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Abstract

Large language models rely on Supervised Fine-Tuning (SFT) to specialize in
downstream tasks. Cross Entropy (CE) loss is the de facto choice in SFT. However,
CE often results in overfitting and limited output diversity due to its aggressive
distribution matching strategy, which forces the model’s generative distribution
to closely mimic the empirical data distribution. This paper aim to address these
issues by introducing the maximum entropy principle, encouraging models to
resist overfitting while preserving output diversity. Specifically, we develop a new
distribution matching method called GEM, which solves reverse Kullback-Leibler
divergence minimization with an entropy regularizer.
For the SFT of Llama-3-8B models, GEM outperforms CE in several aspects.
First, when applied to acquire general instruction-following abilities, GEM exhibits
reduced overfitting, as evidenced by lower perplexity and better performance on
the IFEval benchmark. Second, this advantage is also observed in domain-specific
fine-tuning, where GEM continues to outperform CE in specialized math reasoning
and code generation tasks. Last, we show that GEM-tuned models offer better
output diversity, which helps scale up test-time compute: with the same sampling
budget, they achieve performance gains of up to 10 points in math reasoning and
code generation tasks, compared with CE-tuned models.1

1 Introduction
Large Language Models (LLMs) [39, 53, 52] are powerful generative models excelling in specialized
tasks across various fields. Despite extensive pre-training, LLMs often struggle to follow instructions
and answer users’ queries effectively. To improve their performance in these tasks, instruction tuning
[45, 60, 10], also known as Supervised Fine-Tuning (SFT) [41, 3], is employed. This process involves
using high-quality labeled data (i.e., prompt-response pairs) and typically utilizes the Cross Entropy
(CE) loss to maximize the likelihood of the labeled data.

SFT is the first stage of the post-training pipeline and plays a crucial role in future developments
[7, 54, 34]. We expect models to generalize well by providing accurate answers and hope these

∗: Corresponding author.
1Code is available at https://github.com/liziniu/GEM.
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Figure 1: Illustration of the standard CE and the proposed method GEM for SFT of LLMs.

answers are diverse as well. While the importance of generalization is clear, generation diversity is
also crucial, especially with the trend of scaling up test-time compute [50, 6, 64]. These emerging
studies have shown that scaling up test-time compute, by selecting the optimal response from multiple
generated options, can solve many complex reasoning tasks, with output diversity being a key factor
in this process [59]. Additionally, many applications benefit from diverse responses. In creative
writing, diverse outputs can inspire new ideas [12], and in chit-chat, users value options that suit their
preferences [32]. AI interfaces like ChatGPT meet this need with features like regeneration buttons.

Unfortunately, using CE loss in SFT falls short of achieving the desired goals, because models
fine-tuned with CE often suffer from overfitting [7, 23, 16] and lack of generation diversity [42, 38].
These limitations stem from the theoretical underpinnings of CE loss. In theory, optimizing CE loss
amounts to minimizing the forward Kullback–Leibler (KL) divergence between the data distribution
and the generative distribution of the LLM.2 This process aggressively increases the likelihood of
training data while overlooking other possibilities, which in turn leads to overfitting. For instance,
CE-tuned models are often observed to over-memorize training data [15, 68], latch onto spurious
features [7], and lose in-context learning abilities that already been acquired in the pre-training (a.k.a.
alignment tax) [41, 3]. Furthermore, the aggressive update of the generative model’s distribution to fit
the training data leads to reduced entropy, which in turn limits output diversity. Previous research has
shown that low-entropy distributions are associated with poor generalization performance [43, 14],
suggesting that these issues are interrelated. To address these concerns, techniques like weight decay
[53, 7] or noisy perturbations to embeddings [23] are commonly applied alongside CE loss. However,
these challenges remain, highlighting the need for more principled solutions.

In this paper, we frame the fine-tuning of LLMs as a distribution matching problem, introducing
the maximum entropy principle [24] to guide the process. This principle promotes the use of an
entropy regularizer to avoid over-assigning high probabilities to the training data, thereby preserving
output diversity, which is particularly important when working with limited data. We also propose
generative distribution matching, encouraging the model to learn not only from supervision but also
from its own generated errors, drawing inspiration from Generative Adversarial Networks (GANs)
[17]. This approach contrasts with the passive imitation of supervised data typical in CE loss, aligning
more closely with the entropy regularizer (discussed further in the main text). To implement these
ideas, we develop the formulation of reverse KL divergence minimization with entropy regularization.
However, this formulation is technically challenging and may require adversarial training techniques
akin to those used in GANs. Our main technical contribution is the development of a new training
algorithm, referred to as GEM, which addresses the above challenge and is as tractable as the CE
loss. By adhering to the proposed principles, GEM favors distributions that captures key patterns in
the data and enjoy high entropy; see Figure 1.

We demonstrate the effectiveness of our model by fine-tuning the Llama-3-8B pre-trained model with
two types of tasks. First, using the UltraFeedback dataset [13], GEM achieves lower evaluation
perplexity than CE and better performance on IFEval [70], indicating reduced overfitting and
improved output diversity in creative writing. In math reasoning (GSM8K [11]) and code generation
(HumanEval [8], MBPP [2]), GEM shows up to 7-point gains using sampling strategies like Majority
Voting (MV) and Best-Of-N (BON). In the second experiment, fine-tuning on MetaMathQA [67] and

2The term forward KL arises from a technical distinction. We will later explore the concept of reverse KL.
The key difference between the two lies in how the loss is defined: forward KL measures the loss over the fixed
data distribution, while reverse KL defines the loss over the generative model’s distribution.
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MagicCoder-OSS-Instruct [62] for math reasoning and code generation, GEM outperforms CE
by up to 10 points with MV and BON, confirming its effectiveness.

To summarize, our contributions are threefold:

• We introduce the framework of entropic distribution matching for SFT of LLMs to address the
issues of overfitting and limited diversity.

• We develop a new training method GEM that can solve a particular distribution matching problem
with reverse KL divergence minimization and maximum entropy regularization.

• We demonstrate that the improved generalization and diversity induced by our method can be
beneficial to test-time compute.

2 Preliminary
Large Language Models (LLMs). LLMs have a large vocabulary, denoted as [K] = {1, 2, . . . ,K}
and process text by splitting it into a series of tokens (x1, . . . , xT ), where each token xi ∈ [K] and
T represents the sequence length. Let f be the generative distribution modeled by the language
model. The notation f(·|x1, . . . , xt−1) specifies the categorical distribution conditioned on the
context (x1, . . . , xt−1). Typically, f is parameterized by a neural network, often a transformer [57],
with the parameter θ. For the i-th token at time step t, its prediction probability is given by

fθ(i|x1, . . . xt−1) = softmax(zt) =
exp(zt[i])∑
i′ exp(zt[i

′])
.

where zt ∈ RK is the logit output from the neural network given the input (x1, . . . , xt−1), and zt[i]
is i-th element of zt. This auto-regressive process specifies the joint probability of a sequence of
tokens as fθ(x1, . . . , xT ) =

∏T
t=1 fθ(xt|x1, . . . , xt−1).

