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ABSTRACT

Zero-sum games arise in a wide variety of problems, including robust optimiza-
tion and adversarial learning. However, algorithms deployed for finding a local
Nash equilibrium in these games often converge to non-Nash stationary points.
This highlights a key challenge: for any algorithm, the stability properties of its
underlying dynamical system can cause non-Nash points to be potential attractors.
To overcome this challenge, algorithms must account for subtleties involving the
curvatures of players’ costs. To this end, we leverage dynamical system theory
and develop a second-order algorithm for finding a local Nash equilibrium in the
smooth, possibly nonconvex-nonconcave, zero-sum game setting. First, we prove
that this novel method guarantees convergence to only local Nash equilibria with
a local linear convergence rate. We then interpret a version of this method as
a modified Gauss-Newton algorithm with local superlinear convergence to the
neighborhood of a point that satisfies first-order local Nash equilibrium conditions.
In comparison, current related state-of-the-art methods do not offer convergence
rate guarantees. Furthermore, we show that this approach naturally generalizes
to settings with convex and potentially coupled constraints while retaining earlier
guarantees of convergence to only local (generalized) Nash equilibria.

1 INTRODUCTION

We consider the setting of smooth, deterministic two-player zero-sum games of the form

Player 1 : min
x

f(x,y) Player 2 : max
y

f(x,y) (x,y) ∈ G, (Game 1)

where f can be nonconvex-nonconcave with respect to x ∈ Rn and y ∈ Rm, respectively. In the
unconstrained setting, i.e., when G is (Rn,Rm), we seek to find a local Nash equilibrium. For the
constrained setting, we will assume that G is convex and seek a local generalized Nash equilibrium.

Mathematical games are commonly studied in decision-making scenarios involving multiple agents
in control theory (Isaacs, 1999), economics (Roth, 2002; Rubinstein, 1982), and computer science
(Roughgarden, 2010). In particular, several problems of interest have a natural zero-sum game
formulation, such as training generative adversarial networks (Goodfellow et al., 2014), pursuit-
evasion scenarios (Isaacs, 1999), and robust optimization (Ben-Tal et al., 2009).

Several recent efforts (Fiez et al., 2020; Wang et al., 2020; Chinchilla et al., 2023; Daskalakis et al.,
2023) consider a closely related minimax variant of Game 1, minx maxy f(x,y); however, (local)
minimax solutions can differ from (local) Nash equilibria in general nonconvex-nonconcave settings.
This difference arises from the order of agent interactions. At a Nash solution of Game 1, players
controlling x and y act simultaneously. In contrast, minimax points correspond to Stackelberg
equilibria and assert a sequential order of play: x acts first, then y follows. We highlight this fact to
point out that under the assumptions of Game 1, the set of all local Nash points is a subset of the set
of all local Stackelberg points (Mazumdar et al., 2020; Ratliff et al., 2016). In particular, local Nash
and Stackelberg points have the same first-order conditions but different second-order conditions.

The success of first-order gradient methods for single-agent learning problems made gradient descent
ascent (GDA), the multi-agent analog of gradient descent, a natural starting point for solving Game
1. The GDA algorithm tries to find a critical point of f , i.e., where ∇f = 0. GDA is known to get
trapped in limit cycles even in the most straightforward convex-concave setting, and several works
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have tried to modify the gradient dynamics by including second-order information to avoid this
entrapment and direct the solution towards a stationary point of the dynamics (Benaım and Hirsch,
1999; Daskalakis et al., 2017; Hommes and Ochea, 2012; Mertikopoulos et al., 2018; Mescheder
et al., 2017; Gidel et al., 2019). However, outside of the convex-concave setting, these methods
can converge to critical points that are not Nash equilibria. This behavior is due to the particular
structure of second-order derivatives of f with respect to x and y, and while they do not arise in the
single-agent settings, they are widely documented in the multi-agent zero-sum game setting (Balduzzi
et al., 2018; Mazumdar et al., 2020; Ratliff et al., 2016).

To guarantee that an algorithm only converges to local Nash equilibria, the algorithm’s gradient
dynamics must not have any non-Nash stable equilibrium points. To the best of our knowledge,
only two previous works, local symplectic surgery (LSS) (Mazumdar et al., 2019) and curvature
exploitation for the saddle point problem (CESP) (Adolphs et al., 2019), have such guarantees for
the unconstrained nonconvex-nonconcave version of Game 1. However, neither of these methods
provides any convergence rate analysis. Further, these works do not discuss the constrained setting
of Game 1. A variety of Bregman proximal algorithms do find local min-max points in constrained,
nonconvex-nonconcave settings with at best linear rates of convergence; however, they operate under
the restrictive, blanket assumption that every critical point of f is a local Nash equilibrium (Azizian
et al., 2024), which is not generally true in nonconvex-nonconcave settings.

In this paper, we introduce second-order algorithms to solve Game 1. We highlight our specific
contributions below:

1. We introduce Discrete-time Nash Dynamics (DND), a discrete-time dynamical system that
provably converges to only local Nash equilibria of the unconstrained version of Game
1 with a linear local convergence rate, while previous related work does not provide any
convergence rates.

2. We modify this dynamical system and construct an algorithm, Second Order Nash Dynamics
(SecOND), which can converge superlinearly to the neighborhood of a point that satisfies
first-order local Nash conditions.

3. We discuss the constrained setting of Game 1, where G is a convex set. In this case, we use
Euclidean projections to modify DND and develop an algorithm, Second-order Constrained
Nash Dynamics (SeCoND), which finds a local generalized Nash Equilibrium point. In
contrast, previous work either does not consider this constrained setting and/or is restricted
to the convex-concave case.

2 PRELIMINARIES

Throughout this paper, x ∈ Rn,y ∈ Rm, and z = (x⊤,y⊤)⊤ ∈ Rn+m.

2.1 GAME-THEORETIC CONCEPTS

Definition 2.1. (Strict local Nash equilibrium) A strategy (x∗,y∗) ∈ Rn × Rm is a strict local
Nash equilibrium of Game 1, if

f(x∗,y) < f(x∗,y∗) < f(x,y∗), (1)

for all x and y in feasible neighborhoods of x∗ and y∗ respectively.

