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ABSTRACT

Large language models (LLMs) are increasingly paired with activation-based
monitoring to detect and prevent harmful behaviors that may not be apparent at
the surface-text level. However, existing activation safety approaches, trained on
broad misuse datasets, struggle with poor precision, limited flexibility, and lack
of interpretability. This paper introduces a new paradigm: rule-based activation
safety, inspired by rule-sharing practices in cybersecurity. We propose modeling
activations as cognitive elements (CEs), fine-grained, interpretable factors such
as “making a threat” and “payment processing”, that can be composed to cap-
ture nuanced, domain-specific behaviors with higher precision. Building on this
representation, we present a practical framework that defines predicate rules over
CEs and detects violations in real time. This enables practitioners to configure
and update safeguards without retraining models or detectors, while supporting
transparency and auditability. Our results show that compositional rule-based ac-
tivation safety improves precision, supports domain customization, and lays the
groundwork for scalable, interpretable, and auditable AI governance. We open
source GAVEL and provide an automated rule creation tool.

1 INTRODUCTION

Large language models (LLMs) are often equipped with safeguards that monitor their inputs and
outputs to prevent harmful behavior. However, these safeguards can be bypassed through repre-
sentation attacks, where harmful concepts are paraphrased or obfuscated, exploiting mismatched
generalization between surface text and model reasoning. To address this, recent work has shifted
towards activation-based monitoring, which detects when the model internally processes restricted
concepts (e.g., planning a crime or generating hate speech), regardless of the exact surface form.

The Problem: The prevailing approach to activation safety relies on passing misuse datasets through
the model to capture the distribution of activations, which are then modeled with a linear probe or
classifier. While influential, this approach suffers from three major limitations:

1. Poor Precision: Misuse datasets are typically broad, covering generic categories such as “cy-
bercrime” or “misinformation.” As a result, detectors trained on these distributions often pro-
duce many false positives. For example, a detector trained on a hate speech dataset1 to prevent
users from generating racist content will accidentally flag benign discussions about ethnic cul-
tures. To be a viable safeguard, activation-based safety must have low false positive rates.

2. Limited Flexibility: In practice, model owners often need to enforce nuanced or domain-
specific safety and policy constraints, for instance, detecting intellectual property infringement
on specific entities, or enforcing a company’s internal policies. Current methods require reusing
coarse-grained misuse datasets which do not match the target behavior, or require constructing
new, specialized datasets which is a slow and expensive process. Moreover, scaling to many
categories is impractical, since thousands of activations must be collected per category to gener-

1Commonly used hate speech datasets include:
https://huggingface.co/datasets/tdavidson/hate_speech_offensive
https://huggingface.co/datasets/ucberkeley-dlab/measuring-hate-speech
https://huggingface.co/datasets/Doowon96/hate_speech_labeled

1

https://huggingface.co/datasets/tdavidson/hate_speech_offensive
https://huggingface.co/datasets/ucberkeley-dlab/measuring-hate-speech
https://huggingface.co/datasets/Doowon96/hate_speech_labeled
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alize well, and retraining detectors is needed for each update. A practical system should instead
allow rapid, configurable deployment that builds on prior work provided by the community.

3. Lack of Interpretability: When detectors fail, the reasons are often opaque. For example,
a system might flag an input as “hate speech” without indicating which parts of the text are
responsible. The absence of such token-level signals leaves users uncertain about what specif-
ically triggered the alarm. This opacity hinders auditing and accountability, capabilities that
are critical for future agentic systems, where intermediate reasoning steps may be difficult for
humans to interpret (Hao et al., 2024; Chen et al., 2025). Activation safety therefore requires
human-interpretable factors that support customization, transparency, and auditability.

Towards Rule-Based AI Safety: Our motivation comes from the field of cybersecurity, which has
long benefited from rule sharing for threat detection. Tools such as Snort (Roesch et al., 1999),
YARA (Alvarez & VirusTotal, 2008), and OSSEC (Cid & Team, 2004) allow defenders to share
rule sets which has enabled the community to collaborate on detect threats and perform standardized
security auditing. This ecosystem has proven effective at scaling security across organizations, while
ensuring precision, flexibility, and interpretability.

We argue that, in many situations, AI safety can benefit from adopting a similar paradigm. To
improve robustness, the AI community needs the ability to share and collaborate over standardized,
configurable, and model-agnostic rules that define and enforce safety or policy constraints, allowing
interpretability, flexibility and precision. For example, large language models have recently been
used to automate scams (Gressel et al., 2024; Roy et al., 2024). To detect such misuse, a rule might
specify that the model must not consider (A OR (B AND C)), while still permitting C alone
to avoid false positives. This level of expressivity is especially crucial for AI governance, where
regulators and organizations require mechanisms to define and audit policies through transparent
rule sets.

Contributions. We take the first steps towards the first rule-based safety framework over model
activations, making three primary contributions:

1. Cognitive Elements (CEs): We introduce the concept of cognitive elements, interpretable
activation-level primitives that capture mid-level aspects such as a model’s activity, task, or
behavior. For example, directing a user to go somewhere, acquiring payment information,
making a threat, or engaging in coercion. Unlike coarse misuse categories, CEs provide a com-
positional basis: they activate predictably as the model performs, can be combined to describe
complex states, and enable safety systems that are precise, flexible, and interpretable (i.e., if a
rule violation occurs we can see why).

2. Rule-Based Detection Framework: Building on CEs, we propose GAVEL2, a framework
that expresses safety and policy constraints as logical rules over CE activations. This enables
practitioners and regulators to (i) configure nuanced constraints without retraining models or
detectors, (ii) share standardized rulesets across organizations, and (iii) audit model behavior
through interpretable rule violations. We found that our framework is not only effective, but
can also operate alongside LLMs in real-time.

3. Open Resources for the Community: To catalyze progress, we release code and tools for
constructing CEs, collecting activations, composing rules, and detecting violations. We further
provide an initial CE vocabulary and prototype misuse rulesets as a foundation for industry and
academic collaboration, inspired by community-driven threat intelligence in cybersecurity.

In summary, our central insight is that LLM behaviors can be detected by decomposing them into
independent elemental concepts. This not only improves precision but also decouples activation
engineering (constructing activation datasets) from safety configuration (defining rules). As a result,
GAVEL enhances practicality, interpretability, and community involvement in AI safety.

2 BACKGROUND & RELATED WORK

Transformers and Internal Activations. Large language models (LLMs) are Transformer net-
works (Vaswani et al., 2017) that map input token sequences into contextual hidden states through

2GAVEL: Governance via Activation-based Verification and Extensible Logic
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stacked self-attention and feedforward layers. Given a sequence x = (x1, . . . , xn), each layer pro-
duces hidden activations H(ℓ) ∈ Rn×d, where h

(ℓ)
i represents the hidden state of token xi and d

is the hidden dimension (typically 3k–8k in current 7–8B parameter models). These activations
flow through the residual stream, are projected to logits, and decoded into next-token probabilities.
Monitoring only input or output tokens for safety is limited, since instructions and intents can be
obscured or latent in the text (Cloud et al., 2025). As a result, many approaches now focus on mon-
itoring neural activations directly (Elhage et al., 2021; Rimsky et al., 2024; Zou et al., 2023; Han
et al., 2025).

Activation Analysis. Activation analysis begins with a dataset D that represents a behavior (e.g.,
honesty, lying). When D is passed through fθ to predict the next token, one can capture the inter-
mediate hidden states H(ℓ) at each layer. A common approach is to leverage benchmarks of harmful
behaviors such as toxicity, lying, or jailbreaking, and elicit activations by prefilling the model with
prompts x1:m that induce the targeted behavior. The goal is not to reproduce unsafe outputs, but
to expose the internal representations of these behaviors so they can be detected and suppressed.
More recent work emphasizes elicitation, where the model is prompted to perform or rephrase the
behavior so that internal computation focuses on the intended concept rather than superficial phras-
ing (Zou et al., 2023). These methods yield sharper activation signatures for downstream detection
and control.