Supervised Fine-Tuning. To specialize in downstream tasks, LLM relies on Supervised Fine-Tuning
(SFT) after pre-training. This process involves using a supervised dataset with high-quality prompt-
response pairs {(xi, yi)}Ni=1. The Cross Entropy (CE) loss is the de facto training objective for this
purpose: minθ

∑N
i=1− log fθ(y

i|xi). In theory, this corresponds to minimizing the forward KL
divergence between the data distribution p and the generative distribution fθ:

min
θ

DKL (p, fθ)⇐⇒ max
θ

Ex∼ρ(·)Ey∼p(·|x)[log fθ(y|x)],

where ρ is the prompt distribution, which is usually not modeled during the SFT stage. Thus, the
distribution ρ can be treated as a constant and we omit it when the context is clear. In practice,
many questions can correspond to multiple valid answers (either in different forms or based on
different reasoning), but it is nearly impossible to collect a comprehensive dataset that encompasses
all possibilities. As a result, the empirical data tends to be limited in size and often exhibits a
narrower distribution than desired. In such scenarios, the CE loss function aggressively maximizes
the likelihood of the available empirical data and overlooks other possibilities. However, this approach
can lead to poor generation diversity and overfitting, as previously noted.

3 Entropic Distribution Matching
In this paper, we explore principled approaches for SFT, presenting two principles. The first addresses
overfitting and limited output diversity, inspired by neuroscience, particularly synaptic plasticity.
Homeostatic plasticity highlights the need for balanced learning [56, 55], where overly strengthened
neural connections lead to rigidity, similar to how assigning high probabilities to tokens causes
over-memorization, limiting adaptability and generalization. Based on these insights, we propose:
• Principle 1: The model should assign higher probabilities to the observed data while preventing

over-memorization.
The above principle can be implemented by adding an entropy regularizer. Our second principle
advocates a generative approach to distribution matching, where models learn from their own
generated data and mistakes, rather than just imitating supervised data. Unlike CE loss, which
passively mimics labels, this approach mirrors how children learn effectively through exploration
and adjusting based on mistakes [47, 19]. Generative models [17, 21] similarly refine their outputs
through self-correction. In summary, we propose:
• Principle 2: The distribution matching approach should be “generative”, meaning the model learns

from both ground truth supervision and its own generated.
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3.1 Proposed Formulation: Reserve KL with Entropy Regularization
To implement the two principles outlined above, we propose studying the formulation of reverse KL
divergence minimization with maximum entropy regularization. The objective is defined as follows:

max
f

Ex

{
Ey∼f(·|x) [log p(y|x)]− Ey∼f(·|x)[log f(y|x)]︸ ︷︷ ︸

=−DKL(f,p)

+γ · Ey∼f(·|x)[− log f(y|x)]︸ ︷︷ ︸
H(f)

}
. (1)

The first term corresponds to the reverse KL divergence between the target distribution p and the
model distribution f . This term supports Principle 2 by encouraging the model to learn from its
generated data samples (as reflected in the expectation Ey∼f(·|x)), similar to GANs [18].This contrasts
with the passive learning in CE, where the expectation is taken over a static data distribution. The
second term, entropy regularization, aligns with Principle 1 by preventing over-memorization. From
a Bayesian perspective, this means placing a uniform distribution belief when learning from data, so
it ensures that the probabilities for labeled data do not become excessively high. In addition, entropy
regularization brings another benefit: the output diversity can be improved. This means that the model
is aware of other possible options, which is very important for scaling-up test-time compute [50, 6].
We note that adding entropy regularization to the CE loss supports Principle 1 but not Principle 2;
its limitations are discussed in Appendix D, and we will empirically show that it is inferior to the
proposed approach in Section 4.

While the objective defined in Equation (1) appears promising, it presents significant challenges in
practice. The main challenge is that we only have access to empirical data from the distribution p,
not its full probability density function, making the reverse KL term impossible to compute directly.
Additionally, calculating the expectation of the reverse KL across the model’s generative distribution
is not easy. This paper contributes a new algorithm to address these challenges.

3.2 Proposed Algorithm: GEM
In this section, we present a practical algorithm for solving the optimization problem of reverse KL
with entropy regularization. Our approach is inspired by Relativistic GANs [25], where an auxiliary
distribution q is introduced for distribution matching, and relative-pair comparisons are incorporated
into the training objective. Specifically, our formulation is that:

max
f

Lq(f) ≜ ExEyreal∼p(·|x)Eygene∼q(·|x)
[
h
(
log f(yreal|x)− log f(ygene|x)

)]
(2)

s.t. q = argmax
π

ExEy∼π(·|x) [log f(y|x)] + 1/β · H(π(·|x)) = softmax(1/β ∗ log f). (3)

Here we use the subscript real to denote the supervised data and gene to denote the model-
generated data for clarity. In addition, h is a monotonically increasing function (e.g., a linear
function). Moreover, q is an artificially introduced distribution that will discarded after training. To
interpret the formulation, we optimize f such that log f is higher for real data and lower for generated
data. In this context, log f can be understood as the “energy” in an energy-based model [30] (or the
reward in inverse reinforcement learning [37, 21]). Simultaneously, we update the distribution q to
maximize the “energy” induced by log f , thereby aligning it with the data distribution. During the
optimization of q, an entropy regularizer is applied, which in turns guarantees the desired result.

Proposition 1. Assume that h is a linear function, then Lq(f) has a unique stationary point, and
this stationary point (with β = 1/(γ + 1) > 0) corresponds to the optimal solution of Problem (1).

Proposition 1 implies that solving the proposed problem in Equations (2) and (3) provides the optimal
solution of reverse KL with entropy regularization in Equation (1). In practice, we can parameterize
f using a transformer and optimize the parameters with gradient ascent. We outline such a training
procedure in Algorithm 1, referring to this approach as GEM, which stands for Generative and
Entropy-regularized Matching of distributions. We point out that h(u) = logsigmoid(u) as in [26]
can also work in practice. We also note that Proposition 1 relies on β > 0, meaning that GEM cannot
solve the pure reverse KL minimization problem.