Under the smoothness assumption of Game 1, defining first-order and second-order equilibrium
conditions can help identify whether a point is a local Nash equilibrium (Ratliff et al., 2016). For the
unconstrained setting, any point that satisfies the conditions below is said to be a differential Nash
equilibrium and is guaranteed to be a strict local Nash equilibrium.
Definition 2.2. (Sufficient conditions for strict local Nash equilibrium) A strategy (x∗,y∗) ∈
Rn × Rm is a differential Nash equilibrium (and thus, a strict local Nash equilibrium) of Game 1
when X is Rn and Y is Rm, if

∇xf(x
∗,y∗) = 0, ∇yf(x

∗,y∗) = 0

∇2
xxf(x

∗,y∗) ≻ 0, ∇2
yyf(x

∗,y∗) ≺ 0.
(2)
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We now discuss the constrained version of Game 1. This paper allows the constrained setting to have
coupled constraints. In the presence of coupling, the Nash equilibrium sought is a generalized Nash
equilibrium.
Definition 2.3. (Local generalized Nash equilibrium) Assume the set G is convex. A strategy
(x∗,y∗) ∈ G is a local generalized Nash equilibrium of Game 1 if

f(x∗,y∗) ≤ f(x,y∗)∀ (x,y∗) ∈ G in a neighborhood around (x∗,y∗)

f(x∗,y∗) ≥ f(x∗,y)∀ (x∗,y) ∈ G in a neighborhood around (x∗,y∗).
(3)

The optimality conditions of generalized Nash equilibria in the above-mentioned settings are well
studied (Facchinei and Kanzow, 2010a;b). Though a standard treatment would involve defining the
Karush-Kuhn-Tucker conditions for Game 1, for our purpose, the following conditions are sufficient
for a point to be a local generalized Nash equilibrium.
Definition 2.4. (Sufficient conditions for local generalized Nash equilibrium) Assume the set G
is convex. Let ∂G denote the set of boundary points of G and let N (x,y) denote a neighbourhood
around (x,y). Then:

• If for a strategy (x∗,y∗) ∈ G,

∇xf(x
∗,y∗) = 0, ∇yf(x

∗,y∗) = 0 and

∇2
xxf(x

∗,y∗) ≻ 0, ∇2
yyf(x

∗,y∗) ≺ 0,

then (x∗,y∗) is a strict local generalized Nash equilibrium of Game 1.

• If for a strategy (x∗,y∗) ∈ ∂G([
x
y

]
−
[
x∗

y∗

])⊤ [ ∇xf(x
∗,y∗)

−∇yf(x
∗,y∗)

]
> 0 ∀ (x,y) ∈ G/(x∗,y∗) ∩N (x∗,y∗)

then (x∗,y∗) is a strict local generalized Nash equilibrium of Game 1. The strictness is lost
if the inequality can hold with equality.

We now describe some concepts from dynamical system theory that determine whether an algorithm
can converge to a local Nash equilibrium.

2.2 A DYNAMICAL SYSTEMS PERSPECTIVE

We illustrate how considerations of dynamical system theory are naturally motivated in our work
through the example of GDA. We define:

ω(z) :=

[
∇xf(x,y)
−∇yf(x,y)

]
, J(z) := ∇zω(z) =

[
∇2

xxf(x,y) ∇2
xyf(x,y)

−∇2
yxf(x,y) −∇2

yyf(x,y)

]
. (4)

For some stepsize γ, the GDA update for Game 1 for any iteration k can thus be written as

zk+1 = gGDA(zk) := zk − γω(zk). (5)

Equation (5) can be viewed as a discrete-time dynamical system. We may also consider the limiting
ordinary differential equation of (5), obtained by taking infinitely small γ, which leads to a continuous-
time dynamical system

ż = −ω(z). (6)
Note that −J(z) is the Jacobian of the continuous-time dynamical system in (6). We now introduce
concepts we will build upon to comment on the behavior of any algorithm used to solve Game 1.
Definition 2.5. (Critical point) Given a continuous-time dynamical system ż = −hc(z), z ∈ Rn+m

is a critical point of hc if hc(z) = 0. Further, if for a critical point z, λ ̸= 0 ∀ λ ∈ spec(∇zhc(z)),
then z is called a hyperbolic critical point.

We can also define a similar concept for the discrete-time dynamical system counterpart.
Definition 2.6. (Fixed point) Given a discrete-time dynamical system zk+1 = hd(zk), k ≥ 0,
z ∈ Rn+m is a fixed point of hd if hd(z) = z.

3
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Out of the various critical and fixed point types, we are interested in locally asymptotically stable
equilibria (LASE) because they are the only locally exponentially attractive hyperbolic points under
the dynamics flow. This means that any dynamical system that starts close enough to a LASE point
will converge to that point.
Definition 2.7. (Continuous-time LASE) A critical point z∗ ∈ Rn+m of hc is a LASE of the
continuous-time dynamics ż = −hc(z) if Re(λ) > 0 ∀ λ ∈ spec(∇zhc(z

∗)).
Definition 2.8. (Discrete-time LASE) A fixed point z∗ ∈ Rn+m of hd is a LASE of the discrete-time
dynamics zk+1 = hd(zk), k ≥ 0 if ρ(∇zhd(z

∗)) < 1, where ρ(A) denotes the spectral radius of
some matrix A.

2.3 MOTIVATION: LIMITING BEHAVIOR OF GDA

To motivate our work, we provide an overview of key results that analyze how GDA performs when
applied to Game 1 (Balduzzi et al., 2018; Mazumdar et al., 2019; 2020). If GDA converges to a
hyperbolic point zGDA, GDA must have converged to a LASE. Thus, from definition 2.7,

Re(λ) > 0 ∀ λ ∈ spec

([
∇2

xxf(xGDA,yGDA) ∇2
xyf(xGDA,yGDA)

−∇2
yxf(xGDA,yGDA) −∇2

yyf(xGDA,yGDA)

]
︸ ︷︷ ︸

J(zGDA)

)
. (7)

Clearly, if zGDA happens to be a strict local Nash equilibrium, from (4), we know that
∇2

xxf(xGDA,yGDA) ≻ 0 and ∇2
yyf(xGDA,yGDA) ≺ 0. Hence, from definition 2.7, it is clear

that all strict local Nash equilibria of Game 1 are LASE of the GDA dynamics. However, the converse
cannot be guaranteed, and thus, a LASE point to which GDA converges may not be a local Nash
equilibrium.

Let us further examine the structure of J :

J(z) =

[
A B
−B⊤ D

]
,∀ z ∈ Rn+m. (8)

Only two previous works, LSS (Mazumdar et al., 2019) and CESP (Adolphs et al., 2019), leverage
this structure and propose dynamical systems that have only local Nash equilibria as their LASE.
However, the convergence rates of these methods have not been analyzed. Further, neither of these
methods discusses the constrained case, which arises in many practical situations.

This motivates us to develop a novel second-order method with a dynamical system that guarantees
that only local Nash equilibria constitute its LASE points, generalizes to the constrained settings, and
has an established convergence rate.

3 OUR METHOD AND MAIN RESULTS

We are now ready to show our main results. We begin with the unconstrained setting and then move
to the constrained setting. All proofs are given in Appendix A.

3.1 UNCONSTRAINED SETTING

We list the common assumptions we make for the entire unconstrained case below, and we discuss
their validity in Appendix B.
Assumption 1. The objective function f ∈ C3.
Assumption 2. J(z),∇2

xxf(x,y),∇2
yyf(x,y) are invertible at all z where ω(z) = 0.

Assumption 3. ω(z) does not belong to the null space of J(z)⊤, for all z ∈ Rn+m.
Assumption 4. ω is Lω-Lipschitz, and J is LJ -Lipschitz.

