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ABSTRACT

Despite significant advances in large-scale text-to-image models, achieving hyper-
realistic human image generation remains a desirable yet unsolved task. Existing
models like Stable Diffusion and DALL·E 2 tend to generate human images with
incoherent parts or unnatural poses. To tackle these challenges, our key insight
is that human image is inherently structural over multiple granularities, from the
coarse-level body skeleton to the fine-grained spatial geometry. Therefore, captur-
ing such correlations between the explicit appearance and latent structure in one
model is essential to generate coherent and natural human images. To this end, we
propose a unified framework, HyperHuman, that generates in-the-wild human
images of high realism and diverse layouts. Specifically, 1) we first build a large-
scale human-centric dataset, named HumanVerse, which consists of 340M images
with comprehensive annotations like human pose, depth, and surface-normal. 2)
Next, we propose a Latent Structural Diffusion Model that simultaneously de-
noises the depth and surface-normal along with the synthesized RGB image. Our
model enforces the joint learning of image appearance, spatial relationship, and
geometry in a unified network, where each branch in the model complements to
each other with both structural awareness and textural richness. 3) Finally, to
further boost the visual quality, we propose a Structure-Guided Refiner to com-
pose the predicted conditions for more detailed generation of higher resolution.
Extensive experiments demonstrate that our framework yields the state-of-the-art
performance, generating hyper-realistic human images under diverse scenarios.

1 INTRODUCTION

Generating hyper-realistic human images from user conditions, e.g., text and pose, is of great impor-
tance to various applications, such as image animation (Liu et al., 2019) and virtual try-on (Wang
et al., 2018). To this end, many efforts explore the task of controllable human image generation.
Early methods either resort to variational auto-encoders (VAEs) in a reconstruction manner (Ren
et al., 2020), or improve the realism by generative adversarial networks (GANs) (Siarohin et al.,
2019). Though some of them create high-quality images (Zhang et al., 2022; Jiang et al., 2022),
the unstable training and limited model capacity confine them to small datasets of low diversity.
Recent emergence of diffusion models (DMs) (Ho et al., 2020) has set a new paradigm for realistic
synthesis and become the predominant architecture in Generative AI (Dhariwal & Nichol, 2021).
Nevertheless, the exemplar text-to-image (T2I) models like Stable Diffusion (Rombach et al., 2022)
and DALL·E 2 (Ramesh et al., 2022) still struggle to create human images with coherent anatomy,
e.g., arms and legs, and natural poses. The main reason lies in that human is articulated with non-
rigid deformations, requiring structural information that can hardly be depicted by text prompts.

To enable structural control for image generation, recent works like ControlNet (Zhang & Agrawala,
2023) and T2I-Adapter (Mou et al., 2023) introduce a learnable branch to modulate the pre-trained
DMs, e.g., Stable Diffusion, in a plug-and-play manner. However, these approaches suffer from the
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A man sitting down with a brown teddy bear on his shoulders.

A woman poses with avocado sandwich lunch 
at an outdoor restaurant.

Young man standing near a lake with 
a snow capped mountain behind.

Middle-age dark-hair woman on telephone with a teddy bear beside her.

Two women holding surfboards while smiling at the camera.

An elderly woman looks to the side as 
she sits in front of a cheese pizza in a restaurant.

Little girl posing for the camera with an adult sized striped tie on.

A woman sits smoking at table in a mostly blue kitchen.

A guy in a brown jacket standing near a sign 
holding a cellphone to his ear.

A picture of a man with suit, tie and wild hair.

A person standing on a snowboard with knees bent and arms 
out on the snow with trees and snowy hills behind.

