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ABSTRACT

The number of measurement outcomes in positron emis-
sion tomography (PET) is typically large, rendering signal
reconstruction computationally expensive. We propose an
online algorithm to address this computational issue. The
per-iteration computational complexity of the proposed algo-
rithm is independent of the number of measurement outcomes
and linear in the signal dimension. The algorithm has a rigor-
ous O(1/

√
k) convergence rate guarantee, where k denotes

the iteration counter. Numerical experiments on synthetic
data-sets show that the algorithm can be significantly faster
than expectation maximization and stochastic primal-dual
hybrid gradient method. The proposed algorithm is based on
an equivalent stochastic optimization formulation, the Soft-
Bayes algorithm for online portfolio selection, and standard
online-to-batch conversion.

Index Terms— Positron emission tomography, stochastic
optimization, online portfolio selection, Soft-Bayes, online-
to-batch conversion.

1. INTRODUCTION

Positron emission tomography (PET) is a classical task in
medical imaging and plays an important role in cancer diag-
noses and treatments. In its mathematical model, the mea-
surement outcomes (numbers of detected particles) are in-
dependent Poisson random variables whose expectations de-
pend on the unknown signal. The standard approach is then
to reconstruct the signal by maximum-likelihood estimation.
The negative log-likelihood function is convex, so maximum-
likelihood estimation amounts to solving a convex optimiza-
tion problem.

To solve the optimization problem is computationally
challenging. As observed by [1], the number of measurement
outcomes is typically very large in PET. Therefore, comput-
ing the full gradient—the sum of the gradients of individual
log-likelihood functions—can take a lot of time. This fact
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renders standard convex optimization algorithms, such as
gradient descent and Newton’s method, slow in practice.

The issue discussed is not specific to PET, but common in
modern machine learning applications. In deep learning, for
example, the issue is addressed by stochastic gradient descent
(SGD). SGD is an online algorithm that takes one or a few, in-
stead of all, data points in an iteration, thereby circumventing
full gradient computations. If the objective function satisfies
standard regularity conditions, then the convergence speed of
SGD is proved to be comparable to that of gradient descent in
expectation.

Can we directly apply SGD to PET? To answer the ques-
tion, we need to check if the log-likelihood function satis-
fies the regularity conditions. Existing regularity conditions
require the k-th order derivative of the objective function to
be bounded, for some positive integer k (see, e.g., [2]). It
was proved in [3, 4] that, unfortunately, the regularity con-
ditions do not hold in PET. The log-likelihood function in-
volves a logarithmic loss, so its derivatives of all orders are
not bounded.

Online portfolio selection is a classic problem in the field
of online learning [5]. Its mathematical formulation asks one
to minimize a sum of logarithmic losses by an online algo-
rithm, similar to the online PET problem we would like to
solve. There have been several attempts to address the lack-
of-regularity issue in online portfolio selection; see [6] for
an up-to-date list of relevant literature. However, the log-
likelihood function of PET is not exactly a sum of logarith-
mic losses, so existing online portfolio selection algorithms
are not directly applicable for our purpose.

In this paper, we show how to adapt any online portfolio
selection algorithm to get an online PET algorithm. Then, we
propose an explicit online PET algorithm, based on an on-
line portfolio selection algorithm called Soft-Bayes [7]. The
proposed algorithm achieves the following.

• The per-iteration computational complexity is linear in
the parameter dimension and independent of the num-
ber of measurement outcomes.

• The expected numerical error provably vanishes at an
O(1/

√
k) rate for an equivalent optimization reformu-

lation of PET, where k denotes the iteration counter.
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Numerical results show that, on synthetic data, the proposed
algorithm outperforms expectation maximization and the
stochastic primal-dual hybrid gradient method.

We will focus on theoretically guaranteed online algo-
rithms for PET in this paper. Therefore, for example, we will
ignore ordered-subset expectation maximization [8] and re-
cent deep learning-based approaches. We will also ignore the
ordered-subset mirror descent algorithm [9]; in general, the
log-likelihood function is not Lipschitz, so its convergence
guarantee does not apply.