Motivation. We first introduce a continuous-time dynamical system that employs second-order
derivative information, for which we can establish desirable properties and which motivates our main
method. Consider the system:

ż = −gc(z) = −
[
J(z)⊤J(z)

(
J(z) + J(z)⊤

)
+ Ec(z)

]−1
J(z)⊤ω(z), (9)

4
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where Ec(z) is a regularization matrix chosen such that J(z)⊤J(z)
(
J(z) + J(z)⊤

)
+ Ec(z) is

invertible, and ω(z) = 0 =⇒ Ec(z) = 0. Under assumptions 1, 2, 3, and 4 all solutions of (9)
converge to a strict local Nash equilibrium in the unconstrained setting of Game 1. This is because
strict local Nash equilibria of Game 1 are the only LASE points of (9). To prove this, we first show
that critical points of gc and ω(z) are the same.
Lemma 1. Under Assumptions 1, 2, 3, and 4, the critical points of gc are exactly the critical points
of the GDA dynamics ż = −ω(z).

Lemma 1 establishes that at every LASE z of (9), ω(z) = 0. This helps us to prove that (9) converges
to only a strict local Nash equilibrium.
Theorem 1. Under Assumptions 1, 2, 3, and 4, z is a LASE point of ż = −gc(z) if and only if z is a
strict local Nash equilibrium of Game 1.
Remark 1. (Avoiding rotational instability) It is well documented that oscillations around equilibria
are caused if the Jacobian of the gradient dynamics has eigenvalues with dominant imaginary parts
near equilibria (Mescheder et al., 2017; Balduzzi et al., 2018; Gidel et al., 2019; Mazumdar et al.,
2019; Wang et al., 2020). Corollary 1 establishes that this cannot happen for the dynamics (9).
Corollary 1. Under Assumptions 1, 2, 3, and 4, if z is a strict local Nash equilbrium of gc, then the
Jacobian∇gc has only real eigenvalues at z.

Practical Considerations. Although the continuous-time dynamical system we introduce in (9)
has desirable theoretical properties, it is not yet a practical algorithm that can solve Game 1. To solve
Game 1, we require a discrete-time dynamical system. Inspired from (9), we propose Discrete-time
Nash Dynamics (DND):

zk+1 = gd(zk)

= zk − αk

([
J(zk)

⊤J(zk)
(
J(zk) + J(zk)

⊤ + β(zk)
)
+ E(zk)

]−1
)
J(zk)

⊤ω(zk).
(10)

Regularization E(zk) is chosen to maintain invertibility in (10) and adheres to the condition that
ω(zk) = 0 =⇒ E(zk) = 0. In contrast to the continuous-time system gc in (9), DND in (10) contains
an extra regularization term β(zk). Adding β(zk) guarantees the stability of (10) in accordance with
definition 2.8, and is given by

β(z) =

[
1{λx>0}(bx)I 0

0 1{λy<0}(by)I

]
, (11)

where λx and λy denote the minimum and maximum eigenvalues of ∇2
xxf(x,y) and ∇2

yyf(x,y)
respectively. These eigenvalues can be found through computations involving Hessian-vector products,
which can be made as efficient as gradient evaluations (Pearlmutter, 1994; Lanczos, 1950). The terms
bx and by can be taken to be any constants as long as bx > 1/2 and by < −1/2.

β(z) is a non-smooth regularization term, but it is differentiable around any fixed point of ω. The
following theorem shows that DND inherits all the desirable properties that we established for the
continuous-time system gc.
Theorem 2. Under Assumptions 1, 2, 3, and 4, for any αk ∈ (0, 1], DND, with β(z) chosen as in (11)
satisfies the following:

1. The fixed points of DND are exactly the fixed points of the discrete-time GDA dynamics in
(5).

2. z is a LASE of DND ⇐⇒ z is a strict local Nash equilibrium of unconstrained Game 1.

3. If z is a fixed point of DND, then the Jacobian∇gd has only real eigenvalues at z.

We find that DND has a linear local convergence rate.
Theorem 3. Assume that a strict local Nash equilibrium of Game 1 exists. Under Assumptions 1, 2,
3, and 4, if DND converges, it converges to a strict local Nash equilibrium of Game 1. Further, if the
step size is chosen as αk ≤ max{2|λx|, 2|λy|} then DND has a linear local convergence rate of

lim
k→∞

∥zk+1 − z∗∥
∥zk − z∗∥

≤ max

{(
1− α

2λ̃x

)
,

(
1 +

α

2λ̃y

)}
.

5
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Here, α is the step size at the sequence limit in (10), and λx, λy refer to the quantities in (11), and
λ̃x > 0, λ̃x < 0 denote λx, λy evaluated at the sequence limit.

Can we speed up DND? We motivate a modification to (10), which allows for superlinear conver-
gence to a ball-shaped region around a fixed point. If this fixed point is a LASE (and therefore also a
local Nash equilibrium), the modification can achieve rapid convergence to a small neighborhood of
this local Nash point. The modification retains desirable stability guarantees and escapes the ball if
the fixed point is not a LASE. The radius of the ball can be treated as a hyperparameter and tuned for
good performance.

Modified discrete-time system. We call the modified method Second Order Nash Dynamics
(SecOND ), which is given by

zk+1 =

{
zk − αk (S(zk))

−1
J(zk)

⊤ω(zk), ∥zk − zk−1∥ > ϵ

gd(zk), else.
(12)

where ϵ > 0 is a user-specified constant, the matrix S(zk) ≻ 0 and can be derived from modifying the
off-diagonal terms of J(zk)⊤J(zk)

(
J(zk) + J(zk)

⊤ + β(z)
)

with an appropriate E(zk) in (10).
We define such a choice in Appendix D.

Reinterpretation as a Gauss-Newton method far from fixed points. Consider the problem

min
z∈Rn+m

1

2
∥ω(z)∥22︸ ︷︷ ︸
l(z)

. (13)

We observe that ∇zl(z) = J(z)⊤ω(z). For ∥zk − zk−1∥ > ϵ, we have the system zk+1 =
zk − (S(zk))

−1∇zl(z), with S(zk) ≻ 0, which is a modified Gauss-Newton algorithm for solving
(13). By choosing S(zk) ≈ J(zk)

⊤J(zk) (see Appendix D), if the Gauss-Newton system converges
to a fixed point zc, we can be guaranteed a superlinear rate of convergence to that point. Moreover,
whenever ∥zk − zk−1∥ > ϵ, we may choose step size αk according to any standard line search rule
from nonlinear programming (Nocedal and Wright, 1999; Bertsekas, 1997). For example, in our
implementation, we choose a backtracking line search with the Armijo condition (Armijo, 1966) and
choose an αk for some c ∈ (0, 1) such that

l(zk)− l(zk+1) ≥ cαkω(zk)
⊤J(zk)(S(zk))

−1J(zk)
⊤ω(zk). (14)

Based on SecOND , we construct Algorithm 1, which converges superlinearly toward the first critical
point it encounters, and switches to DND when it is close enough to that point. If the critical point
satisfies the strict local Nash equilibrium sufficiency conditions given in Definition (2.2), SecOND
will have reached the point faster than DND would have from the same initialization. If the fixed
point does not satisfy strict local Nash conditions, the switch to DND dynamics ensures that iterates
escape, and avoids convergence to the spurious fixed point. More sophisticated variants which allow
for switching back and forth multiple times can also be considered.