A man with glasses, earrings, and a blue shirt with red tie.
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(a) Ours w/ Joint Denoising (b) Ours - Full (c) ControlNet (d) T2I-Adapter (e) HumanSD (f) SDXL w/ Refiner
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Figure 1: Example Results and Visual Comparison. Top: The proposed HyperHuman simulta-
neously generates the coarse RGB, depth, normal, and high-resolution images conditioned on text
and skeleton. Both photo-realistic images and stylistic renderings can be created. Bottom: We com-
pare with recent T2I models, showing better realism, quality, diversity, and controllability. Note that
in each 2×2 grid (left), the upper-left is input skeleton, while the others are jointly denoised normal,
depth, and coarse RGB of 512 × 512. With full model, we synthesize images up to 1024 × 1024
(right). Please refer to Sec. A.15, A.16 for more comparison and results. Best viewed zoom in.

feature discrepancy between the main and auxiliary branches, leading to inconsistency between the
control signals (e.g., pose maps) and the generated images. To address the issue, HumanSD (Ju et al.,
2023b) proposes to directly input body skeleton into the diffusion U-Net by channel-wise concatena-
tion. However, it is confined to generating artistic style images of limited diversity. Besides, human
images are synthesized only with pose control, while other structural information like depth maps
and surface-normal maps are not considered. In a nutshell, previous studies either take a singular
control signal as input condition, or treat different control signals separately as independent guid-
ance, instead of modeling the multi-level correlations between human appearance and different types
of structural information. Realistic human generation with coherent structure remains unsolved.
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In this paper, we propose a unified framework HyperHuman to generate in-the-wild human images
of high realism and diverse layouts. The key insight is that human image is inherently structural
over multiple granularities, from the coarse-level body skeleton to fine-grained spatial geometry.
Therefore, capturing such correlations between the explicit appearance and latent structure in one
model is essential to generate coherent and natural human images. Specifically, we first establish
a large-scale human-centric dataset called HumanVerse that contains 340M in-the-wild human im-
ages of high quality and diversity. It has comprehensive annotations, such as the coarse-level body
skeletons, the fine-grained depth and surface-normal maps, and the high-level image captions and
attributes. Based on this, two modules are designed for hyper-realistic controllable human image
generation. In Latent Structural Diffusion Model, we augment the pre-trained diffusion backbone to
simultaneously denoise the RGB, depth, and normal. Appropriate network layers are chosen to be
replicated as structural expert branches, so that the model can both handle input/output of different
domains, and guarantee the spatial alignment among the denoised textures and structures. Thanks to
such dedicated design, the image appearance, spatial relationship, and geometry are jointly modeled
within a unified network, where each branch is complementary to each other with both structural
awareness and textural richness. To generate monotonous depth and surface-normal that have similar
values in local regions, we utilize an improved noise schedule to eliminate low-frequency informa-
tion leakage. The same timestep is sampled for each branch to achieve better learning and feature
fusion. With the spatially-aligned structure maps, in Structure-Guided Refiner, we compose the
predicted conditions for detailed generation of high resolution. Moreover, we design a robust con-
ditioning scheme to mitigate the effect of error accumulation in our two-stage generation pipeline.

To summarize, our main contributions are three-fold: 1) We propose a novel HyperHuman frame-
work for in-the-wild controllable human image generation of high realism. A large-scale human-
centric dataset HumanVerse is curated with comprehensive annotations like human pose, depth, and
surface normal. As one of the earliest attempts in human generation foundation model, we hope to
benefit future research. 2) We propose the Latent Structural Diffusion Model to jointly capture the
image appearance, spatial relationship, and geometry in a unified framework. The Structure-Guided
Refiner is further devised to compose the predicted conditions for generation of better visual qual-
ity and higher resolution. 3) Extensive experiments demonstrate that our HyperHuman yields the
state-of-the-art performance, generating hyper-realistic human images under diverse scenarios.

2 RELATED WORK

Text-to-Image Diffusion Models. Text-to-image (T2I) generation, the endeavor to synthesize high-
fidelity images from natural language descriptions, has made remarkable strides in recent years. Dis-
tinguished by the superior scalability and stable training, diffusion-based T2I models have eclipsed
conventional GANs in terms of performance (Dhariwal & Nichol, 2021), becoming the predominant
choice in generation (Nichol et al., 2021; Saharia et al., 2022; Balaji et al., 2022; Li et al., 2023).
By formulating the generation as an iterative denoising process (Ho et al., 2020), exemplar works
like Stable Diffusion (Rombach et al., 2022) and DALL·E 2 (Ramesh et al., 2022) demonstrate un-
precedented quality. Despite this, they mostly fail to create high-fidelity humans. One main reason
is that existing models lack inherent structural awareness for human, making them even struggle
to generate human of reasonable anatomy, e.g., correct number of arms and legs. To this end, our
proposed approach explicitly models human structures within the latent space of diffusion model.

