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Abstract

We present a novel enhanced cyclic coordinate descent (ECCD) framework for
solving generalized linear models with elastic net constraints that reduces training
time in comparison to existing state-of-the-art methods. We redesign the CD
method by performing a Taylor expansion around the current iterate to avoid
nonlinear operations arising in the gradient computation. By introducing this
approximation we are able to unroll the vector recurrences occurring in the CD
method and reformulate the resulting computations into more efficient batched
computations. We show empirically that the recurrence can be unrolled by a
tunable integer parameter, s, such that s > 1 yields performance improvements
without affecting convergence, whereas s = 1 yields the original CD method. A
key advantage of ECCD is that it avoids the convergence delay and numerical
instability exhibited by block coordinate descent. Finally, we implement our
proposed method in C++ using Eigen to accelerate linear algebra computations.
Comparison of our method against existing state-of-the-art solvers show consistent
performance improvements of 3× in average for regularization path variant on
diverse benchmark datasets. Our implementation is available at https://github.
com/Yixiao-Wang-Stats/ECCD.

1 Introduction

Generalized linear model (GLM) is a cornerstone of modern machine learning and statistics with
applications demanding both variable selection and regularization. Among the various penalties, the
elastic-net [1], which combines ℓ1 and ℓ2 regularization, has attracted significant interest because it
not only promotes sparsity but also alleviates some of the limitations inherent in using either penalty
alone, especially in high-dimensional settings. The coordinate descent (CD) algorithm has become a
popular method for optimizing such models due to its simplicity and effectiveness, typically updating
a subset of model parameters at a time [2].

Despite the widespread success of coordinate-wise updates, block generalization for training GLMs
have encountered numerical stability issues especially for large block sizes. Existing approaches
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utilize second-order approximations to solve elastic-net penalized GLMs. However, utilizing BCD to
train such models has resulted in deteriorating accuracy as the block size increases.

We introduce the enhanced cyclic coordinate descent (ECCD) method for elastic-net penalized
GLMs which performs a recurrence unrolling of the single coordinate descent update. We couple
the recurrence unrolling with a second-order correction in the gradient computation in order to
reduce the frequency of expensive nonlinear link function evaluations. The correction term implicitly
incorporates updates from one coordinate update to the next, which yields accuracy improvements
over classical BCD applied to elastic-net penalized GLMs. The main contributions of this paper are:

1. Derivation of a coordinate descent update strategy that improves accuracy of block coordinate
updates over the classical BCD method for elastic-net penalized GLMs.

2. Theoretical analysis to bound the approximation error and theoretically optimal choice of
block size for our update strategy.

3. Experimental evaluation of single and sequential C++ implementation of our approach
compared against state-of-the-art GLM solvers which shows in average 3× speedup on path
fits across diverse benchmark datasets.
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Figure 1: Coefficient trajectories βj for the diabetes dataset over 100 values of the regularization λ
(see Table 15 in Appendix for dataset dimensions). ECCD achieves identical solutions and induced
sparsity patterns to GLMnet.

2 Related Work

Generalized Linear Models In the context of high-dimensional inference, GLMs have been
extensively studied and optimized for scalable regularization-path computation. The seminal glmnet
framework [2] introduced cyclic coordinate descent with warm starts and an inexact line search-
trading off formal convergence guarantees to efficiently trace elastic-net paths for linear, logistic, and
multinomial objectives. Building on nonconvex penalty theory, ncvreg [3] extends these ideas to
MCP and SCAD penalties, while biglasso [4] leverages memory-mapping and sparse linear algebra
to handle datasets that exceed RAM capacity. For structured sparsity, grpnet [5] implements block
coordinate updates for group lasso, and adelie [6] employs an ADMM-based scheme to accelerate
group-penalized regressions. To reduce per-iteration overhead, many methods integrate feature-
screening techniques: “safe rules” [7] guarantee no loss of optimality by preemptively discarding
inactive features, and “strong rules” [8] perform aggressive but heuristic pruning with minimal
KKT checks. These screening strategies have become staples in modern regularization-path toolkits,
substantially lowering the computational barrier to solving large-scale GLMs.

s-Step and Block Coordinate Methods The s-step paradigm, originally developed to reduce
communication in Krylov methods [9, 10, 11, 12, 13, 14]. The proposed s-step Krylov methods
were later stabilized and implemented in distributed-memory systems for multigrid applications
[15, 16, 17, 18]. More recently, these ideas have been extended to CD solvers and generalized
to nonlinear convex optimization [19, 20, 21, 22, 23, 24]. Block generalizations of CD methods
have also been developed with recent work establishing convergence guarantees for distributed
optimization of strongly convex objectives in the deterministic and stochastic block update settings
[25, 26]. Our ECCD algorithm builds directly on these prior results by generalizing the s-step
technique to the class of GLMs. Unlike BCD applied to GLMs, ECCD couples the s-step technique
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with a Taylor expansion of the gradient computation to ensure numerical stability for block sizes
larger than is feasible through the use of BCD. We also show that our method yields speedups over
existing state-of-the-art GLM solvers.

3 Preliminary

3.1 Generalized Linear Model

Type Distribution Link E[Y | X] F (θ) F ′(θ) F ′′(θ) d(τ)

Gaussian N (µ, σ2) Identity θ 1
2
θ2 θ 1 σ2

Bernoulli Bernoulli(p) Logit 1
1+e−θ log

(
1 + eθ

)
eθ

1+eθ
eθ

(1+eθ)2
1

Poisson Poisson(λ) Log eθ eθ eθ eθ 1
Gamma Gamma(α, β) Inverse − 1

θ
− log(θ) − 1

θ
1
θ2

α

Table 1: Common GLMs and their properties. The functions F (θ), F ′(θ), and F ′′(θ) are the
cumulant and its derivatives, and d(τ) is the dispersion parameter.

We consider a GLM with mean response: E[Y | X] = f−1(Xβ), where X ∈ Rn×p is the design
matrix, β ∈ Rp is the coefficient vector, and f is an invertible link function. We assume the
response variable Y follows an exponential-family distribution with probability mass/density function
parameterized by θ and τ .

fY (y | θ, τ) = c(y, τ) exp

(
b(θ)⊤T (y)− F (θ)

d(τ)

)
, (1)

where d(τ) is the dispersion parameter, b(θ) is the natural parameter, T (y) is a sufficient statistic
of y and F (θ) is the cumulant-generating function (CGF). As demonstrated in Table 1, the specific
choice of distribution determines the form of the cumulant function F (θ). Throughout, we assume
that the first two derivatives of F , F ′(·) and F ′′(·), exist. In the canonical form, where b(θ) = θ
and T (y) = y, one has: E[Y ] = F ′(θ), Var(Y ) = F ′′(θ) d(τ). We solve β by maximizing the
log-likelihood

ℓ(β) =

n∑
i=1

yiθi − F (θi)
d(τ)

+ C(yi, τ), θi = x⊤
i β (2)

where x⊤
i is the i-th row of design matrix X . We define gj and hj as the first and second derivatives

of the log-likelihood with respect to βj , respectively:

gj =
∂ℓ

∂βj
=

n∑
i=1

yi − F ′(θi)

d(τ)
xij , hj =

∂2ℓ

∂β2
j

= −
n∑

i=1

F ′′(θi)

d(τ)
x2ij . (3)

3.2 Traditional Coordinate Descent for Elastic Net Regression

We begin with the classical CD method for elastic net–regularized generalized linear models, as
developed in prior work [2], which accelerates updates via a first-order Taylor expansion, bypassing
line search at the expense of formal convergence guarantees [2, 27]. One can write the objective as

L(β) = − 1

n
ℓ(β) + λ

(
1−α
2 ∥β∥

2
2 + α∥β∥1

)
, (4)

where −ℓ(β) is the loss function, which is the negative log-likelihood for GLMs, and λ ≥ 0 and
α ∈ [0, 1] control the overall magnitude and the relative weighting of the ℓ2 (ridge-like) and ℓ1
(lasso-like) penalties, respectively. We solve β̂ = argminβ L(β) to obtain the regularized estimator.

In a cyclic coordinate descent setting, we update each coefficient βj while fixing the others. Using a
second-order Taylor expansion around β(t)

j , the value of βj at iteration t, one obtains the approximate
local objective:

min
βj

− 1

n

[
ℓ
(
β(t)

)
+ gj(βj − β(t)

j ) + 1
2hj(βj − β

(t)
j )2

]
+ λ

(
1−α
2 β2

j + α|βj |
)
, (5)
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where gj and hj are the first- and second-order derivatives evaluated at β(t). Setting the gradient with
respect to βj to zero yields

∂L(β)
∂βj

= − 1

n
gj −

1

n
hj
(
βj − β(t)

j

)
+ λ(1− α)βj + λα sign(βj) = 0. (6)

Solving for βj gives the coordinate descent update:

β
(t+1)
j ←

S
(

1
ngj −

1
nhj β

(t)
j , λα

)
− 1

nhj + λ(1− α)
, (7)

where S(z, γ) denotes the soft-thresholding operator defined by

S(z, γ) =


z − γ if z > 0 and γ < |z|,
z + γ if z < 0 and γ < |z|,
0 if γ ≥ |z|.

3.3 Efficient Screening and Warm Start Strategy

To accelerate sparse estimation in GLMs, prior works [2, 8] have introduced complementary tech-
niques that reduce computational overhead while ensure exact solutions. In this work, we adopt a path-
wise CD framework over a decreasing sequence of regularization parameters λ1 > λ2 > · · · > λK ,
where λ1 = λmax := maxj |X⊤

j (y − ȳ)|/α, and λK = ελmax, with ε ∈ [10−4, 10−2]. When
computing a stand-alone regularized solution, these strategies can also be applied to a single λ value.

At each λk, we warm start optimization using the solution at λk−1 and restrict update to a reduced
active set Ak ⊆ {1, . . . , p}. The set initially includes all previously nonzero coordinates and any that
violate the Karush–Kuhn–Tucker (KKT) conditions. We then iterate: update βj for j ∈ Ak, perform
a full KKT check, augment Ak with any newly violating indices, and repeat until convergence. By
cycling only over Ak, each iteration costs O(n|Ak|) instead of O(np), yielding substantial speedups
in high-dimensional settings.

To further reduce the size of the initial working set, the sequential strong rule [8, 7] is employed at
each λk. In logistic regression, the rule suggests discarding feature j from the working set if

∣∣X⊤
j r

(k−1)
∣∣ < 2λkα− λk−1α, r(k−1) = y − p̂(k−1), p̂(k−1) = ∇F (Xβ(λk−1) + β0). (8)

Although this is a heuristic, performing a post-convergence KKT check guarantees recovery of any
missed variables. Warm starts, strong-rule screening, and active-set cycling with KKT correction
together form a robust, scalable backbone for both single-λ and pathwise GLM solvers.

4 Methodology

4.1 Block Coordinate Descent

GLMs are well-suited for high-dimensional regimes (p ≫ n) because the ℓ1 penalty encourages
sparse solutions. A natural generalization of CD is BCD, in which we update a block of s coordinates
jointly at each iteration. However, we observe that naive BCD often diverges for moderate to large
block sizes, as shown in Figure 2a (see Table 3 for quantitative results).

Each coordinate j in a block remains the standard CD update (Eq. 7), but BCD differs in how it
handles the intermediate value θi = x⊤

i β. In classical CD, θi is recomputed before every single-
coordinate update, ensuring that both the gradient gj and curvature hj reflect the most recent β. In
contrast, BCD recomputes θi only once per block, reusing stale values of gj and hj across s updates.
This delayed refresh can introduce significant numerical instability when s is large. For completeness,
we defer the full derivation of the BCD update rule to Appendix A.1.
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Figure 2: Results on the duke dataset with α = 0.5 and ϵ = 0.01. (a) Convergence of BCD exhibits
numerical instability as block size s increases. (b) Convergence of ECCD remains stable even for
s = 32. The convergence threshold is set to 1e-10. (c) Breakdown of ECCD’s runtime components.

4.2 Enhanced Cyclic Coordinate Descent

To stabilize block-wise CD updates, we propose Enhanced Cyclic Coordinate Descent (ECCD).
ECCD incorporates second-order approximation corrections through Taylor expansion within each
block, compensating for the error that accumulates when multiple coordinates share the same input to
the link function. This targeted correction restores the descent property and empirical convergence
even for large block sizes, as shown in Figure 2b.

We now derive ECCD. Let s ≤ p be the block size, and consider the k-th block. For each coordinate
in this block, indexed by ℓ ∈ {1, 2, . . . , s}, we update β as

β(k−1)s+ℓ = β(k−1)s +

ℓ−1∑
i=0

∆β(k−1)s+i e(k−1)s+i, (9)

where e(k−1)s+i is the standard basis vector corresponding to the ((k − 1)s+ i)-th coordinate in the
descent step, and ∆β(k−1)s+i is the scalar change at iteration (k − 1)s + i. Equivalently, we can
write eji with ji ≡ ((k − 1)s+ i) (mod p) to emphasize the cyclic ordering of the coordinates.

Throughout our paper, we assume the design matrix X is standardized: each column is centered and
scaled so |xj |2 = n. Let β0 be the intercept. For the gradient term F ′(β

(k−1)s+ℓ
0 +Xβ(k−1)s+ℓ),

take a first-order Taylor expansion at β(k−1)s+ℓ
0 +Xβ(k−1)s and denote the linearized term by F ′

q .

F ′
q

(
β
(k−1)s+ℓ
0 1n+Xβ(k−1)s+ℓ

)
= F ′(β(k−1)s+ℓ

0 1n +Xβ(k−1)s
)

+

ℓ−1∑
i=0

F ′′(β(k−1)s+ℓ
0 1n +Xβ(k−1)s

)
⊙
(
X e(k−1)s+i

)
∆β(k−1)s+i. (10)

For numerator, we derive the coefficient update ∆β
(k−1)s+ℓ
jℓ

for each coordinate jℓ ≡ ((k − 1)s+

ℓ) (mod p) without considering the ℓ1-penalty. Using the approximation F ′
q , we obtain:

ϕ
((k−1)s+ℓ)
jℓ

=
1

nd(τ)

[
y⊤X e(k−1)s+ℓ − e(k−1)s+ℓ,⊤X⊤F ′

q

(
β
(k−1)s+ℓ
0 1n +Xβ(k−1)s+ℓ

)]
− λ (1− α)β(k−1)s+ℓ

jℓ

=
1

nd(τ)

[
y⊤X e(k−1)s+ℓ − e(k−1)s+ℓ,⊤X⊤F ′(β(k−1)s

0 1n +Xβ(k−1)s
)

−
ℓ−1∑
i=0

e(k−1)s+ℓ,⊤X⊤
(
F ′′(β(k−1)s

0 1n +Xβ(k−1)s
)
⊙ (X e(k−1)s+i)

)
∆β(k−1)s+i

]
− λ (1− α)β(k−1)s

jℓ
(11)
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Algorithm 1 ECCD for GLMs with Elastic Net Penalty (Active-Set Version)

Require: X ∈ Rn×p, y ∈ Rn, β(0) ∈ Rp, β(0)
0 ∈ R, λ > 0, α ∈ [0, 1], s,H ∈ N, tol > 0,

active set A ⊆ {1, . . . , p}, F (·): CGF, d(τ): dispersion parameter
1: for outer = 1, . . . ,H do
2: Intercept Update: β(t)

0 ← β
(t−1)
0 +

1⊤
n (y−∇F )
1⊤
n ∇2F

3: ECCD Update:
4: for block = 1, . . . , ⌈|A|/s⌉ do
5: k ← (iter− 1) · s mod |A|
6: Is =

(
eak

, eak+1
, . . . , eak+s−1

)
7: A← (X · Is)⊤∇F , B ← (X · Is)⊤ diag(∇2F )(X · Is)
8: for ℓ = 1, . . . , s do

9: ϕjℓ ←
1

nd(τ)
·

[
y⊤Xejℓ −Aℓ −

ℓ−1∑
i=0

Bℓi∆β
(t−1)
ji

]
− λ(1− α)β(t−1)

jℓ

10: ψjℓ ←
1

nd(τ)
Bℓℓ + λ(1− α)

11: β
(t)
jℓ
← S

(
β
(t−1)
jℓ

+
ϕjℓ
ψjℓ

,
λα

ψjℓ

)
12: end for
13: end for
14: Convergence check: Apply Algorithm 3
15: if converged, break
16: end for
17: Output: β, β0

Here we use β(k−1)s
jℓ

and β(k−1)s
0 in the Taylor expansion for the first ℓ− 1 updates within the same

cycle, since β(k−1)s+ℓ
jℓ

and β(k−1)s+ℓ
0 remain unchanged within the block.