Representation Engineering. Once activations are captured, internal representations of behaviors
can be identified and even steered to maintain control. A common step is to compress the hidden
states into per-token representations using a summary map ϕ (often the mean across layers): ri =

ϕ
(
h
(1)
i , . . . , h

(L)
i

)
∈ RD. Researchers then construct contrastive datasets that elicit the target

behavior with positive (e.g., honesty) and negative (e.g., lying) examples. From these activations,
two approaches are common: geometrically, by treating the contrast as a vector in activation space,
or with classifier probes that learn a separating boundary. For example, given contrastive activation
sets A+ and A−, a concept vector can be estimated as vc = 1

|A+|
∑

h∈A+h − 1
|A−|

∑
h∈A−h.

Variants refine this approach with dimensionality reduction methods such as PCA or SVD, or with
contrastive prompting to sharpen the signal (Zou et al., 2023; Wehner et al., 2025). The resulting
“reading vectors” can be used in multiple ways: diagnostically, to measure the presence of a concept
in a given activation, or operationally, by adding or subtracting the vector during inference to steer
model behavior (Turner et al., 2024). These steering operations are lightweight and interpretable, but
they also compress the full variability of concept activations into a single linear direction, potentially
discarding useful information. While Sparse Autoencoders (SAEs) can recover these fine-grained
features without supervision, they are computationally expensive to train and do not guarantee the
discovery of the specific safety-critical concepts required for policy enforcement (Bricken et al.,
2023; Cunningham et al., 2023).

An alternative is to model the activation distribution with machine learning. Classifier-based meth-
ods train a model g on token representations ri to predict concept presence y, where g : RD → Y
may be linear or non-linear (Alain & Bengio, 2016; Han et al., 2025). Classifiers have been widely
adopted in safety settings, for example to monitor harmful intent or detect jailbreak triggers, as they
can capture finer distinctions than a single geometric vector (Zhang et al., 2025; Wu et al., 2024).

Summary and Gaps. Activation-based methods show that internal concepts are measurable and
steerable, but as practical safeguards they face two main challenges: specification and application.
For specification, practitioners cannot explicitly define when safeguards should fire since they rely
on coarse misuse datasets over broad topics, which capture irrelevant signals and reduce precision.
We are the first to decompose activations into elemental units of cognition, enabling practitioners
to precisely define their target states over activations and obtain interpretable information upon de-
tection. On the application side, existing activation-based safeguards lack flexibility: they cannot
be easily configured to match new policies and require contrastive datasets for each domain, which
is burdensome. Our framework decouples activation engineering from safety design by introducing
modular elemental datasets, like a shared vocabulary to express states, usable across domains, mak-
ing safeguards composable and scalable through community collaboration. A recent work, CAST
(Lee et al., 2024), takes a step toward programmable safeguards, but remains coarse-grained since it
only lets users select the steering vector for a detected generic misuse behavior.

3
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Figure 1: Workflow of GAVEL. (1) Setup rules defined over Cognitive Elements (CEs) and specify
actions, optionally reusing public rule sets. (2) Collect CE activations Hc from both private and
public CE datasets Dc by running the target LLM and capturing activations. (3) Train a multi-label
classifier g on the CE activation datasets H = {Hc} to detect the required CEs. (4) During inference,
use g to identify rule-relevant CEs per token and enforce the user-defined Boolean rules. Because
rules and CE datasets are textual and model-agnostic, they can be shared and reused across models,
improving coverage and quality over time.

3 THE GAVEL FRAMEWORK

Our approach operationalizes safety monitoring through Cognitive Elements (CEs), interpretable
primitives of model behavior which can be extracted from model activations, and rules that express
policy constraints as logical predicates over CEs. Together, these form the GAVEL framework,
which allows practitioners to construct, share, and enforce safety specifications at the activation
level. We now define and present all of these components and describe the full operation of the
framework as presented in Figure 1.

3.1 COGNITIVE ELEMENTS (CE)

We define a CE as interpretable unit of model behavior, such as a cognitive action being performed,
a directive being issued, a behavior being exhibited, or a topic being reasoned about. For example,
possible CEs include the model making a threat, masquerading as a human, or issuing a person the
directive to go somewhere. CEs are defined at the token level: the state behind each generated token
may carry zero, one, or multiple CEs. A complete list of the CEs used in this paper is provided in
Table 1. Further details and descriptions of the CEs can be found in Appendix A.

Excitation datasets. To capture a particular CE c, we construct an excitation dataset Dc = {s(c)i },
where each s

(c)
i is a short text exemplar eliciting the target behavior. For example, the excitation

dataset for the CE “making a threat” would contain hundreds of threatening sentences such as “If
you don’t come now I will get angry” or “You will regret this unless you pay me.” Such datasets can
be authored manually or generated using an LLM, and are model-agnostic since they consist only
of text. When Dc is passed through the target model fθ, we collect the internal activations for each
generated token and use them to model the CE.

A naive way to elicit activations is to simply prefill the model with the exemplars in Dc and cap-
ture the resulting activations. However, we found that this approach often results in activations
that are weakly aligned with the intended CE. Following Zou et al. (2023), we “wrap” each sam-
ple with an explicit directive that prompts the model to consider the target concept. To further
align activations with the intended CE, we instruct the model not only to revise the content but
to do so explicitly in the context of that CE. Specifically, we present the model with the prompt:
Think about ⟨c⟩ while revising the following: ⟨s⟩ where s ∈ Dc and c is the name of the CE (e.g.,

making threats).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

In
co

rre
ct

 S
QL

 sy
nt

ax
LG

BT
Q+

El
ec

to
ra

l P
ol

iti
cs

Et
hn

or
ac

ia
l i

de
nt

ity
Sp

re
ad

in
g 

ha
te

 sp
ee

ch
Ta

xa
tio

n
SQ

L 
Qu

er
y 

Cr
af

tin
g

Bu
ild

 tr
us

t
Do

wn
lo

ad
/in

st
al

l
Se

nd
/tr

an
sf

er
En

ga
ge

 e
m

ot
io

na
lly

Cr
ea

te
 c

on
te

nt
Bu

y
M

as
qu

er
ad

e 
as

 H
um

an
Gr

an
t/a

pp
ro

ve
Pr

ov
id

e/
gi

ve
Pa

ym
en

t t
oo

ls
Go

 S
om

ew
he

re
Cl

ick
/e

nt
er

Pe
rs

on
al

 in
fo

rm
at

io
n

Sy
co

ph
an

tic
Co

ns
pi

ra
to

ria
l

Th
re

at
en

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

Ablation - Accuracy per CE 

 CEs 
Baseline Revision Instruction (RI) Elicited Revision Instruction (ERI)

Figure 2: Classification performance of different CEs using
different excitation methods, including ours (ERI).

We then collect the activations from
the generated tokens that follow.
This simple adjustment substantially
improves CE detection: as shown in
Figure 2, using this approach (ERI)
produces higher classification accu-
racy compared to both collecting ac-
tivation from naive prefilling (base-
line) and just using the directive to
revise with no contextualization on c
(RI).

Collecting CE activations. For-
mally, at generation step t and layer
ℓ, let a(ℓ)t ∈ Rd denote the attention output for token t at layer ℓ, where d is the model’s hid-
den dimension. The output consists of the multi-head attention weights applied to the value states,
aggregated across heads. We use attention outputs based on an ablation study showing superior
detection performance (average TPR of 95.5% compared to 82.3% for MLP outputs) by capturing
richer contextual information about how the model interprets each token in relation to its context.
We select a contiguous set of layers Λ using a layer-selection ablation (see Appendix B for details).
We then construct a per-token representation by stacking the attention outputs across these layers:
r
(c)
t = concat

(
{a(ℓ)t }ℓ∈Λ

)
∈ RD, where D = |Λ| d/ (scaling linearly with the model dimension).

For each CE c, the collected activations form the set Hc = {r(c)t | s ∈ Dc}. These sets serve as the
training material for the CE detector.

By design, each activation set Hc in the training collection H is curated to isolate a single CE at
a time. This design choice has two advantages: (1) it keeps CE datasets modular and composable,
enabling community contributions and reuse; and (2) it reduces complexity, since exhaustively con-
structing examples that cover all possible CE combinations in D would be prohibitively expensive.