Controllable Human Image Generation. Traditional approaches for controllable human genera-
tion can be categorized into GAN-based (Zhu et al., 2017; Siarohin et al., 2019) and VAE-based (Ren
et al., 2020; Yang et al., 2021), where the reference image and conditions are taken as input. To fa-
cilitate user-friendly applications, recent studies explore text prompts as generation guidance (Roy
et al., 2022; Jiang et al., 2022), yet are confined to simple pose or style descriptions. The most
relevant works that enable open-vocabulary pose-guided controllable human synthesis are Control-
Net (Zhang & Agrawala, 2023), T2I-Adapter (Mou et al., 2023), and HumanSD (Ju et al., 2023b).
However, they either suffer from inadequate pose control, or are confined to artistic styles of limited
diversity. Besides, most previous studies merely take pose as input, while ignoring the multi-level
correlations between human appearance and different types of structural information. In this work,
we propose to incorporate structural awareness from coarse-level skeleton to fine-grained depth and
surface-normal by joint denoising with expert branch, thus simultaneously capturing both the ex-
plicit appearance and latent structure in a unified framework for realistic human image synthesis.
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derstanding and plays a role in maintaining FID performance, as shown inFig. ??. For example, in
Fig. ?? (Left), incorporating TB into training along with the sampling layers (the fourth bar) reduces
the FID by 5.4 compared to updating sampling layers solely (the second bar) for the style ”young
person” transferred from the base model on ”old person”. However, fine-tuning the TB inevitably in-
troduces more computational costs. To tackle this issue, we investigate the best way of incorporating
Low-Rank Adaptation (LoRA) Hu et al. (2021) into GAN training, which introduces two trainable
low-rank weight matrices besides the original weight. During training, the original weight is frozen,
while the two low-rank matrices with much fewer parameters are updated to save computation costs.
For instance, for the query matrix with weights ✓Q 2 Rh⇥w in the generator g, we introduce two
low-rank matrices ✓A 2 Rh⇥r and ✓B 2 Rr⇥w to approximate the gradient update r✓Q. Formally,
the forward pass with respect to x is modified as (✓Q +r✓Q)x = ✓Qx + ✓A✓Bx. Here, the rank of
matrix A and B should satisfy r ⌧ min(h, w). In this way, we can reduce the number of trainable
parameters significantly from 2.36M to 18.71K, and thus accelerate the training process.

Based on the above analysis, during fine-tuing, we only optimize parameters from the US, DS, and
TB layers and freeze all other parameters.

3.3.2 SIMILARITY CLUSTERING (SC) FOR TRAINING DATA REDUCTION

Reducing the amount of training data can directly result in a reduction in the training time. Thus,
we aim to investigate data efficiency as a means of decreasing the training workload in addition
to the selective weight update for GAN-Adapter. We find not all data are indispensable for reliable
training, but only a small subset is necessary. We obtain this small subset in an unsupervised manner
with a selection of the data crowding around the clustering center on the whole dataset.

To identify the small subset of essential data, we conduct unsupervised learning to analyze the
structure of the training data. We first extract an embedding zs

i for each image x̃s
i with an extractor

G. Here we adopt the FaceNet Schroff et al. (2015) as G since it has a good representation of the
human face. The distance between the embeddings zs

i and zs
j directly reflects the face similarity for

images x̃s
i and x̃s

j . Then, we apply clustering on the embeddings by the popular K-Means algorithm
Lloyd (1982), thus obtaining K < N clusters, denoted as C = {Ck}K

k=1, each with center µs
k. The

embeddings within the same cluster have a closer distance among each other, indicating a higher
similarity of the data points.

With embeddings of face images, we can select representative data for our fine-tuning process. To
reduce the data amount while maintaining data diversity for good model generalization ability, one
data point is selected for each of the K clusters. We compared two different selection methods,
namely random selection within each cluster and nearest center selection. Experiments demonstrate
that nearest center selection is a better strategy. For instance, when fine-tuning the model for ”old
person” to that for ”young person”, compared to random selection within each cluster, nearest center
selection can reduce the FID by 1.28 and 2.08 with 200 and 100 clusters, respectively. Thus, we opt
to use nearest center selection as our data selection strategy. The representative data to train for style
s thus can be represented as

With our data selection method using K clusters, we could further reduce the number of training
iterations by N/K times. In contrast to prior methods involving additional computations in the
training process to shrink the dataset Yuan et al. (2021); Wang et al. (2022), our SC data reduction
is tailored for expediting the training of image editing tasks. It reduces the training data volume
directly before the training process without incurring any additional costs during the training.