2. RELATED WORK

The standard approach to PET is expectation maximization.
Interestingly, its convergence proof is based on Csiszár’s al-
ternating minimization framework [10, 11, 12], instead of
convex analysis; the reason is perhaps the lack-of-regularity
issue we have discussed in Section 1.

It is until very recently that convex optimization algo-
rithms theoretically guaranteed for PET were developed.
SCOPT, the Frank-Wolfe method, and Bregman proximal
gradient method were proved to converge for PET in [13],
[14], and [3], respectively. Unfortunately, they are very slow
empirically, as shown in [15] for an optimization problem
similar to PET. The relative SGD method proposed in [16]
also converges for PET, but it involves unspecified parameters
that have to be fine-tuned in practice. The stochastic primal-
dual hybrid gradient (PDHG, aka Chambolle-Pock) method
was developed in [17] for PET. The stochastic PDHG method
is online; however, its convergence guarantee is in terms of
the primal-dual gap, difficult to interpret, and its empirical
speed is slow, as will be shown in Section 6.

To the best of our knowledge, the state-of-the-art al-
gorithm for online portfolio selection is ADA-BARRONS
proposed very recently [6]; it converges fast in terms of the
number of iterations, but its per-iteration computational com-
plexity does not scale well with the signal dimension, which
is usually high in PET. Therefore, we consider Soft-Bayes
[7], another recently proposed online portfolio selection al-
gorithm, in this paper. Soft-Bayes converges slower than
ADA-BARRONS in terms of the number of iterations but
has much lower per-iteration computational complexity. Em-
pirically, indeed, we found the performance of Soft-Bayes
comparable to those of other existing algorithms on real and
synthetic stock data.

3. EQUIVALENT FORMULATION OF PET

Denote by R+ the set of non-negative real numbers. Let x\ ∈
Rd

+ be the unknown signal. The measurement outcomes in
PET are statistically independent Poisson random variables
y1, . . . , yn, such that

E yi = 〈ai, x\〉 , ∀1 ≤ i ≤ n,

where a1, . . . , an ∈ Rd
+ are determined by the measurement

setup. It is easily checked that the maximum-likelihood esti-
mator of x\ is given by

x̂ ∈ arg min
x∈Rd

+

n∑
i=1

(〈ai, x〉 − yi log 〈ai, x〉) .

As the inner product 〈ai, x〉 can be arbitrarily close to zero,
the derivatives of all orders of the term −yi log 〈ai, x〉 can be
arbitrarily large. Hence, the log-likelihood function violates
the regularity conditions.

For any vector v, denote by v(j) its j-th element. By the
optimality condition, Ben-Tal et al. showed the maximum-
likelihood estimator can be equivalently formulated as [9]

ẑ ∈ arg min
z∈∆

1

Y

n∑
i=1

(−yi log 〈bi, z〉) , x̂(j) =
Y zj∑n
i=1 a

(j)
i

,

(1)

where ∆ denotes the probability simplex in Rd, Y denotes the
sum of yi, and bi are given by

b
(j)
i :=

Y a
(j)
i∑n

i=1 a
(j)
i

. (2)

We have deliberately introduced a scaling factor (1/Y ); the
reason will become obvious soon.

Let I be a random variable satisfying

P (I = i) =
yi
Y
, ∀1 ≤ i ≤ n. (3)

Then, we can write ẑ equivalently as

ẑ ∈ arg min
z∈∆

EI [− log 〈bI , z〉] .

This reformulation of the maximum-likelihood estimator mo-
tivates us to consider online portfolio selection algorithms.