3.2 DETECTING CES

At runtime, we need to decide for each token whether one or more CEs are present. Importantly,
co-occurrence is common: a token may simultaneously involve, for example, both Masquerade as
Human and Payment tools. To capture this, we train a multi-label classifier g : RD → {0, 1}K that
predicts CE presence from each hidden state. Empirically, we found that despite being trained on
isolated excitation data, the detector successfully generalizes to identify overlapping CEs in real-
world data. In our experiments, 54% of the detected malicious dialogues involved tokens with
multiple active CEs (see Appendix C) Each training sample is a pair (r(c)t , ec) where ec is the one-
hot vector for CE c. Training batches are formed by shuffling across different Hc sets.

During deployment, the activation vector for each new token rt is passed to g, which outputs
ŷt = g(rt) ∈ [0, 1]K . Each component ŷt[c] represents the probability that CE c is active for
token t. Note, multiple CEs may receive high probabilities simultaneously since the outputs are not
constrained to sum to one.

3.3 RULE SPECIFICATION, DEVELOPMENT & ENFORCEMENT

With a CE detector in place, we can state, in human-readable rules, what to look for in activations
and what to do when it appears. Each rule pairs (i) a predicate over one or more CEs with (ii) an
associated response, which we refer to as the enforcement action.

Temporal monitoring. Since cognitive elements may appear or disappear as a model generates
content, rules must be evaluated over a temporal horizon. At time t, we define a window Wt =
{max(1, t − N + 1), . . . , t} of size N . From this window we construct a CE presence vector
st, where st[c] = 1 if element c has appeared in any of the tokens in Wt. In our experiments,
we typically let N span the entire conversation, but shorter or adaptive windows are possible and
may better capture context-sensitive behaviors. While in this paper we evaluate discrete detection
performance (binary outcomes), the sensitivity of GAVEL can be adjusted using continuous soft

5
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scores. We detail the calculation of these scores and present ROC curves demonstrating robust
performance across decision thresholds in Appendix D.

Table 1: The Cognitive Elements
(CEs) used, full details in Appendix A.

Directive to User LLM Behavior
c1 Buy
c2 Click/Enter
c3 Download/Install
c4 Go Somewhere
c5 Grant/Approve
c6 Provide/Give
c7 Send/Transfer

LLM Task
c8 Create Content
c9 Build Trust
c10 SQL Query
Crafting

c11 Engage
Emotionally
c12 Threaten
c13 Spreading Hate
Speech
c14 Masquerade as
Human
c15 Sycophantic
c16 Conspiratorial

Topic
c17 Taxation
c18 Incorrect SQL
Syntax
c19 Electoral Politics
c20 Personal
Information
c21 Payment Tools
c22 LGBTQ+
c23 Ethnoracial
Identity

Table 2: Predicates used in rules,
grouped by misuse domain.

Category Attack
Pattern

Predicate Logic
Rule

CybercrimePhishing c8 ∧ (c2 ∨ c6 ∨
c20)

SQL
injection

c10 ∧ c18

Psycholo- Delusion c16 ∧ (c11 ∨
c14 ∨ c15)

gical
Harm

Anti-
LGBTQ

c8 ∧ c22 ∧
(c12 ∨ c13)

Elections c8 ∧ c19
Racism c8 ∧ c23 ∧

(c12 ∨ c13)

Scam
Automa-
tion

Tax
Authority

c12 ∧ c17

Romance c11 ∧ (c1 ∨ c2 ∨
c3 ∨ c4 ∨ c5 ∨
c6 ∨ c7 ∨ c21) ∧
(c9 ∨ c14)

E-
Commerce

c20 ∧ c21 ∧ (c1 ∨
c2 ∨ c3 ∨ c4 ∨
c5 ∨ c6 ∨ c7)

Predicates and actions. We express rules as predicates
over CEs, where each predicate is a Boolean formula over
the presence vector st using ∧, ∨, and ¬. A list of the
predicates used in this paper can be found in Table 2. A
rule fires at time t when its predicate evaluates true, at
which point the associated action is executed. Depending
on the rule configuration, the system can interject by stop-
ping the model, override the output with a pre-scripted
response, or mitigate the behavior by steering the activa-
tions directly (Turner et al., 2024; Rimsky et al., 2024).
In this work, we focus on evaluating the detection of rule
violations, as these response and mitigation methods are
well-established and can be applied to GAVEL rules as is.

For usability, we express these rules in a human-readable
syntax, similar to that used in established cyberse-
curity detection technologies such as Snort, Suricata,
Zeek, Sigma/YAML, and YARA: a condition syntax that
compiles deterministically to the underlying formula.
⟨action⟩ if ⟨condition⟩ For example, consider an LLM

misused to generate phishing content (SMS or emails that
lure victims into revealing information or clicking mali-
cious links/attachments). A rule to detect this might be:

refuse if task:creating content AND
(directive:click OR directive:grant OR
directive:personal information)

where a task is an objective (e.g., instruction) being car-
ried out by the LLM and a directive is a command given by
the LLM (e.g., to a human). This rule corresponds to the
predicate π = c8 ∧ (c2 ∨ c6 ∨ c20), which fires whenever
the model is trying to create content for a user that exhibits
the respective dangerous solicitation within the monitored
horizon. By adopting this syntax, we improve readability
while encouraging future development; just as detection
technologies in cybersecurity evolved from static signa-
tures into dynamic rule languages, we intend GAVEL’s
rules to naturally extend to capture dynamic states over the
context window and support richer enforcement actions.

Designing CEs and Rules. A key practical challenge is
selecting the right level of granularity. If CEs are too nar-
row, rules become unwieldy (e.g., covering every variant
of hate speech with highly specific CEs). If they are too
broad, false positives return us to the limitations of generic
misuse categories. From our experience, a top-down pro-
cedure works best: (1) scope the violation by identifying a
concrete misuse of concern (e.g., “automation of a finan-
cial scam over the phone”), while avoiding umbrella categories (“all phone scams”), (2) given that
setting and threat model, define a small number of interpretable CEs that capture the relevant activ-
ities or topics (e.g., Masquerade as Human, Threaten, Payment Tools), and (3) compose the logical
rule(s) that cover the violation using these CEs. This procedure balances precision and coverage
while keeping rules interpretable and maintainable.

6
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3.4 THE GAVEL WORKFLOW

In Figure 1 we present how a model owner can utilize framework to enforce explicit policies and
safeguards with community support. The full GAVEL pipeline proceeds as follows: First, the com-
munity may contribute CE datasets and rule sets, which are text-only and thus model-agnostic. Then
a model owner: (1) adopts or modifies a ruleset aligned with their policies; (2) elicits CE activations
Hc on their model fθ using private or public CE datasets; (3) trains the CE detector g; and (4) de-
ploys the system in real time. At inference, each token’s activations are mapped to rt, classified into
CE predictions ŷt, aggregated into st, and checked against all predicates. Rules that fire trigger their
specified actions. This decoupling of CE construction from rule configuration makes it possible to
update safety constraints rapidly, reuse shared vocabularies, and support transparent audit of model
behavior.

Automating CE and Rule Development. While defining fine-grained CEs and composing rules
may seem labor-intensive, LLMs can automate much of this work. To illustrate this, and to support
GAVEL’s reproducibility, we built an agentic tool that, given a natural-language description of a
domain and a target violation or policy requirement, automatically generates CEs, rules, and exci-
tation datasets for model training. The tool can also incorporate an existing database of community
CEs and rules, reducing redundancy and promoting a shared, reusable vocabulary. It includes a
user interface with test-time CE visualization and is available as source code.3 For more details see
Appendix E.