Next, we handle the denominator by freezing the Hessian term across the block, as in classical BCD.
Specifically, we hold the second-order derivative F ′′(·) constant for all s updates, avoiding repeated
evaluation of this expensive term and thereby reducing computational overhead:

ψ
((k−1)s+ℓ)
jℓ

=
1

nd(τ)
e(k−1)s+ℓ,⊤X⊤ F ′′(Xβ(k−1)s

)
⊙
(
X e(k−1)s+ℓ

)
+ λ (1− α).

Hence, the interim update is

∆β
(k−1)s+ℓ
jℓ

=
ϕ
((k−1)s+ℓ)
jℓ

ψ
((k−1)s+ℓ)
jℓ

(12)

Incorporating the ℓ1-penalty leads to a soft-thresholding step. Thus, the updated coefficient:

β
(k−1)s+ℓ
jℓ

← S

(
β
(k−1)s
jℓ

+∆β
(k−1)s+ℓ
jℓ

,
λ α

ψ
((k−1)s+ℓ)
j

)
, (13)

where S(z, γ) is the soft-thresholding operator. This completes one ECCD iteration for the coordinate
jℓ. By iterating over all ℓ in cyclic order (modulo p) for ℓ ∈ {1, . . . , s}, and then repeating over
blocks, we obtain the full Enhanced Cyclic Coordinate Descent procedure.

For clarity, we summarize the procedure in Algorithm 1, omitting the full matrix derivation. The
complete matrix-form representation and additional algorithmic variants are deferred to Appendix A.2.

5 Theoretical Analysis

We first bound the approximation error and then show that it yields sub-linear time while preserving a
O(np) memory footprint. All proofs, including auxiliary lemmas and technical details, can be found
in Appendix A.3, A.4, A.5.
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Below, we state a simplified version of Theorem 1, which characterizes the leading-order approxima-
tion error introduced by the Taylor-expanded updates.
Theorem 1 (Taylor-Approximate Update Error Bound). Let the true coordinate update at iteration
(k − 1)s + ℓ be given by ∆βtrue

jℓ
:= ϕ̃jℓ/ψ̃jℓ , and let ∆̂βjℓ := ϕjℓ/ψjℓ be the corresponding

approximate update computed using a first-order Taylor expansion. Then, the Taylor approximation
error is bounded as:∣∣∣∆̂βjℓ −∆βtrue

jℓ

∣∣∣ ≤ C1(X, s, f, λ, α)∥∆β∥∞ + C2(X, s, f, λ, α)∥∆β∥2∞. (14)

The denominator error is of order O(∥∆β∥2∞); the overall update error reusing the same ψjℓ across a
block of s coordinates is controlled to O(∥∆β∥∞), preventing error accumulation across iterations.

Theorems 2 and 3 demonstrate that, in comparison to the classical coordinate descent method, our
enhanced scheme achieves reduced time complexity without incurring additional space overhead.
Theorem 2 (Time Complexity Analysis). Consider a single epoch of the enhanced cyclic coordinate
descent (ECCD) algorithm, defined as one full pass over all p features. Let C denote the compu-
tational cost of evaluating the mean link function∇F (·) once, so that applying it to the full linear
predictor Xβ ∈ Rn requires O(nC) operations. Then, by choosing the block size as s =

√
C, the

computational cost per epoch is reduced from the standard O(npC) to O(np
√
C).

This complexity gain becomes particularly significant whenC is large (i.e., when the cost of evaluating
the link function is high; see Section D for further discussion). In the special case s = 1, ECCD
reduces to standard coordinate descent with complexity O(npC). Therefore, the square-root choice
achieves an asymptotical acceleration factor of O(

√
C). Empirically, moderate block sizes (e.g.

s ∈ {8, 16}) often provide favorable runtime/accuracy trade-offs on medium-scale datasets.
Theorem 3 (Space Complexity Analysis). Let s ≤ min{n, p}. The enhanced cyclic coordinate
descent (ECCD) algorithm can be implemented with a space complexity ofO(np), which is dominated
by the storage of the design matrix X ∈ Rn×p.

When the block size is chosen as s =
√
C—which is optimal from a time complexity perspec-

tive—this remains substantially smaller than min{n, p} for most practical settings, since C denotes
a constant representing the cost of evaluating the mean link function F ′(·). As a result, the overall
memory footprint of ECCD remains O(np), matching that of classical coordinate descent methods.

6 Experiments

Unless otherwise noted, all experiments were executed on a single Cray EX node using a single
OS process; the only exception is BIGLASSO, which was run in a multithreaded configuration with
thread counts as reported in Tables 8 and 9. Each node was equipped with an AMD EPYC 7763
(“Milan”) CPU (64 physical cores, 2.45GHz base frequency, 256MiB L3 cache) and 512GiB of
DDR4-3200 memory. For scalability experiments on dense datasets (Table 5), we used an AMD
EPYC 7352 CPU (24 physical cores, 2.30GHz, 128MiB L3 cache).

Our implementation is based on R v4.3.1, utilizing the following key packages: glmnet v4.1–8,
Matrix v1.7–1, stringr v1.5.1, RcppEigen v0.3.4.0.2, and Rcpp v1.0.14. All experiments were
performed in double precision, with machine epsilon ϵmach = 2.220446× 10−16 on our platform.

Table 2: Relative differences of the objective function on duke.
Dataset α Relative Differences ∆s

s = 2 s = 4 s = 8 s = 16 s = 32

duke 0.1 4.06× 10−8 4.15× 10−8 8.12× 10−8 8.90× 10−8 2.74× 10−7

0.2 1.84× 10−8 1.93× 10−8 1.05× 10−7 2.30× 10−7 1.96× 10−7

0.5 1.23× 10−8 1.56× 10−8 7.31× 10−7 1.18× 10−6 1.18× 10−6

0.8 3.50× 10−9 1.19× 10−8 5.86× 10−7 2.51× 10−6 2.51× 10−6

1.0 2.99× 10−9 2.12× 10−7 4.78× 10−7 4.78× 10−7 4.78× 10−7
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Figure 3: Comparison runtimes across six benchmark datasets (α = 0.5). Speedups are normalized
so that glmnet is 1.0×. ECCD (s = 8) consistently achieves the highest acceleration on both datasets.

6.1 Numerical Experiments

We evaluated ECCD against classical cyclic coordinate–descent solver for elastic-net–regularized
logistic regression on standard LIBSVM benchmarks (Table 15). Unless otherwise stated, all runs
were initialized at the zero vector, β(0) = 0. ECCD employs an active-set strategy [2], strong-
rule screening [8], and periodic Karush–Kuhn–Tucker (KKT) checks to prune inactive coordinates.
Performance results are averaged over 100 independent trials. Details of the synthetic-data generation
protocol are provided in Appendix D.

Convergence on ECCD We evaluate ECCD on the duke dataset using the λ-path implementation.
We compare block sizes s ∈ {2, 4, 8, 16, 32} against the standard coordinate update (s = 1), as
shown in Table 2. The differential maximum relative difference ∆s = ∥obj(s)− obj(1)∥2/∥obj(1)∥2
across all α and s is 2.5× 10−6. For mixing ratios α ∈ {0.1, 0.2}, ∆s < 5× 10−7. Thus, even for
large blocks, ECCD preserves solution quality up to numerical precision.

Table 3: Relative differences of the objective function on duke, comparing ECCD and BCD.

λ = 0.1

s Alg Rel. Diff

8 ECCD 1.14× 10−7

BCD 7.50× 10−9

16 ECCD 5.38× 10−8

BCD 1.27× 10−7

32 ECCD 8.41× 10−8

BCD 2.53 ×109

λ = 0.01

s Alg Rel. Diff

8 ECCD 1.19× 10−7

BCD 1.28 ×1010

16 ECCD 1.41× 10−7

BCD 5.53 ×109

32 ECCD 1.26× 10−7

BCD 1.03 ×1010

λ = 0.001

s Alg Rel. Diff

8 ECCD 1.69× 10−8

BCD 5.28 ×1010

16 ECCD 9.92× 10−7

BCD 1.04 ×1011

32 ECCD 4.20× 10−7

BCD 5.79 ×1010

Stability of Optimized ECCD with Comparison to BCD Table 3 shows that ECCD retains
numerical stability across all block sizes and regularization strengths—the largest relative discrepancy
from the s = 1 objective is 9.9× 10−7 (at s = 16, ;λ = 0.001). In contrast, BCD’s errors remain
small for λ = 0.1 but then explode once λ ≤ 0.01 for s ≥ 8 (reaching on the order of 1010

at λ = 0.01, ; s = 8) and diverge catastrophically at λ = 0.001 (on the order of 1010 ∼ 1011).
This pattern matches the theory: BCD’s fixed-Hessian updates accumulate curvature approximation
error in the denominator, which becomes ill-conditioned for small λ and large s, whereas ECCD’s
Taylor-based correction term in the numerator controls that error and preserves stability.

6.2 Performance Experiments

Block Size Selection Strategy in Practice While our theoretical analysis suggests that the optimal
block size is s∗ =

√
C, practical implementation requires careful estimation of the hidden constant

C, which captures the relative cost of link function evaluations versus basic linear algebra operations.
Empirically, our profiling across datasets revealed that a slightly larger block size, particularly s = 8,
consistently delivered near-optimal speedups while preserving stability. Please refer to Appendix D
for a detailed analysis on the selection strategy of block size s.

Performance Experiment with Single λ Table 17 demonstrates that tuning the block size s yields
noticeable benefits, especially in high-dimensional cases (p ≫ n). ECCD achieves up to 4.19×
speedups over glmnet on duke, with comparable gains on leu (2.00×–5.37×) and colon-cancer
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Table 4: Logistic Peformance: Time (s), prediction error, and speedup under different α.
Filename Method α = 0.1 α = 0.2 α = 0.5 α = 0.8 α = 1.0

Time Rel. Diff Speedup Time Rel. Diff Speedup Time Rel. Diff Speedup Time Rel. Diff Speedup Time Rel. Diff Speedup

duke

glmnet 6.40e-02 – 1.00× 5.72e-02 – 1.00× 5.30e-02 – 1.00× 4.89e-02 – 1.00× 4.95e-02 – 1.00×
ncvreg 8.29e-01 5.37e-01 0.08× 6.88e-01 5.33e-01 0.08× 5.80e-01 5.33e-01 0.09× 5.55e-01 5.47e-01 0.09× 5.45e-01 5.63e-01 0.09×
biglasso 2.37e-01 2.98e-01 0.27× 2.29e-01 1.91e-01 0.25× 2.26e-01 5.11e-02 0.23× 2.28e-01 7.35e-03 0.21× 2.59e-01 8.75e-06 0.19×
Ours (s = 8) 3.40e-02 7.91e-06 1.88× 2.46e-02 6.77e-06 2.33× 1.74e-02 5.28e-06 3.05× 1.55e-02 5.31e-06 3.16× 2.09e-02 5.12e-06 2.37×
Ours (s = 16) 3.48e-02 8.73e-06 1.84× 2.48e-02 8.04e-06 2.31× 1.79e-02 7.05e-06 2.96× 1.40e-02 7.30e-06 3.49× 1.71e-02 2.09e-05 2.89×

colon

glmnet 3.06e-02 – 1.00× 2.32e-02 – 1.00× 2.33e-02 – 1.00× 1.92e-02 – 1.00× 2.01e-02 – 1.00×
ncvreg 7.44e-01 5.05e-01 0.04× 5.49e-01 4.96e-01 0.04× 4.70e-01 4.82e-01 0.05× 4.21e-01 5.06e-01 0.05× 3.88e-01 5.14e-01 0.05×
biglasso 1.99e-01 2.56e-01 0.15× 1.91e-01 1.58e-01 0.12× 1.86e-01 3.86e-02 0.13× 1.88e-01 4.77e-03 0.10× 2.01e-01 8.14e-06 0.10×
Ours (s = 8) 3.10e-02 3.87e-06 0.99× 2.20e-02 4.55e-06 1.05× 1.24e-02 3.96e-06 1.88× 1.01e-02 4.32e-06 1.90× 1.43e-02 6.17e-06 1.41×
Ours (s = 16) 3.18e-02 6.95e-06 0.96× 2.12e-02 5.46e-06 1.09× 1.34e-02 3.66e-06 1.74× 1.03e-02 6.94e-06 1.86× 1.50e-02 3.98e-06 1.34×

leu

glmnet 5.83e-02 – 1.00× 5.17e-02 – 1.00× 4.93e-02 – 1.00× 4.75e-02 – 1.00× 4.80e-02 – 1.00×
ncvreg 5.86e-01 5.73e-01 0.10× 4.62e-01 5.74e-01 0.11× 4.55e-01 5.50e-01 0.11× 3.94e-01 5.48e-01 0.12× 4.00e-01 5.11e-01 0.12×
biglasso 2.24e-01 3.29e-01 0.26× 2.19e-01 2.51e-01 0.24× 2.12e-01 1.99e-01 0.23× 2.09e-01 1.89e-01 0.23× 2.27e-01 1.89e-01 0.21×
Ours (s = 8) 3.33e-02 2.14e-05 1.75× 2.45e-02 1.42e-05 2.11× 1.56e-02 6.10e-06 3.16× 1.57e-02 9.32e-06 3.03× 1.97e-02 9.13e-06 2.44×
Ours (s = 16) 3.11e-02 1.10e-04 1.87× 2.49e-02 2.04e-05 2.08× 1.56e-02 9.49e-06 3.16× 1.58e-02 1.84e-05 3.01× 1.98e-02 1.40e-05 2.43×

aus

glmnet 8.65e-03 – 1.00× 8.10e-03 – 1.00× 7.67e-03 – 1.00× 7.42e-03 – 1.00× 7.36e-03 – 1.00×
ncvreg 5.43e-01 2.54e-01 0.02× 5.42e-01 2.93e-01 0.02× 5.49e-01 3.36e-01 0.02× 5.40e-01 3.53e-01 0.01× 5.35e-01 3.62e-01 0.01×
biglasso 1.60e-01 8.97e-02 0.05× 1.67e-01 5.07e-02 0.05× 1.65e-01 1.16e-02 0.05× 1.65e-01 1.33e-03 0.05× 1.59e-01 8.59e-05 0.05×
Ours (s = 8) 7.22e-03 2.16e-08 1.20× 7.52e-03 2.25e-08 1.08× 7.12e-03 2.26e-06 1.08× 7.53e-03 3.51e-05 0.99× 7.79e-03 1.53e-04 0.95×
Ours (s = 14) 8.03e-03 2.15e-08 1.08× 7.64e-03 2.25e-08 1.06× 7.27e-03 2.26e-06 1.06× 7.48e-03 3.51e-05 0.99× 7.80e-03 1.53e-04 0.94×

diabete

glmnet 7.54e-03 – 1.00× 7.13e-03 – 1.00× 7.09e-03 – 1.00× 7.06e-03 – 1.00× 7.49e-03 – 1.00×
ncvreg 2.71e-01 3.17e-02 0.03× 2.76e-01 1.52e-02 0.03× 2.88e-01 2.48e-03 0.03× 2.86e-01 2.29e-04 0.03× 3.02e-01 1.31e-10 0.02×
biglasso 1.82e-01 3.17e-02 0.04× 1.62e-01 1.52e-02 0.04× 1.61e-01 2.48e-03 0.04× 1.62e-01 2.30e-04 0.04× 1.76e-01 3.17e-05 0.04×
Ours (s = 8) 4.97e-03 2.17e-05 1.52× 5.61e-03 6.94e-07 1.27× 6.10e-03 2.75e-06 1.16× 6.06e-03 1.32e-05 1.17× 6.14e-03 2.87e-05 1.22×

prostate

glmnet 7.48e-02 – 1.00× 7.33e-02 – 1.00× 6.59e-02 – 1.00× 6.53e-02 – 1.00× 6.21e-02 – 1.00×
ncvreg 2.53e+00 4.40e-01 0.03× 2.08e+00 4.33e-01 0.04× 1.84e+00 5.06e-01 0.04× 1.74e+00 5.09e-01 0.04× 1.69e+00 5.15e-01 0.04×
biglasso 3.26e-01 1.96e-01 0.23× 3.03e-01 1.03e-01 0.24× 2.96e-01 1.98e-02 0.22× 2.94e-01 2.19e-03 0.22× 2.98e-01 2.09e-06 0.21×
Ours (s = 8) 9.12e-02 2.83e-06 0.82× 7.09e-02 1.69e-06 1.03× 5.20e-02 6.37e-07 1.27× 4.53e-02 1.92e-06 1.44× 4.14e-02 2.54e-06 1.50×
Ours (s = 16) 8.28e-02 3.73e-06 0.90× 6.60e-02 2.44e-06 1.11× 5.00e-02 1.16e-06 1.32× 4.24e-02 3.15e-06 1.54× 4.02e-02 3.69e-06 1.54×

(up to 6.34×). For sample-dominated (n ≫ p) scenarios, improvements are modest (2.6×–4.0×
on diabetes-scale and 2.8×-3.4× on australian), and ECCD is slower at larger λ values for
phishing, recovering to 2.19× at the smallest penalty. This highlights a fundamental trade-off:
block updates strongly accelerate computations in high-dimensional, strongly regularized problems,
but yield smaller or even negative gains otherwise.