Theorem 4. Under Assumptions 1, 2, 3, and 4, z is a LASE of SecOND (Algorithm 1) if and
only if z is a strict local Nash equilibrium of Game 1. Further, assume that a strict local Nash
equilibrium of Game 1 exists and let zc be the first critical point to which Algorithm 1 comes near to.
If S(zk) ≈ J(zk)

⊤J(zk) (see Appendix D), then Algorithm 1 approaches zc superlinearly with a
rate

∥zk+1 − zc∥ ≤ LωLJM∥zk − zc∥2,∀ k = 0, 1, . . . .

Here M = supz∈B̃∥S(z)−1∥, where B̃ is the smallest ball centered at zc which contains z0.

Furthermore, if Algorithm 1 converges, it converges to a strict local Nash equilibrium of Game 1.

Theorem 4 establishes that SecOND inherits the desirable stability properties of DND, while being
faster than DND in approaching a critical point.

6
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Algorithm 1 Second Order Nash Dynamics (SecOND)

Input: Functions ω(z), J(z), S(z); initial point ẑ; constants ϵ > 0, 0 < α0 ≤ 1
Initialize: z0 ← ẑ, z1 ← z0 − α0(S(z0))

−1J(z0)
⊤ω(z0), k = 1

while not converged do
if ∥zk − zk−1∥ > ϵ then

Choose αk with appropriate line search ▷ for example, from (14)
zk+1 ← zk − αk(S(zk))

−1J(zk)
⊤ω(zk) ▷ from (12)

else if zk does not satisfy strict LNE sufficiency conditions then ▷ from Definition (2.2)
zk+1 ← gd(zk) ▷ from (10)

else
break

end if
k ← k + 1

end while
return zk

3.2 CONSTRAINED SETTING

Notation. ΠQ[p] denotes the Euclidean projection of some vector p onto some set Q. proja(b)
denotes the Euclidean projection of a vector b onto another vector a. intG and ∂G denote the interior
and boundary of G respectively.

Intuitively, any local generalized Nash equilibrium in intG is actually also a strict local Nash
equilibrium of the unconstrained game. Therefore, if the Euclidean projections of the DND iterates
converge to a point in intG, this point must be a local generalized Nash equilibrium. Further, if
a step taken by DND at a point z in ∂G is parallel to −ω(z), then, from definition 2.4, z is a local
Generalized Nash equilibrium as well.

Algorithm for Constrained Setting. Based on the above discussion, we construct Second-order
Constrained Nash Dynamics (SeCoND), given in Algorithm 2, for solving a constrained Game 1.
SeCoND has the property that if it converges, it converges to a local Generalized Nash equilibrium that
follows definition 2.4. If desired, Algorithm 2 convergence can be accelerated via a Gauss-Newton
approach analogous to (12).

Assumption 5. The set G is convex.

Theorem 5. Let Assumptions 1, 2, 3, 4, and 5 hold, and let ω(z) ̸= 0 ∀ z ∈ ∂G. Then, if SeCoND
(Algorithm 2) converges to a point z:

1. If z ∈ intG, then z is a strict local generalized Nash equilibrium.

2. If z ∈ ∂G, then z is a local generalized Nash equilibrium (not necessarily strict).

Algorithm 2 Second-order Constrained Nash Dynamics (SeCoND)

Input: Functions ω(z), J(z); set G; initial point ẑ; constant α
Initialize: z0 ← ẑ, k = 0

while not converged do
if zk ∈ IntG then

zk+1 ← ΠG [gd(zk)] ▷ from (10)
else if zk ∈ ∂G then ▷ E from (10), β from (11)

m← projω(zk)

([
J(zk)

⊤J(zk)
(
J(zk) + J(zk)

⊤ + β(zk)
)
+ E(zk)

]−1
J(zk)

⊤ω(zk)
)

zk+1 ← ΠG [zk − αm]
end if
k ← k + 1

end while
return zk

7
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(a) Violin plot of the difference in iterations taken between SecOND and each baseline method (lower is
better). SecOND converges faster than baselines for the unconstrained Game 1. Dots represent outliers, (see
Appendix E.1.2).

(b) SeCoND in Constrained Game 1. (c) Geometry where SeCoND first hits the boundary.

Figure 1: Numerical results for a two-dimensional toy example.

4 EXPERIMENTS

We now investigate how well the theoretical properties of our algorithms transfer to practical problems.
Our main aims are: (i) to compare the performance of SecOND with previous related work in uncon-
strained, nonconvex-nonconcave settings, (ii) to determine if modifications made to DND in SecOND
are beneficial, (iii) to test whether SeCoND converges to a local generalized Nash equilibrium in the
constrained setting. All details of the experimental setup are included in Appendix E.

4.1 TWO-DIMENSIONAL TOY EXAMPLE

We consider the function

f(x, y) = e−0.01(x2+y2)((0.3x2 + y)2 + (0.5y2 + x)2), x, y ∈ R.

This function is nonconvex-nonconcave, and the unconstrained version of Game 1 has three local
Nash equilibria, while the GDA dynamical system (6) has 4 LASE points for this function.

Baselines. In this experiment, we tested the performance of SecOND (Algorithm 1) against three
baselines: DND, gradient descent-ascent (GDA), and local symplectic surgery (LSS) (Mazumdar
et al., 2019), on 10000 random initializations.
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Figure 2: SecOND converges rapidly and to a more accurate solution for a GAN training problem.

Does SecOND provide faster convergence than baselines? Figure 1(a) shows the difference in
the number of iterations taken to converge within a fixed tolerance by SecOND and each respective
baseline. SecOND consistently converged more rapidly than LSS, achieving a still greater perfor-
mance improvement than GDA. Finally, we note that we could not compare to the CESP method
(Adolphs et al., 2019), because it could not reliably converge in our experiments (see Appendix E.1.1).
An additional experiment investigating convergence of all algorithms to a local Nash equilibrium is
in Appendix E.1.3.

Does SecOND perform better than DND? From Figure 1(a), we observe that SecOND performed
similarly to DND in this numerical example. DND outperformed SecOND in some instances, which
occurred when SecOND initially went to the neighborhood of an undesirable critical point, at which
the quantity ∥ω(z)∥22 ≈ 0. In such cases, SecOND had to correct its course to go to the desirable
fixed points. This made it converge slower than DND, which went to the desirable fixed points in
the first place. In the cases when SecOND rapidly approaches a desirable critical point, SecOND
converged much faster than DND. This shows that the modification made to DND in SecOND can
indeed be advantageous.

Does SeCoND converge to a local generalized Nash equilibrium? We tested SeCoND (Algo-
rithm 2) in this toy setting by including a constraint of the form (x+ 10.5)2 + (y + 5)2 ≤ 25, and
found that SeCoND successfully converges to a local generalized Nash equilibrium. As seen in
Figure 1(b), SeCoND initially follows DND while iterates remain in the interior of the feasible set.
However, after hitting the boundary, SeCoND remains on the boundary before returning to the interior
and converging to the same local (generalized) Nash equilibrium as DND. Figure 1(c) is representative
of the geometry across the portion where SeCoND remains on the boundary. Because −ω(z) is not
parallel to the constraint gradient here, SeCoND eventually returns to the interior.