4. ONLINE PORTFOLIO SELECTION AND
ONLINE-TO-BATCH CONVERSION

Online portfolio selection is a sequential game between IN-
VESTOR and MARKET [5]. The game consists of T rounds.
In the t-th round, INVESTOR announces a probability vec-
tor wt ∈ Rd, following which INVESTOR distributes the cur-
rent wealth to d stocks; then, MARKET announces a vector
rt ∈ Rd, which lists the price relatives of the d stocks in
the t-th round. Regarding the Kelly criterion [18], the loss
encountered by INVESTOR in the t-th round is defined as
− log 〈rt, wt〉. Both players can be strategic and make de-
cisions based on history, i.e., those rt and wt that have been
announced. The goal of INVESTOR is to achieve a small re-
gret, given by

RT :=

T∑
t=1

(− log 〈rt, wt〉)− min
w∈∆

T∑
t=1

(− log 〈rt, w〉) ,
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for any sequence of the price relatives that may adapt to the
history. We say an online portfolio selection algorithm is sat-
isfactory if it achieves RT = o(T ), called a sub-linear regret
in literature.

Suppose r1, . . . , rT are statistically independent random
variables. Define G(w) := E [− log 〈r1, w〉]. Given an on-
line portfolio selection algorithm, we can transform it into an
online algorithm minimizing G on the probability simplex by
the following theorem.

Theorem 1 (Online-to-batch conversion [19, 20]) Fix an
online portfolio selection algorithm. Suppose the algorithm
achieves RT ≤ γT for some real number γT . Let w1, . . . , wT

be the algorithm’s outputs, and w̄T be the time average of
w1, . . . , wT . Then, it holds that

EG(w̄T )− min
w∈∆

G(w) ≤ γT
T
,

where the expectation is with respect to the random variables
r1, . . . , rT . 2

If the algorithm achieves a sub-linear regret, then any nu-
merical error requirement can be achieved with a sufficiently
large T . Suppose the online algorithm is anytime; that is,
the algorithm does not have any parameter dependent on T .
Then, one gets

EG(w̄t)− min
w∈∆

G(w) ≤ γt
t
, ∀t ∈ N,

where w̄t denotes the time average of w1, . . . , wt, and γt is a
regret bound for the first t rounds.

5. PET BY STOCHASTIC SOFT-BAYES

By the results in the preceding two sections, any online
portfolio algorithm can be transformed for online PET as
the following. Suppose the algorithm is anytime for con-
venience, which is indeed the case for Soft-Bayes. Let
z1 = (1/d, . . . , 1/d) ∈ ∆ and

x
(j)
1 =

Y

d
∑n

i=1 a
(j)
i

. (4)

Recall that Y was defined in Section 3. In the t-th iteration,
we sample a random index it following (3) independent of
the past; then, we call the online portfolio selection algorithm
with bit and set zt+1 as the output; finally, we set the (t+1)-th
iterate xt+1 as

x
(j)
t+1 =

Y z̄
(j)
t+1∑n

i=1 a
(j)
i

, (5)

where z̄t+1 denotes the time average of z1, . . . , zt+1. We em-
phasize that the procedure above is valid for any online port-
folio selection algorithm that is anytime and achieves a sub-
linear regret.

Algorithm 1 Stochastic Soft-Bayes
1: Set z1 = z̄1 = (1/d, . . . , 1/d).
2: Compute x1 as in (4).
3: for t ∈ N do
4: Sample it following (3), independent of the past.
5: Set ηt =

√
(log d)/(2dt).

6: Compute zt+1 = (1− ηt)zt + ηt
bit ·zt
〈bit ,zt〉

.
7: Compute z̄t+1 = (tz̄t + zt+1) /(t+ 1).
8: Compute xt+1 as in (5).
9: end for

As discussed in Section 2, we choose Soft-Bayes as the
online portfolio selection algorithm to balance between regret
and computational complexity. We call the resulting algo-
rithm Stochastic Soft-Bayes in the rest of the paper, for con-
venience of presentation. We summarize the algorithm in Al-
gorithm 1, where the notation · denotes element-wise multi-
plication.

Obviously, the per-iteration computational complexity of
Stochastic Soft-Bayes is O(d), independent of the number of
measurement outcomes n. This is arguably the lowest per-
iteration computational complexity one can expect, as d is the
signal dimension. Soft-Bayes achieves Rt = O(

√
Td log d)

for any t ∈ N. By Theorem 1, the regret bound translates into
the following convergence guarantee for PET.