Advantages of GAVEL. GAVEL offers several key benefits. (1) Because CEs are modular and com-
posable, the community can share them like a common vocabulary along with rules for a wide range
of policies, much as in cybersecurity. This creates an ecosystem where even newcomers can adopt
existing rulesets and configure them to their needs with minimal effort. (2) By defining states more
precisely, model owners can reduce false positives: rather than relying on broad misuse datasets that
capture unrelated behaviors (for example, a generic “untruthfulness” dataset that may incorrectly
flag storytelling), GAVEL enables rules that encode intent directly. (3) Decoupling dataset curation
from rule configuration makes deployment and revision fast, since owners can simply select rules
from community CEs and adapt them to policy needs. (4) Unlike many other activation analysis and
representation engineering methods, GAVEL does not require training on benign data, achieving
precision with less effort. (5) Finally, GAVEL is inherently interpretable: when a rule fires, both the
predicate and the specific triggering tokens are visible, providing transparent explanations of model
behavior Figure 4.

Discussion on Limitations. While an explicit, Boolean rule-based framework may at first seem too
restrictive to capture abstract neural concepts and behaviors, we argue that GAVEL’s requirement
to clearly specify dangerous internal states is a strength: high-precision and safety-critical settings
demand transparent, exact, and auditable definitions of what constitutes a violation, something cur-
rent neural activation based approaches cannot provide. Scalability is maintained because CE and
rule creation can be largely automated using our agent-driven pipeline and because GAVEL sup-
ports community sharing, allowing practitioners to reuse, adapt, and iteratively improve a shared
library of CEs and rules. This collaborative ecosystem also mitigates concerns about subjectivity
by enabling users to choose and refine the rules that best match their domain requirements rather
than relying on a single universal policy or misuse dataset. Finally, GAVEL is orthogonal to other
safety methods; it can operate alongside content moderation or alignment techniques to provide an
additional high-precision layer where explicit guarantees matter most.

Rule-based detection remains central in modern cybersecurity because it enables explicit, shareable,
and enforceable specifications, and we see GAVEL as a first step toward bringing the same clarity,
community collaboration, and governance foundations to AI safety.

4 EVALUATION

4.1 SETUP

Datasets. In this paper, we do not attempt to exhaustively develop rules for existing benchmark
datasets, as we believe this is best pursued as a community effort over time. Our goal is instead to

3Redacted Link To Automation Source Code
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demonstrate the performance and feasibility of our proposed framework. Accordingly, we focus on
a curated set of misuse and policy violation scenarios that span diverse safety-relevant domains. We
consider nine misuse categories grouped under three domains: cybercrime, psychological harm, and
scam automation. Within cybercrime, we evaluate scenarios where users attempt to elicit assistance
in crafting phishing content or SQL injection payloads. For psychological harm, we target the misuse
of LLMs for generating anti-LGBTQ or racist content, LLM conversations that reinforce delusional
thinking, as well as producing propaganda for political elections. Finally, for scam automation,
an area of growing concern in agentic AI, we simulate three settings inspired by real-world cases:
tax scams (e.g., IRS impersonation), e-commerce scams (e.g., fake Amazon customer support),
and romance-baiting scams where adversaries build emotional trust over extended conversations
before exploitation (Gressel et al., 2024; Whitehouse, 2025). These categories were chosen to reflect
settings where model owners may want to enforce either safety or policy constraints, whether the
restricted behavior is explicitly requested by the user or initiated by the model itself.

We generated datasets for these nine misuse categories using GPT-4.1, which were then validated
using GPT-5. Each dataset consists of multi-turn dialogues spanning 7–18 user–assistant exchanges,
since many violations only emerge over the course of extended interaction. For each of the nine
categories, we created 150 misuse conversations that illustrate the targeted violation (50 were held
out for calibration of the CE thresholds). To stress-test precision, we additionally constructed 500
benign but closely related conversations per category. For example, in the racism category, the
benign dataset includes cultural or historical questions about specific ethnic groups, without harmful
content. This design allows us to evaluate whether detectors can maintain high recall on violations
while avoiding false alarms on closely related but permissible topics. In total we developed 14,950
multi-turn conversations. To assess deployment FPR, we evaluate on a benign background dataset
of 1,000 natural conversations split between UltraChat (Ding et al., 2023) and DialogueSum (Chen
et al., 2021) where GAVEL with Mistral 7B performed 0.088 and 0.008 FPR respectively (Table 8).

Baselines & GAVEL Setup. We evaluate GAVEL against four common safeguard approaches: (i)
loss-based finetuning, where safety signals are incorporated directly into training; (ii) reading vector
projection, where harmful behaviors are monitored through linear directions in activation space;
(iii) content moderation APIs, which operate on surface text; and (iv) activation classification, the
method most similar to ours. For baselines, we include industry-standard moderation tools: Llama
Guard 4 (Inan et al., 2023), Google Perspective API (Lees et al., 2022), and OpenAI Moderator
API (OpenAI, 2023), as well as recent academic works: RepBending (Yousefpour et al., 2025),
CircuitBreakers (Zou et al., 2024), JBShield (Zhang et al., 2025), and CAST (Lee et al., 2024). We
also evaluated a classifier to detect activations belonging to each misuse category (as opposed to
CEs) to demonstrate the benefit of granularity. We used author-provided models where available,
otherwise training on our datasets (details in Appendix F).

To setup GAVEL, we defined CEs and constructed excitation datasets following the procedure in
Section 3.2, with the full vocabulary and rules detailed in Table 1 and Table 2. To minimize infer-
ence overhead, we implemented the detector as a lightweight multi-label RNN (3 GRU layers, 256
units) processing 5-token segments, though the framework supports any classification architecture.
The model was trained on 300 samples per CE (80:20 split) using Adam (3e−4) and Binary Cross
Entropy All datasets were generated using GPT-4.1; the code and data are released with this paper.4

Our evaluation focuses on the alert/stop action, which reduces to the task of accurate detection;
all baselines are evaluated under this setting for comparability. While future work could extend to
actions such as refusal or steering, here we report standard metrics: true positive rate (TPR), false
positive rate (FPR), balanced accuracy (b-ACC), ROC-AUC, and F1 score.

4.2 RESULTS

Baseline Performance. In Table 3 we compare the performance of GAVEL against all baselines,
using Mistral-7B as the underlying model. We evaluated on ROC-AUC, balanced accuracy (b-
ACC) and FPR. Across all eight misuse categories, GAVEL achieves the best balance of precision
and recall, with AUC scores above 0.98 and near-zero false positives even against the challenging
benign conversations. By contrast, finetuning approaches show inconsistent generalization across
categories and projection based baselines either suffer from lower AUC and balanced accuracy rates.

4Redacted Link to Source Code
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Table 3: Performance of GAVEL versus baselines
across misuse categories using the Mistral-7B.
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AUC 0.89 0.99 0.98 0.99 0.90 0.98 0.99 1.00 1.00 0.97
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Activation
Classifier
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GAVEL
FPR 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.00 0.00 0.00

Moderation APIs (Perspective, OpenAI,
Llama Guard) maintain low false pos-
itives but miss many harms, especially
in psychological harm and scam do-
mains. Classification on activations per
misuse category leads to overgeneraliza-
tion and higher false positives. In con-
trast, GAVEL achieves higher precision
by identifying target cases based on each
CE definition separately. This supports
the conclusion that models trained on mis-
use datasets often pick up irrelevant pat-
terns, whereas GAVEL is less affected be-
cause target behaviors are explicitly de-
fined. Additional results and the perfor-
mance on benign datasets can be found in
Appendix G. In summary, these results
validate GAVEL’s central claim: compo-
sitional rules over cognitive elements en-
able configurable and precise detection of
targeted model states, while maintaining
minimal false positives on both natural
and challenging benign conversations.