Performance Experiment with the λ Path Table 4 demonstrates that the ECCD outperforms
baseline GLM solvers-including the state-of-the-art glmnet-across diverse benchmark datasets with
single thread under default setups of glmnet. ECCD consistently matches glmnet in predictive
accuracy with relative ℓ2-difference of objective values below 10−5 for every dataset across the
regularization path. In terms of runtime efficiency, ECCD demonstrates improvements, notably
attaining up to 3.5× speedup over glmnet. For the lower dimensional benchmarks (e.g., australian
and diabete), our method shows consistent gains of 1.1-1.5×. The best speedup (3.49×) is observed
with block size s = 16 at α = 0.8 in duke dataset. Notably, in the regularization-path setting, the
combination of the strong rule and warm starts substantially accelerates convergence [2, 8], which
makes our relative speedup appear less pronounced than in the full-model scenario.

Scalability We evaluate GLMNET and ECCD under identical, single-threaded settings.3 We fix
tol = 1e-7, precompute a length-100 λ path in R, and pass the same sequence to both solvers
with λmin/λmax = 0.01 when n < p and 10−4 otherwise (nlambda = 100, lambda.min.ratio
= ifelse(nobs < nvars, 0.01, 1e-4)). Inputs are standardized in R and in-solver stan-
dardization is disabled (standardize = FALSE); for GLMNET we use type.logistic =
"modified-newton" with intercept = TRUE. Timing is performed on a Cray cluster across
three regimes (n < p, n > p, and n = p). ECCD additionally reports the selected block size s
(Table 5).

Under matched tolerance, λ path, and preprocessing, ECCD is consistently faster than GLMNET
across all regimes (Table 5). The largest relative gains occur in the wide setting (n > p), where
strong-rule screening plus periodic KKT checks quickly concentrate work on a small active set and
block updates improve cache locality; here speedups peak around 8× on mid-size problems and
remain above 2× even at the largest tall instance (1 000 000× 5000). For square problems (n = p),
improvements are steady at roughly 3–4× across sizes up to 50 000×50 000. When p≫ n, speedups
are more modest (about 1.1–1.9×), reflecting slower active-set contraction when many features are
weakly informative. In absolute terms, ECCD can reduce wall-clock time from minutes to tens of

3All runs are pinned to one thread to eliminate BLAS/OpenMP variability.
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Table 5: Wall-clock time across regimes. ECCD uses the indicated block size s. Speedup = GLMNET
time / ECCD time.

Regime Dataset (n× p) Time (s) s Speedup (×)

GLMNET ECCD

n < p 100× 1 000 000 6.348 3.330 16 1.91
n < p 500× 1 000 000 133.606 113.281 8 1.18
n < p 500× 10 000 000 389.342 346.456 32 1.12
n < p 10 000× 50 000 127.511 83.490 4 1.53

n > p 10 000× 50 0.193 0.093 4 2.07
n > p 10 000× 500 3.776 1.080 4 3.50
n > p 10 000× 5000 158.968 19.653 8 8.09
n > p 1 000 000× 5000 2082.622 1027.341 4 2.03

n = p 5000× 5000 35.061 8.171 4 4.29
n = p 10 000× 10 000 126.171 30.896 8 4.08
n = p 20 000× 20 000 661.032 213.412 4 3.10
n = p 40 000× 40 000 3369.816 986.692 4 3.42
n = p 50 000× 50 000 4956.082 1466.968 8 3.38

seconds on mid-size wide data (e.g., 10 000×5000), while using small block sizes (s ∈ {4, 8, 16, 32})
that balance per-iteration cost and parallel efficiency.

Core memory results. Empirically, the measurements align with Theorem 3: with the active-set
cap, ECCD’s residual memory beyond storing X is small and essentially insensitive to the block
size s. In the square case n=p=5000 (Table 21), raising s up to 4096 increases peak resident set
size (RSS) by only ∼ 39MiB over baseline and then plateaus, consistent with the warm-start cap
s ≈

√
|A|max. In wide (n=100, p=100,000) and tall (n=100,000, p=100) regimes (Tables 22, 23),

peak RSS is effectively flat (variation ≲ 40MiB), indicating that neither O(ns) nor O(s2) terms
dominate. By contrast, removing the cap exposes the anticipated O(s2) growth: for n=10, p=5000,
peak RSS increases by ∼ 129MiB as s reaches 4096 (Table 24). Overall, the overhead scales as
ns/(np) = s/p→ 0 in high dimensions which is negligible under the capping rule.

7 Conclusion

In summary, ECCD batches multiple coordinate descent updates with a tunable block size and Taylor
correction, which cuts per-epoch cost without affecting convergence. Our analysis shows that setting
s∗=

√
C yields an O(

√
C) speedup, and experiments demonstrate up to 3× gains on logistic and

Poisson tasks. ECCD integrates warm-start and screening rules, matches leading solvers in accuracy,
and naturally extends to other GLMs, structured penalties, and distributed or asynchronous settings.

8 Limitations

While ECCD achieves strong results, selecting an appropriate block size remains nontrivial: perfor-
mance is robust across a range of s, but the exact optimum is hard to pinpoint.
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A Theoretical Analysis and Matrix Derivations

A.1 Update Rule for Block Coordinate Descent (BCD)

We set the block size equal to s, where s ≤ p. Then the objective function in t-th iteration is given by:

L
(
β(block)

)
= − 1

n

[
ℓ
(
β(t)

)
+∇⊤

(block)

(
β(block) − β

(t)
(block)

)
+ 1

2

(
β(block) − β

(t)
(block)

)⊤
H(block)

(
β(block) − β

(t)
(block)

)]
+ λ

(
1−α
2

∥∥β(block)

∥∥2
2
+ α

∥∥β(block)

∥∥
1

)
. (15)

where ∇(block) is the gradient of the loss function − 1
nℓ(β) with respect to β(block) at β(t). While

H(block) is the second-order derivative (block of the Hessian matrix).

From the definitions of the first-order derivative and the second-order derivative in (3). we can express
the gradient vector∇(block) and the Hessian matrix H(block) as follows:

∇(block) =


gj1
gj2
...
gjs

 =

n∑
i=1

(yi − F ′(θi))

d(τ)


xi,j1
xi,j2

...
xi,js

 . (16)

H(block) = −
n∑

i=1

F ′′(θi)

d(τ)


x2i,j1 0 · · · 0
0 x2i,j2 · · · 0
...

...
. . .

...
0 0 · · · x2i,js

 . (17)

To do block coordinate descend ,we take the derivative of objective function with respect to β(block),
we obtain:

∂L(β(block))

∂β(block)
=− 1

n

[
∇(block) +H(block)(β(block) − β

(t)
(block))

]
+ λ(1− α)β(block) + λα · sign(β(block)). (18)

Setting the gradient with respect to block β(block) to zero and solving for the update rule:

β
(t+1)
(block) =

(
H(block) + λ(1− α)I(block)

)−1

· (19)( 1
n

[
∇(block) −H(block)β

(t)
(block)

]
+ λα · sign(β(t+1)

(block))
)
. (20)

Then, for each coordinate j in this block, the update rule is:

β
(t+1)
j =

S
(

1
ngj −

1
nhj β

(t)
j , λα

)
− 1

nhj + λ(1− α)
. (21)

The biggest difference from the coordinate descent (CD) method is that the parameter θi in both gj
and hj is only updated once per block update, rather than at every coordinate update.

A.2 Matrix Form Representation

In this section, we illustrate the Enhanced Cyclic Coordinate Descent updates using a matrix-based
formulation. We begin by introducing notation for the coordinate-indexing scheme, the relevant
design submatrices, and the first- and second-order derivative vectors:

Is =
(
e(k−1)s, e(k−1)s+1, . . . , eks−1

)
∈ Rp×s, (22)

X Is =
(
X e(k−1)s, X e(k−1)s+1, . . . , X eks−1

)
∈ Rn×s, (23)

∇F = F ′(β0 +X β(k−1)s
)
∈ Rn×1, (24)

∇2F = F ′′(β0 +X β(k−1)s
)
∈ Rn×1. (25)
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We first update the intercept term β0 by subtracting the mean difference between y and the current
predicted mean FOD. Specifically,

β0 ← β0 +
1⊤
n (y − ∇F )
1⊤
n∇2F

. (26)

We next define the following quantities for the weighted linear regression associated with the current
block of coordinates:

A =
(
X Is

)⊤∇F ∈ Rs×1, B =
(
X Is

)⊤
diag

(
∇2F

) (
X Is

)
∈ Rs×s, (27)

where diag(∇2F ) is the diagonal matrix formed by the second-order derivative vector ∇2F . For the
ℓ-th update within the current cycle (0 ≤ ℓ ≤ s), the numerator of ∆β(k−1)s+ℓ

jℓ
(i.e., the update to

the ((k − 1)s+ ℓ)-th coordinate) is given by

1

nd(τ)
y⊤X e(k−1)s+ℓ −

1

nd(τ)
Aℓ −

1

nd(τ)

ℓ−1∑
i=0

Bℓ,i ∆β
k+i − λ (1− α)β(k−1)s

jℓ
, (28)

and the denominator is
1

nd(τ)
Bℓ,ℓ + λ (1− α). (29)

To incorporate the ℓ1-penalty, we apply a soft-thresholding step:

β
(k−1)s+ℓ
jℓ

←
S
(
numerator, λα

)
denominator

, (30)

where S(·, ·) is the soft-thresholding operator. This completes the matrix-based update for the
((k − 1)s+ ℓ)-th coordinate in the ECCD procedure. We now summarize the matrix-based updates
described above into a formal algorithm (Algorithm 5) for solving GLMs with elastic net penalty at a
fixed regularization level λ. In particular, the block-wise coefficient updates correspond to the matrix
formulation derived in this Section.

More detailed algorithmic variants, including a full matrix-based block update procedure, are provided
in Algorithm 1. In addition, we implement pathwise regularization following [8] and summarize the
full procedure in Algorithm 6. All settings and subroutines follow established conventions in prior
work, and are carefully adapted to fit within the proposed ECCD framework.

A.3 Proof of Theorem 1

Theorem 1 (Taylor-Approximate Update Error Bound). Let the true coordinate update at iteration
(k − 1)s + ℓ, which corresponds to the ℓth coordinate in the kth block, be defined as ∆βtrue

jℓ
:=

ϕ̃jℓ/ψ̃jℓ . The corresponding approximate update, computed using a Taylor expansion, is given by
∆̂βjℓ := ϕjℓ/ψjℓ .

(A1) Let θmax := ∥∆β∥∞ denote the maximum coordinate update within the block.

(A2) The coefficients are bounded as |βj | ≤ B, for all coordinate j, which holds under regular-
ization.

(A3) The residual vector r(k−1)s+ℓ := F ′(z(k−1)s+ℓ)− y satisfies ∥r(k−1)s+ℓ∥2 ≤ R.

Then, the Taylor approximation error is bounded as:∣∣∣∆̂βj −∆βtrue
j

∣∣∣ ≤ M3 · ℓ · θmax · L∞

ψ2
min · d(τ)

(31)[
R√
nd(τ)

+ λ(1− α)B +
1

2

(
M2

d(τ)
+ λ(1− α)

)√
nℓ · θmax · L∞

]
. (32)
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Proof. For notational simplicity, we write j in place of jℓ, unless otherwise stated. Since the
denominator terms satisfy ψj , ψ̃j ≥ ψmin > 0 (with ψmin = λ(1− α) as a valid lower bound), we
begin with: ∣∣∣∆̂βj −∆βtrue

j

∣∣∣ = ∣∣∣∣∣ϕjψj
− ϕ̃j

ψ̃j

∣∣∣∣∣ (33)

≤ |ϕ̃j | · |ψ̃j − ψj |+ |ϕj − ϕ̃j | · ψj

ψj · ψ̃j

(34)

≤ 1

ψ2
min

(
|ϕ̃j | · |ψ̃j − ψj |+ |ϕj − ϕ̃j | · ψj

)
, (35)

where

ϕj =
1

nd(τ)
X⊤

·,j

(
F ′(z(k−1)s) + F ′′(z(k−1)s) ◦ δ − y

)
− λ(1− α)β(k−1)s

j , (36)

ϕ̃j =
1

nd(τ)
X⊤

·,j

(
F ′(z(k−1)s+ℓ)− y

)
− λ(1− α)β(k−1)s

j , (37)

ψj =
1

nd(τ)
X⊤

·,j diag
(
F ′′(z(k−1)s)

)
X·,j + λ(1− α), (38)

ψ̃j =
1

nd(τ)
X⊤

·,j diag
(
F ′′(z(k−1)s+ℓ)

)
X·,j + λ(1− α), (39)

where z(k−1)s = Xβ(k−1)s.

We now estimate each component. By Taylor expansion, we have: F ′(z(k−1)s+ℓ) =
F ′(z(k−1)s) + F ′′(z(k−1)s) ◦ δ + R, where ∀i ∈ {1, 2, . . . , n}, Ri = 1

2f
(3)(ξi)δ

2
i ,for some

ξi ∈ [z
(k−1)s
i , z

(k−1)s+ℓ
i ], and δ =

∑ℓ−1
i=0 ∆β

k+i ·X·,ji .

For all updated coordinates j, we use L∞ to denote the infinity norm bound of each column of X ,
i.e., ∥X·,j∥∞ ≤ L∞. Then for z in (k − 1) + s-th update, by using Assumption (A2), we obtain the
bound:

∥z(k−1)s∥∞ = ∥
p∑

j=1

x·,j · β(k−1)s
j ∥∞ ≤

(
max
i,j
|xij |

)
· ∥β(k−1)s∥1 (40)

≤ L∞ · ∥β(k−1)s∥1 ≤ L∞pB. (41)

Therefore, we assume the function F (·) determined by link function in the GLM is three-times
differentiable, with |F (3)(z)| ≤ M3 and |F ′′(z)| ≤ M2 for all z. Next, we bound the Taylor
remainder:

∥R∥22 ≤
M2

3

4

n∑
i=1

δ4i ≤
M2

3

4
· ∥δ∥22 · ∥δ∥2∞, ⇒ ∥R∥2 ≤

M3

2
· ∥δ∥2 · ∥δ∥∞. (42)

From the definition of δ and by using Assumption (A1) we have:

∥δ∥∞ ≤
ℓ−1∑
i=0

|∆βk+i| · ∥X·,ji∥∞ ≤ ℓ · θmax · L∞ (43)

∥δ∥2 ≤
ℓ−1∑
i=0

|∆βk+i| · ∥X·,ji∥2 ≤ ℓ · θmax ·
√
n. (44)

Therefore:

∥R∥2 ≤
M3

2
· ℓ · θmax ·

√
n · ℓ · θmax · L∞ =

M3

2
· ℓ2 · θ2max ·

√
n · L∞. (45)
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Since the data has been standardized so that ∥X·,j∥2 =
√
n, it follows that:

|ϕj − ϕ̃j | =
∣∣∣∣ 1

nd(τ)
X⊤

·,jR

∣∣∣∣ ≤ 1

nd(τ)
∥X·,j∥2 · ∥R∥2 ≤

M3

2d(τ)
· ℓ2 · θ2max · L∞. (46)

Next, for the denominator difference |ψ̃j − ψj |, we again use the fact that the data has been standard-
ized:

|ψ̃j − ψj | =
1

nd(τ)

n∑
i=1

|F ′′(z
(k−1)s+ℓ
i )− F ′′(z

(k−1)s
i )| · x2ij ≤

M3

nd(τ)

n∑
i=1

|δi| · x2ij

≤ M3

d(τ)
· ∥δ∥∞ ≤

M3

d(τ)
· ℓ · θmax · L∞. (47)

Moreover, applying Assumptions (A2) and (A3), we obtain:

|ϕ̃j | =
∣∣∣∣ 1

nd(τ)
X⊤

·,j(F
′(z(k−1)s+ℓ)− y)− λ(1− α)β(k−1)s

j

∣∣∣∣ ≤ R√
nd(τ)

+ λ(1− α)B. (48)

And:

|ψj | ≤
M2

d(τ)
+ λ(1− α). (49)

Putting all together:∣∣∣∆̂βj −∆βtrue
j

∣∣∣ ≤ 1

ψ2
min

[(
R√
nd(τ)

+ λ(1− α)B
)
· M3

d(τ)
· ℓ · θmax · L∞

+

(
M2

d(τ)
+ λ(1− α)

)
· M3

2d(τ)
· ℓ2 · θ2max ·

√
n · L∞

]
(50)

=
M3 · ℓ · θmax · L∞

ψ2
min · d(τ)

[
R√
nd(τ)

+ λ(1− α)B +
1

2

(
M2

d(τ)
+ λ(1− α)

)
·
√
nℓ · θmax · L∞

]
.

(51)

This completes the proof.