We highlight two key computational advantages of GEM for generative distribution matching in
LLMs. First, only a single model, f , is optimized using a closed-form solution for q, eliminating the
need for adversarial training, reducing overhead, and simplifying hyperparameter tuning. Second, the
loss function and gradients are computed with the exact expectation Eygene∼q(·|x)[·], ensuring stable
training by lowering gradient variance. These advantages distinguish our approach from GAN-style
methods, which require two models and rely on inexact stochastic gradients.
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Algorithm 1 GEM

Input: Dataset D = {(xi, y
real
i )}

1: for iteration k = 1, . . . , do
2: Set qk = softmax(1/β ∗ log fθk)
3: Compute loss Lq(fθ) =

∑
i

∑
ygene q(ygene|xi) · h ([log fθ(yreali |xi)− log fθ(y

gene|xi)])

4: Update θk+1 = θk + η · ∇θLq(fθ) |θ=θk
Output: Generative model fθ

Extensions to Sequential Data. In the above part, we have derived the algorithm for the case y is
non-sequential. We note that optimization in the sequential case could be highly difficult. With a little
abuse of notations, let y = (y1, . . . , yT ) ≜ y1:T . Note that the prompt x should also be sequential in
general, but this does not affect our discussion as it serves the input to the conditional distribution.
Now, we can extend the formulation in Equations (2) and (3) to the following:

max
f

ExEyreal
1:T ∼p(·|x)Ey

gene

1:T ∼q(·|x)
[
h
(
log f(yreal1:T |x)− log f(ygene1:T |x)

)]
s.t. q = argmax

π
ExEy1:T∼π(·|x) [log f(y1:T |x)] + 1/β · H(π(·|x))

Here, we encounter a challenge: the joint distribution of y1:T , as a cascaded categorical distribution,
is quite complicated. This results in the expectation Ey

gene

1:T
[·] cannot be easily calculated as before.

While Monte Carlo estimation—drawing samples to approximate the gradient—might seem like a
viable solution, we found it does not work in experiments. We believe the main reason is that the
sample space is huge, and the pre-trained distribution f is quite different from the data distribution p
that we aim to learn.3 As a result, when we use stochastic sampling to estimate the gradient, it does
not provide effective feedback.

To deal with the above challenges, we propose decomposing the multi-step sequential optimization
problem into multiple single-step optimization problems and solve each efficiently. This is inspired
by the data distribution “reset” trick introduced by [46] in imitation learning, where the teacher first
demonstrates a few actions, and the student completes the reset. For our problem, we restrict the
distribution matching to the case that the prefix samples up to time step t are drawn from the data
distribution p and solves the optimization problem at the t-th time step as before. Its mathematical
formulation is given below:

max
f
Lseqq (f) = Ex

{ T∑
t=1

Eyreal
1:t−1∼p(·|x)Eyreal

t ∼p(·|x,yreal
1:t−1)

Ey
gene
t ∼q(·|x,yreal

1:t−1)
[∆]

}
(4)

where ∆ =
[
h
(
log f(yrealt |x, yreal1:t−1)− log f(ygenet |x, yreal1:t−1)

)]
,

The main advantage of this formulation is that for each sub-problem, we still have access to the
conditional distribution, allowing the previously discussed computational advantages to remain
applicable. The same idea applies to the training of distribution q. We outline the proposed procedure
in Algorithm 2 and provide its PyTorch implementation in Appendix B. We note that the imple-
mentation of our method requires almost the same GPU memory consumption and compute time as
optimizing the CE loss. It is important to note that our proposed solution serves as an approximation
to Equation (4). While the exact gap between the approximation and the true solution is unknown,
our practical algorithm has already demonstrated promising results.

4 Experiments
In this section, we present our numerical results for fine-tuning the pre-trained Llama-3-8B model to
demonstrate the effectiveness of the proposed method. The main results are reported, with additional
results in Appendix F and experiment details in Appendix E.

4.1 General-Purpose Fine-tuning
Set-up. We first develop an LLM that is capable of following instructions for various prompts. To
this end, we utilize the UltraFeedback dataset [13]. This dataset contains prompts from instruction
datasets like Evol-Instruct and UltraChat, and responses generated by models such as GPT-4 and

3Specifically, pre-trained models cannot generate the EOS (end-of-sentence) token properly, resulting in
repetitive sequences, even with infinite length. But the supervised data has an EOS token and finite length.
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Llama-2-7B/13B/70B-Chat. Each data point comprises two responses: one selected as the preferred
option and the other as the rejected option, with the selection made by GPT-4. In our study, we use
the preferred response for SFT, a practice commonly adopted in previous research [41, 3]. Following
[67, 34, 13], we set the learning rate to 2× 10−5, employing a cosine learning rate decay schedule,
and use a macro batch size of 128. The maximum sequence length, encompassing both the prompt
and response, is set to 2,048 tokens. Models are trained for three epochs.

We implement the proposed GEM method with β = 0.7. As discussed, GEM has two variations:
GEM-LS (GEM with log-sigmoid), and GE-Linear, each depending on the choice of the function
h. Our primary baseline is the standard CE loss. Additionally, we explore a variant incorporating
a weight decay of 0.1, which has been commonly used in previous studies [41, 3]. We refer to this
approach as CE + WD. We also implement a method called CE + Entropy, which adds an entropy
regularization term of 0.1 to the CE loss. This method aligns with the proposed Principle 1 but not
Principle 2 (see Appendix D for more discussion). The NEFT method [23], which perturbs the input
embedding with random noise in fine-tuning to mitigate overfitting, has also been implemented.

Instruction-Following. We first examine the model’s learned ability in terms of instruction-following
on the IFEval benchmark [70]. The model’s performance on this benchmark provides insight into
potential overfitting. There are four evaluation criteria: prompt-level strict accuracy, instruction-level
strict accuracy, prompt-level loose accuracy, and instruction-level loose accuracy. For all metrics, a
higher value indicates better performance.

Table 1: Performance of instruction-following on the benchmark IFEval [70]. For all metrics, a
higher value means a better instruction following ability. The best results are shown in bold, with the
second-best underlined.

Method
Instruction-Following

Strict Accuracy Strict Accuracy Loose Accuracy Loose Accuracy
(Prompt Level) (Instruction Level) (Prompt Level) (Instruction Level)

CE 36.23 46.76 40.85 50.96
CE+WD 37.89 47.48 42.88 52.52

CE+Entropy 36.78 47.60 40.66 51.08
NEFT 36.23 46.40 40.11 50.48

GEM-Linear 37.34 48.20 41.96 52.64
GEM-LS 37.52 47.60 42.14 52.04

We evaluate the trained models using greedy decoding and present the results in Table 1. We observe
that CE underperforms compared with regularization-based methods, suggesting that CE suffers from
overfitting. It is important to note that this overfitting is not due to over-optimization, as performance
continues to improve over three training epochs for CE (36.15 in epoch 1, 41.45 in epoch 2, and
43.70 in epoch 3). For NEFT, we do not observe clear advantages by injecting noise in training for
this task. On average across the four criteria, GEM-Linear and GEM-LS improve by 1.4 points (3.2%
relative) and 1.1 points (2.5% relative) compared with CE.