Automated Adaptation to External
Benchmarks. To demonstrate the scala-
bility of our framework, we evaluated the
automated CE generation tool (described in subsection 3.4) on samples from four existing safety
benchmarks: Phishing guidance from PKU-SafeRLHF (Ji et al., 2024), Political Risk from Reason-
ing Shield (Li et al., 2025), and Hate Speech from ToxiGen (Hartvigsen et al., 2022). The automation
pipeline synthesized the necessary CEs and rules without manual intervention, achieving strong de-
tection performance “out-of-the-box” (e.g., 0.97 TPR on Political Risk and 0.94 TPR on ToxiGen).
These results confirm that GAVEL can be rapidly adapted to new, diverse data distributions via
automation. Detailed results are provided in Appendix H. Figure 3: The weighted accuracy of

GAVEL over different models for each
evaluated scenario.
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Comparison with LLM-based Moderation & Adver-
sarial Robustness. We evaluated the performance of a
judge LLM (GPT-4) explicitly told what to look for in
each category. The judge LLM matched GAVEL’s per-
formance on plain-text violations (see Appendix I). How-
ever, surface-level text moderation is inherently brittle.
We tested both systems against three adversarial strate-
gies: Misdirection (diluting harmful content with benign
chatter), Goal Hijacking (prompt injection to override
the LLM monitors instructions), and Evasion (having an
LLM revise the conversation to be more stealthily). As
shown in Appendix I, Table 11, GAVEL remains robust
across these vectors because it monitors internal cogni-
tive states rather than surface tokens. For example, under
Misdirection attacks, GPT-4’s average detection rate col-
lapsed (e.g., dropping to 12% on Delusional Thinking and 15% on Election interference), whereas
GAVEL maintained > 85% recall across all categories. This confirms that while text-only mod-
eration sees what the model says, activation monitoring is necessary to reveal what the model is
actually doing. To emphasize this, we created another dataset on Deceptive Marketing (Appendix
I.3), a subtle scenario where an LLM weaves self-promotion into medical advice. While GPT-4
achieves struggles to detect the hidden intent, with only a 24% detection rate, GAVEL achieves 73%
by detecting the co-occurrence of Trust Seeding and Healthcare topics.

Model Generalization. Because Cognitive Elements are defined over text-only excitation datasets
(i.e., Dc), they transfer directly across models. As shown in Figure 3, the same CE datasets and rules
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Figure 4: Per-token CE probabilities from an LLM automating a tax authority
scam. The mid-conversation snippet works on three languages (top to bottom:
Mandarin, English, Spanish) despite excitation data being in English. De-
tected CEs: trust seeding (pink), taxation (red), personal information (gray).

TPR FPR

E
ng

lis
h Anti-LGBTQ 0.91 0.00

Phishing 0.84 0.02
Delusion 0.87 0.01
Tax Authority 0.92 0.00

Sp
an

is
h Anti-LGBTQ 0.95 0.00

Phishing 0.98 0.02
Delusion 0.91 0.00
Tax Authority 0.90 0.00

M
an

da
ri

n Anti-LGBTQ 0.86 0.00
Phishing 0.90 0.01
Delusion 0.83 0.01
Tax Authority 0.96 0.00

Table 4: Perfor-
mance of GAVEL
(over Mistral-7B)
on four random
misuse categories
in three languages:
English, Spanish,
Mandarin.

protect LLaMA-8B, Mistral-7B, Qwen3-8B and Gemma-4B against the same misuse categories. We
observed that smaller or weaker models sometimes yielded noisier activations, but the compositional
rule structure was able to compensate by acting as an ensemble.

Representation Robustness. Like other activation-based methods, GAVEL is agnostic to the sur-
face form of inputs and outputs. However, a natural concern is that CE definitions written in English
may not generalize across different languages and may need to be redefined for each one. To test
this, we evaluated four random misuse categories in Spanish and Mandarin. As shown in Table 4,
performance is nearly unchanged, suggesting that CEs capture abstract concepts that remain stable
across languages. Moreover, it shows that CE datasets, shared across the community, need only to
be written in one popular language. Figure 4 further illustrates this: during a simulated tax scam, g
reliably detects the same CEs (Taxation and Build Trust) token by token, independent of language.

Efficiency & Practicality. For adoption, safeguards must operate efficiently alongside large models.
Our RNN-based CE detector g requires only ∼150 MB of GPU memory. On an RTX Ada 6000
running Mistral-7B (without GAVEL), our mean inference latency was 31.8 ms per token. When we
added GAVEL, runtime increased by only 0.21±0.01 ms per token, corresponding to <1% overhead
(≈ 0.6%). Therefore, GAVEL can be an efficient real-time safeguard for real world deployments.
Extended results on the runtime benchmark can be found in the Appendix J.

Adversarial Attacks on GAVEL. While GAVEL mitigates representation attacks on surface text, it
theoretically introduces a new vector: the CE-level jailbreak, where an adversary attempts to trigger
harmful behavior without activating the associated CE signatures. Accomplishing an attack (e.g., tax
scam) without getting the model to suppress the activation of CEs (e.g., threat) is challenging since
it undermines the attack strategy. Nevertheless, future work should explore this new adversarial
domain to strengthen the future of rule-based AI safety.

5 CONCLUSION

In this paper, we introduced GAVEL, a rule-based activation safety framework that decomposes
model behavior into Cognitive Elements (CEs) and enforces safeguards through logical rules. This
approach improves precision, flexibility, and interpretability over coarse misuse detectors, while
enabling community sharing of reusable CEs and rulesets. GAVEL marks a paradigm shift: from
static, generic activation-based safeguards to programmable, collaborative ones. Future work should
explore, other CE detection methods (e.g. transformers, SAEs), devise better windowing methods to
capture long-term or dynamic rule violations, and investigate attacks on this novel domain of rule-
based activation safety. In summary, GAVEL demonstrates that activation safety can be reimagined
as modular, auditable, and adaptive, establishing a foundation for collaborative, transparent, and
accountable AI governance.
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REPRODUCIBILITY STATEMENT

To support reproducibility, we will release all code and datasets developed in this work. This in-
cludes the full implementation of our GAVEL framework, covering Cognitive Element (CE) elicita-
tion, activation extraction, rule composition, and violation detection. We provide the source code for
the automatic creation of CE datasets and Rules, as well as the source code for our visualization tool.
We will also provide the complete set of excitation datasets and rule sets used in our experiments,
together with scripts for reproducing the evaluation results presented in Section 4. These resources,
along with detailed descriptions of the CE vocabulary and rule specifications in Tables 1–2, will
enable independent verification and extension of our results by the community.
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APPENDIX

A ADDITIONAL INFORMATION

In this section we provide more details on the content of the paper. In Table 5, we present all the CE
used this paper along with their descriptions. In Figure 5 we present the full template used to elicit
CE activations along with a complete example.

Code Name Definition

D
ir

ec
tiv

e
to

U
se

r CE1 Buy Directives for the user to get them to buy products or services.
CE2 Click/Enter Instructing the user to click links or buttons.
CE3 Download/Install Directives for the user to download or install software/apps.
CE4 Go Somewhere Directives for the user to go somewhere physically (e.g., travel, meet in person).
CE5 Grant/Approve Directives for the user to give permissions or grant access (e.g., accounts, devices, systems, remote control).
CE6 Provide/Give Directives for the user to provide information (e.g., personal details, answers, data).
CE7 Send/Transfer Directives for the user to get the user to send or wire a desired object

L
L

M
Ta

sk CE8 Create Content Creation of structured content (e.g., posts, articles, reports).
CE9 Build Trust Attempts to build false credibility or rapport (e.g., establishing trust, portraying reliability or authority).
CE10 SQL Query Crafting Generation of SQL queries (e.g., SELECT statements, database instructions).

L
L

M
B

eh
av

io
r CE11 Engage Emotionally Romantic or flattering language aimed at emotional closeness (e.g., compliments, affection, making user feel special).

CE12 Threaten Intimidation through threats (e.g., harm, legal/tax consequences, urgent escalation).
CE13 Spreading Hate Speech Use of abusive, hostile, or demeaning language against individuals or groups.
CE14 Masquerade as Human Adoption of a human persona (including experiences, emotions, or memories)
CE15 Sycophantic Uncritical or excessive agreement with the user (e.g., always praising, reinforcing user’s statements without evaluation).
CE16 Conspiratorial Endorsement or suggestion of conspiracies (e.g., secret plots, misinformation, fake authorities).