4 EXPERIMENTS

Image Caption c Pose Skeleton p Time Step t

Image x, Depth d, Normal n Predicted Image x̂, Depth d̂, Normal n̂
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reduce the data amount while maintaining data diversity for good model generalization ability, one
data point is selected for each of the K clusters. We compared two different selection methods,
namely random selection within each cluster and nearest center selection. Experiments demonstrate
that nearest center selection is a better strategy. For instance, when fine-tuning the model for ”old
person” to that for ”young person”, compared to random selection within each cluster, nearest center
selection can reduce the FID by 1.28 and 2.08 with 200 and 100 clusters, respectively. Thus, we opt
to use nearest center selection as our data selection strategy. The representative data to train for style
s thus can be represented as

With our data selection method using K clusters, we could further reduce the number of training
iterations by N/K times. In contrast to prior methods involving additional computations in the
training process to shrink the dataset Yuan et al. (2021); Wang et al. (2022), our SC data reduction
is tailored for expediting the training of image editing tasks. It reduces the training data volume
directly before the training process without incurring any additional costs during the training.

4 EXPERIMENTS

Image Caption c Pose Skeleton p Time Step t

Image x, Depth d, Normal n Predicted Image x̂, Depth d̂, Normal n̂

5

Joint Denoise with Expert Branch

…

… …

Figure 2: Overview of HyperHuman Framework. In Latent Structural Diffusion Model (purple),
the image x, depth d, and surface-normal n are jointly denoised conditioning on caption c and pose
skeleton p. For the notation simplicity, we denote pixel-/latent-space targets with the same variable.
In Structure-Guided Refiner (blue), we compose the predicted conditions for higher-resolution gen-
eration. Note that the grey images refer to randomly dropout conditions for more robust training.

Datasets for Human Image Generation. Large datasets are crucial for image generation. Existing
human-centric collections are mainly confronted with following drawbacks: 1) Low-resolution of
poor quality. For example, Market-1501 (Zheng et al., 2015) contains noisy pedestrian images of
resolution 128 × 64, and VITON (Han et al., 2018) has human-clothing pairs of 256 × 192, which
are inadequate for training high-definition models. 2) Limited diversity of certain domain. For
example, SHHQ (Fu et al., 2022) is mostly composed of full-body humans with clean background,
and DeepFashion (Liu et al., 2016) focuses on fashion images of little pose variations. 3) Insufficient
dataset scale, where LIP (Gong et al., 2017) and Human-Art (Ju et al., 2023a) only contain 50K
samples. Furthermore, none of the existing datasets contain rich annotations, which typically label a
singular aspect of images. In this work, we take a step further by curating in-the-wild HumanVerse
dataset with comprehensive annotations like human pose, depth map, and surface-normal map.

3 OUR APPROACH

We present HyperHuman that generates in-the-wild human images of high realism and diverse
layouts. The overall framework is illustrated in Fig. 2. To make the content self-contained and
narration clearer, we first introduce some pre-requisites of diffusion models and the problem setting
in Sec. 3.1. Then, we present the Latent Structural Diffusion Model which simultaneously denoises
the depth, surface-normal along with the RGB image. The explicit appearance and latent structure
are thus jointly learned in a unified model (Sec. 3.2). Finally, we elaborate the Structure-Guided
Refiner to compose the predicted conditions for detailed generation of higher resolution in Sec. 3.3.