A.4 Proof of Theorem 2

Theorem2 (Time Complexity Analysis) Consider a single epoch of the enhanced cyclic coordinate
descent (ECCD) algorithm, defined as one full pass over all p features. Let C denote the compu-
tational cost of evaluating the mean link function ∇F (·) once, so that applying it to the full linear
predictor Xβ ∈ Rn requires O(nC) operations. Then, by choosing the block size as s =

√
C, the

computational cost per epoch is reduced from the standard O(npC) to O(np
√
C).

Proof. During an epoch the algorithm processes the p coordinates in ⌈p/s⌉ blocks of size at most s.
For each block we (i) extract an n× s slice of X , (ii) update the working response F ′(Xβ + β0),
and (iii) solve a tiny weighted least-squares system of dimension s.

First we calculate the cost per block. By extracting the slice and forming the weighted Gram quantities
requires O(ns) and O(ns2) operations, respectively; the latter dominates when s > 1. Recomputing
or refreshing the∇F and∇2F in link function contributes a further O(nC). Hence„ a single block
incurs O

(
nC + ns2

)
work.

Aggregating over all blocks, we multiply by the number of blocks to obtain the per-epoch cost:

O
(

p
s

[
nC + ns2

])
= O

(npC
s

)
+ O

(
nps
)
.

Applying the arithmetic–geometric mean inequality to the two terms, we have

npC

s
+ nps ≥ 2np

√
C. (52)
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This lower bound is attained when s∗ =
√
C, yielding the minimal total cost O(np

√
C).

Comparison with the one-at-a-time update. When s = 1 the second term collapses to O(np),
leaving the classical O(npC) bound. Thus, the square-root choice reduces the asymptotic cost by a
factor of

√
C, an advantage that widens as the link evaluation becomes more expensive.

A.5 Proof of Theorem 3

Theorem3 (Space Complexity Analysis) Let s ≤ min{n, p}. The enhanced cyclic coordinate descent
(ECCD) algorithm can be implemented with a space complexity of O(np), which is dominated by
the storage of the design matrix X ∈ Rn×p.

Proof. The principal memory allocation is the dense design matrix X , whose cost is O(np) and, as
we shall see, dominates all subsidiary structures. The response vector y ∈ Rn and the current iterate
β ∈ Rp contribute only O(n) and O(p), respectively. At each sweep the algorithm selects an index
set of size s and manipulates the corresponding indicator matrix Is ∈ Rp×(s). Because Is is stored as
an index list rather than a full column slice, its cost is merely O(s). Multiplying X by Is materialises
an n× s submatrix; even if this object is formed explicitly (the pessimistic scenario), it incurs O(ns)
additional space. Element-wise logistic weights such as∇F (·) and∇2F (·) are cached as length-n
vectors, yielding another O(n). Finally, the blockwise normal equations manipulate a tiny ×s Gram
matrix together with its right-hand side, which together add O(s2).
Collecting the above, the aggregate per-epoch requirement is

O(np) + O(n) + O(p) + O(ns) + O(s2). (53)

Because s ≤ min{n, p}, we have both ns ≤ np and s2 ≤ np, rendering every term other than the
first negligible in the asymptotic sense. Consequently, the complexity of the working memory of the
ECCD routine is O(np); no additional allocation beyond the data matrix alters the leading order.

B Algorithm

B.1 Deviance Computation and Stopping Rules

Deviance is a likelihood-based measure used to quantify the goodness-of-fit in generalized linear
models. Formally, it is defined as:

Deviance = −2
[
ℓ(β̂)− ℓsat

]
,

where ℓ(β̂) is the log-likelihood under the fitted model, and ℓsat is the log-likelihood of a saturated
model (which perfectly fits the data). The null deviance is similarly defined by replacing the fitted
model with the intercept-only model. We present the specific formulas for logistic regression and
Poisson regression.

Logistic Regression. For binary responses yi ∈ {0, 1} and predicted probabilities pi = σ(x⊤
i β̂), the

log-likelihood is:

ℓ(β̂) =

n∑
i=1

[yi log pi + (1− yi) log(1− pi)] . (54)

The saturated log-likelihood is:

ℓsat =

n∑
i=1

[yi log yi + (1− yi) log(1− yi)] , (55)

with the convention that 0 log 0 := 0. The log-likelihood of intercept only model uses ȳ:

ℓnull =

n∑
i=1

[yi log ȳ + (1− yi) log(1− ȳ)] , ȳ =
1

n

n∑
i=1

yi. (56)
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Algorithm 2 Computation of Null Deviance for Generalized Linear Models

Require: y ∈ Rn, GLM family, F (·), d(τ)
1: ȳ ← 1

n

∑n
i=1 yi; θ0 ← ∇F−1(ȳ)

2: ℓnull ←
∑n

i=1 [yi · θ0 − F (θ0)] /d(τ)
3: ℓsat ←

∑n
i=1 [yi · θsat

i − F (θsat
i )] /d(τ) where F ′(θsat

i ) = yi
4: NullDeviance← −2 · (ℓnull − ℓsat)
5: return NullDeviance

Algorithm 3 Deviance-Based Block Convergence Check

Require: Current β(t), previous β(t−1), F (·), X , tol, block sizeblz, dev_0 is computed using
Algorithm 2

1: ∆0 ← β
(t)
0 − β

(t−1)
0 ; L0 ← (

∑
i∇2F (β0 + x⊤

i β
(t))) ·∆2

0; Lcoef ← 0
2: for each active coordinate j do
3: ∆j ← β

(t)
j − β

(t−1)
j ; Lj ←

(∑
i∇2F (β0 + x⊤

i β
(t))X2

ij

)
·∆2

j ; Lcoef ← max{Lcoef, Lj}
4: end for
5: if L0 < tol · dev0 or Lcoef < tol · dev0 · blz then
6: return Converged
7: else
8: return Not Converged
9: end if

Poisson Regression. For count data yi ∈ N and µi = exp(x⊤
i β̂), the log-likelihood is:

ℓ(β̂) =

n∑
i=1

[yi logµi − µi − log yi!] . (57)

The saturated log-likelihood is:

ℓsat =

n∑
i=1

[yi log yi − yi − log yi!] , (58)

and log-likelihood of intercept only model uses overall mean ȳ.

ℓnull =

n∑
i=1

[yi log ȳ − ȳ − log yi!] . (59)

The computation of the null deviance for generalized linear models is detailed in Algorithm 2, with
all notation consistent with that used throughout this paper.

For the stopping rule, we follow [8] and monitor the maximum change in deviance, normalized by
the null deviance. For our ECCD algorithm, we further incorporate the block size into the threshold,
in order to account for the variation in deviance magnitude induced by different block sizes.

The log-likelihood is approximated via a second-order Taylor expansion, which allows us to reuse
the first- and second-order quantities already computed during optimization. The detailed procedure
is shown in Algorithm 3.

B.2 Baseline: Cyclic Coordinate Descent for GLMs with Elastic Net

As a baseline, we implement the classical cyclic coordinate descent (CCD) algorithm under the
generalized linear model (GLM) framework with elastic net regularization, as proposed by Friedman
et al. [2]. The algorithm performs coordinate-wise updates in a cyclic fashion, equivalent to applying
ECCD with a fixed block size of one, minimizing a penalized approximation to the negative log-
likelihood in each step. The full procedure is summarized in Algorithm 4.
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Algorithm 4 Cyclic Coordinate Descent for GLMs with Elastic Net Penalty (Baseline)

Require: X ∈ Rn×p, y ∈ Rn, β(0) ∈ Rp, β(0)
0 ∈ R, λ > 0, α ∈ [0, 1], H ∈ N, tol > 0,

F (·)
1: for t = 1, 2, . . . ,H do
2: η ← β

(t−1)
0 +Xβ(t−1);∇F ← ∇F (η), ∇2F ← ∇2F (η)

3: (Intercept update):

β
(t)
0 ← β

(t−1)
0 +

1⊤
n (y −∇F )
1⊤
n∇2F

4: (Coordinate updates):
5: for k = 0, . . . , p− 1 do
6: xk ← Xek; A← x⊤k∇F ; B ← x⊤k

(
∇2F ⊙ xk

)
7: β

(t)
k ←

S
(

1
ny

⊤xk − 1
nA+ 1

nBβ
(t−1)
k , λα

)
1
nB + λ(1− α)

8: end for
9: (Convergence check): Apply Algorithm 3

10: if converged, break
11: end for
12: Output: β(t), β

(t)
0

B.3 ECCD for GLMs: Single-Step and Pathwise Algorithms

In this section, we introduce our proposed Enhanced Cyclic Coordinate Descent (ECCD) algorithm
for solving generalized linear models (GLMs) with elastic net regularization. We present three
variants:

• Algorithm 1 implements ECCD with a fixed active set.
• Algorithm 5 solves the penalized GLM for a single regularization level.
• Algorithm 6 extends ECCD to a pathwise setting with sequential strong rules for active set

screening.

Our method improves computational efficiency by grouping updates in blocks and reusing gradi-
ent/Hessian terms via second-order Taylor expansion. A minor but effective optimization we adopt is
to only recompute the log-likelihood gradient,∇F , when there is a non-zero update in β, avoiding
unnecessary recomputation in epochs with no coefficient changes.

For other standard components such as warm-start initialization, early stopping criteria, and λ-grid
construction, we closely follow established practices in the paper [8] .

19



Algorithm 5 ECCD With Single λ

1: // STRONG-RULE ACTIVE SET
2: COMPUTE q0, β0, A, null deviance
3: SET z ← Xβ(0)

4: while Not Converged do
5: Reset epoch_loss, has_inc
6: for all Block B ⊆ A do
7: if has_inc or First Block then p← σ(z + β0)
8: if with_intercept then update β0
9: Update βB (Apply Algorithm 1)

10: δ ← change in βB, z ← z +XBδ; Update has_inc, epoch_loss
11: end for
12: if First Epoch or Apply Algorithm 3 then
13: Check the KKT condition and update A (see Section 3.3 and Algorithm 6 for details).
14: if No Change in A then
15: Break
16: end if
17: end if
18: end while
19: RETURN β̂, β̂0

Algorithm 6 Pathwise Enhanced Cyclic Coordinate Descent (ECCD) with Sequential Strong Rule

Require: X ∈ Rn×p, y ∈ Rn, β(0) ∈ Rp, β
(0)
0 ∈ R, {λ1 > λ2 > · · · > λq}, α ∈

[0, 1], s,H ∈ N, tol, ne_limit, rsq_max, sml > 0, F ′, F ′′ for log-likelihood, null
deviance dev0.

Ensure: Estimated β, β0 and deviance for each λk
1: Set gradient: r← y −∇F (β(0)

0 ), X⊤r→ grad

2: Compute: λ1 ← maxj
|gradj |

α , λq = ϵλ1
3: for k = 1, . . . , q do
4: Run Algorithm 1 with block updates on current active setAk, reusing (β, β0) andAk ← Ak−1

from previous λk−1 (warm start).
5: for outer = 1, . . . ,H do
6: (Strong Rule Screening):

Sk ←
{
j :
∣∣x⊤

j (y −∇F (η))
∣∣ ≥ α(2λk − λk−1)

}
7: Let Ak ← Sk ∪ {j : βj ̸= 0}
8: Run Algorithm 1 on block updates with predictors in Ak, current λ = λk
9: (KKT Violation Check): For j /∈ Ak, add back if:∣∣x⊤

j (y −∇F (Xβ + β0))
∣∣ > αλk

10: Update Ak and continue outer loop if any violations
11: end for
12: Compute deviance:

devk ← −2 (ℓ(β, β0)− ℓsat)

13: Optional Early Stop if:

(a) |Ak| > ne_limit, (b) R2 > rsq_max, (c)
devk−1 − devk

2 · dev0
< sml

14: Warm start next λk+1 using current (β, β0)
15: end for
16: return β, β0, {deviance}
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Table 6: Runtimes on GLMNET default path (λmax→λmax×10−4 or 10−2; 100 points). ECCD is
single-thread; BIGLASSO uses the listed thread count.

Dataset GLMNET [s] ECCD [s] s BIGLASSO [s] (threads)

Duke 0.117 0.012 8 0.215(8)
10,000× 10,000 44.204 31.644 8 122.114(64)
100× 100,000 0.937 0.640 4 1.198(16)
100,000× 100 1.862 0.767 8 4.372(2)

Table 7: Runtimes on BIGLASSO default path (λmax → λmax×10−1; 100 points). ECCD is
single-thread; BIGLASSO uses the listed thread count.

Dataset GLMNET [s] ECCD [s] s BIGLASSO [s] (threads)

Duke 0.076 0.010 8 0.197(8)
10,000× 10,000 4.115 2.250 4 1.419(64)
100× 100,000 0.942 0.709 4 0.890(8)
100,000× 100 1.033 0.484 16 1.519(64)

C Benchmarking Experiments with Additional Baselines

While the most direct baseline to the ECCD is the GLMNet that explore a path-wise solution with a
single-thread focus. There are many popular softwares that involves solving the LASSO, ElasticNet
problem for regularized logistic problems, despite differences in solution type (i.e. single lambda fit),
convergence criterion[28, 29], and system-level design [30, 4]. Yet we still select some of the method
serves as baselines for comparison because we expect the performance to be consistent across various
of domains. Below we perform intensive comparison with other baselines:

C.1 BigLasso

BIGLASSO[31, 30, 4] is a parallel coordinate–descent solver that targets the same objective and
design as GLMNET; in the single–thread limit it reproduces GLMNET’s solution. Motivated by the
reviewer’s suggestion, we benchmarked BIGLASSO on a Cray EX cluster using {2, 4, 8, 16, 32, 64}
threads and compared against single-thread ECCD. We report two settings: (i) GLMNET’s default
path (λmax → λmax×10−4 or 10−2, 100 points), where ECCD remains faster than BIGLASSO
even when the latter uses up to 64 threads (Table 6); and (ii) BIGLASSO’s shorter default path
(λmax → λmax×10−1, 100 points), where ECCD is still faster on three of four datasets while
BIGLASSO wins on the 10k×10k case (Table 7). These results indicate that ECCD’s pathwise,
active-set strategy provides a strong sequential baseline; parallelizing ECCD is straightforward future
work and would further widen the gap.

C.2 SKGLM

We include a comparison against SKGLM, a Python library that provides pathwise coordinate descent
primarily for linear models and exposes logistic regression as a single-λ solver at the time of our
experiments. Because a path solver for logistic regression is not available in SKGLM, a direct
path-to-path comparison with ECCD is not possible. To enable a controlled evaluation, we reuse
the λ-sequence generated for ECCD and invoke SKGLM’s logistic solver at those values, matching
preprocessing (standardization) and error tolerances. Runs are conducted under the same BenchOpt
protocol as in Section C.4; wall-clock time is reported.

Table 10 summarizes the results. ECCD attains substantially lower runtimes across all datasets. On
Duke, ECCD completes in 0.013 s versus 1.375 s for SKGLM (≈106× faster); on Diabetes the gap
widens to 0.002 s versus 6.155 s (≈3078×). The advantage persists in large synthetic regimes: for
a tall design (n=100, p=100,000), ECCD achieves 1.426 s versus 131.340 s (≈92×); for a wide
design (n=100,000, p=100), 1.032 s versus 213.012 s (≈206×). These findings are consistent with
the expected behavior of pathwise methods: ECCD leverages warm starts, strong rules, and block
updates with active-set screening to amortize work along the sequence, whereas repeatedly solving
single points lacks these path-specific accelerations.
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Table 8: Table A — BigLasso sweep grouped as 1/2/4/8 and 16/32/64/128. Times in seconds.

Dataset GLMNet ECCD BIGLASSO (threads)
1/2/4/8

BIGLASSO (threads)
16/32/64/128

Duke 1.375 0.012 0.330 / 0.265 / 0.226 / 0.215 0.221 / 0.228 / 0.276 / 0.293
10k×10k 43.807 32.477 127.226 / 123.642 / 123.034 / 122.464 123.462 / 126.189 / 124.638 / 123.583
100×100k 131.340 0.640 2.919 / 1.755 / 1.340 / 1.245 1.198 / 1.253 / 1.306 / 1.251
100k×100 213.012 0.767 4.501 / 4.372 / 4.415 / 4.518 4.822 / 4.995 / 4.928 / 5.038

Table 9: Table B — BigLasso sweep grouped as 1/2/4/8 and 16/32/64/128. Times in seconds.

Dataset GLMNet ECCD BIGLASSO (threads)
1/2/4/8

BIGLASSO (threads)
16/32/64/128

Duke 0.076 0.010 0.230 / 0.289 / 0.203 / 0.197 0.206 / 0.211 / 0.215 / 0.280
10k×10k 4.196 2.263 9.944 / 5.557 / 3.176 / 2.287 2.017 / 2.189 / 1.902 / 1.729
100×100k 0.942 0.709 2.923 / 1.281 / 0.980 / 0.890 0.913 / 0.927 / 0.971 / 1.011
100k×100 1.033 0.484 2.066 / 1.744 / 1.553 / 1.519 1.632 / 1.778 / 1.815 / 1.659

Taken together, the results indicate that ECCD provides a strong sequential baseline for logistic
regression paths-even against highly optimized Python implementations, while remaining competitive
at individual λ values 4. We emphasize that this comparison isolates the benefit of path-aware
computations: SKGLM is competitive for single-point fits, but without a logistic path solver it incurs
near-linear cost in the number of λ values.

