)

To define the optimal policy using a recursive equation, we

first define the value function, Vn with n queries remaining,

Vn(y) = min
u∈U



 cn(y, u) +
∑

y′∈Y

P(y′|y)Vn−1(y
′)



 . (10)

Let the optimal policy be π∗ = (u∗n)
1
n=N , where u∗(·) is the

optimal action with n remaining queries and is the solution

of the following stochastic recursion (Bellman’s equation),

u∗n(y) = argmin
u∈U

Qn(u, y), (11)

where the Q-function Qn is defined as,

Qn(u, y) = cn(u, y) +
∑

y′∈Y

P(y′|y, u)Vn−1(y
′), (12)

with n = 0, . . . , N and V0(y) = d(y). If the transition

probabilities are unknown, then Q-learning can be used to

estimate the optimal policy of (11). However, the following

subsection shows that the optimal policy has a threshold

structure, which motivates efficient policy search algorithms.

C. Structural Results

The following is assumed to derive the structural results,

R1: The learning cost, cn is ↑ (increasing) and convex in

the buffer state, dn for each action un ∈ U .

R2: Transition probability matrix P(b′|b, o, u) is TP34 with
∑

b′ b
′
P(b′|b, o, u) ↑ b and convex in b.

R3: The terminal cost, d is ↑ and convex in the queue state,

b.
R4: For αb′,b,u > 0 and ↑ u, c(b′, o, u + 1) − c(b′, o, u) ≤

αb′,b,u(c(b, o, u+ 1)− c(b, o, u)), b′ > b.
R5: For βb′,b,u > 0 and ↑ u,

Po,o′

b′
(u+1)+βb′,b,uP

o,o′

b′
(u)

1+βb′,b,u
<c

Po,o′

b
(u)+βb′,b,uP

o,o′

b
(u+1)

1+βb′,b,u

, b′ > b, ∀o′, o ∈ YO; <c denotes convex dominance 5.

R6: There exist αb′,b,u = βb′,b,u s.t. (R4) and (R5) hold.

Assumptions (R1) and (R3) are true by the construction

of cost in (7) and the terminal cost. (R2) is a standard

assumption on bi-diagonal stochastic matrices made when

analyzing structural results [5]. (R4), (R5) and (R6) are the

4Totally postive of order 3 (TP3) for a matrix P(a) requires that each of
3rd order minor of P(a) is non-negative.

5Probability vector p is convex dominated by probability vector q iff
f ′p ≥ f ′q for increasing and convex vector f .
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generalization of the supermodularity conditions made pre-

viously in [4] and are sufficient for interval dominance [5].

Assumption (R4) can be verified for cost of (7) using

algebraic manipulation with αb′,b,u ≤ 1, and (R5) can be

shown with βb′,b,u ≤ 1 for the bi-diagonal matrix of (6)

with Γ(o, i) ↑ i. Therefore (R6) can be satisfied for some

γb′,b,u = αb′,b,u = βb′,b,u ≤ 1. We now state the main

structural result,

Theorem 2: Under assumptions (R1-6), the optimal action

u∗n(y) (given by (11)) for the finite-horizon MDP of (9) is

increasing in the queue state b.
Proof: Step 1: Conditions of Interval Dominance:

The following condition with γb′,b,u > 0,

Qn(b
′, u+ 1)−Qn(b

′, u) ≤

γb′,b,u [Qn(b, u+ 1)−Qn(b, u)] , b
′ > b,

(13)

is sufficient for argminQn to be increasing in b [8], [5],

u∗n(b) = argmin
u∈U

Qn(b, u) ↑ b.

We omit the oracle state o from the above expression.

By plugging (12) in (13) we need to show the following,

cn(b
′, u+ 1)− cn(b

′, u)− γb,b′,u(cn(b, u+ 1)− cn(b, u))
︸ ︷︷ ︸

a

+
∑

o′∈YO

∑

b
′′

[

P((o′, b
′′

)|(o, b′), u+ 1)

−P((o′, b
′′

)|(o, b′), u)− γb,b′,u

(

P((o′, b
′′

)|(o, b), u+ 1)

−P((o′, b
′′

)|(o, b), u)
)]

V (o′, b
′′

) ≤ 0, b′ > b

.

By (R4) part (a) of the above inequality is satisfied with
constant αb,b′,u ≤ 1. The rest of the inequality can be shown

using (R5) with a constant βb,b′,u ≤ 1 if we assume the value

function is increasing and convex (see n.5 and [5]). Finally

we apply (R6), with αb,b′,u = βb,b′,u = γb,b′,u to show that

(13) holds and the optimal action is ↑ in learner state b.
All that remains to be shown is that the value function is

increasing and convex, which we now show using (R1, R2,

R3) and induction,

Step 2: Value Function is Increasing in b: By (R3),

V0(y) = d(b) is increasing in b. Let Vn(y) ↑ b. TP3 (R2)

implies TP2 and hence preserves monotone functions [5].