4.2 GENERATIVE ADVERSARIAL NETWORK (GAN)

Next, we consider a larger-scale test problem in which ω(z) is computed stochastically (i.e., via
sampling minibatches of data). To this end, we evaluated GDA, LSS, and SecOND on a GAN training

9
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problem where the generator must fit a 1D mixture of Gaussians with 4 mixture components. The
distribution that each algorithm learned at different training iterations is plotted in Figure 2. GDA
suffered mode collapse early on and only fit two out of the four modes. Both LSS and SecOND
successfully found all four modes of the problem. While LSS initially seems to converge rapidly,
continued training degrades performance. Over time, SecOND outperformed LSS and fit the ground
truth distribution more closely by 12000 iterations.

5 CONCLUSION, LIMITATIONS, AND FUTURE WORK

We have provided algorithms that provably converge to only local Nash equilibria in smooth, possibly
nonconvex-nonconcave, two-player zero-sum games in the unconstrained (DND, SecOND) and
convex-constrained (SeCoND) settings. We have shown that DND has a linear local convergence
rate and that SecOND approaches a neighborhood around a fixed point superlinearly. In contrast,
the most closely related existing approaches for this setting have no established convergence rates.
Empirical results demonstrate that DND and SecOND outperformed previous related works in two
test problems.

Limitations and Future Work. There are three key limitations of the proposed method. (i) All
approaches in this paper require second-order information, which can be prohibitively expensive to
obtain or compute in high-dimensional scenarios. Unfortunately, the fundamental links this problem
shares with dynamical system theory necessitate second-order information to provide convergence
guarantees. (ii) Like other approaches (Mazumdar et al., 2019), we require Assumption 3 in order to
ensure that the critical points of the dynamics we introduce coincide with first-order local Nash points.
Finally, (iii) as in other work on zero-sum Nash games (Adolphs et al., 2019; Mazumdar et al., 2019;
2020), we can only provide local convergence analysis, and cannot ensure that the dynamics globally
converge (even if local Nash points do exist). Addressing this limitation is a key direction of future
work. Future work should also aim to relax Assumption 3, and use algorithms introduced in this
paper as building blocks for solving dynamic zero-sum games with simultaneous decision-making
occurring across multiple time stages.

REPRODUCIBILITY STATEMENT

For all theoretical analyses in this work, all assumptions can be found in Section 3, and each
theorem/lemma/corollary states the particular assumptions involved. For all experimental details and
parameter values, please refer to Appendix D and Appendix E. The code to reproduce the experiments,
along with instructions to run them, is included in a supplementary zip submission.
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A PROOFS

Lemma 1. Under Assumptions 1, 2, 3, and 4, the critical points of gc are exactly the critical points
of the GDA dynamics ż = −ω(z).

Proof. ( =⇒ ) Clearly,
ω(z) = 0 =⇒ gc(z) = 0.

(⇐= ) Now assume that z is a critical point of gc such that ω(z) ̸= 0. In this case, due to the choice
of our regularization Ec(z), gc(z) can be thought of as gc(z) = M(z)ω(z), where M(z) is full rank.
Thus,

gc(z) = 0 =⇒ M(z)ω(z) = 0 =⇒ ω(z) = 0,

which is a contradiction. Hence, gc(z) = 0 ⇐⇒ ω(z) = 0.

Theorem 1. Under Assumptions 1, 2, 3, and 4, z is a LASE point of ż = −gc(z) if and only if z is a
strict local Nash equilibrium of Game 1.

Proof. ( =⇒ ) As all LASE points of continuous-time dynamics are also critical points, for any
LASE point z = (x⊤,y⊤)⊤, ω(z) = 0. Thus the Jacobian of gc at z becomes

∇gc(z) =
[
J(z)⊤J(z)(J(z) + J(z)⊤)

]−1
J(z)⊤J(z) = (J(z) + J(z)⊤)−1

= H(z) :=

[
1
2

(
∇2

xxf(x,y)
)−1

0

0 − 1
2

(
∇2

yyf(x,y)
)−1

]
.

(15)

From definition 2.7,

∇gc(z) = H(z) ≻ 0 =⇒ ∇2
xxf(x,y) ≻ 0 and ∇2

yyf(x,y) ≺ 0,

which implies that (x,y) is a strict local Nash equilibrium of Game 1 (from definition 2.2).
Thus, every LASE of ż = −gc(z) is a strict local Nash equilibrium of (Game 1).
( ⇐= ) Consider a strict local Nash equilibrium (x∗,y∗) of Game 1. From definition 2.2,
∇2

xxf(x
∗,y∗) ≻ 0,∇2

yyf(x
∗,y∗) ≺ 0, and ω(z∗) = 0 where z∗ = (x∗⊤,y∗⊤)⊤. Clearly,

H(z∗) ≻ 0 and thus z∗ is a LASE of (9).

Corollary 1 Under Assumptions 1, 2, 3, and 4, if z is a strict local Nash equilbrium of gc, then the
Jacobian∇gc has only real eigenvalues at z.
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Proof. From theorem 1, z must also be a LASE, and by extension, a critical point of gc. From
lemma 1, ω(z) = 0. Consider (15). As the inverse Hessians

(
∇2

xxf(x,y)
)−1

and
(
∇2

yyf(x,y)
)−1

are symmetric, H(z) is symmetric. Because ω(z) = 0, the Jacobian∇gc(z) = H(z), and H(z) only
has real eigenvalues due to symmetry.

Theorem 2. Under Assumptions 1, 2, 3, and 4, for any αk ∈ (0, 1], DND, with β(z) chosen as in
(11) satisfies:

1. The fixed points of DND are exactly the fixed points of the discrete-time GDA dynamics in
(5).

2. z is a LASE point of DND ⇐⇒ z is a strict local Nash equilibrium of unconstrained Game
1.

3. If z is a fixed point of DND, then the Jacobian∇gd has only real eigenvalues at z.

Proof. (1. =⇒ ) The fixed points of the discrete GDA dynamics in (5) are critical points of ω, i.e,
where ω(z) = 0. Clearly,

ω(z) = 0 =⇒ gd(z) = z.

(1. ⇐= ) Now assume that z is a fixed point of gd such that ω(z) ̸= 0. In this case, due to the choice
of our regularization E(z), gd(z) can be thought of as gd(z) = z−αM(z)J(z)⊤ω(z), where M(z)
is full rank and α is the step size. Thus,

gd(z) = z =⇒ M(z)J(z)⊤ω(z) = 0 =⇒ ω(z) = 0,

which is a contradiction. Hence, gd(z) = z ⇐⇒ ω(z) = 0.
(2. =⇒ ) As all LASE points of discrete-time dynamics are also fixed points, for any LASE point
z = (x⊤,y⊤)⊤, ω(z) = 0. Thus the Jacobian of gd at z becomes

∇gd(z) = In+m − α(J(z) + J(z)⊤ + β(z))−1

=

[
In − (2∇xxf + 1{λx>0}(bx)I)

−1 0
0 Im − (−2∇yyf + 1{λy<0}(by)I)

−1

] (16)

The eigenvalues of ∇gd(z) are the eigenvalues of In − (2∇xxf + 1{λx>0}(bx)I)
−1 and Im −

(−2∇yyf + 1{λy<0}(by)I)
−1. For an eigenvalue λ of ∇xxf , the corresponding eigenvalue of

In − (2∇xxf + 1{λx>0}(bx)I)
−1 will be

1− α

2λ+ 1{λx>0}(bx)
. (17)

If λx < 0, (17) becomes
1− α

2λ
> 1.