C.3 ABESS

We also compare against ABESS, which solves best-subset selection with an explicit ℓ0 constraint-a
different objective from the ℓ1/ℓ2-regularized problems (Lasso/Elastic Net) considered here-so direct
pathwise equivalence does not hold. Nevertheless, using the correlated synthetic generator from
Section D with ρ ∈ {0.1, 0.9}, we benchmark small (n=20, p=2000), moderate (n=100, p=1000;
n=1000, p=100), and large (n=100,000, p=100) regimes. Table 11 shows that ECCD is consistently
fastest across settings, including high-correlation cases; ABESS slows substantially as n grows, while
ECCD maintains sub-second to single-second times under identical preprocessing and tolerance.
These findings reinforce that ECCD retains its advantage even in regimes where ℓ0-based methods
are often promoted.4

C.4 More Experiment on Skglm Family with BenchOPT for Comparison

Recently the BenchOpt [32] emerges as an strong baseline for generalized linear models with
convex/nonconvex regularization. Thus we augmented our baselines with the skglm family-SKGLM,
CELER, and BLITZL1-using BenchOpt. These packages are strong sparse estimators at a single
regularization level but differ from ECCD/GLMNET in two substantive respects: (i) they are primarily
engineered for single-point fitting rather than full regularization paths; and (ii) their model coverage
differs (e.g., Elastic Net and/or GLM path solvers are not uniformly exposed). To ensure fairness and
reproducibility, we therefore report results in two regimes: single-λ versus sequential 100-λ path.

Setups. All experiments use BenchOpt with package defaults unless otherwise
noted: skglm.SparseLogisticRegression(), celer.LogisticRegression(), and
blitzl1.LogRegProblem(). Single–λ evaluations use three levels λ/λmax ∈ {0.5, 0.1, 0.05};
path experiments use a 100–λ sequence. We retain each solver’s default stopping rule and enable
warm starts wherever available (BLITZL1 reuses previous solutions; CELER and SKGLM expose warm
starts). ECCD and GLMNET use warm starts and strong rules, which are known to be decisive for

4On n=100, p=100,000 with ρ ∈ {0.1, 0.9}, data generation process runs exceeded 12 hours without
completion on our cluster.
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Table 10: ECCD vs. SKGLM (logistic; times in seconds). ECCD uses block size s=4.
Dataset SKGLM [s] ECCD [s]

Duke 1.375 0.013
Diabetes 6.155 0.002
n=100, p=100,000 131.340 1.426
n=100,000, p=100 213.012 1.032

Table 11: ECCD vs. GLMNET vs. ABESS (times in seconds) on correlated synthetic data and Duke.
ECCD uses block size s=4.

Dataset GLMNET [s] ABESS [s] ECCD [s]

n=20, p=2000, ρ=0.1 0.014 0.011 0.002
n=20, p=2000, ρ=0.9 0.018 0.011 0.002
n=2000, p=20, ρ=0.1 0.030 0.426 0.013
n=2000, p=20, ρ=0.9 0.047 0.493 0.027
n=100, p=1000, ρ=0.1 0.028 0.026 0.005
n=100, p=1000, ρ=0.9 0.066 0.028 0.006
n=1000, p=100, ρ=0.1 0.021 0.131 0.007
n=1000, p=100, ρ=0.9 0.026 0.128 0.006
n=100,000, p=100, ρ=0.1 2.384 904.368 1.426
n=100,000, p=100, ρ=0.9 3.840 931.303 1.032
Duke 0.022 0.025 0.013

path efficiency. Inputs are standardized upstream of the solvers; timings are wall-clock seconds. A
dash (—) denotes unsupported model/setting combinations (e.g., Elastic Net for BLITZL1/CELER). 5

Findings. (i) In the single–λ regime, Python sparse solvers are competitive and can be fastest
on individual instances; ECCD remains consistently strong across datasets (Tables 12–13). (ii)
In the 100–λ path regime, ECCD/GLMNET are consistently faster—often by one to two orders of
magnitude—because the combination of warm starts and strong rules mitigates the near-linear cost
growth with the number of λ values (Table 14). (iii) These trends are robust across real (Duke, Leu,
Diabetes) and synthetic (tall Syn1 and wide Syn2) settings. ECCD’s block updates with active-set
screening yield stable wins in path mode while remaining competitive in single-point mode.

Takeaways. (A) In single-λ mode, SKGLM/BLITZL1 are competitive on small dense problems and
sometimes match or beat GLMNET; ECCD remains in the same ballpark (often faster) across real
and synthetic datasets. (B) In path mode, ECCD and GLMNET dominate across all datasets because
strong rules prune inactive coordinates early, so the effective work per λ shrinks markedly. Warm
starts alone (as in SKGLM/CELER/BLITZL1) reduce constants but still scale roughly with the number
of λ values. (C) Elastic Net support is uneven in the Python sparse packages; results shown reflect
what each library exposes under BenchOpt. Overall, these experiments corroborate our central claim:
ECCD provides a pathwise solver that is both competitive at single points and substantially faster on
full paths—the regime most relevant to model selection and real workflows.

D Additional Experiment Result

Synthetic data generation. We generate datasets with n observations and p predictors by first
drawing rows of the design matrix X ∈ Rn×p i.i.d. from a zero-mean Gaussian with an equi-
correlated covariance,

Xi· ∼ Np(0,Σ), Σjj = 1, Σjk = ρ (j ̸= k),

which imposes a controlled, tunable correlation among features (the special case ρ = 0 recovers
independence). We highlight this family because it explicitly produces correlated designs and is
therefore a relevant stress test for the ABESS baseline. To induce sparsity, we construct β⋆ ∈ Rp by

5Objective values (not shown) matched within 10−3 across methods in our runs, except that BLITZL1
occasionally reported a slightly different objective. We followed the BenchOpt reference code verbatim.

23



Table 12: Single-λ runtime (s), Lasso. Each cell lists λ/λmax ∈ {0.5, 0.1, 0.05} from top to bottom.

Dataset SKGLM
(0.5 / 0.1 / 0.05)

CELER
(0.5 / 0.1 / 0.05)

BLITZL1
(0.5 / 0.1 / 0.05)

GLMNET
(0.5 / 0.1 / 0.05)

ECCD
(0.5 / 0.1 / 0.05)

Duke 1.8 × 10−3

2.3 × 10−3

2.3 × 10−3

1.6 × 10−2

3.0 × 10−2

3.5 × 10−2

2.3 × 10−3

5.6 × 10−3

6.5 × 10−3

5.5 × 10−3

7.8 × 10−3

1.4 × 10−2

2.5 × 10−3

5.0 × 10−3

6.2 × 10−3

Leu 2.2 × 10−3

2.3 × 10−3

2.3 × 10−3

1.2 × 10−2

2.3 × 10−2

2.2 × 10−2

2.1 × 10−3

4.4 × 10−3

5.7 × 10−3

5.2 × 10−3

7.3 × 10−3

7.7 × 10−3

2.1 × 10−3

4.3 × 10−3

4.7 × 10−3

Diabetes 1.6 × 10−3

1.6 × 10−3

1.6 × 10−3

3.6 × 10−3

4.9 × 10−3

5.0 × 10−3

8.0 × 10−4

6.0 × 10−4

5.0 × 10−4

1.3 × 10−3

1.6 × 10−3

1.8 × 10−3

4.0 × 10−5

4.7 × 10−4

5.6 × 10−4

Syn1 (100×100k) 3.8 × 10−2

3.7 × 10−2

3.7 × 10−2

1.1 × 10−1

3.2 × 10−1

3.4 × 10−1

1.0 × 10−1

2.2 × 10−1

2.7 × 10−1

1.0 × 10−1

1.2 × 10−1

1.5 × 10−1

6.2 × 10−2

7.7 × 10−2

8.8 × 10−2

Syn2 (100k×100) 2.9 × 10−1

9.0 × 10−1

2.5 × 10−1

6.8 × 10−1

5.4 × 10−1

5.6 × 10−1

1.8 × 10−1

2.8 × 10−1

2.9 × 10−1

1.1 × 10−1

1.1 × 10−1

1.3 × 10−1

6.2 × 10−2

6.4 × 10−2

8.4 × 10−2

Table 13: Single-λ runtime (s), Elastic Net (α = 0.5). Each cell lists λ/λmax ∈ {0.5, 0.1, 0.05}
from top to bottom. “—” = unsupported.

Dataset SKGLM
(0.5 / 0.1 / 0.05)

CELER
(0.5 / 0.1 / 0.05)

BLITZL1
(0.5 / 0.1 / 0.05)

GLMNET
(0.5 / 0.1 / 0.05)

ECCD
(0.5 / 0.1 / 0.05)

Duke 2.3 × 10−3

2.6 × 10−3

2.4 × 10−3

— — 5.1 × 10−3

8.0 × 10−3

1.1 × 10−2

2.4 × 10−3

4.5 × 10−3

6.7 × 10−3

Leu 2.2 × 10−3

2.2 × 10−3

2.3 × 10−3

— — 4.8 × 10−3

7.6 × 10−3

9.6 × 10−3

2.2 × 10−3

4.0 × 10−3

5.2 × 10−3

Diabetes 1.6 × 10−3

1.6 × 10−3

1.5 × 10−3

— — 1.1 × 10−3

1.5 × 10−3

1.3 × 10−3

6.0 × 10−5

4.7 × 10−4

5.7 × 10−4

Syn1 (100×100k) 6.0 × 10−2

3.9 × 10−2

4.0 × 10−2

— — 1.0 × 10−1

1.3 × 10−1

1.5 × 10−1

6.1 × 10−2

7.6 × 10−2

1.0 × 10−1

Syn2 (100k×100) 2.6 × 10−1

3.5 × 10−1

2.4 × 10−1

— — 1.0 × 10−1

1.1 × 10−1

1.2 × 10−1

5.6 × 10−2

6.5 × 10−2

8.3 × 10−2

selecting s indices uniformly at random and assigning them values drawn uniformly from a fixed
interval (e.g., [1, 2]), leaving all other entries zero. Given X and β⋆, we form the linear predictor
η = Xβ⋆, convert to success probabilities via the logistic link

pi =
1

1 + e−ηi
, i = 1, . . . , n,

and finally sample the binary response as yi ∼ Bernoulli(pi).

Experiment Dataset Summary. We evaluate ECCD and GLMNet on a diverse set of eight publicly
available benchmarks drawn from applications in genomics, credit modeling, biomedical studies,
and web security. These include a couple of small-sample, high-feature gene-expression sets, an
RNA-seq dataset with an extreme feature-to-sample ratio, several moderate-scale classification tasks
(e.g. credit approval and medical diagnostics), and a larger web phishing collection. By covering
a broad range of dimensionalities and aspect ratios, this suite stresses both numerical stability and
computational performance under the varied conditions practitioners commonly face.
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Table 14: Sequential 100-λ path runtime (seconds) via BenchOpt. ECCD entries include the block
size s used. A dash (—) indicates unsupported.

Duke Leu Diabetes Syn1 Syn2

Method Model Lasso ENet Lasso ENet Lasso ENet Lasso ENet Lasso ENet

SKGLM Lasso/ENet 2.8e-1 2.9e-1 5.5 7.2 1.4e-1 1.4e-1 6.2 4.1 5.3e1 5.8e1
CELER Lasso 4.1 — 2.4 — 3.0e-1 — 2.2e1 — 5.6e1 —
BLITZL1 Lasso 4.5e-1 — 2.3e-1 — 4.1e-2 — 2.1 — 1.5e1 —
GLMNET Lasso/ENet 2.1e-2 4.9e-2 2.0e-2 5.9e-2 6.0e-3 6.0e-3 4.7e-1 4.8e-1 1.7 2.0

ECCD Lasso/ENet 1.3e-2
(s=32)

2.2e-2
(s=8)

1.0e-2
(s=16)

1.8e-2
(s=16)

4.0e-3
(s=8)

4.0e-3
(s=8)

2.7e-1
(s=32)

2.9e-1
(s=32)

1.6
(s=4)

1.6
(s=4)

Table 15: Summary of datasets used for numerical tests.
Filename # Observations (n) # Features (p)
duke 44 7,129
leukemia 38 7,129
colon-cancer 63 2,000
diabete-scale 768 8
australian 690 14
airway 8 63679
prostate 102 6033
phishing 11,055 68

Implementation details and baselines. To ensure a fair comparison with the state-of-the-art, we
align our path-tracking experiments exactly to GLMNet’s settings. In particular, we use GLM-
Net’s default convergence threshold (thresh = 10−7), intercept fitting, and grid of 100 λs with
λmin/λmax = 10−2. All input features are pre-standardized by us, and we disable GLMNet’s internal
standardization to avoid double-scaling. For the single lambda case, we simply set the lambda
parameter euqals given lambda input, and set the path parameter equals false.

While we also benchmark biglasso (v1.6.1, GPL-3 license) and ncvreg (v3.15.0, GPL-3 license),
GLMNet remains the de facto standard for elastic-net penalized GLMs, so we continue to report
GLMNet’s solutions as our canonical baseline. GLMNet (v4.1-8, GPL-2.0 license) remains the
most widely used coordinate-descent engine for elastic-net–penalized generalized linear models and
enforces a stricter stopping rule than these alternatives. We ran all methods with their latest CRAN
versions, always matching sparsity parameters α and, where possible, using their fastest safe defaults.

Estimating the per-operation cost C. To understand the relative cost of estimating the expensive
first and second order derivative of the CGF (e.g. sigmoid) versus a simple arithmetic update, we
measure the time per call and form the ratio

C =
time(∇F (x) )

time(x+ b)
.

We perform one complementary experiments at the vector level (to mimic typical linear-algebra
kernels) and report the result on our HPC node.

All performance experiments were carried out on a Cray compute node (Intel Xeon 6248R @ 3.0
GHz, 192 GB RAM) running SUSE Linux Enterprise Server 15 SP5 with the vendor-provided
multi-threaded LibSCI BLAS/LAPACK (libsci_gnu_123_mp, LAPACK 3.10.1). We used R 4.3.1
(built under glibc) with C++ extensions compiled via Rcpp 1.0.10 and RcppEigen 0.3.3 under
-O3 -march=native -ffast-math. Vectorized kernels leveraged Eigen’s dense operations (on
dimensions up to 100), while scalar tests invoked plain C++ loops for exp and addition.

Using a microbenchmark harness in R, we call two routines in each iteration: (1) a sigmoid on a
length–100 Eigen vector, (2) a pure elementwise addition of a constant. We fix n = 105 iterations
and repeat each measurement 100 times. This setup approximates the hotspot cost in block-update
kernels on a high-performance system.
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Table 16: ECCD convergence on Duke under adaptive vs. fixed block sizes s. Entries are relative
objective differences (smaller is better).

Block size s Rel. Obj. Diff (Adaptive) Rel. Obj. Diff (Fixed)

1 1.38× 10−4 1.38× 10−4

16 8.025× 10−5 9.810× 10−5

64 8.674× 10−5 1.598× 10−4

256 8.674× 10−5 1.240× 10−4

2048 8.674× 10−5 1.218× 10−4

7129 8.674× 10−5 1.470× 10−4

Across both setups we observe that computing the sigmoid is roughly 13× ∼ 17× more expensive
than a simple add, depending on argument range and vector-width effects.

Block Size Selection Strategy in Practice While our theoretical analysis suggests that the optimal
block size is s∗ =

√
C, practical implementation requires careful estimation of the hidden constant

C, which captures the relative cost of link function evaluations versus basic linear algebra operations.
To empirically estimate C, we benchmarked the cluster environment under two settings: (i) fully
optimized Eigen-based matrix operations, and (ii) vanilla implementations involving repeated sig-
moid evaluations and summations. Across both settings, we consistently observed that, in logistic
regression, sigmoid function evaluations were in average 13× to 17× more expensive than basic
matrix-vector multiplications. This implies a theoretical optimal block size of s∗ =

√
C ≈ 4.