In addition to the above evaluation, we also observe that GEM mitigates overfitting in the evaluation
perplexity: GEM-LS and GEM-Linear achieve lower perplexity (around 3.16) than CE (3.48).
Furthermore, GEM incurs less alignment tax (i.e., the loss of in-context learning abilities). Please
refer to Appendix F for these results.

Creative Writing. We continue to assess models’ output diversity in creative writing tasks: poem
writing and story writing. For poems, we use prompts from the poetry4 dataset, which includes 573
poems on themes such as love, and mythology. For stories, we design 500 prompts based on the ROC
story dataset [35]. In both cases, we prompt the models to write a poem or story titled “[X]” with
no more than 200 words, where [X] is a title from the respective dataset. Following [28], we use
three criteria to evaluate diversity: 1) N-gram diversity: the proportion of distinct n-grams in a single
response (intra-diversity); 2) Self-BLEU diversity: calculated as 100 minus the Self-BLEU score
(inter-diversity), where one response is treated as a reference among multiple generated responses;
3) Sentence-BERT diversity: the cosine dissimilarity between pairs of responses in the embedding
space. All criteria range from 0 to 100 (with Sentence-BERT diversity scaled by multiplying by 100),
and higher values indicate greater diversity.

4https://huggingface.co/datasets/merve/poetry

6

https://huggingface.co/datasets/merve/poetry


Table 2: Evaluation of generation diversity in creative tasks of poem writing and story writing. For
all criterion, a higher value indicates greater diversity.

Method
Poem Writing Story Writing

N-gram Self-BLEU Sentence-BERT N-gram Self-BLEU Sentence-BERT

CE 48.50 72.50 21.79 48.74 72.77 21.94
CE+WD 48.58 71.29 21.80 48.85 71.73 21.79

CE+Entropy 53.74 75.82 23.80 53.86 76.11 23.94
NEFT 49.87 75.04 23.44 50.00 75.32 23.36

GEM-Linear 56.50 76.73 24.73 56.69 76.83 24.82
GEM-LS 56.55 76.31 24.63 56.82 76.61 24.68
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Figure 2: Performance of using advanced generation strategies such as best-of-n and majority voting
in chatting (left), math reasoning (middle) and code generation (right) tasks.

To calculate these metrics, we ask the trained models to generate 16 samples using the decoding
configuration temperature=1, top k=50, and top p=0.9. The evaluation results are presented in
Table 2. In this task, we note that weight decay does not improve generation diversity, although it
has shown effectiveness in mitigating overfitting in previous examples. On the other hand, entropy
regularization, implemented to support Principle 2, brings the benefit of output diversity. NEFT also
improves output diversity, consistent with [23]. Overall, GEM significantly improves output diversity
compared with the baselines.

Chatting, Math Reasoning, and Code Generation. In this part, we show that improved generation
diversity offers benefits beyond creative writing tasks. Specifically, diverse generation, when quality
is ensured, is advantageous when using advanced generation methods such as Best-Of-N (BON) or
Majority-Voting (MV) [59] to find better solutions. This is inline with recent advances in scaling up
test-time compute [6, 50].

Specifically, we conduct three experiments in chatting, math reasoning and code generation below.
Unlike before, we use a lower temperature of 0.6 (the default value for Llama models) to enhance
response quality. The overall performance is displayed in Figure 2 with detailed results in Appendix F.
Before analyzing the detailed results, we note that the good samples generated in this part could be
further distilled into the model for improving zero-shot performance; see [48].

For chatting, we assess the model’s ability to generate human-preferred responses. We prompt the
trained models to answer 805 questions from the AlpacaEval dataset [33]. For each question, the
model generates 32 responses and a reward model is then used to select the best responses. We employ
the reward model FsfairX-LLaMA3-RM-v0.15, which has top performance on RewardBench [29].
Since the reward value itself does not mean anything, we choose the win rate as a metric. In particular,
we estimate the win rate over GPT-4’s generated response by the Bradley–Terry model. From Figure 2,
we observe that GEM-LS can achieve about 3 points improvement in the win rate compared with CE.
Among the baselines, NEFT demonstrates strong performance, partially due to its longer responses,
as noted in [23].

For math reasoning, we evaluate performance on the GSM8K [11] benchmark, which contains 1,319
test questions. We prompt LLMs with chain-of-thought [61] to generate 32 responses for each
question. We assess answer accuracy using both Majority-Voting (MV) [59] and Best-Of-N (BON)
methods. Compared with CE, GEM-LS shows improvements of up to 4.8 points (7.7% relative) with
MV and 2.5 points (2.8% relative) with BON.

5https://huggingface.co/sfairXC/FsfairX-LLaMA3-RM-v0.1
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Figure 3: Performance on GSM8K (left) and MATH (right) when fine-tuning Llama-3-8B with the
MetaMathQA dataset.
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Figure 4: Performance on HumanEval (left) and MBPP (right) when fine-tuning Llama-3-8B with the
MagiCoder-OSS-Instruct dataset.

For code generation, we consider two benchmarks: HumanEval [8] and MBPP [2]. In these scenarios,
the trained models are asked to generate Python codes, and the executor judges their correctness. The
common evaluation metric is the pass rate. We ask the trained models to generate 200 samples to
estimate the pass@100. The generation configuration is the same as for the chatting task. We find
that weight decay does not show significant improvement over CE, while GEM-LS can achieve up
to a 7.6-point (10.7% relative) improvement over CE on HumanEval and a 6.4-point (9.0% relative)
improvement on MBPP for pass@100.

4.2 Domain-specific Fine-tuning
In this section, we conduct experiments with domain-specific datasets. For math reasoning, we use
the dataset MetaMathQA [67]. For code generation, we use the dataset Magicoder-OSS-Instruct
[62]. The experiment setup, including training details and hyperparameters, is the same as before,
and the specifics are provided in the Appendix.

Math Reasoning. We evaluate two benchmarks: GSM8K and MATH [20], using Majority Voting
(MV@32), Best-Of-N (BON@32), and greedy decoding. Please see Figure 3. We find that weight
decay works well on GSM8K but shows no clear gain on MATH, while NEFT offers no improvement.
In contrast, GEM-LS outperforms CE on GSM8K by 1.2, 2.9, and 2.6 points for greedy decoding,
MV@32, and BON@32, respectively. For MATH, GEM-LS improves by 1.9, 1.7, and 1.6 points.
These results suggest entropy regularization reduces overfitting and enhances diversity.

Code Generation. We report the pass rate over 1, 10, 100 on HumanEval and MBPP benchmarks, in
Figure 4. Pass@100 on HumanEval drops compared to previous results, while all methods improve
on MBPP. Weight decay and NEFT show inconsistent gains, but entropy regularization consistently
improves performance. GEM-LS significantly outperforms CE, with improvements on HumanEval
by 4.6 (Pass@1), 6.5 (Pass@10), and 9.7 points (Pass@100). For MBPP, GEM-LS gains 3.4 (Pass@1),
6.8 (Pass@10), and 8.0 points (Pass@100).