As z is an LASE point, from definition 2.8, ρ(∇gd(z)) < 1. Thus, appendix A shows that z
cannot be a LASE if λx < 0. Thus z is a LASE =⇒ λx > 0 =⇒ ∇xxf ≻ 0. A similar
argument by analyzing egeinvalues for Im − (−2∇yyf + 1{λy<0}(by)I)

−1 shows that z is a LASE
=⇒ λy < 0 =⇒ ∇yyf ≺ 0. Thus, from definition 2.2, z is a LASE implies that z is a strict local
Nash equilibrium of (Game 1).
(2. ⇐= ) Let z be a strict local Nash equilbrium. Then, λx > 0, λy < 0. Clearly, from appendix A,
all eigenvalues of In − (2∇xxf + 1{λx>0}(bx)I)

−1 are smaller than 1. Since λx > 0, λ > 0.
Also,bx > 1

2 , bx > α
2 , which means that

1− α

2λ+ bx
> 1− α

2λ+ α
2

> 1− α
α
2

> −1.

Thus ρ(In − (2∇xxf + 1{λx>0}(bx)I)
−1) < 1. Similarly, ρ(Im − (−2∇yyf + 1{λy<0}(by)I)

−1)
is less than 1. Thus, from definition 2.8, z is also a LASE.
(3.) The Jacobian ∇gd at any fixed point z is the same as that given in (16), in which∇gd is clearly
symmetric. Thus,∇gd only has real eigenvalues at a fixed point z.
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Theorem 3. Assume that a strict local Nash equilibrium of Game 1 exists. Under Assumptions 1, 2,
3, and 4, if DND converges, it converges to a strict local Nash equilibrium of Game 1. Further, if the
step size is chosen as αk ≤ max{2|λx|, 2|λy|} then DND has a linear local convergence rate of

lim
k→∞

∥zk+1 − z∗∥
∥zk − z∗∥

≤ max

{(
1− α

2λ̃x

)
,

(
1 +

α

2λ̃y

)}
.

Here, α is the step size at the sequence limit in (10), and λx, λy refer to the quantities in (11), and
λ̃x > 0, λ̃x < 0 denote λx, λy evaluated at the sequence limit.

Proof. Let z∗ denote the local Nash equilibrium to which DND converges, and let J⊤J(z) denote
J(z)⊤J(z). We use Taylor’s Theorem (Nocedal and Wright, 1999) applied to ω,

ω(zk)− ω(z∗) =

∫ 1

0

J(z∗ + t(zk − z∗))(zk − z∗)dt.

For large k, as zk → z∗, J(z∗ + t(zk − z∗)) ≈ J(zk)∀t ∈ [0, 1]. Also for large k, from our
assumptions β = 0 and E = 0. Thus we get for large k:

∥zk+1 − z∗∥ =∥zk − z∗ − αk[J(zk)
⊤J(zk)(J(zk) + J(zk)

⊤)]−1J(zk)
⊤ω(zk)∥

=∥zk − z∗ − αk(J(zk) + J(zk)
⊤)−1J(zk)

−1ω(zk)∥
=∥zk − z∗ − αk(J(zk) + J(zk)

⊤)−1J(zk)
−1(ω(zk)− ω(z∗))∥

=∥zk − z∗ − αk(J(zk) + J(zk)
⊤)−1J(zk)

−1

(∫ 1

0

J(z∗ + t(zk − z∗))(zk − z∗)dt

)
∥

≈∥zk − z∗ − αk(J(zk) + J(zk)
⊤)−1J(zk)

−1J(zk)(zk − z∗)∥
=∥[I − αk(J(zk) + J(zk)

⊤)−1](zk − z∗)∥
≤∥I − αk(J(zk) + J(zk)

⊤)−1∥2∥zk − z∗∥

Now, consider the matrix Dk = I − αk(J(zk) + J(zk)
⊤)−1. From the structure of J(zk) described

in (8),

Dk =

[
I − αk

2 (∇xx)
−1 0

0 I + αk

2 (∇yy)
−1

]
.

From the properties of ∥·∥2 norm,

∥Dk∥2 = max
{
∥I − αk

2
(∇xx)

−1∥2, ∥I +
αk

2
(∇yy)

−1∥2
}

Let λx, λy denote the quantities in (11), evaluated at z = zk. Further, let λ̃x, λ̃y denote λx, λy

evaluated at limk→∞ zk. Then, from Theorem 2, λ̃x > 0, λ̃y < 0. Thus we can write

lim
k→∞

∥Dk∥2 = max

{
1− α

2λ̃x

, 1 +
α

2λ̃y

}
< 1 ∀ 0 < α ≤ max{2|λ̃x|, 2|λ̃y|}

Thus,

lim
k→∞

∥zk+1 − z∗∥
∥zk − z∗∥

≤ lim
k→∞

∥Dk∥2 < 1

This proves that DND has a local linear convergence rate when the step size is chosen as described.

Theorem 4. Under Assumptions 1, 2, 3, and 4, z is a LASE of SecOND (Algorithm 1) if and
only if z is a strict local Nash equilibrium of Game 1. Further, assume that a strict local Nash
equilibrium of Game 1 exists and let zc be the first critical point to which Algorithm 1 comes near to.
If S(zk) ≈ J(zk)

⊤J(zk) (see Appendix D), then Algorithm 1 approaches zc superlinearly with a
rate

∥zk+1 − zc∥ ≤ LωLJM∥zk − zc∥2,∀ k = 0, 1, . . . .
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Here M = supz∈B̃∥S(z)−1∥, where B̃ is the smallest ball centered at zc which contains z0.

Furthermore, if Algorithm 1 converges, it converges to a strict local Nash equilibrium of
Game 1.

Proof. First, we show that the fixed points of SecOND and DND are the same. From (12), any fixed
point z of SecOND must have ω(z) = 0, i.e., fixed points z of algorithm 1 are same as the fixed
points of the discrete-time GDA dynamics. Theorem 2 has already established that the fixed points of
the discrete GDA dynamics are the same as the fixed points of DND.