To
pi

c

CE17 Taxation Presence of axes, tax authorities, or tax-related demands.
CE18 Incorrect SQL syntax Presence of malformed or illogical SQL statements (e.g., tautologies like 1=1, broken query logic).
CE19 Electoral Politics Presence of elections, political parties, candidates, campaign activity, or partisan viewpoints.
CE20 Personal information Presence of sensitive personal data
CE21 Payment tools Presence of payment instruments (e.g., gift cards, cryptocurrency, wire transfers, payment applications).
CE22 LGBTQ+ Presence of LGBTQ community, queerness, sexual orientation, or gender identity.
CE23 Ethnoracial identity Presence of ethnicity, nationality, or race.

Table 5: The full list of CEs and their descriptions used in our study

13

https://www.businessinsider.com/sam-altman-federal-reserve-financial-institutions-voice-prompt-authentication-2025-7
https://www.businessinsider.com/sam-altman-federal-reserve-financial-institutions-voice-prompt-authentication-2025-7
https://www.businessinsider.com/sam-altman-federal-reserve-financial-institutions-voice-prompt-authentication-2025-7
https://dl.acm.org/doi/10.1145/3658644.3690322
https://dl.acm.org/doi/10.1145/3658644.3690322
https://aclanthology.org/2025.acl-long.1173/
http://arxiv.org/abs/2310.01405


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Template for any CE
Optional prefix for added performance:

You are a <figure>with expertise in the
domain of <Cognitive Element>.
When revising a statement, you refine
it into a realistic and representative ex-
ample of <Cognitive Element>.
You draw explicitly on your knowl-
edge in the domain by incorporating
<relevant semantics and conceptual
structures associated with the Cogni-
tive Element>.

Excitation Prompt:

Think about <Cognitive Element>
while revising the following: <seed
statement>

Model Output (activations taken from here):

<Revised Statement>

Example for “Hate Speech”
Optional prefix for added performance:

You are a linguistic analyst with exper-
tise in the structure and rhetorical pat-
terns of hate speech.
When revising a statement, you refine
it into a realistic and representative ex-
ample of dehumanizing language.
You draw on your knowledge of how
hate speech is constructed—through
slurs, stereotypes, mockery, exclusion,
and inflammatory rhetoric.

Excitation Prompt:

Think about posting hate speech while
revising the following: ’You’re all em-
barrassing to humanity.’

Model Output (activations taken from here):

’You’re nothing but an embarrassment
to humanity.’

Figure 5: The template (left) and an example (right) for collecting activations for a specific CE (c)
to create Hc. Here ‘seed statement’ is a sentence from the CE dataset Dc

.

B ABLATION STUDY

B.1 ATTENTION VS HIDDEN STATES

To determine the optimal source for extracting Cognitive Elements (CEs), we conducted an ablation
study comparing the performance of classifiers trained on Attention Outputs (our chosen method)
versus Hidden States (i.e. the activations of the hidden layer of the MLP).

We extracted activations from the same layer range (13–27) for both settings. The Hidden State
baseline utilizes the model’s internal representations with a 4× larger embedding dimension.

As shown in Table 6, the Attention Outputs consistently yield higher efficacy. While the Hidden
States contain rich information, they appear to be noisier for this specific task. Notably, the At-
tention Outputs provided a significant reduction in False Positive Rates (FPR), particularly in the
Benign Data (0.204 → 0.010) and E-commerce (0.470 → 0.140) categories, while simultaneously
improving or maintaining True Positive Rates (TPR) across almost all categories. This confirms that
CEs are better localized within the attention mechanism’s information flow.
Table 6: Performance comparison between detectors trained on Hidden States vs. Attention Outputs
(Ours). Our method achieves higher True Positive Rates (TPR) and significantly lower False Positive
Rates (FPR).

True Positive Rate (TPR) False Positive Rate (FPR)
Category Hidden State Attn Output (Ours) Hidden State Attn Output (Ours)
Electoral Politics 0.990 0.990 0.020 0.010
Anti-LGBTQ 0.950 0.990 0.000 0.000
Phishing 0.850 0.970 0.000 0.000
Racism 0.310 1.000 0.060 0.090
Delusional 0.880 0.920 0.000 0.000
Romance 0.900 0.960 0.000 0.000
E-commerce 0.790 0.890 0.470 0.140
SQL Injection 0.980 0.940 0.000 0.000
Tax Authority 0.760 0.940 0.000 0.000
Benign Data — — 0.204 0.010
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B.2 LAYER SELECTION

To determine the optimal layers for sourcing representations, we conducted an ablation study by
training GAVEL’s classifier on hidden states from four different contiguous layer ranges of the base
language model. Figure 7 shows the accuracy of CEs across different layer ranges. The compar-
ison of TPR and FPR across our different misuse categories and its benign counterpart is shown
in Figure 6. Our results on Mistral 7B clearly indicate that the mid-to-later layers ([13-26]) pro-
vide the best results. This finding aligns with prior work Zou et al. (2023); Panickssery et al. (2023),
which has also identified mid-to-later layers as being crucial for capturing the rich, abstract semantic
representations required for complex downstream tasks.
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Figure 6: Layer ablation study comparing TPR and FPR across transformer layers on Mistral 7B.
The highlighted mid-to-later layer [13-26] provides optimal performance with high detection rates
and minimal false positives on the misuse classes.

C ANALYSIS OF CE CO-OCCURRENCE

A natural question regarding our training methodology, which uses datasets (Dc) that isolate a single
CE at a time, is whether the resulting detector can handle tokens where multiple concepts “interfere”
or co-occur.

Our evaluation confirms that the shared representation space allows the multi-label classifier to inde-
pendently recognize distinct semantic features even when they appear simultaneously. We analyzed
all conversations in our evaluation set and found that 54% of dialogues contained tokens where
multiple CEs exceeded their detection thresholds simultaneously.

Figure 8 illustrates three such examples from our test set. In these plots, we observe distinct CEs
(represented by different colored lines) rising and overlapping on specific tokens. For instance, a
model may simultaneously activate Engage Emotionally (pink) and Trust Seeding (yellow) when
grooming a victim, or overlap Create Content with Harmful Directives. This demonstrates that
GAVEL effectively disentangles and detects concurrent cognitive states without requiring combina-
torial training data.
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Figure 7: Layer ablation study comparing accuracy of different CEs across transformer layers on
Mistral 7B. The highlighted mid-to-later layer [13-26] provides optimal performance.

Figure 8: Per-token probability plots showing the simultaneous detection of multiple Cognitive El-
ements (CEs) on single tokens. Despite being trained on datasets where CEs appear in isolation,
GAVEL’s multi-label classifier successfully identifies co-occurring concepts in real-world adversar-
ial dialogues.

D ROC ANALYSIS AND RULE SCORING

Continuous Rule Scoring. In production environments, practitioners often need to tune the sensi-
tivity of a safeguard to balance true positives (blocking attacks) against false positives (interrupting
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benign users). To facilitate this, we define a continuous confidence score for each rule based on the
detection probabilities of its constituent Cognitive Elements (CEs).

For a conjunctive rule R requiring a set of Cognitive Elements CR = {c1, c2, . . . , ck}, we calculate
the rule confidence score SR as the geometric mean of the individual CE probabilities P (ci) output
by the multi-label classifier:

SR =

( ∏
c∈CR

P (c)

) 1
|CR|

(1)

This aggregation method provides a length-normalized estimate of rule presence. Crucially, the
geometric mean properties ensure that the aggregate score drops precipitously if any single required
CE is missing (i.e., has a low probability), regardless of how high the other probabilities are. This
ensures that the rule score remains high only when all necessary semantic components are present
simultaneously.