5 Conclusion
In this paper, we propose an alternative method for the SFT of LLMs to tackle the challenges of
overfitting and limited generation diversity, which are often caused by the aggressive updates of the
CE loss and limited data. We demonstrate the effectiveness of combining generative distribution
matching with entropy regularization. We note that the improved diversity also boosts performance
in downstream tasks when advanced generation methods, such as the best-of-n sampling, are used.
Overall, our results indicate that the proposed method is well-suited for generative models. Future
work is noted in Appendix D.1.
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A Related Work

Supervised Fine-tuning. SFT is the first stage of the post-training pipeline and plays an important
role in subsequent developments. As mentioned in the introduction, using CE loss during the SFT
stage often leads to overfitting and reduced output diversity. To address this, there is a line of research
in scaling up SFT data (see, e.g., [67, 62, 69]), which, while effective, increases computational burden.
Our work aims to develop training methods that more effectively leverage supervised data to mitigate
overfitting and to enhance output diversity.

Entropy Regularization. Dubey et al. [14] proposed that achieving zero CE loss is not essential for
high accuracy. Instead, they suggested that a conditional probability distribution where the argmax
corresponds to the correct class is sufficient. This concept motivates our use of entropy regularization,
which allows for assigning probabilities to alternative options beyond the observed data. Prior to our
work, Pereyra et al. [43] also explored entropy regularization in the context of neural network training.
Their method closely resembles the CE with entropy regularization that we investigate in this paper,
and they found that penalizing confident outputs improves generalization. It is important to note
that Pereyra et al. [43] focused on image classification tasks, while our focus is on text generation
where data is sequential in nature and is more challenging. In the context of LLMs, Hu et al. [22]
explored the maximum entropy regularization by using GFlowNet [4], but their methods require a
reward function rather than supervised data.

Distribution Matching. Distribution matching forms the foundation of statistical machine learning
[36]. The seminal work GAN [17] introduced the concept of generative distribution matching in
deep learning. To address sequential data, GAIL [21] made a significant advancement. A major
challenge in this field is scalability [5], as these methods typically require optimizing both a generator
and a discriminator through adversarial training, which is notoriously difficult and computationally
expensive. In this paper, we contribute a stable training algorithm for SFT of LLMs.

Closely related to our work, recent studies such as [9, 31] explored improving CE-trained models
using techniques like self-play. However, our approach differs in two key ways. First, we focus on
addressing the limitations of CE loss by designing methods that directly improve pre-trained models,
whereas their methods are applied post-SFT. Second, we introduce the maximum entropy principle
into distribution matching, while their work examines the standard distribution matching framework.

Our work also relates to imitation learning (IL) [1, 40], where a learner makes decisions based on
expert demonstrations. In fact, SFT can be reframed as IL with deterministic transitions [51, 31].
Specifically, the cross-entropy loss corresponds to behavior cloning [44] in IL. Our framework is
closely aligned with the generative adversarial imitation learning approach in [21], which usually
outperforms behavior cloning [27, 66]. A key aspect of this framework is correcting mistakes by
rolling out trajectories. As discussed in Section 3, our proposed algorithm also supports this idea.

B Implementation of GEM

Algorithm 2 GEM for Sequential Data

Input: Dataset D = {(xi, y1, . . . , yT )}
1: Initialize D̃ = ∅
2: for sample index i do ▷ “Reset” data distribution
3: for timestep index t = 1, . . . , T do

x̃ = xi ⊕ (yreal1 , . . . yrealt−1 ), ỹ = yrealt

D̃ ← D̃ ∪ {(x̃, ỹ)}
4: fθ ← Call Algorithm 1 on D̃

Output: Generative model fθ
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1 def gem_loss(logits, labels, beta=0.7, ignore_index=-100, h="linear"):
2

3 shift_logits = logits[..., :-1, :].contiguous()
4 shift_labels = labels[..., 1:].contiguous()
5

6 mask = shift_labels != ignore_index
7 shift_logits = shift_logits[mask]
8 shift_labels = shift_labels[mask]
9

10 with torch.no_grad():
11 logits_on_labels = torch.gather(
12 shift_logits, dim=-1, index=shift_labels.unsqueeze(-1)
13 ).squeeze(-1)
14

15 logits_diff = shift_logits - logits_on_labels.unsqueeze(-1)
16 if h == "linear":
17 weights = torch.ones_like(logits_diff)
18 elif h == "log_sigmoid":
19 weights = F.sigmoid(0.01 * logits_diff)
20 else:
21 raise ValueError(h)
22

23 gene_log_probs = F.log_softmax(shift_logits, dim=-1)
24 q_probs = torch.exp(
25 F.log_softmax(shift_logits / beta, dim=-1)
26 ).detach()
27

28 real_log_probs = torch.gather(
29 gene_log_probs, dim=-1, index=shift_labels.unsqueeze(-1)
30 ).squeeze(-1)
31

32 loss = -torch.sum(
33 q_probs * weights * (real_log_probs.unsqueeze(-1) - gene_log_probs), dim=-1
34 ).mean()
35

36 return loss

Listing 1: Pytorch Code of GEM

We have two remarks regarding the implementation above. First, we use a coefficient of 0.01 to
scale the input in the log-sigmoid function. This ensures that the function behaves nearly linearly.
Second, this implementation requires almost the same GPU memory and computation time as the CE
loss.

C Proof

Proof of Proposition 1. When h is a linear function, we have that
Lq(f) = ExEyreal∼p(·|x)Eygene∼q(·|x)

[
log f(yreal|x)− log f(ygene|x)

]
= ExEyreal∼p(·|x)Eygene∼q(·|x)

[
log f(yreal|x)

]
− ExEyreal∼p(·|x)Eygene∼q(·|x) [log f(y

gene|x)]
= ExEyreal∼p(·|x)

[
log f(yreal|x)

]
− ExEygene∼q(·|x) [log f(y

gene|x)]
For any x ∈ X , we have that

∂L
∂f

=
p− q

f
(5)

To calculate the stationary point of L, we require that p = q. Since q = softmax(1/β · log f), the
above equality requires that f = softmax(β ·log p). As analyzed in Proposition 2, for β = 1/(γ+1),
this corresponds to the the optimal solution of minimizing reverse KL with entropy regularization.
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Proposition 2. For the entropy-regularized KL minimization problem in Equation (1), in the function
space, we have the optimal solution:

f⋆(y|x) = 1

Zx
p(y|x)1/(γ+1)

where Zx is a normalization constant
∑

y′ p(y′|x)1/(γ+1).

The proof is based on the optimality condition of constrained optimization. Its proof can be found
in the previous literature (see, e.g., [58, Appendix A]). We note that the above closed-form solution
cannot be applied in practice because we do not have access to the density function of the data
distribution p.