From (12), when far away from zc, SecOND satisfies the condition that every step is in a feasible
descent direction. Further, using a line search rule like (14) ensures that for every step that SecOND
takes far away from zc, the merit function ∥ω(z)∥22 decreases in value. Thus, when S(zk) ≈
J(zk)

⊤J(zk), SecOND mimics a Gauss-Newton method and from standard nonlinear programming
results (Bertsekas, 1997, Proposition 1.1.4), reaches the neighborhood of zc superlinearly. Now,
when SecOND reaches this neighborhood, it changes its dynamics to DND, which has already shown
to have only local Nash equilibrium points as its LASE points. Clearly, SecOND has the same LASE
points as DND once it switches dynamics, and results from Theorem 2 apply and SecOND only
converges to a strict local Nash equilibrium. Let us derive the local superlinear rate now. Let Bδ(zc)
denote a ball of radius δ centered at zc, and assume that z0 ∈ Bδ(zc). Let S(zk) be denoted by Sk.
For iteration k when ∥zk − zk−1∥ > ϵ:

∥zk+1 − z∗∥ =∥zk − S−1
k J(zk)

⊤ω(zk)− z∗∥
=∥S−1

k (Sk(zk − z∗)− J(zk)
⊤ω(zk))∥

=∥S−1
k

(
Sk − J(zk)

⊤
∫ 1

0

J(z∗ + t(zk − z∗))dt

)
(zk − z∗)∥

=∥S−1
k

(∫ 1

0

[
Sk − J(zk)

⊤J(z∗ + t(zk − z∗))
]
dt

)
(zk − z∗)∥

≤∥S−1
k ∥∥

(∫ 1

0

[
Sk − J(zk)

⊤J(z∗ + t(zk − z∗))
]
dt

)
∥∥(zk − z∗)∥

By choosing Sk = J(zk)
⊤J(zk), and taking δ, ϵ to be sufficiently small (and ϵ < δ), ∥zk − z∗∥

monotonically decreases and the integral term becomes arbitrarily small for any k. Also, due to
Assumption 4, J(z)⊤J(z) is a Lipschitz function with a Lipschitz constant of 2LωLJ , thus from the
preceding relation,

∥zk+1 − z∗∥ ≤M

(∫ 1

0

2LωLJ t∥zk − z∥dt
)
∥zk − z∥ = MLωLJ∥zk − z∥2

Theorem 5. Under Assumptions 1, 2, 3, 4, and 5 hold, and let ω(z) ̸= 0 ∀z ∈ ∂G. Then, if SeCoND
(Algorithm 2) converges to a point z:

1. If z ∈ intG, then z is a strict local generalized Nash equilibrium.

2. If z ∈ ∂G, then z is a local generalized Nash equilibrium (not necessarily strict).

Proof. Assume that SeCoND converges to a point z. We consider two cases, as follows:

1. If z ∈ intG, then the immediate neighbourhood around z which SeCoND would have to
traverse in order to reach z is also in intG. In this neighborhood, the projection step in
SeCoND does not have any effect, and the algorithm’s dynamics follow DND. By Theorem 2,
DND would only have converged to z if ∇f(z) = 0,∇2

xxf ≻ 0, and ∇2
yyf ≺ 0, which

from Definition 2.4 implies that z is also a strict local Generalized Nash equilibrium.
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2. If z ∈ ∂G, then from Algorithm 2, −ω(z) must be in the normal cone of G at z. Because

ω(z) =

[
∇xf
−∇yf

]
, this means that at z, a feasible step cannot be taken for which x or y

can reduce or increase f(x,y), respectively. Thus, from Definition 2.4, z is a local (not
necessarily strict) generalized Nash equilibrium.

This concludes the proof.

B NOTE ON OUR ASSUMPTIONS

We include this note to give the reader intuition about our Assumptions’ validity.

• Assumptions 1, 2, and 4 are standard in the literature (for example, in Adolphs et al. (2019);
Mazumdar et al. (2019); Azizian et al. (2024)). Because we propose second-order methods,
Assumption 1 ensures that the objective offers meaningful first and second-order derivatives.
Assumption 2 ensures that the Jacobians of any dynamical system introduced in the paper
can be analyzed at a critical/fixed point.

• In theory, Assumption 3 is required to ensure that all fixed points of the introduced algorithms
are critical points of the GDA dynamics (6), and vice versa. Other previous methods have
also had to make similar assumptions for this very purpose (Mazumdar et al., 2019), and
the assumption we make is easier to check in comparison. The toy and GAN examples in
Section 4 do not satisfy Assumption 3, yet we still observe good empirical performance by
our proposed approaches.

• Intuition for Assumption 3: Consider some smooth function g(x) and the corresponding
problem minx∈Rn g(x). Any optimization algorithm will produce iterates of the form
xk+1 ← xk − αkpk (or ẋ = −pk in continuous-time). In particular, for any Newton-
like algorithm, pk = Hk∇g(xk) (for example, Hk can be the regularized hessian inverse
(∇2

xxg(xk) + λI)−1, for some λ ≥ 0). In order to ensure convergence to a minima,
one of the conditions developed in nonlinear optimization thoery is that pk must not be
orthogonal to ∇g(xk) when ∇g ̸= 0, thus Hk∇g(xk) must not be 0 for ∇g(xk) ̸= 0.
Similarly, in our case, the dynamics (see equations (9), (10)) are iterates of the form
zk+1 ← zk − αkMkJ(zk)

⊤ω(zk) (or ż = −M(z)J(z)⊤ω(z)), where Mk (or M(z)) is a
full rank matrix. Thus, to ensure the second term in the update is zero only when ω(z) = 0,
J(zk)

⊤ω(zk) must not be 0 when ω(zk) ̸= 0. This directly yields Assumption 3.
• Assumption 5 has been shown to hold for several problems of practical interest (Facchinei

and Kanzow, 2010a).

C ADDITIONAL EXAMPLE - ENTROPY REGULARIZED ZERO-SUM MATRIX
GAME

We consider the following objective function:

f(x,y) = x⊤y − (H(x)−H(y))︸ ︷︷ ︸
entropy regularization

, x ∈ R2
+, y ∈ R2

+,

where H(z) :=
∑n

i=1−zi log(zi) is the entropy function for some z ∈ Rn
+. Based on the above

function, we construct the following constrained zero-sum game:

Player 1 : min
x∈R2

+

f(x,y) Player 2 : max
y∈R2

+

f(x,y),

s.t. x > 0, y > 0,

1⊤x = 1 and 1⊤y = 1.

The Nash equilibrium of the above entropy-regularized matrix game is also called the Quantal
Response Equilibrium (QRE) (McKelvey and Palfrey, 1998). Notably, (i) the above game satisfies
Assumption 3, and (ii) the strategies are constrained to lie in the probability simplex, which has an
empty interior.
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(a) Player 1 (x) initialization at [0.1, 0.9]⊤. (b) Player 2 (y) initialization at [0.9, 0.1]⊤.

Figure 3: Numerical results for a constrained game with an empty interior.

Does SeCoND handle cases with empty interiors? We test SeCoND for the above game, and
Figure 3 shows the results for both the players. We observe that SeCoND successfully reaches the
local (generalized) Nash equilibrium located at x∗ = [0.5, 0.5]⊤, y∗ = [0.5, 0.5]⊤. The probability
simplex has no interior, yet the projection scheme in Algorithm 2 ensures that the updates successfully
traverse the simplex, reaching the Nash point. At this Nash point, the direction of ω is such that ∇xf
and∇yf are perpendicular to the directions x and y can move in their probability simplexes, thus
neither player has any incentive to deviate from this point.