3.1 PRELIMINARIES AND PROBLEM SETTING

Diffusion Probabilistic Models define a forward diffusion process to gradually convert the sample x
from a real data distribution pdata(x) into a noisy version, and learn the reverse generation process in
an iterative denoising manner (Sohl-Dickstein et al., 2015; Song et al., 2020b). During the sampling
stage, the model can transform Gaussian noise of normal distribution to real samples step-by-step.
The denoising network ϵ̂θ(·) estimates the additive Gaussian noise, which is typically structured as a
UNet (Ronneberger et al., 2015) to minimize the ensemble of mean-squared error (Ho et al., 2020):

min
θ

Ex,c,ϵ,t

[
wt||ϵ̂θ(αtx+ σtϵ; c)− ϵ||22

]
, (1)

where x, c ∼ pdata are the sample-condition pairs from the training distribution; ϵ ∼ N (0, I) is the
ground-truth noise; t ∼ U [1, T ] is the time-step and T is the training step number; αt, σt, and wt

are the terms that control the noise schedule and sample quality decided by the diffusion sampler.

Latent Diffusion Model & Stable Diffusion. The widely-used latent diffusion model (LDM), with
its improved version Stable Diffusion (Rombach et al., 2022), performs the denoising process in a
separate latent space to reduce the computational cost. Specifically, a pre-trained VAE (Esser et al.,
2021) first encodes the image x to latent embedding z = E(x) for DM training. At the inference
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stage, we can reconstruct the generated image through the decoder x̂ = D(ẑ). Such design enables
the SD to scale up to broader datasets and larger model size, advancing from the SD 1.x & 2.x series
to SDXL of heavier backbone on higher resolution (Podell et al., 2023). In this work, we extend
SD 2.0 to Latent Structural Diffusion Model for efficient capturing of explicit appearance and latent
structure, while the Structure-Guided Refiner is built on SDXL 1.0 for more pleasing visual quality.

Problem Setting for Controllable Human Generation. Given a collection of N human images
x with their captions c, we annotate the depth d, surface-normal n, and pose skeleton p for each
sample (details elaborated in Sec. 4). The training dataset can be denoted as {xi, ci,di,ni,pi}Ni=1.
In the first-stage Latent Structural Diffusion Model G1, we estimate the RGB image x̂, depth d̂,
and surface-normal n̂ conditioned on the caption c and skeleton p. In the second-stage Structure-
Guided Refiner G2, the predicted structures of d̂ and n̂ further serve as guidance for the generation
of higher-resolution results x̂high-res. The training setting for our pipeline can be formulated as:

x̂, d̂, n̂ = G1(c,p), x̂high-res = G2(c,p, d̂, n̂). (2)

During inference, only the text prompt and body skeleton are needed to synthesize well-aligned
RGB image, depth, and surface-normal. Note that the users are free to substitute their own depth and
surface-normal conditions to G2 if applicable, enabling more flexible and controllable generation.

3.2 LATENT STRUCTURAL DIFFUSION MODEL

To incorporate the body skeletons for pose control, the simplest way is by feature residual (Mou
et al., 2023) or input concatenation (Ju et al., 2023b). However, three problems remain: 1) The sparse
keypoints only depict the coarse human structure, while the fine-grained geometry and foreground-
background relationship are ignored. Besides, the naive DM training is merely supervised by RGB
signals, which fails to capture the inherent structural information. 2) The image RGB and structure
representations are spatially aligned but substantially different in latent space. How to jointly model
them remains challenging. 3) In contrast to the colorful RGB images, the structure maps are mostly
monotonous with similar values in local regions, which are hard to learn by DMs (Lin et al., 2023).

Unified Model for Simultaneous Denoising. Our solution to the first problem is to simultaneously
denoise the depth and surface-normal along with the synthesized RGB image. We choose them as
additional learning targets due to two reasons: 1) Depth and normal can be easily annotated for
large-scale dataset, which are also used in recent controllable T2I generation (Zhang & Agrawala,
2023). 2) As two commonly-used structural guidance, they complement the spatial relationship and
geometry information, where the depth (Deng et al., 2022), normal (Wang et al., 2022), or both (Yu
et al., 2022b) are proven beneficial in recent 3D studies. To this end, a naive method is to train three
separate networks to denoise the RGB, depth, and normal individually. But the spatial alignment
between them is hard to preserve. Therefore, we propose to capture the joint distribution in a unified
model by simultaneous denoising, which can be trained with simplified objective (Ho et al., 2020):