D Discussion

D.1 Future Work

We focus on the SFT stage in this paper and recognize that the models trained with our proposed
methods can be further refined in subsequent stages. Notably, the enhanced diversity achieved by
our approach can be beneficial in several contexts: it supports scaling up test-time computation
[6, 50], helps mitigate preference collapse in preference alignment [65], facilitates self-improvement
through distillation with best-of-n techniques [48], and helps mitigate model collapse in synthetic
data generation [49, 63]. We see the potential of our method in these areas and plan to explore these
topics in future work.

D.2 CE with Entropy Regularizer

We discuss the formulation of forward KL with entropy regularization in this section:
max
f

Ex

{
Ey∼p(·|x)[log f(y|x)]︸ ︷︷ ︸
=−DKL(p,f)+constant

+γ · Ey∼f(·|x)[− log f(y|x)]︸ ︷︷ ︸
=H(f)

}
(6)

This formulation supports the proposed Principle 2 but not Principle 1. We find that this formulation
leads to an improper increase in tail probabilities when maximizing the entropy, as illustrated in
Figure 5. In the context of LLMs, this increase often translates into nonsensical tokens in the
vocabulary, leading to undesirable generation outputs (if additional strategies like top-k and top-p
sampling are not used). A concrete example is provided in Table 3. The core issue arises because the
gradient of the entropy regularizer can dominate for tokens with low probabilities. Specifically, the
gradient of the forward KL is computed as−p/f , where the division is element-wise, and the gradient
of the entropy is −(1 + log f). Consequently, for tokens with low probabilities in both f and p, the
gradient given by the forward KL is much smaller than that given by the entropy regularizer, thus
disproportionately increasing the tail probabilities. In contrast, the proposed reverse KL formulation
with entropy regularization does not have this issue. This is because the optimization is defined over
the generative distribution f in our formulation, ensuring balanced gradients even for tokens with low
probabilities (refer to Equation (5)).

D.3 Intuition and Example of GEM

We provide an intuitive understanding of GEM by explaining its training mechanism on a simple
model: for a fixed x ∈ X , we model fθ(y|x) = softmax(θx) with θx ∈ RK . Consider h as the
linear function described in Proposition 1. For a paired sample (yreal, ygene) = (i, j), we have the
gradient for this sample:

∇θLq(fθ)[i, j] =

{
wijeij if i ̸= j

0 otherwise

Here wij = p(yreal|x)q(ygene|x) lies in [0, 1], and eij is the vector with i-th element being 1 and the
j-th element being −1 and 0 otherwise. Thus, the gradient of this paired data gives a direction for
moving the logit θx from j-th position to i-th position, with the weight wij .

Consider a numerical example where θx = [2, 1] with K = 2, so f = [0.73, 0.27]. For β = 0.7,
we have q = [0.81, 0.19], which is more peaked compared with f . Given the data distribution
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Figure 5: Distributions of next-token probabilities for trained models with the UltraFeedback
dataset, presented from top to bottom: CE, CE+Entropy, GEM-LS. The prompt is “Give me a
single-digit number”. The top 300 probabilities are shown with a subsampling rate of 20 for clear
visualization. A red dotted line indicates the probability threshold of 10−4. The figure demonstrates
that the CE+Entropy model has a longer tail with higher probabilities assigned to some nonsensical
tokens, marked with crosses.
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Table 3: Examples of generated sentences for models trained with the UltraFeedback dataset. The
symbol “[...]” indicates good sentences that have been omitted to save space. The vanilla generation
configuration temperature=1, top k=None, and top p=1.0 is used. This example shows that CE
with entropy regularization can generate nonsensical tokens (shown in red) due to the increase in tail
probabilities.

Prompt Whats the largest star in our galaxy?

CE Hello! Atlantis is a legendary city that was said to have existed in ancient Greece.
According to the story, it was a highly advanced and prosperous city that was
located on an island in the ocean. [...]

CE+Entropy Hello! Atlantis Documentary is a 2019 American documentaryéhoFLICT film
directed by Já oblı́k and produced by Werner Herzog. The film explores the history
and legacy of Atlantis, 2 an ancient Greek city-state that was said to have calendar
knowledge and advanced technology, through interviews with scholars and histori-
ans.ython

GEM-LS Hello there! As a helpful, respectful, and honest assistant, I’d be happy to help
you explore the fascinating topic of Atlantis! Atlantis is an ancient Greek myth
that tells the story of a legendary realm said to have existed in the Atlantic Ocean,
west of the Pillars of Hercules. [...]

p = [0.9, 0.1], the gradient of GEM is 0.9 ·0.19 · [1,−1]+0.1 ·0.81 · [−1, 1] = [0.09,−0.09], leading
to a relative logit change of 0.18. In comparison, the CE’s gradient in this case is [0.17,−0.11],
resulting in a relative logit change of 0.28, which is 1.6 times larger then GEM. When converged,
GEM would give a flatter distribution [0.82, 0.18] due to the induced entropy regularization.

We have two remarks for the above analysis. First, we see that the distribution q determines
the weights of probability transportation. Generally, for 0 < β < 1, a narrowed distribution q,
shifted from f , prioritizes the high-probability regions in f for probability transportation, while low-
probabilities regions in f contributes less. This contrasts with CE, which would push probabilities of
non-labeled tokens towards the labeled ones, potentially causing overfitting. Second, we note that h
also determines how much probability is shifted. Specifically, we have wij = p(yreal|x)q(ygene|x)h′

for a general function h. For the linear function studied, h′ is always equal to 1. Another pos-
sible choice for h is the log-sigmoid function h(u) = log sigmoid(u) = u − log(1 + exp(u)),
which is studied in previous research [26]. This function provides a weighting effect. Since
h′ = sigmoid(log f(ygene|x)− log f(yreal|x)) ∈ (0, 1), it results in a large weight when yreal is
not yet dominant in the probability distribution, and a small weight when yreal has already become
dominant. Later on, we will study this function in experiments.

E Experiment Details

All experiments are conducted using A800-80GB GPUs with the DeepSpeed distributed training
framework, utilizing ZeRO-2 and gradient checkpointing without offloading. We use flash-attention-2
with deterministic backward for reproducibility. The experiments are based on the pretrained Llama-
3-8B model, using Adam as the optimizer with a global batch size of 128. Following [67, 34, 13], the
learning rate is set to 2e-5, with a warm-up ratio of 0.03 and cosine learning rate decay. Training
is performed over 3 epochs. All supervised datasets are formatted into the chat format using the
Llama-3-8B-Instruct’s tokenizer. When generation of responses is required for evaluation, we use the
vLLM to accelerate inference.