However, in practice, additional considerations arise. Notably, ECCD avoids redundant sigmoid
function updates when coefficient increments are negligible, which slightly decouples actual update
frequency from worst-case complexity bounds. Moreover, secondary factors—including the need to
explicitly compute the second derivative of the sigmoid function, hardware-level vectorization effects,
and dynamic fluctuations in the active set size—can further shift the empirical optimal block size.
Our profiling across datasets revealed that a slightly larger block size, particularly s = 8, consistently
delivered near-optimal speedups while preserving stability across various scaled tasks. Therefore,
although identifying the precise optimum can be challenging, s=8 emerges as a robust default that
achieves near-optimal speedups and beats most baselines across varied scales.
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Figure 4: ECCD Time Decomposition Plot (Duke)

Convergence of ECCD with Different Blocksize Selection. To illustrate the convergence behavior
of ECCD under different blocksize selection, we extended ECCD to block sizes up to s = p = 7129
on the Duke dataset (the maximum possible blocksize for this dataset); results in Table 16 show stable
convergence even at s = p, underscoring the robustness of our second-order Taylor correction and its
advantage over naïve block coordinate descent (cf. main-paper Table 3). Column 2 reports relative
objective differences under our adaptive active-set scheme: updates are restricted to currently nonzero
coefficients, KKT violations trigger working-set expansion, and when s > |A| we cap the working
block by setting s ← ⌊

√
|A| ⌋ to avoid the s2 memory/compute spike. Column 3 gives the same

metric with fixed s (no resizing), providing a direct comparison. Across all s, the adaptive variant
matches or improves the objective and remains numerically stable through s = 7129. Consistent
with our theory, the practically optimal s is a small constant determined by link-function cost, so our
original range s∈ [2, 32] is both relevant and justified; the large-s study is included for completeness.
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Empirical Cost Breakdown Figure 4 reports the per-epoch wall-clock composition of ECCD
on the Duke dataset for three regularization strengths. For the baseline update schedule (s = 1),
evaluation of the cumulant-generating-function (CGF) gradient (pink) and matrix-update operations
(purple) together consume over 80% of total runtime; coefficient-batch updates (dark blue) and
active-set maintenance (teal) also contribute nontrivially. As the block size s grows, we observe:

• A roughly 1/s reduction in CGF-gradient cost, confirming that ECCD’s block-amortization
defers expensive derivative evaluations until after each batch of s coordinate updates.

• A relative increase in the share of matrix-construction and coefficient-batch costs (dark
purple and dark blue), since these are still performed once per block.

• Matrix-update overhead and active-set maintenance become nearly negligible at larger s,
validating that their amortization is effective.

Across all three λ settings, the absolute time spent on each component drops by approximately 75%
when moving from s = 1 to s = 32, aligning tightly with our theoretical O(np/s+p) complexity for
sigmoid-evaluation–dominated workloads. ECCD thus shifts the bottleneck away from per-coordinate
derivative calls toward block-level matrix operations, unlocking substantial runtime savings.

Memory complexity. Theorem 3 provides a detailed space–complexity analysis of ECCD. Here we
extend our experiments to verify this claim, explicitly accounting for the additional memory required
by ECCD beyond the storage cost of the design matrix. Concretely, ECCD allocates O(ns) memory
for the working block Xs and O(s2) for its Gram submatrix, where the ideal block size s is a small
constant that is approximately independent of n and p. For comparison, GLMNET corresponds to the
special case s = 1 from the standpoint of asymptotic memory. Consequently, in high-dimensional
regimes with p≫ s, the relative overhead of ECCD scales as ns/(np) = s/p→ 0 and is therefore
negligible. This behavior is consistent with our empirical observations.

In all experiments we report resident set size (RSS) and track peak usage during a regularization
path. To better isolate ECCD’s overhead, we distinguish (i) the baseline RSS at process start, (ii) the
peak RSS during optimization, and (iii) the end RSS. Because absolute baselines can vary slightly
across runs and environments, the s=1 row in each table serves as the reference point within that
experiment.

With the active-step capping mechanism, the extra storage in ECCD is dominated by s vectors of
length n (the working block Xs) and an s× s Gram submatrix. In the extreme where s approaches
the size of the active set, the O(s2) term can dominate. To prevent this, we cap the working block
by dynamically setting s← ⌊

√
|A| ⌋ once the active set reaches size |A|. This ensures that further

increases in |A| do not cause quadratic growth in memory, keeping ECCD’s overhead negligible
relative to the design-matrix storage. Without the active-set cap, the O(s2) term becomes dominant
for large s, and peak RSS rises accordingly (Table 24). This confirms the necessity and effectiveness
of the capping rule in practice.

Using the solution at the previous λ as a warm start, peak RSS grows only until s reaches
√
|A|max

along the path, after which peak memory plateaus even as the nominal s increases. For example,
when n=p=5000 (Table 21), the baseline RSS is approximately 755–757 MiB; increasing s up to
4096 adds only ∼ 39MiB over the s=1 case, indicating that the effective cap suppresses s2 growth.
In contrast, if the cap is removed (Table 24), large s values trigger theO(s2) regime and peak memory
rises substantially.

When p≫ n and the active-set cap is in effect, neither O(ns) nor O(s2) dominates, and peak RSS is
effectively flat as s increases (Table 22). Conversely, in n≫ p settings we observe similar stability in
peak RSS with respect to s (Table 23). Together these results indicate that ECCD’s memory footprint
closely tracks the design-matrix storage across aspect ratios.

On the Duke dataset, memory usage is essentially flat across all s (Table 25), indicating that s is
effectively constrained by the active-set upper bound and that ECCD’s overhead is negligible at
medium scale. For GLMNET, we report peak RSS (excluding baseline) measured via the peakRAM
R package.6 These figures offer a reference for the additional memory footprint of coordinate-wise
updates (s=1) across aspect ratios (Table 26).

6Because GLMNET is implemented in optimized C++, direct in-process instrumentation of its internal
allocations is impractical; the reported numbers provide a consistent external estimate across problem sizes.
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Table 17: Performance Experiment for a Single λ Fits (α = 0.5)
Benchmark

Dataset
Lambda

Ratio
ECCD Optimal
Time (s) (best s)

ECCD (s = 1)
Time (s)

GLMNet
Time (s)

ECCD
Objective Rel. Diff Speedup

duke

0.800 7.30e-04 (at s = 32) 1.03e-03 6.03e-03 0.611 3.09e-06 8.23×
0.500 3.18e-03 (at s = 16) 1.01e-02 7.05e-03 0.409 1.04e-04 2.22×
0.200 4.40e-03 (at s = 16) 1.76e-02 6.87e-03 0.175 4.78e-05 1.56×
0.100 5.23e-03 (at s = 32) 2.18e-02 8.94e-03 0.0891 4.06e-04 1.71×
0.080 6.12e-03 (at s = 16) 2.41e-02 9.76e-03 0.0718 8.08e-05 1.59×
0.050 6.93e-03 (at s = 16) 3.20e-02 1.10e-02 0.0456 2.20e-04 1.59×
0.020 8.21e-03 (at s = 32) 4.37e-02 1.92e-02 0.0189 2.71e-04 2.33×
0.010 1.07e-02 (at s = 16) 4.84e-02 2.51e-02 9.69e-03 1.12e-04 2.35×
0.008 1.17e-02 (at s = 16) 6.04e-02 2.67e-02 7.82e-03 2.13e-05 2.29×
0.005 1.22e-02 (at s = 16) 6.35e-02 3.35e-02 4.98e-03 2.09e-04 2.75×
0.002 1.32e-02 (at s = 32) 8.10e-02 4.83e-02 2.06e-03 9.86e-04 3.65×
0.001 1.37e-02 (at s = 32) 9.02e-02 5.72e-02 1.05e-03 3.99e-03 4.19×

leu

0.800 5.20e-04 (at s = 8) 8.90e-04 5.20e-03 0.504 1.02e-06 10.0×
0.500 3.33e-03 (at s = 32) 9.99e-03 5.78e-03 0.317 6.14e-05 1.74×
0.200 3.68e-03 (at s = 16) 1.34e-02 6.96e-03 0.128 1.43e-04 1.89×
0.100 4.11e-03 (at s = 32) 2.05e-02 8.07e-03 0.0645 2.45e-05 2.00×
0.080 4.33e-03 (at s = 32) 2.00e-02 8.75e-03 0.0516 1.63e-05 2.02×
0.050 4.34e-03 (at s = 32) 3.73e-02 1.12e-02 0.0335 8.44e-05 2.58×
0.020 6.78e-03 (at s = 16) 8.45e-02 1.65e-02 0.0140 2.52e-04 2.43×
0.010 1.90e-02 (at s = 4) 3.22e-01 1.02e-01 6.47e-03 4.92e-04 5.37×
0.008 2.30e-02 (at s = 8) 3.92e-01 1.16e-01 5.81e-03 4.12e-04 5.00×
0.005 3.00e-02 (at s = 16) 4.66e-01 1.37e-01 3.20e-03 7.15e-04 4.50×
0.002 4.10e-02 (at s = 32) 5.17e-01 1.71e-01 1.36e-03 1.92e-04 4.20×
0.001 1.15e-02 (at s = 32) 1.31e-01 5.54e-02 7.86e-04 1.11e-03 4.83×

colon-cancer

0.800 2.00e-04 (at s = 4) 3.30e-04 2.36e-03 0.575 1.52e-06 11.8×
0.500 1.27e-03 (at s = 8) 3.72e-03 2.54e-03 0.428 3.18e-05 2.00×
0.200 2.44e-03 (at s = 16) 6.81e-03 3.37e-03 0.235 1.29e-05 1.38×
0.100 3.58e-03 (at s = 4) 1.17e-02 4.91e-03 0.124 7.56e-06 1.37×
0.080 4.25e-03 (at s = 4) 1.17e-02 4.85e-03 0.101 1.97e-05 1.14×
0.050 3.66e-03 (at s = 8) 1.53e-02 6.42e-03 0.0645 8.67e-05 1.75×
0.020 7.26e-03 (at s = 4) 2.35e-02 1.16e-02 0.0269 1.35e-04 1.60×
0.010 6.35e-03 (at s = 8) 3.44e-02 2.17e-02 0.0139 9.66e-05 3.41×
0.008 7.59e-03 (at s = 8) 3.48e-02 2.54e-02 0.0113 2.92e-05 3.34×
0.005 7.67e-03 (at s = 16) 3.77e-02 2.95e-02 0.00721 4.48e-05 3.85×
0.002 8.72e-03 (at s = 16) 4.43e-02 4.74e-02 0.00301 5.55e-04 5.43×
0.001 9.56e-03 (at s = 32) 5.22e-02 6.06e-02 0.00155 1.18e-03 6.34×

diabetes-scale

0.8 3.0e-05 (at s = 2) 7.0e-05 1.72e-03 0.624 2.24e-10 57.3×
0.5 6.0e-05 (at s = 2) 9.0e-05 5.7e-04 0.582 7.69e-07 9.5×
0.2 2.6e-04 (at s = 1) 2.6e-04 1.40e-03 0.512 5.76e-06 5.4×
0.1 4.8e-04 (at s = 2) 5.6e-04 1.93e-03 0.490 4.03e-07 4.0×

0.08 4.9e-04 (at s = 1) 4.9e-04 1.06e-03 0.485 2.22e-06 2.2×
0.05 4.0e-04 (at s = 2) 6.2e-04 1.02e-03 0.478 5.59e-06 2.6×
0.02 4.2e-04 (at s = 2) 5.2e-04 1.82e-03 0.472 7.73e-08 4.3×
0.01 4.9e-04 (at s = 2) 5.5e-04 1.27e-03 0.471 1.02e-07 2.6×
0.008 3.4e-04 (at s = 2) 6.0e-04 1.03e-03 0.471 1.00e-07 3.0×
0.005 4.6e-04 (at s = 2) 5.6e-04 1.64e-03 0.471 8.44e-08 3.6×
0.002 5.4e-04 (at s = 2) 7.4e-04 1.69e-03 0.471 1.39e-08 3.1×
0.001 5.2e-04 (at s = 2) 6.4e-04 1.68e-03 0.471 8.54e-09 3.2×

australian

0.800 4.00e-05 (at s = 14) 5.00e-05 0.0013 0.641 2.37e-10 31.5×
0.500 1.30e-04 (at s = 2) 6.30e-04 0.0011 0.556 2.40e-07 8.46×
0.200 3.10e-04 (at s = 4) 6.40e-04 0.0016 0.420 5.41e-09 5.23×
0.100 3.30e-04 (at s = 14) 6.80e-04 0.0011 0.366 1.26e-05 3.42×
0.080 4.20e-04 (at s = 4) 9.70e-04 0.0011 0.354 1.25e-06 2.69×
0.050 2.80e-04 (at s = 14) 7.50e-04 0.0012 0.336 4.70e-07 4.18×
0.020 4.20e-04 (at s = 14) 1.02e-03 0.0013 0.320 1.32e-07 3.14×
0.010 4.90e-04 (at s = 14) 1.07e-03 0.0016 0.313 5.38e-07 3.33×
0.008 5.00e-04 (at s = 14) 1.28e-03 0.0016 0.312 2.16e-06 3.16×
0.005 5.00e-04 (at s = 8) 1.21e-03 0.0019 0.310 1.14e-05 3.72×
0.002 4.90e-04 (at s = 4) 1.08e-03 0.0016 0.308 2.86e-07 3.35×
0.001 5.20e-04 (at s = 2) 6.40e-04 0.0017 0.308 9.42e-07 2.83×

phishing

0.8 0.0026 (at s = 16) 0.0028 0.0143 0.625 1.60e-9 5.5×
0.5 0.0072 (at s = 4) 0.010 0.0137 0.499 1.30e-10 1.9×
0.2 0.0273 (at s = 8) 0.0382 0.0335 0.339 1.39e-8 1.23×
0.1 0.0461 (at s = 4) 0.0816 0.0271 0.258 4.53e-8 0.59×

0.08 0.0515 (at s = 4) 0.1186 0.0457 0.240 6.20e-8 0.89×
0.05 0.0569 (at s = 32) 0.143 0.0652 0.210 1.05e-7 1.15×
0.02 0.285 (at s = 4) 0.665 0.196 0.174 1.65e-8 0.69×
0.01 0.942 (at s = 4) 1.62 0.505 0.157 4.96e-8 0.54×
0.008 0.870 (at s = 8) 2.04 0.651 0.153 1.36e-7 0.75×
0.005 1.13 (at s = 2) 1.85 1.19 0.148 1.77e-8 1.05×
0.002 4.21 (at s = 4) 4.63 2.95 0.144 2.19e-8 0.70×
0.001 2.44 (at s = 8) 7.79 5.33 0.142 9.75e-10 2.19×
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Regularized Poisson Regression We also evaluated our method on Poisson regression. As given
in the tables 27, on the Bioconductor “airway” dataset (8 samples: 4 control, 4 dexamethasone;
∼64,000 features), our implementation reduces runtime from 0.621 s (glmnet’s runtime) to 0.0402 s
(ECCD’s optimal runtime), corresponding to a 13.0× speedup across all selected α values. On the
Duke dataset, runtime decreases from 0.068 s to 0.029 s (a 2.3× speedup). These results demonstrate
that the favorable scaling of our approach extends beyond logistic models to other generalized linear
model link functions, while preserving solution quality. More details are available in table 20.
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Table 18: Time (s) and relative prediction error under different α (logistic regression w. intercept).
Filename Method α = 0.1 α = 0.2 α = 0.5 α = 0.8 α = 1