Therefore by applying preservation of TP2 and linear com-

bination,
∑

o′∈YO ∆(o
′

|o)
∑

b
′∈YB P(b

′

|b, o, u)Vn ↑ b. By

(R1) and (12),Qn+1 ↑ b. And therefore by (10), Vn+1(y) ↑ b.
Step 3: Value Function is Convex in b: By (R3)

V0(y) = d(b) is convex in b. Let Vn be convex in b.
Then by (R2) and applying Lemma 1 of [5] along with

preservation of convexity under positive weighted sum,
∑

o′∈YO ∆(o
′

|o)
∑

b
′∈YB P(b

′

|b, o, u)Vn is convex in b. Ap-

plying (R1) and (12), Qn+1 is convex in b. Since minimiza-

tion preserves convexity, Vn+1 = minQn+1 is convex in b.

Theorem 2 implies that the policy is threshold in the learner

queue state; hence, the learner learns more aggressively when

the number of successful gradient steps (Def. 1) left is more.

This intuitively makes sense from an obfuscation perspective

since the learner should ideally spend more time obfuscating

when it is closer to the minimizer (the queue state is small).

Using Theorem 2, we can parameterize the optimal policy

by the thresholds on the queue state. Although we can

construct stochastic approximation for estimating the non-

stationary policy, which has a threshold structure and per-

forms computationally better than Q-learning, this approach

still requires the number of parameters to be linear in time

horizon N . Given this insight, we restrict the search space to

stationary policies with a monotone threshold structure, this

restriction is common in literature [4], [7].

Let the threshold on queue state for oracle state o and

action u be parameterized by b̄ : YO×U → YB . The optimal

stationary policy with a threshold structure can be written as,

π∗(y) =
∑

u∈U

u1(b̄∗(o, u) ≤ b < b̄∗(o, u+ 1)), (14)

where b̄∗ is the optimal threshold function.

IV. ESTIMATING THE OPTIMAL STATIONARY POLICY

WITH A THRESHOLD STRUCTURE

In this section, we propose two methods to approximate

the optimal stationary policy6. for the finite-horizon MDP

of (9) which has the monotone threshold structure of (14).

The first method uses a stochastic approximation to update

the parameters over the learning episodes iteratively. The

second method uses a multi-armed bandit formulation to

perform discrete optimization over the space of thresholds.

The proposed methods can be extended to a non-stationary

policy space with an increased time and memory complexity.

A. Simultaneous Perturbation Stochastic Approximation

Taking the thresholds of the stationary policy of (14)

as the parameters, a simultaneous perturbation stochastic

approximation (SPSA) based algorithm can be used to find

the parameters for the optimal policy. We update the policy

parameters using approximate gradients of the costs com-

puted using perturbed parameters. We use the following

sigmoidal approximation for the threshold policy of (14),

π̂(y, b̄) =
∑

u∈U

1

1 + exp (−(b−b̄(o,u))/τ)
, (15)

where τ is an approximation parameter. The parameters

are the F = |U||YO | threshold values and are represented

by Θ. For the optimal parameters, the approximate policy

converges to the optimal policy as τ → 0 [7]. For the

learning episode i and current parameter set Θi, the actions

are computed using the current approximate policy (15). The

policy parameters are perturbed independently with proba-

bility 1/2 by ±δ. Two learning episodes are performed with

each set of perturbed policy parameters (Θ+
i ,Θ−

i ). The costs

from the two episodes are used to obtain the approximate

gradient ∇̃Ci by the method of finite differences. The policy

parameters are updated using a stepsize φi,

Θi+1 = Θi − φi∇̃Ci.

6In this section, the optimal stationary policy is referred to as optimal
policy.
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Under regularity conditions on the noise in the approximate

gradients, the approximate policy parameters asymptotically

converge in distribution to the set of parameters of the

optimal stationary policies with a threshold structure [6]. The

SPSA algorithm can also be used with a constant step size

to track changes in the system [4], [6]. The computational

complexity for each learning episode is O(F +N).

B. Multi-armed bandit approach

The problem of searching the thresholds for (14) is solved

by considering the values each threshold can take and then

taking the product space of the thresholds as bandit arms.

Each threshold can take values over learner state space YB ,

which is of the cardinality M+1. Consider each permutation

of the F = |U||YO | thresholds as an arm, making the total

number of arms (M + 1)F . The selection of an arm gives

a corresponding stationary policy of the form (11), and a

reward (negative of the cumulative cost of the episode) is

obtained by interacting with oracle for time horizon N .

The noisy reward is sampled from a distribution centered

at the expected value (8). (B1) The reward is assumed to

be sampled independently for a given policy, and the noise

is assumed to be sub-Gaussian [2]. For brevity, we omit the

definition of regret and the exact upper bound, both of which

can be found in Chapter 2 of [2]. Following is the result for

the upper bound on the regret for searching the thresholds,

Theorem 3: Consider the finite-horizon MDP of (9) for

covert optimization with an oracle (O1-O3) to achieve (4).