E.1 UltraFeedback

We use the dataset filtered by HuggingfaceH4 team, which is available at https://huggingface.
co/datasets/HuggingFaceH4/ultrafeedback_binarized. The dataset contains 61,135 train-
ing samples and 1,000 test samples. For training, we set the maximum sequence length to 2,048,
dropping longer sequences and padding shorter ones. To achieve a global batch size of 128, we
use a per-device batch size of 4, a gradient accumulation step of 4, and 4 GPUs. The training
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times takes about 24 GPU hours. For the CE method, we have tuned hyperparameters for weight
decay and entropy regularization, selecting values from {0.1, 0.01, 0.001}. In both cases, a value
of 0.1 provided the best overall results. For NEFT, we use a noise scale hyperparameter of 5, as
recommended by [23].

Evaluation metrics, including perplexity, and entropy, are based on these 1,000 test samples. For
entropy calculation, we compute the conditional entropy, whose expectation can be calculated exactly,
and average over the sequence. For the instruction-following evaluation, we use the IFEval benchmark
from [70]. We apply greedy decoding with a maximum generation length of 1,024 tokens.

For the diversity evaluation in poem writing, we use prompts derived from the poetry dataset on the
Huggingface website, which includes 573 poems on themes like love, nature, and mythology by poets
such as William Shakespeare. We prompt the trained models with questions like, “Write a poem titled
‘[X]’ with no more than 200 words,” where [X] is a title from the dataset. For story writing, we create
500 prompts based on the ROC Story dataset (2017 winter) [35], asking models to “Write a story
titled ‘[X]’ with no more than 200 words,” where [X] is a title from the dataset. The maximum number
of generation tokens is set to 512. The evaluation script follows the methodology from previous work
by [28], using the script available at https://github.com/facebookresearch/rlfh-gen-div.
For each question, 16 samples with the generation configuration temperature=1.0, top k=50,
top p=0.9 is used.

For the chat evaluation, we use the 805 test questions from the AlpacaEval dataset and employ the
reward model FsfairX-LLaMA3-RM-v0.1. The maximum generation sequence length is set to 2048.
For each question, 32 samples are generated with the configuration temperature=0.6, top k=50,
top p=0.9. To calculate the win rate, we use the Bradley-Terry model:

P(y ≻ y′ | x) = exp(r(x, y))

exp(r(x, y)) + exp(r(x, y′))
.

We use GPT-4 generated responses as a baseline for calculating the win rate, specifically the
gpt4 1106 preview6 version.

For the math reasoning task on GSM8K, we use the following prompt:

Your task is to answer the question below. Give step-by-step reasoning before you answer,
and when you’re ready to answer, please use the format ”The answer is: ...”.
Question: {question}

Answer extraction from the generated responses follows the approach from previous work [67],
using the script available at https://github.com/meta-math/MetaMath/blob/main/eval_
gsm8k.py. For each question, 32 responses are generated with the configuration temperature=0.6,
top k=50, top p=0.9. The reported accuracy is based on 1,319 test questions.

For the code generation tasks on HumanEval and MBPP, there are 164 test questions for HumanEval
and 378 test questions for MBPP. We use the prompt from [62]:

You are an exceptionally intelligent coding assistant that consistently delivers accurate and
reliable responses to user instructions.
@@ Instruction
{instruction}

For each question, 200 responses are generated with the configuration temperature=0.6, top k=50,
top p=0.9 to estimate the pass rate. The evaluation scripts are from https://github.com/
ise-uiuc/magicoder/blob/main/experiments/text2code.py.

E.2 MagiCoder

We use the MagiCoder-OSS-Instruct dataset [62], which contains 74,197 training samples and
1,000 test samples (randomly selected from the original training set). The maximum sequence length

6https://github.com/tatsu-lab/alpaca_eval/blob/main/results/gpt4_1106_preview/
model_outputs.json
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for training is 1,024. To achieve a global batch size of 128, we use a per-device batch size of 8,
gradient accumulation steps of 2, and 8 GPUs. The training takes approximately 24 GPU hours. The
evaluation method is the same as previously described.

E.3 MetaMathQA

We use the MetaMathQA dataset [67]. To make the code generation task manageable, we select a
subset of 79,000 samples for training and 1,000 samples for evaluation. The maximum sequence
length for training is set to 1,024. To achieve a global batch size of 128, we use a per-device batch
size of 8, gradient accumulation steps of 2, and 8 GPUs. Training takes approximately 24 GPU hours.
The evaluation method is as previously described. For the MATH task, the prompt is the same as for
the GSM8K task.

F Additional Results

F.1 General Purpose Fine-tuning

Perplexity and Entropy. For trained models, we also examine two statistics: perplexity, and
entropy of the output distribution. We evaluate these two statistics on 1,000 test samples from
the Ultrafeedback dataset. Results are reported in Table 4. Using CE as a baseline, we make
several observations. First, weight decay does not significantly change the statistics. Second, directly
incorporating entropy regularization increases both perplexity and entropy considerably. Notably, this
increase is mainly due to relatively large tail probabilities. Third, GEM generally reduces perplexity
while increasing entropy.

Table 4: Evaluation perplexity and entropy. Models are trained with the UltraFeedback dataset.

Method UltraFeedback
Evaluation Perplexity Evaluation Entropy

CE 3.48 0.68
CE+WD 3.46 0.68

CE+Entropy 3.78 2.65
NEFT 3.22 0.78

GEM-LS 3.18 1.19
GEM-Linear 3.16 1.16

Next-Token Prediction Distributions. We demonstrate the distribution collapse issue associated
with the CE method using three simple prompts for the trained LLMs: 1) “Complete this sequence
with a single letter: A, B, C, ”; 2) “Give me a single-digit number”; and 3) “Tell me a type of
fruit”. All prompts are designed to have answers with 1 token for visualization.7 The distributions are
visualized in Figure 6. We see GEM-trained models produce flatter distributions, indicating support
for multiple possible answers.

Alignment Tax. We assess the alignment tax by examining the performance drop in in-context
learning abilities across six tasks: ARC, GSM8K, HellaSwag, MMLU, TruthfulQA, and WinoGrande,
as listed in the OpenLLM leaderboard. For ARC, we use the arc-challenge metric with 25 shots.
HellaSwag is evaluated with 10 shots, while TruthfulQA is tested with zero shots. MMLU, GSM8K,
and WinoGrande are assessed using five shots each. Results are reported in Table 5. We observe
that all fine-tuned models suffer from forgetting acquired in-context learning abilities. However,
GEM-tuned models have the smallest alignment tax among these baselines.

Chatting, Math Reasoning, and Code Generation. We provide the detailed results in Tables 6
to 8. We observe that even with less generation samples, GEM also shows better performance.