Proposition 1 The sequence (xt)t∈N converges to a maximum-
likelihood estimate. Moreover, for the equivalent formulation
(1) of PET, it holds that

E f(z̄t)−min
z∈∆

f(z̄t) = O

(√
d log d

T

)
,

where f denotes the objective function in (1), i.e.,

f(z) :=
1

Y

n∑
i=1

(−yi log 〈bi, z〉) .
2

6. NUMERICAL EXPERIMENTS

In this section, we compare the performance of the proposed
algorithm, Stochastic Soft-Bayes, with those of expectation
maximization and the stochastic PDHG method. As discussed
in Section 2, there are other algorithms that provably con-
verges for PET. However, they are too slow in practice or in-
volve unspecified parameters, so we exclude them.

The numerical experiments were done using the Julia lan-
guage, on a MacBook Pro with 2.5GHz Intel Core i7 Proces-
sor and 16GB DDR3 memory. We use a synthetic data-set
generated by the Poisson noise model in Section 3. The true
signal to be reconstructed consists of three rectangular func-
tions of different widths, as a toy one-dimensional analogue
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Fig. 1. Reconstructed and true signals.

of typical test images in PET. The signal dimension d equals
100, and the number of measurement outcomes n is set to
100000. The widths of the three rectangular functions are 5,
10, and 20, respectively. The vectors ai are generated fol-
lowing the scheme in [21]. Expectation maximization and
Stochastic Soft-Bayes are parameter-free; for the stochastic
PDHG method, we set the parameters as in [17], except that
we take only one data point in every iteration.

We report the results after running each of the three al-
gorithms for one minute in Figure 1–3. In the figures, SSB
denotes Stochastic Soft-Bayes, EM denotes expectation max-
imization, and SPDHG denotes the stochastic PDHG method.
Figure 1 shows the reconstructed and true signals. We can
observe that SSB achieves a better contrast than the other two
methods. Figure 2 shows the normalized estimation errors in
terms of the elapsed time on the MacBook Pro in seconds.
The normalized estimation error is defined as the estimation
error in the `2-norm divided by the `2-norm of the true signal.
Figure 3 shows the normalized estimation errors in terms of
the number of epochs. An epoch is defined as one pass of the
whole data-set; therefore, one epoch corresponds to one iter-
ation for EM, and n iterations for SSB and SPDHG (though
n iterations do not necessarily imply one pass of the data-set,
as the data points are randomly chosen). We can observe that
SSB achieves the best performances in the three figures.

7. CONCLUDING REMARKS

In this paper, we have shown how to design an online PET
algorithm given an online portfolio selection algorithm. We
have proved a non-asymptotic convergence guarantee for the
resulting online PET algorithm. We have used Soft-Bayes to
construct an explicit instance, which achieves the best perfor-
mances in our numerical experiments.

We notice the statistical model of PET also appears in a
variety of applications [22, 23], to which our framework di-
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Fig. 2. Normalized estimation errors with respect to the
elapsed time in seconds.
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Fig. 3. Normalized estimation errors with respect to the num-
ber of epochs.

rectly applies. In applications where the parameter dimension
is moderate, one may want to adopt ADA-BARRONS, instead
of Soft-Bayes, to achieve a faster convergence rate whenever
the per-iteration computational complexity is still acceptable.

Two research problems immediately follow. First, the
non-asymptotic convergence guarantee in Proposition 1 is for
the numerical error in the equivalent optimization formulation
(1). Is it possible to translate the guarantee or derive another
guarantee for the error in the original negative log-likelihood
function? Second, what we have developed is an online al-
gorithm for maximum-likelihood estimation. Is it possible to
develop an online algorithm that directly minimizes the ex-
pected negative log-likelihood function? Such an algorithm
is desirable, as its numerical error corresponds exactly to the
statistical error.

The setup in our numerical experiments is far from realis-
tic. We are working on testing the proposed algorithm on real
data-sets.
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