Time Rel. Diff Time Rel. Diff Time Rel. Diff Time Rel. Diff Time Rel. Diff

duke

glmnet 6.40e-02 – 5.72e-02 – 5.30e-02 – 4.89e-02 – 4.95e-02 –
ncvreg 8.29e-01 5.37e-01 6.88e-01 5.33e-01 5.80e-01 5.33e-01 5.55e-01 5.47e-01 5.45e-01 5.63e-01
biglasso 2.37e-01 2.98e-01 2.29e-01 1.91e-01 2.26e-01 5.11e-02 2.28e-01 7.35e-03 2.59e-01 8.75e-06
s = 1 5.56e-02 5.44e-06 3.81e-02 6.41e-06 2.27e-02 5.50e-06 1.62e-02 5.50e-06 5.68e-02 4.82e-06
s = 2 5.75e-02 5.47e-06 3.68e-02 6.33e-06 2.28e-02 5.27e-06 1.60e-02 5.40e-06 3.74e-02 4.45e-06
s = 4 3.97e-02 6.02e-06 2.83e-02 6.14e-06 1.86e-02 5.40e-06 1.45e-02 5.56e-06 2.60e-02 3.52e-06
s = 8 3.40e-02 7.91e-06 2.46e-02 6.77e-06 1.74e-02 5.28e-06 1.55e-02 5.31e-06 2.09e-02 5.12e-06
s = 16 3.48e-02 8.73e-06 2.48e-02 8.04e-06 1.79e-02 7.05e-06 1.40e-02 7.30e-06 1.71e-02 2.09e-05
s = 32 3.69e-02 2.48e-05 2.67e-02 8.99e-06 1.87e-02 9.15e-06 1.59e-02 7.30e-06 1.75e-02 2.09e-05
s = 64 4.00e-02 3.89e-05 2.73e-02 1.46e-05 1.86e-02 9.15e-06 1.74e-02 7.30e-06 2.08e-02 2.09e-05

colon-cancer

glmnet 3.06e-02 – 2.32e-02 – 2.33e-02 – 1.92e-02 – 2.01e-02 –
ncvreg 7.44e-01 5.05e-01 5.49e-01 4.96e-01 4.70e-01 4.82e-01 4.21e-01 5.06e-01 3.88e-01 5.14e-01
biglasso 1.99e-01 2.56e-01 1.91e-01 1.58e-01 1.86e-01 3.86e-02 1.88e-01 4.77e-03 2.01e-01 8.14e-06
s = 1 7.04e-02 2.79e-06 4.10e-02 4.33e-06 1.95e-02 3.55e-06 1.52e-02 4.26e-06 5.99e-02 8.17e-06
s = 2 6.86e-02 2.62e-06 4.04e-02 4.38e-06 2.02e-02 3.44e-06 1.35e-02 4.24e-06 4.01e-02 7.78e-06
s = 4 4.12e-02 3.21e-06 2.64e-02 3.92e-06 1.40e-02 3.92e-06 1.02e-02 3.78e-06 2.06e-02 7.17e-06
s = 8 3.10e-02 3.87e-06 2.20e-02 4.55e-06 1.24e-02 3.96e-06 1.01e-02 4.32e-06 1.43e-02 6.17e-06
s = 16 3.18e-02 6.95e-06 2.12e-02 5.46e-06 1.34e-02 3.66e-06 1.03e-02 6.94e-06 1.50e-02 3.98e-06
s = 32 3.53e-02 2.15e-05 2.35e-02 8.12e-06 1.42e-02 4.83e-06 9.99e-03 7.61e-06 1.33e-02 3.98e-06
s = 64 3.76e-02 2.98e-05 2.35e-02 5.81e-06 1.41e-02 4.83e-06 1.04e-02 7.61e-06 1.34e-02 3.98e-06

leukemia

glmnet 5.83e-02 – 5.17e-02 – 4.93e-02 – 4.75e-02 – 4.80e-02 –
ncvreg 5.86e-01 5.73e-01 4.62e-01 5.74e-01 4.55e-01 5.50e-01 3.94e-01 5.48e-01 4.00e-01 5.11e-01
biglasso 2.24e-01 3.29e-01 2.19e-01 2.51e-01 2.12e-01 1.99e-01 2.09e-01 1.89e-01 2.27e-01 1.89e-01
s = 1 5.54e-02 9.46e-06 4.10e-02 4.33e-06 1.88e-02 8.66e-06 1.51e-02 1.23e-05 3.18e-02 1.90e-06
s = 2 5.44e-02 1.10e-05 3.68e-02 4.38e-06 1.85e-02 8.27e-06 1.55e-02 1.10e-05 2.65e-02 1.73e-06
s = 4 3.87e-02 1.49e-05 2.73e-02 1.13e-05 1.64e-02 8.29e-06 1.39e-02 9.38e-06 2.08e-02 3.57e-06
s = 8 3.33e-02 2.14e-05 2.45e-02 1.42e-05 1.56e-02 6.10e-06 1.57e-02 9.32e-06 1.97e-02 9.13e-06
s = 16 3.11e-02 1.10e-04 2.49e-02 2.04e-05 1.56e-02 9.49e-06 1.58e-02 1.84e-05 1.98e-02 1.40e-05
s = 32 3.20e-02 3.56e-04 2.80e-02 3.75e-05 1.59e-02 7.77e-06 1.62e-02 1.84e-05 1.97e-02 1.40e-05
s = 64 3.43e-02 6.95e-04 2.62e-02 3.73e-05 1.58e-02 7.77e-06 1.58e-02 1.84e-05 1.99e-02 1.40e-05

australian

glmnet 8.65e-03 – 8.10e-03 – 7.67e-03 – 7.42e-03 – 7.36e-03 –
ncvreg 5.43e-01 2.54e-01 5.42e-01 2.93e-01 5.49e-01 3.36e-01 5.40e-01 3.53e-01 5.35e-01 3.62e-01
biglasso 1.60e-01 8.97e-02 1.67e-01 5.07e-02 1.65e-01 1.16e-02 1.65e-01 1.33e-03 1.59e-01 8.59e-05
s = 1 1.39e-02 1.06e-09 1.39e-02 2.22e-08 1.32e-02 2.26e-06 1.31e-02 3.51e-05 1.35e-02 1.53e-04
s = 2 1.37e-02 1.05e-09 1.29e-02 2.22e-08 1.29e-02 2.26e-06 1.33e-02 3.51e-05 1.31e-02 1.53e-04
s = 4 7.69e-03 2.15e-08 7.59e-03 2.22e-08 7.65e-03 2.26e-06 7.10e-03 3.51e-05 7.63e-03 1.53e-04
s = 8 7.22e-03 2.16e-08 7.52e-03 2.25e-08 7.12e-03 2.26e-06 7.53e-03 3.51e-05 7.79e-03 1.53e-04
s = 16 8.03e-03 2.15e-08 7.64e-03 2.25e-08 7.27e-03 2.26e-06 7.48e-03 3.51e-05 7.80e-03 1.53e-04
s = 32 8.00e-03 2.15e-08 7.67e-03 2.25e-08 7.32e-03 2.26e-06 7.57e-03 3.51e-05 7.83e-03 1.53e-04
s = 64 8.09e-03 2.15e-08 7.66e-03 2.25e-08 7.48e-03 2.26e-06 7.52e-03 3.51e-05 7.79e-03 1.53e-04

diabetes_scale

glmnet 7.54e-03 – 7.13e-03 – 7.09e-03 – 7.06e-03 – 7.49e-03 –
ncvreg 2.71e-01 3.17e-02 2.76e-01 1.52e-02 2.88e-01 2.48e-03 2.86e-01 2.29e-04 3.02e-01 1.31e-10
biglasso 1.82e-01 3.17e-02 1.62e-01 1.52e-02 1.61e-01 2.48e-03 1.62e-01 2.30e-04 1.76e-01 3.17e-05
s = 1 8.68e-03 4.18e-06 9.38e-03 2.27e-07 9.58e-03 2.75e-06 9.63e-03 1.32e-05 9.68e-03 2.87e-05
s = 2 8.76e-03 4.19e-06 9.75e-03 6.93e-07 1.02e-02 2.75e-06 9.99e-03 1.32e-05 9.88e-03 2.87e-05
s = 4 6.25e-03 4.19e-06 6.97e-03 6.93e-07 7.06e-03 2.75e-06 6.86e-03 1.32e-05 6.97e-03 2.87e-05
s = 8 4.95e-03 2.17e-05 5.63e-03 6.94e-07 6.07e-03 2.75e-06 6.09e-03 1.32e-05 6.28e-03 2.87e-05
s = 16 4.97e-03 2.17e-05 5.61e-03 6.94e-07 6.10e-03 2.75e-06 6.06e-03 1.32e-05 6.14e-03 2.87e-05
s = 32 4.92e-03 2.17e-05 5.68e-03 6.94e-07 6.14e-03 2.75e-06 6.11e-03 1.32e-05 6.20e-03 2.87e-05
s = 64 4.94e-03 2.17e-05 5.57e-03 6.94e-07 6.12e-03 2.75e-06 6.14e-03 1.32e-05 6.18e-03 2.87e-05

prostate

glmnet 7.48e-02 – 7.33e-02 – 6.59e-02 – 6.53e-02 – 6.21e-02 –
ncvreg 2.53e+00 4.40e-01 2.08e+00 4.33e-01 1.84e+00 5.06e-01 1.74e+00 5.09e-01 1.69e+00 5.15e-01
biglasso 3.26e-01 1.96e-01 3.03e-01 1.03e-01 2.96e-01 1.98e-02 2.94e-01 2.19e-03 2.98e-01 2.09e-06
s = 1 3.24e-01 8.42e-07 2.65e-01 3.30e-07 1.61e-01 8.80e-07 1.25e-01 2.24e-06 1.13e-01 5.27e-06
s = 2 2.15e-01 1.30e-06 1.74e-01 6.27e-07 1.14e-01 6.77e-07 9.03e-02 2.11e-06 8.32e-02 5.08e-06
s = 4 1.16e-01 1.90e-06 9.45e-02 1.05e-06 6.25e-02 4.42e-07 5.56e-02 1.94e-06 5.04e-02 4.39e-06
s = 8 9.12e-02 2.83e-06 7.09e-02 1.69e-06 5.20e-02 6.37e-07 4.53e-02 1.92e-06 4.14e-02 2.54e-06
s = 16 8.28e-02 3.73e-06 6.60e-02 2.44e-06 5.00e-02 1.16e-06 4.24e-02 3.15e-06 4.02e-02 3.69e-06
s = 32 8.68e-02 5.10e-06 6.80e-02 3.48e-06 5.01e-02 1.56e-06 4.38e-02 3.84e-06 3.89e-02 5.06e-06
s = 64 9.38e-02 5.91e-06 7.11e-02 3.34e-06 5.15e-02 1.56e-06 4.39e-02 3.84e-06 3.88e-02 5.06e-06
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Table 19: Time (s) and relative prediction error under different α (logistic regression w/o intercept).
Filename Method α = 0.1 α = 0.2 α = 0.5 α = 0.8 α = 1

Time Rel. Diff Time Rel. Diff Time Rel. Diff Time Rel. Diff Time Rel. Diff

duke

glmnet 6.06e-02 0.00e+00 5.26e-02 0.00e+00 5.24e-02 0.00e+00 4.74e-02 0.00e+00 5.17e-02 0.00e+00
s = 1 8.89e-02 2.63e-06 8.00e-02 1.08e-06 4.42e-02 1.88e-06 2.67e-02 3.02e-06 2.40e-02 1.71e-05
s = 2 6.88e-02 3.91e-06 6.47e-02 2.40e-06 3.58e-02 1.18e-06 2.53e-02 2.77e-06 2.26e-02 1.63e-05
s = 4 4.07e-02 5.78e-06 3.38e-02 3.17e-06 2.37e-02 1.13e-06 1.89e-02 2.23e-06 1.77e-02 1.36e-05
s = 8 3.42e-02 6.96e-06 2.88e-02 5.35e-06 2.04e-02 1.75e-06 1.67e-02 1.44e-06 1.56e-02 1.19e-05
s = 16 3.32e-02 1.02e-05 2.63e-02 6.78e-06 2.09e-02 2.59e-06 1.73e-02 1.94e-06 1.68e-02 7.79e-06
s = 32 3.54e-02 1.24e-05 2.74e-02 1.03e-05 2.16e-02 3.66e-06 1.75e-02 2.30e-06 1.55e-02 7.79e-06

colon-cancer

glmnet 3.02e-02 – 2.47e-02 – 2.17e-02 – 1.93e-02 – 1.79e-02 –
s = 1 8.73e-02 3.36e-07 6.57e-02 5.79e-07 3.82e-02 1.59e-06 2.98e-02 2.25e-06 2.59e-02 6.98e-06
s = 2 7.51e-02 4.13e-07 5.88e-02 5.14e-07 3.33e-02 1.42e-06 2.84e-02 2.12e-06 2.75e-02 6.76e-06
s = 4 4.26e-02 6.64e-07 3.12e-02 5.11e-07 1.93e-02 1.13e-06 1.60e-02 1.73e-06 1.81e-02 6.46e-06
s = 8 3.03e-02 1.14e-06 2.30e-02 9.15e-07 1.51e-02 8.11e-07 1.27e-02 1.44e-06 1.26e-02 5.75e-06
s = 16 2.88e-02 1.96e-06 2.14e-02 1.74e-06 1.47e-02 1.52e-06 1.19e-02 3.57e-06 1.13e-02 1.46e-05
s = 32 3.18e-02 2.47e-06 2.27e-02 2.40e-06 1.64e-02 2.63e-06 1.26e-02 4.12e-06 1.12e-02 1.46e-05
s = 64 3.53e-02 2.50e-06 2.31e-02 2.30e-06 1.63e-02 2.63e-06 1.26e-02 4.12e-06 1.12e-02 1.46e-05

leukemia

glmnet 5.66e-02 – 4.92e-02 – 4.56e-02 – 4.62e-02 – 4.43e-02 –
s = 1 8.33e-02 3.76e-06 6.48e-02 2.52e-06 4.02e-02 9.42e-07 2.85e-02 1.80e-06 1.67e-02 2.92e-06
s = 2 6.71e-02 5.62e-06 5.27e-02 3.47e-06 3.26e-02 1.45e-06 2.46e-02 1.83e-06 1.64e-02 2.83e-06
s = 4 4.52e-02 7.49e-06 3.35e-02 5.08e-06 2.31e-02 2.75e-06 1.84e-02 1.97e-06 1.38e-02 4.66e-06
s = 8 3.51e-02 9.32e-06 2.70e-02 7.12e-06 1.89e-02 3.25e-06 1.64e-02 2.42e-06 1.34e-02 7.61e-06
s = 16 3.53e-02 1.19e-05 2.59e-02 8.81e-06 1.94e-02 3.62e-06 1.73e-02 3.77e-06 1.35e-02 8.61e-06
s = 32 3.86e-02 1.42e-05 2.66e-02 1.15e-05 2.05e-02 4.08e-06 1.72e-02 3.77e-06 1.35e-02 8.61e-06
s = 64 4.47e-02 1.70e-05 2.82e-02 1.04e-05 2.06e-02 4.08e-06 1.71e-02 3.77e-06 1.36e-02 8.61e-06

australian

glmnet 8.04e-03 – 7.94e-03 – 7.56e-03 – 7.41e-03 – 7.55e-03 –
s = 1 1.20e-02 3.11e-10 1.13e-02 4.71e-10 1.19e-02 1.39e-09 1.31e-02 3.59e-09 1.41e-02 6.85e-09
s = 2 1.19e-02 3.07e-10 1.13e-02 4.71e-10 1.16e-02 1.39e-09 1.25e-02 3.58e-09 1.39e-02 6.85e-09
s = 4 6.33e-03 3.13e-10 6.29e-03 3.73e-10 6.97e-03 1.37e-09 7.30e-03 3.68e-09 7.53e-03 7.62e-09
s = 8 6.39e-03 3.20e-10 6.38e-03 5.00e-10 6.81e-03 2.42e-09 6.87e-03 1.53e-08 7.18e-03 3.40e-08
s = 16 6.20e-03 2.88e-10 6.37e-03 4.99e-10 6.92e-03 2.42e-09 6.85e-03 1.53e-08 7.16e-03 3.40e-08
s = 32 6.30e-03 2.88e-10 6.37e-03 4.99e-10 6.89e-03 2.42e-09 6.79e-03 1.53e-08 7.15e-03 3.40e-08
s = 64 6.34e-03 2.88e-10 6.43e-03 4.99e-10 6.85e-03 2.42e-09 6.82e-03 1.53e-08 7.15e-03 3.40e-08

diabetes_scale

glmnet 7.33e-03 – 6.95e-03 – 6.96e-03 – 6.95e-03 – 6.94e-03 –
s = 1 6.67e-03 9.50e-12 7.20e-03 1.87e-11 7.83e-03 6.20e-11 8.09e-03 8.30e-11 8.17e-03 1.04e-10
s = 2 6.68e-03 7.74e-12 7.20e-03 1.29e-11 8.00e-03 5.57e-11 8.30e-03 7.62e-11 8.22e-03 9.63e-11
s = 4 4.68e-03 5.52e-11 4.94e-03 1.33e-10 5.13e-03 4.70e-10 5.22e-03 1.63e-09 5.23e-03 1.93e-09
s = 8 4.35e-03 4.35e-10 4.62e-03 7.66e-10 4.97e-03 1.27e-09 5.01e-03 1.75e-09 5.06e-03 9.96e-10
s = 16 4.32e-03 4.35e-10 4.57e-03 7.66e-10 4.91e-03 1.27e-09 4.98e-03 1.75e-09 5.07e-03 9.96e-10
s = 32 4.28e-03 4.35e-10 4.64e-03 7.66e-10 4.94e-03 1.27e-09 4.97e-03 1.75e-09 5.05e-03 9.96e-10
s = 64 4.33e-03 4.35e-10 4.58e-03 7.66e-10 4.95e-03 1.27e-09 5.01e-03 1.75e-09 5.01e-03 9.96e-10

prostate

glmnet 6.52e-02 – 5.96e-02 – 5.69e-02 – 5.23e-02 – 5.52e-02 –
s = 1 1.67e-01 6.72e-07 1.31e-01 3.37e-07 8.34e-02 7.16e-07 6.36e-02 1.25e-06 5.89e-02 2.92e-06
s = 2 1.45e-01 1.12e-06 1.17e-01 5.64e-07 7.75e-02 6.24e-07 6.11e-02 1.17e-06 5.60e-02 2.71e-06
s = 4 8.18e-02 1.71e-06 6.56e-02 1.07e-06 4.86e-02 4.64e-07 4.11e-02 1.09e-06 3.69e-02 2.28e-06
s = 8 7.17e-02 2.69e-06 5.52e-02 1.65e-06 4.32e-02 5.58e-07 3.69e-02 1.45e-06 3.33e-02 1.61e-06
s = 16 7.27e-02 3.48e-06 5.69e-02 2.49e-06 4.34e-02 1.60e-06 3.68e-02 3.62e-06 3.30e-02 2.63e-06
s = 32 7.93e-02 4.55e-06 6.15e-02 3.31e-06 4.72e-02 1.73e-06 3.92e-02 2.85e-06 3.45e-02 4.98e-06
s = 64 8.75e-02 5.07e-06 6.18e-02 3.56e-06 4.74e-02 1.73e-06 3.90e-02 2.85e-06 3.45e-02 4.98e-06
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Table 20: Poisson Regression: Time (s) and relative error under different α.
Filename Method α = 0.1 α = 0.2 α = 0.5 α = 0.8 α = 1