7For the first prompt, while “D” is the most likely answer, “A” could also be a valid response due to the
pattern A, B, C, A, B, C, . . ..
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(a) Prompt: Complete this sequence with a single letter: A, B, C,

9 I 7 Sorry The Sure 4 5 1 6
Next Tokens

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Pr
ob

ab
ilit

y

CE

7 9 1 I 5 Sure The Of Sorry Great
Next Tokens

CE+WD

1 I Sure Of The 9 Here 7 Sorry Hello
Next Tokens

CE+Entropy

Sorry 9 7 5 I The 4 Here Sure 8
Next Tokens

GEM-Linear

7 Sorry 5 Here I 4 The Sure Hello 9
Next Tokens

GEM-LS

(b) Prompt: Give me a single-digit number.
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(c) Prompt: Tell me a type of fruit.

Figure 6: Distributions of next-token probabilities for trained models with the UltraFeedback
dataset, presented from left to right: CE, CE+WD, CE+Entropy, and GEM-Linear, and GEM-LS.
Only top-10 probabilities are visualized for clarity. These examples highlight the issue of limited
generation diversity in CE.

Table 5: Performance of in-context learning on the benchmark OpenLLMLeaderBoard. Models are
trained with the UltraFeedback dataset.

Method
Open LLM LeaderBoard

ARC GSM8K HellaSwag MMLU TruthfulQA WinoGrande Average
Pre-trained 58.36 50.64 82.14 65.18 43.86 77.58 62.96

CE 56.23 41.70 79.70 58.29 48.72 70.64 59.21
CE+WD 55.12 41.77 79.53 59.66 48.12 71.59 59.30

CE+Entropy 57.51 41.02 80.10 59.47 48.83 71.19 59.69
NEFT 55.29 38.21 77.90 56.17 49.46 72.38 58.24

GEM-Linear 57.68 41.02 81.60 59.08 47.59 73.32 60.05
GEM-LS 58.28 40.56 81.81 59.39 47.96 73.64 60.27

Table 6: Evaluation of reward and win rate on AlpacaEval dataset. Models are trained with the
UltraFeedback dataset.

Method Reward Win Rate
BON@4 BON@8 BON@16 BON@32 BON@4 BON@8 BON@16 BON@32

CE 1.06 1.43 1.86 2.39 26.59 31.35 37.43 46.61
CE+WD 1.09 1.47 1.85 2.41 27.17 32.00 37.59 46.98

CE+Entropy 1.11 1.48 1.89 2.46 26.86 31.83 37.84 47.69
NEFT 1.14 1.55 1.94 2.52 27.51 32.78 38.73 48.80

GEM-Linear 1.12 1.52 1.94 2.51 27.27 32.36 38.76 48.50
GEM-LS 1.11 1.52 1.96 2.56 26.98 32.53 39.18 49.46
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Table 7: Evaluation of accuracy on the math reasoning task GSM8K. Models are trained with the
UltraFeedback dataset.

Method GSM8K
MV@4 MV@8 MV@16 MV@32 BON@4 BON@8 BON@16 BON@32

CE 51.63 55.57 58.61 62.17 65.28 74.68 82.11 90.22
CE+WD 54.51 58.76 62.47 65.66 69.90 77.48 84.46 90.45

CE+Entropy 53.75 56.63 60.58 64.44 67.32 76.57 83.93 91.21
NEFT 55.12 61.18 65.13 66.72 70.36 80.67 86.96 92.12

GEM-Linear 53.68 58.07 62.77 65.58 69.83 79.30 86.50 91.96
GEM-LS 55.95 60.42 64.82 67.02 70.05 79.68 86.96 92.72

Table 8: Performance of pass rate on the code generation tasks HumanEval and MBPP. Models are
trained with the UltraFeedback dataset.

Method HumanEval MBPP
Pass@10 Pass@20 Pass@50 Pass@100 Pass@10 Pass@20 Pass@50 Pass@100

CE 58.06 62.51 67.50 70.88 62.71 65.73 69.13 71.18
CE+WD 56.18 61.53 67.85 71.91 63.13 66.35 69.40 71.35

CE+Entropy 58.85 64.02 70.29 74.44 65.50 68.75 71.77 73.48
NEFT 52.62 59.47 67.08 71.65 64.58 67.88 71.82 74.51

GEM-Linear 60.34 66.12 73.12 77.97 64.54 68.57 72.30 74.33
GEM-LS 60.94 66.95 73.83 78.47 67.28 71.50 75.50 77.64

F.2 Domain-specific Fine-tuning

We provide the detailed results in Tables 9 to 11. The results indicate that GEM outperforms CE even
with fewer generated samples.

Table 9: Evaluation of accuracy on the math reasoning task GSM8K. Models are trained with the
MetaMathQA dataset.

Method GSM8K
MV@4 MV@8 MV@16 MV@32 BON@4 BON@8 BON@16 BON@32

CE 73.46 73.77 75.13 76.57 76.50 80.74 85.14 90.67
CE+WD 73.84 75.06 76.50 78.24 77.94 81.05 86.05 90.67

CE+Entropy 75.06 76.04 77.71 79.68 79.61 83.70 88.70 92.95
NEFT 72.71 74.53 75.82 76.88 78.77 83.40 87.19 92.65

GEM-Linear 74.83 75.82 78.09 78.77 81.43 85.60 89.69 93.56
GEM-LS 75.21 76.35 77.33 79.53 80.82 85.06 89.31 93.33

Table 10: Evaluation of accuracy on the math reasoning task MATH. Models are trained with the
MetaMathQA dataset.

Method MATH
MV@4 MV@8 MV@16 MV@32 BON@4 BON@8 BON@16 BON@32

CE 26.40 27.04 28.30 29.34 33.20 39.98 48.20 58.46
CE+WD 26.20 27.02 28.38 29.56 33.22 39.32 47.54 57.10

CE+Entropy 28.06 29.26 30.34 31.20 35.58 41.84 50.66 59.64
NEFT 26.18 24.46 28.74 30.12 34.46 41.54 48.98 58.64

GEM-Linear 27.62 29.30 30.64 31.48 36.82 43.74 52.04 60.30
GEM-LS 27.46 28.88 29.92 31.00 36.00 42.98 50.96 60.12
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Table 11: Performance of pass rate on the code generation tasks HumanEval and MBPP. Models are
trained with the MagiCoder-OSS-Instruct dataset.

Method HumanEval MBPP
Pass@10 Pass@20 Pass@50 Pass@100 Pass@10 Pass@20 Pass@50 Pass@100

CE 58.71 61.50 64.18 65.86 66.54 68.68 70.76 71.95
CE+WD 58.33 61.06 63.77 65.89 65.96 68.38 70.67 71.89

CE+Entropy 58.66 62.66 66.79 69.17 69.47 71.76 73.79 75.02
NEFT 55.86 59.45 63.01 65.12 66.53 69.06 71.29 72.32

GEM-Linear 58.69 62.39 67.16 70.64 72.00 74.54 76.74 78.08
GEM-LS 65.15 68.73 72.64 75.58 73.30 75.90 78.42 79.97
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