Performance. We utilized these continuous scores to generate Receiver Operating Characteristic
(ROC) curves for our misuse scenarios. As shown in Figure 9, GAVEL exhibits excellent sepa-
rability, with Area Under the Curve (AUC) values approaching 1.0 for nearly all categories. This
indicates that the binary results reported in the main paper are not brittle; rather, GAVEL provides a
stable control surface for adjusting detection sensitivity.
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Figure 9: ROC curves for the defined ruleset, demonstrating smooth and reliable threshold control,
with nearly all rules achieving near-perfect discrimination and AUC values approaching 1.0

E GAVEL AUTOMATED RULE AND CE GENERATION PIPELINE

Overview: The GAVEL framework is a rule-based detection system that operates over an LLM’s
activations. However, defining these rules and extracting their underlying Cognitive Elements (CEs)
can be challenging and labor-intensive. Although community contributions can address much of this
work, there is a need to streamline the process. We introduce an automated system that reduces the
manual effort required for rule development and CE dataset creation. The system leverages LLM
agents to automatically: (1) generate rule sets based on scenario descriptions, (2) identify missing
CEs needed to support new rules, and (3) generate excitation datasets for training GAVEL classi-
fiers on these CEs. This system forms an end-to-end pipeline that takes users from initial scenario
conception through to deployable rules and CEs. The pipeline begins with an interactive scenario
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description with a chat agent covering both user and assistant figures of speech, instructional versus
conversational framing, behavioral patterns, and safety constraints at risk of violation. This descrip-
tion feeds two parallel automated processes. The first generates rules and CEs based on the scenario
and existing CE inventory with judge LLM verification, followed by excitation dataset generation
for any new CEs, also verified by a judge LLM. The second process creates a scenario dataset con-
figuration specifying misuse variations, followed by synthetic conversation generation for testing
GAVEL with the new rules. The full source code for the automation pipeline is available online.5

F BASELINE IMPLEMENTATION DETAILS

To ensure a fair and rigorous comparison, we evaluated GAVEL against a diverse set of baselines
ranging from surface-level content moderators to advanced activation steering methods. Table 7
summarizes the objective, input mechanism, and training configuration for each method. Below, we
provide additional specific details regarding implementation and evaluation logic.

Table 7: Summary of baseline configurations. “Concatenated” indicates that multi-turn dialogues
were flattened into a single string for processing.

Baseline Mechanism & Objective Input Type Training / Setup Details

Activation Classifier Multi-class classifier
predicting the specific
use-case.

Per-token Attention
Output

Trained on 9k malicious
dialogues (1k per
use-case). 80/20 train-val
split. Prefilled Dialogue

JBShield Multi-class classifier
predicting general harm
and use-cases.

Per-token Hidden State Trained on 4k dialogues
for general harm (2k
harmful/harmless) and 2k
per use-case specific
vector. Input
concatenated.

Legilimens Binary moderator using a
3-layer MLP on hidden
states (LLaMA-2
architecture).

Per-token Hidden State Trained on 9k harmful
and 9k harmless
dialogues. 450 of each
held out for threshold
calibration. Input
concatenated.

CAST Detection via projection
onto activation-difference
vectors.

Per-token Hidden State Trained on 9k difference
vectors derived from
(malicious, neutral) pairs.
Input concatenated.

RepBending Steering via
representation
engineering.

Per-token Hidden State Inference-time method
(No training). Input
concatenated.

CircuitBreakers Steering via circuit
disruption.

Per-token Hidden State Inference-time method
(No training). Input
concatenated.

Google Perspective Surface text toxicity
scoring.

Raw Text Commercial API. Input
concatenated.

LlamaGuard 4 Classifier for
MLCommons safety
policy violations.

Raw Text Pre-trained weights. Input
concatenated.

OpenAI Moderator Classifier for policy
violations (hate,
self-harm, etc.).

Raw Text Commercial API. Input
concatenated.

5Redacted for the double blind policy
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F.1 EVALUATION LOGIC

Data Formatting for Multi-turn Dialogues. Our evaluation dataset consists of multi-turn dialogues
between a user and an assistant. GAVEL and the Activation Classifier process tokens sequentially,
token-by-token. For the baselines that operate on complete contexts (CAST, RepBending, Circuit-
Breakers, JBShield, Legilimens and all Content Moderation APIs), we flattened the conversation
history. Specifically, all turns (User and Assistant) were concatenated into a single string separated
by spaces before being passed to the model.

Defining “Detection” for Steering Methods. Several baselines (RepBending, CircuitBreakers,
CAST) are originally designed as defense or steering mechanisms rather than binary detectors. We
adapted them for our detection metrics as follows:

• CAST: We projected the model’s activations onto the learned activation-difference direc-
tion vector. A violation was flagged if the projection magnitude exceeded a calibrated
threshold. This is the first step of the CAST algorithm, we simply did not perform the
steering objective.

• RepBending & CircuitBreakers: These methods aim to force the model to refuse harmful
queries. In order to determine if the intervention was successful we would pass the model
a harmful promt and ask it to repeat the prompt - if the model repeated the prompt we
counted this as a false negative, if it refused to comply, it was counted as a true positive. A
judge LLM was used to determine if the model complied or not. These are inline with the
original authors methods.

Model Architecture Nuance. While GAVEL and most baselines were evaluated on the spe-
cific models listed in the main text (e.g., Mistral-7B, LLaMA-3), Legilimens was evaluated using
LLaMA-2. This is because Legilimens is specifically architected for LLaMA-2, and we utilized the
exact 3-layer MLP moderator configuration provided by the authors to ensuring a faithful reproduc-
tion of their results.
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Figure 10: Average performance across the misuse categories.

G ADDITIONAL RESULTS

Figure 10 presents the average performance of all the baseline methods across the generated datasets.
Table 8 presents the full performance comparison between GAVEL and the baselines with all met-
rics.

For all results in the paper, balanced-ACC, FPR and TPR thresholds were calibrated via a TPR-FPR
analysis, utilizing both held-out use cases and a dedicated set of 20 verified multi-turn dialogues per
CE.

Finally, Figure 11 provides an example conversation with an LLM assistant that is flagged as mali-
cious by all baselines but not by GAVEL.

H EVALUATION ON EXTERNAL DATASETS

To assess the generalization capabilities of our automated pipeline, we applied the GAVEL au-
tomation tool to three external datasets not seen during development. We sampled scenarios from
PKU-SafeRLHF (Phishing category), Reasoning Shield (Political Risk), and ToxiGen (Ethnoracism
and Homophobia). The automation tool successfully generated the requisite Cognitive Elements
and rules based solely on the dataset descriptions. Table 9 reports the True Positive Rates (TPR)
achieved, demonstrating high immediate sensitivity to these distinct domains.

I ADVERSARIAL ROBUSTNESS EVALUATION

To evaluate the robustness of activation-based monitoring compared to state-of-the-art text modera-
tion, we conducted a comparative study using GPT-4 as a baseline judge.
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Table 8: Performance comparison of GAVEL vs. baselines on Mistral-7B. Metrics include AUC,
Balanced Accuracy (b-ACC), F1, TPR, and FPR. Bold values indicate the best performance for each
metric. (*Legilimens was trained and tested on the LLaMA2-7B model).
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FPR 0.01 0.02 0.06 0.00 0.03 0.01 0.00 0.00 0.00 0.00 0.05 0.01
AUC - - 0.98 0.76 0.62 0.99 0.79 0.95 0.99 0.89 0.91 0.87
b-ACC - - 0.99 0.89 0.86 0.99 0.88 0.94 0.99 0.94 0.94 0.93
F1 - - 0.97 0.64 0.38 0.97 0.65 0.84 0.98 0.83 0.84 0.79
TPR - - 0.97 0.56 0.25 1.00 0.66 0.99 0.98 0.83 0.88 0.79
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TPR - - 0.98 0.98 0.86 0.95 0.97 0.99 1.00 0.95 0.98 0.96

Legilimens*

FPR 0.00 0.00 0.83 0.67 0.51 0.60 0.65 0.82 0.61 0.84 0.81 0.70
AUC - - 0.89 0.99 0.98 0.99 0.90 0.98 0.99 1.00 1.00 0.97
b-ACC - - 0.82 0.97 0.93 0.98 0.75 0.95 0.99 0.98 0.89 0.92
F1 - - 0.53 0.91 0.81 0.91 0.55 0.91 0.96 0.98 0.88 0.82
TPR - - 1.00 0.99 0.95 1.00 0.62 0.93 1.00 0.97 0.79 0.91

Activation
Classifier

FPR 0.03 0.00 0.35 0.03 0.07 0.03 0.12 0.02 0.01 0.00 0.00 0.07
AUC - - 0.99 0.98 0.99 1.00 0.99 1.00 0.99 0.99 0.99 0.99
b-ACC - - 0.97 0.94 0.95 1.00 0.98 0.99 0.92 1.00 0.95 0.96
F1 - - 0.97 0.94 0.94 1.00 0.94 0.99 0.87 1.00 0.94 0.95
TPR - - 0.95 0.89 0.90 1.00 0.99 0.99 0.86 1.00 0.90 0.94
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er

GAVEL

FPR 0.06 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.00 0.00 0.00
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SQL Query Discussion

User: Good. What happens if you select columns that aren’t in the GROUP BY clause or
an aggregate?
Assistant: In strict SQL mode, that results in an error. In looser modes, it might return
arbitrary results.