Time Rel. Diff Time Rel. Diff Time Rel. Diff Time Rel. Diff Time Rel. Diff

duke

glmnet 6.864e-02 – 5.81e-02 – 5.18e-02 – 4.92e-02 – 4.67e-2 –
s = 1 3.39e-01 1.95e-06 2.53e-01 1.91e-06 1.23e-01 1.46e-06 9.15e-02 3.31e-06 7.67e-02 3.77e-06
s = 2 2.30e-01 1.94e-06 1.54e-01 2.25e-06 8.88e-02 1.63e-06 6.68e-02 3.99e-06 5.57e-02 4.58e-06
s = 4 1.23e-01 2.21e-06 8.89e-02 2.26e-06 5.15e-02 2.14e-06 3.84e-02 3.73e-06 3.68e-02 5.87e-06
s = 8 7.41e-02 3.66e-06 5.42e-02 2.63e-06 3.43e-02 2.00e-06 2.85e-02 3.52e-06 2.83e-02 3.05e-06
s = 16 5.66e-02 1.34e-05 4.59e-02 4.29e-06 2.89e-02 2.81e-06 2.60e-02 3.44e-06 2.54e-2 3.02e-06
s = 32 4.88e-02 2.37e-05 4.11e-02 9.55e-06 2.77e-02 4.85e-06 2.61e-02 3.44e-06 2.68e-02 3.02e-06

leukemia

glmnet 5.63e-02 – 5.40e-02 – 4.96e-02 – 4.49e-02 – 4.58e-02 –
s = 1 2.42e-01 1.24e-06 1.52e-02 1.14e-06 9.15e-02 1.34e-06 6.57e-02 1.40e-06 5.95e-02 9.74e-07
s = 2 1.65e-01 1.26e-06 9.80e-02 1.32e-06 6.67e-02 1.64e-06 5.19e-02 1.24e-06 4.92e-02 1.07e-06
s = 4 8.90e-02 1.70e-06 5.75e-02 1.61e-06 3.85e-02 1.35e-06 3.23e-02 1.13e-06 3.00e-02 1.37e-06
s = 8 5.67e-02 2.12e-06 3.97e-02 2.86e-06 2.93e-02 7.51e-07 2.54e-02 1.33e-06 2.21e-02 1.68e-06
s = 16 4.64e-02 2.68e-06 3.22e-02 2.03e-06 2.40e-02 1.16e-06 2.18e-02 1.14e-06 2.07e-02 1.42e-06
s = 32 4.22e-02 3.64e-06 3.12e-02 1.42e-05 2.42e-02 8.39e-07 2.35e-02 1.12e-06 2.06e-02 1.42e-06

airway

glmnet 5.82e-01 – 5.79e-01 – 5.85e-01 – 5.91e-01 – 6.04e-01 –
s = 1 1.63e-01 9.76e-07 0.131e-01 1.30e-06 1.14e-01 2.41e-06 1.02e-01 2.87e-06 9.56-02 8.90e-05
s = 2 1.28e-01 1.06e-06 1.12e-01 1.32e-06 9.91e-02 2.25e-06 9.78e-02 2.71e-06 9.29e-02 8.89e-05
s = 4 1.34e-01 1.02e-06 1.21e-01 1.59e-06 1.16e-01 2.02e-06 1.13e-01 2.99e-06 1.11e-02 8.90e-05
s = 8 8.39e-02 9.65e-07 9.51e-02 1.02e-06 9.21e-02 2.66e-06 9.04e-02 5.41e-06 8.82e-02 8.91e-05
s = 16 8.09e-02 9.19e-07 5.32e-02 1.52e-06 5.03e-02 3.04e-06 4.86e-02 4.83e-06 4.64e-02 8.85e-05
s = 32 7.87e-02 1.03e-06 7.29e-02 1.53e-06 7.05e-02 3.53e-06 7.12e-02 4.83e-06 6.74e-02 8.85e-05

Table 21: Memory vs. block size with active-set cap (n=p=5000). The s=1 row provides the
per-experiment baseline.

s RSS start (MiB) RSS max (MiB) RSS end (MiB)

1 754.7 757.0 757.0
2 754.7 759.3 759.3
4 754.7 762.4 762.4
8 754.7 768.5 768.5
16 754.7 780.7 780.7
32 754.7 795.9 788.3
64 754.7 795.9 788.3
1024 754.7 795.9 788.3
4096 754.7 795.9 788.3

Table 22: Memory vs. block size with cap, wide case (n=100, p=100,000). Peak memory remains
effectively constant across s.

s RSS start (MiB) RSS max (MiB) RSS end (MiB)

1 755.3 756.1 741.6
2 755.3 756.1 741.6
4 755.3 756.1 741.6
8 755.3 756.1 741.6
16 755.3 756.1 741.6
32 755.3 756.1 741.6
64 755.3 756.1 741.6
128 755.3 756.1 741.6
256 755.3 756.1 741.6
512 755.3 756.1 741.6
1024 755.3 756.1 741.6
2048 755.3 756.1 741.6
4096 755.3 756.1 741.6
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Table 23: Memory vs. block size with cap, tall case (n=100,000, p=100).
s Time (s) RSS start (MiB) RSS max (MiB) RSS end (MiB)

1 1.810 754.7 757.0 757.0
2 2.149 754.7 759.3 759.3
4 1.633 754.7 762.4 762.4
8 2.130 754.7 768.5 768.5
16 2.332 754.7 780.7 780.7
32 2.921 754.7 795.9 788.3
64 2.982 754.7 795.9 788.3
128 2.544 754.7 795.9 788.3
256 2.542 754.7 795.9 788.3
512 2.499 754.7 795.9 788.3
1024 2.786 754.7 795.9 788.3
2048 2.656 754.7 795.9 788.3
4096 2.508 754.7 795.9 788.3

Table 24: Memory vs. block size without cap (n=10, p=5000): the O(s2) term dominates for large
s.

s RSS start (MiB) RSS max (MiB) RSS end (MiB)

1 467.7 467.7 466.7
2 467.7 467.7 466.7
4 467.7 467.7 466.7
8 467.7 467.7 466.7
16 467.7 467.7 466.7
32 467.7 467.7 466.7
64 467.7 467.7 466.7
128 467.7 467.8 466.8
256 467.7 468.2 467.2
512 467.7 469.8 468.8
1024 467.7 475.8 474.9
2048 467.7 500.2 499.2
4096 467.7 596.8 596.0

Table 25: Memory vs. block size on the Duke dataset.
s RSS start (MiB) RSS max (MiB) RSS end (MiB)

1 518.3 518.3 517.2
2 518.3 518.3 517.1
4 518.3 518.3 517.1
8 518.3 518.3 517.1
16 518.3 518.3 517.2
32 518.3 518.3 517.2
64 518.3 518.3 517.2
128 518.3 518.3 517.2
256 518.3 518.3 517.2
512 518.3 518.3 517.2
1024 518.3 518.3 517.2
2048 518.3 518.3 517.2
4096 518.3 518.3 517.2
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Table 26: GLMNET peak memory (excluding baseline).
Dataset Memory (MiB)

N=100, p=100,000 351.10
N=100,000, p=100 132.43
N=5000, p=5000 322.50
N=10, p=5000 19.47

Table 27: Poisson Performance: Time (s), relative error, and speedup under different α.
Filename Method α = 0.1 α = 0.2 α = 0.5 α = 0.8 α = 1

Time Rel. Diff Speedup Time Rel. Diff Speedup Time Rel. Diff Speedup Time Rel. Diff Speedup Time Rel. Diff Speedup

duke

glmnet 6.864e-02 — 1.00 × 5.81e-02 — 1.00 × 5.18e-02 — 1.00 × 4.92e-02 — 1.00 × 4.67e-02 — 1.00×
s = 1 3.39e-01 1.95e-06 0.20 × 2.53e-01 1.91e-06 0.23 × 1.23e-01 1.46e-06 0.42 × 9.15e-02 3.31e-06 0.54 × 7.67e-02 3.77e-06 0.61 ×
s = 8 7.41e-02 3.66e-06 0.93 × 5.42e-02 2.63e-06 1.07 × 3.43e-02 2.00e-06 1.51 × 2.85e-02 3.52e-06 1.73 × 2.83e-02 3.05e-06 1.65 ×
s = 16 5.66e-02 1.34e-05 1.21 × 4.59e-02 4.29e-06 1.27 × 2.89e-02 2.81e-06 1.79 × 2.60e-02 3.44e-06 1.89 × 2.54e-02 3.02e-06 1.84 ×

leukemia

glmnet 5.63e-02 — 1.00 × 5.40e-02 — 1.00 × 4.96e-02 — 1.00 × 4.49e-02 — 1.00 × 4.58e-02 — 1.00 ×
s = 1 2.42e-01 1.24e-06 0.23 × 1.52e-02 1.14e-06 3.55 × 9.15e-02 1.34e-06 0.54 × 6.57e-02 1.40e-06 0.68 × 5.95e-02 9.74e-07 0.77 ×
s = 8 5.67e-02 2.12e-06 0.99 × 3.97e-02 2.86e-06 1.36 × 2.93e-02 7.51e-07 1.69 × 2.54e-02 1.33e-06 1.77 × 2.21e-02 1.68e-06 2.07 ×
s = 16 4.64e-02 2.68e-06 1.21 × 3.22e-02 2.03e-06 1.68 × 2.40e-02 1.16e-06 2.07 × 2.18e-02 1.14e-06 2.06 × 2.07e-02 1.42e-06 2.21 ×

airway
glmnet 5.82e-01 — 1.00 × 5.79e-01 — 1.00 × 5.85e-01 — 1.00 × 5.91e-01 — 1.00 × 6.04e-01 — 1.00 ×
s = 8 8.39e-02 9.65e-07 6.94 × 9.51e-02 1.02e-06 6.09 × 9.21e-02 2.66e-06 6.35 × 9.04e-02 5.41e-06 6.54 × 8.82e-02 8.91e-05 6.85 ×
s = 16 8.09e-02 9.19e-07 7.19 × 5.32e-02 1.52e-06 10.9 × 5.03e-02 3.04e-06 11.6 × 4.86e-02 4.83e-06 12.2 × 4.64e-02 8.85e-05 13.0 ×
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction state that the paper introduces an enhanced cyclic
coordinate descent (ECCD) framework for elastic-net penalized GLMs, which achieves
significant speedups over existing solvers while preserving convergence and accuracy. These
claims are fully substantiated in the body: Section 4 introduces the ECCD method with
detailed derivation, Section 5 presents theoretical guarantees, and Section 6 shows empirical
speedups of up to 13.0× across logistic and Poisson regression tasks without loss of accuracy.
The limitations of block size and performance in low-dimensional settings are acknowledged
in Section 6.2, ensuring that the claims reflect realistic expectations and generalization
boundaries.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 6.2 discusses the practical trade-offs of block sizes and shows that
ECCD may not yield speedups in low-dimensional or weakly regularized settings (e.g.,
phishing dataset, high λ)

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The paper provides formal statements and corresponding proofs for all theoret-
ical results. The main theoretical result—Theorem 1—quantifies the Taylor approximation
error and includes a complete set of assumptions (bounded coefficients, residual norms, etc.)
and a rigorous bound (Eq. 15 in the main text and extended in Eq. 32–33 in Appendix A.3).
Supporting results (Theorems 2 and 3 on time and space complexity) are also clearly stated
with derivations or intuitive justifications. Proofs for all claims are provided in the appendix
with appropriate notation, bounding arguments, and references to prior methods, thereby
meeting the NeurIPS standard for completeness and correctness.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides detailed algorithmic descriptions sufficient for reproduc-
tion. Algorithm 1 (p. 6) describes the ECCD procedure in active-set form, while Appendix
A.2 offers a matrix-based variant with explicit update rules. Experimental settings, including
datasets (e.g., LIBSVM, Bioconductor “airway”), regularization paths, convergence thresh-
olds, block sizes, and machine specifications (Cray EX node with AMD EPYC 7763) are
fully disclosed in Section 5. Additionally, implementation details such as Taylor expansion
approximations and screening rules are clearly explained. While code is not provided, the
level of detail enables reproduction of both theoretical and empirical results that support the
paper’s main claims.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
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dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All datasets used (e.g., LIBSVM benchmarks, Bioconductor “airway”) are
publicly available, and teh data is currently opensourced with link in abstract section. Read-
ers can now directly access the authors’ code with automated setup instructions. Meanwhile,
the ECCD includes all details for reproduction, and the readers were able to reimplement
ECCD from the detailed pseudocode and experimental descriptions.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Answer: [Yes]
Justification: Section 6 describes the datasets used (LIBSVM benchmarks and Bioconductor
airway), the regularization path setup (λmax to ϵλmax with ϵ ∈ {10−4, 10−2}, nλ = 100),
convergence tolerance (10−7 on deviance change), block-size grid (s ∈ {1, 2, 4, 8, 16, 32}),
and screening/active-set strategy (strong rules and KKT checks). Implementation details
include R v4.3.1, glmnet v4.1–8, RcppEigen, and machine specs (Cray EX with AMD
EPYC 7763). These choices fully specify the experimental protocol and hyperparameters
needed to reproduce the main results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: While our core scalability experiment results are presented as multiple-run
averaged values, reported results are presented without accompanying error bars, confidence
intervals, or statistical tests. The paper does not describe repeated trials, variance sources, or
the method used to quantify experimental variability. Consequently, statistical significance
of the observed performance differences is not assessed.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Section 6 reports that all experiments ran on a single Cray EX node equipped
with detailed information of computation resources. Individual runtimes for each dataset
and configuration are listed in Tables 4, 27, enabling reproduction of both resource setup
and expected execution times.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The work focuses on algorithmic development for generalized linear models
and does not involve human or animal subjects, sensitive data, or applications with potential
for misuse. There are no conflicts of interest or ethical concerns raised by the experiments
or methods. All authors have reviewed and comply with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work is foundational research on optimization algorithms for generalized
linear models and does not target a specific application domain, sensitive data, or deployment
scenario. As such, there are no direct societal impacts—positive or negative—to discuss.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release any high-risk models, sensitive datasets, or genera-
tive systems. It focuses on algorithmic improvements for standard generalized linear models
using public, non-sensitive benchmark data, so no additional safeguards are necessary.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [No]

Justification: The paper cites all external tools and datasets used (e.g., glmnet [2], LIBSVM
[33]), including package versions, but it does not state the license names or URLs for these
assets, nor confirm compliance with their terms of use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce or release any new datasets, code repositories, or
models; it focuses on the ECCD algorithm and evaluates it on existing public benchmarks.

Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The work is purely algorithmic and empirical on public standard datasets; it
does not involve any human participants or crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve any experiments with human subjects or crowd-
sourcing; it focuses entirely on algorithmic development and evaluation using public bench-
mark datasets.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core contributions focus on the development and analysis of the ECCD
optimization algorithm for generalized linear models and do not involve any use of large
language models.
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Guidelines:
• The answer NA means that the core method development in this research does not

involve LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)

for what should or should not be described.

42

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Preliminary
	Generalized Linear Model
	Traditional Coordinate Descent for Elastic Net Regression
	Efficient Screening and Warm Start Strategy

	Methodology
	Block Coordinate Descent
	Enhanced Cyclic Coordinate Descent

	Theoretical Analysis
	Experiments
	Numerical Experiments
	Performance Experiments

	Conclusion
	Limitations
	Acknowledgment
	Theoretical Analysis and Matrix Derivations
	Update Rule for Block Coordinate Descent (BCD)
	Matrix Form Representation
	Proof of Theorem  1
	Proof of Theorem  2
	Proof of Theorem  3

	Algorithm
	Deviance Computation and Stopping Rules
	Baseline: Cyclic Coordinate Descent for GLMs with Elastic Net
	ECCD for GLMs: Single-Step and Pathwise Algorithms

	Benchmarking Experiments with Additional Baselines
	BigLasso
	skglm
	abess
	More Experiment on Skglm Family with BenchOPT for Comparison

	Additional Experiment Result