The optimal stationary policy with a threshold structure (14)

can be searched using the upper confidence bound algorithm

under (B1) with an expected regret after T episodes bounded

by O
(
MF logT

)
, where, M is of the order O(1/ǫ + σ2

/ǫ2)
and F = |YO||U| is the number of thresholds.

The proof follows from Theorem 1 and plugging the number

of arms in the standard regret bound for UCB [2]. Although

the regret for this approach is bounded, the significant

limitations are that the bound is exponential in the state and

action space and, compared to SPSA, it cannot track changes

in the system.

V. EXAMPLE: COVERT FEDERATED LEARNING FOR

HATE-SPEECH CLASSIFICATION

We demonstrate the proposed covert optimization frame-

work on a numerical experiment for hate-speech classifica-

tion using federated learning in the presence of an eaves-

dropper. An eavesdropper spoofs as a client and misuses

the optimal weights to generate hate speech, which goes

undetected by the classifier. The detailed motivation and

experimental setup can be found in [4]. A balanced subset

of the civil comments toxicity dataset by Jigsaw AI is used,

which has comments along with annotations for whether the

comment is toxic or not The federated learning setup consists

of Nc = 35 clients, each having Nd = 689 data points.

A fully connected neural network attached to a pre-trained

transformer is trained with a cross-entropy loss to classify

the comments as toxic or not. The accuracy is reported on a

balanced validation dataset 7.

We consider M = 45 successful gradient steps and

N = 100 queries, and the oracle levels are based on client

participation. Each client participates in a Markovian fashion

with a probability of staying connected or not connected as

0.8. R = 3 oracle states correspond to the minimum number

of participating clients YO = [1 = 1, 2 = 12, 3 = 24]. We

consider ni = 3 incentive levels as {1, 2, 3}. The number

of samples each client contributes in each round depends on

the incentive, as [10%,40%,80%] of Nd for the respective

incentives. We consider a round successful if the number of

samples exceeds 4000. The emperical success probabilities

are Γ(o, i) = [[0, 0.1, 0.2], [0.1, 0.2, 0.6], [0.3, 0.6, 0.9]]. The

functions ψ1 and ψ2 in (7) are quadratic in b and o,

respectively. This satisfies assumptions R1, R2, R3. The

emperical success probabilities along with the resulting cost

function of (7) ensure that R4, R5, R6 are satisfied for

αb,b′,u = βb,b′,u ≤ 1. The queue cost is d(b) ∝ b4.

The optimal stationary policy with the threshold structure

is obtained using SPSA with φk = 0.01, δ = 0.1, and

H = 3000 episodes.

Type of Policy Learner Acc. Eaves. Acc. Incentive

Optimal Policy 90% 54% 254
Optimal Policy from [4] 89% 53% 290

Greedy Policy 91% 89% 300
Random Policy 52% 53% 190

TABLE I

THE OPTIMAL STATIONARY POLICY WITH A THRESHOLD STRUCTURE

OUTPERFORMS GREEDY POLICY BY 35% ON EAVESDROPPER ACCURACY

AND RANDOM POLICY BY 38% ON LEARNER ACCURACY.

The results are averaged for Nmc = 100 runs and reported

in Table I. The greedy policy learns first with a maximum

incentive, and random policy uniformly samples from the

action space. The optimal policy is better than the greedy

policy in terms of the eavesdropper accuracy corresponding

to the maximum a posteriori trajectory of (5). The optimal

policy outperforms the random policy on learner accuracy.

The learner saves 14% incentive spent compared to the

greedy policy. We also benchmark against the optimal policy

from [4] with constant incentivization (ik = 3) and similar

to the greedy policy, the accuracies are comparable, but the

optimal policy of this paper improves incentive expenditure

by 12%.

VI. CONCLUSION

The proposed MDP framework solves the learner’s prob-

lem of dynamically optimizing a function by querying

and incentivizing a stochastic oracle and obfuscating an

eavesdropper by switching between two stochastic gradients.

Using interval dominance, we prove structural results on

the monotone threshold nature of the optimal policy. In our

numerical experiments, the optimal stationary policy with

the threshold structure outperformed the greedy policy on

the eavesdropper accuracy and the incentive spent. In future

7The results are reproducible and can be found on the Github repository:
github.com/aditj/CovertOptimization. The repository also contains links to
the dataset, the complete set of experimental parameters, and a supplemen-
tary document with additional benchmarks and illustrations.
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work, the problem of obfuscating sequential eavesdroppers

can be formulated as a Bayesian social learning problem,

where initially the eavesdropper is obfuscated maximally

to make it stop participating and its departure provides an

indication to the subsequent eavesdroppers that the learner

is obfuscating. Hence, the eavesdroppers can eventually be

made to herd, forming an information cascade so that they

don’t eavesdrop anymore, regardless of whether the learner

is learning or not.
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