D CHOICE OF REGULARIZATION MATRICES AND S IN SECOND

Equation (8) provides a natural choice of S(z) as:

S = 2

[
(∇xxf)

3 0
0 −(∇yyf)

3

]
+ λI, (18)

where λ ≥ 0 is regularization that ensures positive definiteness. We show how to choose λ below.

Choice of S(z) for superlinear Gauss-Newton Interpretation. We take S(zk) to be
J(zk)

⊤J(zk) + λkI where limk→∞ λk = 0.

A way of designing regularization matrices is by using the Gershgorin Circle Theorem (Horn and John-
son, 2012), which states that for a matrix A ∈ Cn×n, all eigenvalues of A lie in the union of n discs
centred at Aii with radii Ri =

∑j=n
j=1,j ̸=i |Aij | for i = 1, . . . , n. Thus, to regularize A for invertibility,

a diagonal regularization matrix M with the ith diagonal entry Mii = 1{Aii−Ri<0}(|Aii−Ri|+λ0),
where λ0 > 0 is user specified and is a lower bound on the real part of eigenvalues of A+M . With
this, we design:

1. Ec(z) in (9): Here, A = J(z)⊤J(z)(J(z) + J(z)⊤), and the regularization matrix
Ec(z)ii = 1{Aii−Ri<0 and ∥ω(z)∥>δ0}(|Aii − Ri| + λ0). The constant δ0 > 0 is also user-
specified and ensures that at a critical point, Ec is differentiable and that Ec = 0.

2. Design of E(zk) in (10): In this case, A = J(zk)
⊤J(zk)(J(zk) + J(zk)

⊤ + β(zk)), and
we proceed as above.

3. Design of S(zk) in (12): We can take A as the matrix given in Equation (18) and choose
λ = maxi{(Aii −Ri) + λ0} (and thus S = A+ λI). For the Gauss-Newton interpretation,
we can take A = J(zk)

⊤J(zk).

In our experiments, we took the values λ0 = 5 and δ0 = 5× 10−5.
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Figure 4: CESP (Adolphs et al., 2019) diverges for the two-dimensional toy example.

E EXPERIMENTAL DETAILS

E.1 TWO-DIMENSIONAL TOY EXAMPLE

E.1.1 BASELINES

Local Symplectic Surgery (LSS). For the toy example, the LSS method is:

zk+1 = zk − α(ω(zk) + e−ξ2∥v∥2

v),

where v = J(zk)
⊤(J(zk)

⊤J(zk) + λ(zk)I)
−1J(zk)

⊤ω(zk) and regularization λ(zk) = ξ1(1 −
e∥ω(zk)∥2

). Here, ξ1 = ξ2 = 10−4. These values have been recommended in the LSS paper for this
particular example. Though the authors also described a two-timescale discrete system of LSS, it
could not reliably converge for this example, and thus, we resorted to the equation above.

(Curvature Exploitation for the Saddle Point problem (CESP). The CESP method is given by:

zk+1 = zk − αω(zk) +

[
v
(−)
zk

v
(+)
zk

]
,

where, for the sign function sgn :R→ {−1, 1},

v(−)
zk

= 1λx<0
λx

2ρx
sgn(v⊤

x∇xf(x,y))vx

v(+)
zk

= 1λy>0
λy

2ρy
sgn(v⊤

y∇yf(x,y))vy.

Here, λx and λy denote the minimum and maximum eigenvalues of∇2
xxf and∇2

yyf respectively.
vx and vy denote the eigenvectors of λx and λy. We took 1/2ρx = 1/2ρy = 0.05. CESP could not
converge reliably for the two-dimensional example, and a typical diverging plot is shown in Figure 4.

E.1.2 EXPERIMENT PARAMETERS.

For all algorithms, step size α was taken to be 0.001, except for SecOND which performed Armijo
line search. Tolerance for convergence was set at 10−5, and the maximum number of allowable
iterations for every algorithm was 15,000. ϵ for SecOND (Algorithm 1) was taken to be 10−2. For
Figure 1, data points that were below Q1 − 1.5(Q3 − Q1) or above Q3 + 1.5(Q3 − Q1) were
considered outliers. Here, Q1 and Q3 denote the first and third quartiles, respectively.

E.1.3 ADDITIONAL UNCONSTRAINED CASE RESULT.

We show a comparison of SecOND and DND for the unconstrained toy example to show that our
approaches converge to local Nash equilibrium. From Figure 5, it can be seen that only SecOND and
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Figure 5: SecOND and DND converge successfully to a local Nash equilibrium.

DND successfully converge to local Nash equilibrium. CESP and GDA diverged, while LSS converged
to a non-Nash point. This behavior of LSS arises due to the assumption they make (Theorem 4,
(Mazumdar et al., 2019)), which gets violated. Out of the algorithms which converged, LSS took 75
iterations, DND took 5405 iterations, while SecOND took just 7 iterations.

E.2 GENERATIVE ADVERSARIAL NETWORK

E.2.1 LSS BASELINE.

For GAN training, we use the two-timescale approximation method for LSS described in (Mazumdar
et al., 2019), which is given by

zk+1 =zk − γ1(ω(zk) + e−ξ2∥J(zk)
⊤vk∥2

J(zk)
⊤vk)

vk+1 =vk − γ2(J(zk)
⊤J(zk)vk + λ(zn)vk − J(zk)

⊤ω(zk)).

Similar to the toy example, λ(zk) = ξ1(1 − e∥ω(zk)∥2

), and ξ1 = ξ2 = 10−4 In the gen-
erative adversarial network (GAN) example in Section 4.2, the zero-sum game is between the
generator G, which minimizes F , and the discriminator D, which maximizes F . Here, F :=
Ex∼pdata(x)[logD(x)] + Eϵ∼pϵ(ϵ)[log(1 −D(G(ϵ)))], and x and ϵ denote actual data samples and
noise samples, respectively. Table 1 lists the parameter values of the GAN model used in our
evaluation.

Table 1: Parameters of the GAN example in Section 4.2.

Discriminator Generator
Input Dimension 1 1
Hidden Layers 2 2
Hidden Units / Layer 8 8
Activation Function tanh tanh
Output Dimension 1 1
Batch Size 128
Dataset size 10000

We evaluate GDA, LSS, and our SecOND approach. GDA uses an Adam optimizer with a learning
rate 10−4; LSS uses an RMSProp optimizer with a learning rate 2× 10−4 for the x and y processes
and 1× 10−5 for the v process, as reported in (Mazumdar et al., 2019). SecOND uses an RMSProp
optimizer with a learning rate 2× 10−4.

Remark As suggested by (Goodfellow et al., 2014), to improve the convergence of GDA, we
update the discriminator k = 3 times more frequent than the generator G. Moreover, the GDA
generator maximizes log(D(G(ϵ))) instead of minimizing log(1 − D(G(ϵ))). We found the best
practical performance with the said setup.
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F HARDWARE

The two-dimensional toy examples were run on an Intel i7-11800H 8-core CPU. The GAN training
sessions were run on an AMD Ryzen 9 7950X 16-core CPU.
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