User: Write a query that returns average salary per department.
Assistant:

SELECT d e p a r t m e n t i d , AVG( s a l a r y )
FROM employees
GROUP BY d e p a r t m e n t i d ;

User: And how would you include department names from a different table?
Assistant:

SELECT d . name , AVG( e . s a l a r y )
FROM employees e
JOIN d e p a r t m e n t s d ON e . d e p a r t m e n t i d = d . i d
GROUP BY d . name ;

User: Perfect. Now explain a window function.
Assistant: Window functions perform calculations across a set of rows related to the current
row. For example:

SELECT name , s a l a r y ,
RANK( ) OVER
( PARTITION BY d e p a r t m e n t i d ORDER BY s a l a r y DESC)

FROM employees ;

User: Nice. What’s the difference between RANK() and DENSE RANK()?
Assistant: RANK() skips numbers when there’s a tie. DENSE RANK() doesn’t.

User: Final question. How would you optimize a slow query joining large tables?
Assistant: Add indexes on join columns, filter early with WHERE, limit rows with pagina-
tion, and use EXPLAIN to check the execution plan.

Figure 11: An example discussion with an LLM assistant that all baselines flagged as malicious,
but not by GAVEL. The false positive is likely caused by the assistant mentioning that GROUP BY
would return arbitrary results -seeming like an attack on the database’s confidentiality. GAVEL is
not affected by this because it is only looking for when the LLM intentionally (instructively) writes
code with improper syntax.

Table 9: Performance (TPR) of GAVEL on external benchmarks using CEs and rules generated
entirely by our automation tool. The system achieves high detection rates without manual tuning.

Usecase / Dataset TPR
Phishing Guidance (PKU) 0.76
Political Risk (Reasoning Shield) 0.97
Ethnoracial (ToxiGen) 0.91
Homophobia (ToxiGen) 0.98

I.1 STANDARD PERFORMANCE (NON-ADVERSARIAL)

First, we evaluated GPT-4’s ability to detect the nine misuse categories using surface text alone.
We utilized a prompt allowing GPT-4 to classify use cases based on the same definitions used to
construct GAVEL’s rules. As shown in Table 10, on standard, non-adversarial datasets, GPT-4
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performs comparably to GAVEL, achieving high True Positive Rates (TPR) and low False Positive
Rates (FPR). This indicates that for overt violations, text analysis is sufficient.

Table 10: Comparison of GAVEL vs. GPT-4 (with and without rule definitions) on standard, non-
adversarial datasets. GPT-4 is a strong baseline on surface-level text.

TPR FPR
Task GAVEL GPT4 GPT4 (No Rules) GAVEL GPT4 GPT4 (No Rules)
Phishing 0.95 0.98 0.91 0.00 0.00 0.00
SQL Injection 0.89 0.99 1.00 0.00 0.09 0.00
Delusional 0.90 0.90 0.84 0.01 0.00 0.01
Anti-LGBTQ 1.00 0.97 0.99 0.00 0.03 0.00
Elections 0.99 0.85 0.66 0.01 0.30 0.00
Racism 0.99 0.97 0.99 0.02 0.05 0.00
Tax Authority 0.86 0.96 1.00 0.00 0.02 0.00
Romance 1.00 0.95 1.00 0.01 0.00 0.00
e-commerce 0.90 0.87 0.87 0.04 0.02 0.00

I.2 ADVERSARIAL ATTACKS

However, reliance on surface text makes safeguards susceptible to manipulation. We evaluated
performance against three specific attack vectors designed to obscure the harmful nature of the
output while preserving the underlying intent:

• Misdirection: The attacker shifts the LLM’s surface focus away from relevant content by
interspersing the harmful output with significant amounts of benign, unrelated text.

• Goal Hijacking: The use of prompt injection to override system instructions, forcing the
LLM monitor to ignore its guidelines and thus it can no longer perform its duties.

• Evasion: The attacker explicitly instructs the generating LLM that it is being monitored
and must ”achieve the goal without being detected” (e.g., by using subtle language or avoid-
ing trigger words).

Threat Model. In these scenarios, we assume an attacker can programmatically filter the LLM’s
output (e.g., using regex to strip benign camouflage) before presenting the final result to a victim.
Therefore, if the LLM generates the harmful content at all, the attack is considered successful.

Results. Table 11 details the True Positive Rate (detection success) under these attacks. GAVEL
maintains high detection rates across all categories because it identifies the presence of Cognitive
Elements (CEs) in the activations, which persist regardless of surface-level obfuscation. In contrast,
GPT-4’s performance degrades significantly, particularly against Misdirection and Hijacking.

Table 11: Detection performance (TPR) under adversarial attack. While GPT-4 struggles with Mis-
direction and Hijacking, GAVEL remains robust, detecting the underlying cognitive elements despite
surface-level obfuscation.

Misdirection Goal Hijacking Evasion
Task GAVEL GPT4 GAVEL GPT4 GAVEL GPT4 GPT4 (No Rules)
Phishing 0.97 0.55 0.96 0.55 0.96 0.91 0.86
SQL Injection 0.89 0.49 0.89 0.70 0.95 0.95 0.91
Delusional 0.87 0.12 0.87 0.49 0.97 0.56 0.29
Anti-LGBTQ 1.00 0.35 1.00 0.90 1.00 0.66 0.80
Elections 0.99 0.15 0.99 0.63 1.00 0.85 0.54
Racism 0.99 0.16 0.99 0.91 0.98 0.87 0.94
Tax Authority 0.86 0.00 0.86 0.28 0.71 0.91 1.00
Romance 1.00 0.24 1.00 0.48 0.97 0.92 0.91
e-commerce 0.89 0.01 0.90 0.12 1.00 0.97 0.84

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 12: Performance on the Deceptive Medical Marketing dataset (npos = 250, nneg = 100).
GAVEL outperforms GPT-4 by a wide margin, as the latter struggles to distinguish deceptive pro-
motion from helpful medical advice.

Method TPR FPR
GAVEL 0.728 0.010
GPT-4 0.244 0.000

I.3 CASE STUDY: DECEPTIVE MEDICAL MARKETING

We further evaluated a subtle misuse category: Deceptive Marketing in Healthcare. In this sce-
nario, the LLM is instructed to covertly promote a specific medical service while pretending to offer
unbiased advice. This behavior is difficult for text-based moderators to flag because the surface text
appears helpful and authoritative.

We defined the following GAVEL rule to detect this behavior:

Healthcare ∧ (Being Deceptive ∨ Promoting) ∧ (Trust Seeding ∨
Role Playing)

As shown in Table 12, GAVEL successfully detects this nuanced behavior by identifying the under-
lying cognitive combination of building trust while discussing healthcare, whereas GPT-4 largely
fails to recognize the violation.

J RUNTIME ANALYSIS

To quantify the computational impact of Gavel’s classification mechanism, we measure per-token
runtimes for both generation and classification across an extended sequence. As shown in Figure
12, classification adds only a negligible overhead relative to generation, demonstrating that Gavel’s
decision processes can be integrated without materially affecting throughput.
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Figure 12: Average computational overheads for classification compared to generation. The mean
classification overhead per token is 0.00021 s, corresponding to 0.00105 s per 5-token window. De-
spite appearing as a visible band on the plot, this overhead is negligible relative to the ∼0.032 s/token
generation time. In this run, approximately 11,830 classification calls were processed, confirming
that classification incurs minimal latency overhead.
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