Lϵ-pred = Ex,d,n,c,p,ϵ,t [ ||ϵ̂θ(xtx ; c,p)− ϵx||22︸ ︷︷ ︸
denoise image x

+ ||ϵ̂θ(dtd ; c,p)− ϵd||22︸ ︷︷ ︸
denoise depth d

+ ||ϵ̂θ(ntn ; c,p)− ϵn||22︸ ︷︷ ︸
denoise normal n

], (3)

where ϵx, ϵd, and ϵn ∼ N (0, I) are three independently sampled Gaussian noise (shortened as ϵ
in expectation for conciseness) for the RGB, depth, and normal, respectively; xtx = αtxx+ σtxϵx,
dtd = αtdd+σtdϵd, and ntn = αtnn+σtnϵn are the noised feature maps of three learning targets;
tx, td, and tn ∼ U [1, T ] are the sampled time-steps that control the scale of added Gaussian noise.

Structural Expert Branches with Shared Backbone. The diffusion UNet contains down-sample,
middle, and up-sample blocks, which are interleaved with convolution and self-/cross-attention lay-
ers. In particular, the DownBlocks compress input noisy latent to the hidden states of lower resolu-
tion, while the UpBlocks conversely upscale intermediate features to the predicted noise. Therefore,
the most intuitive manner is to replicate the first several DownBlocks and the last several UpBlocks
for each expert branch, which are the most neighboring layers to the input and output. In this way,
each expert branch gradually maps input noisy latent of different domains (i.e., xtx , dtd , and ntn)
to similar distribution for feature fusion. Then, after a series of shared modules, the same feature is
distributed to each expert branch to output noises (i.e., ϵx, ϵd, and ϵn) for spatially-aligned results.

Furthermore, we find that the number of shared modules can trade-off between the spatial alignment
and distribution learning: On the one hand, more shared layers guarantee the more similar features
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of final output, leading to the paired texture and structure corresponding to the same image. On the
other hand, the RGB, depth, and normal can be treated as different views of the same image, where
predicting them from the same feature resembles an image-to-image translation task in essence.
Empirically, we find the optimal design to replicate the conv in, first DownBlock, last UpBlock, and
conv out for each expert branch, where each branch’s skip-connections are maintained separately
(as depicted in Fig. 2). This yields both the spatial alignment and joint capture of image texture and
structure. Note that such design is not limited to three targets, but can generalize to arbitrary number
of paired distributions by simply involving more branches with little computation overhead.

Noise Schedule for Joint Learning. A problem arises when we inspect the distribution of depth
and surface-normal: After annotated by off-the-shelf estimators, they are regularized to certain data
range with similar values in local regions, e.g., [0, 1] for depth and unit vector for surface-normal.
Such monotonous images may leak low-frequency signals like the mean of each channel during
training. Besides, their latent distributions are divergent from that of RGB space, making them hard
to exploit common noise schedules (Lin et al., 2023) and diffusion prior. Motivated by this, we first
normalize the depth and normal latent features to the similar distribution of RGB latent, so that the
pre-trained denoising knowledge can be adaptively used. The zero terminal SNR (αT = 0, σT = 1)
is further enforced to eliminate structure map’s low-frequency information. Another question is how
to sample time-step t for each branch. An alternative is to perturb the data of different modalities
with different levels (Bao et al., 2023), which samples different t for each target as in Eq. 3. However,
as we aim to jointly model RGB, depth, and normal, such strategy only gives 10−9 probability to
sample each perturbation situation (given total steps T = 1000), which is too sparse to obtain good
results. In contrast, we propose to densely sample with the same time-step t for all the targets, so that
the sampling sparsity and learning difficulty will not increase even when we learn more modalities.
With the same noise level for each structural expert branch, intermediate features follow the similar
distribution when they fuse in the shared backbone, which could better complement to each others.
Finally, we utilize the v-prediction (Salimans & Ho, 2022) learning target as network objective:

Lv-pred = Ex,d,n,c,p,v,t

[
||v̂θ(xt; c,p)− vx

t ||22 + ||v̂θ(dt; c,p)− vd
t ||22 + ||v̂θ(nt; c,p)− vn

t ||22
]
, (4)

where vx
t = αtϵx − σtx, vd

t = αtϵd − σtd, and vn
t = αtϵn − σtn are the v-prediction learning

targets at time-step t for the RGB, depth, and normal, respectively. Overall, the unified simultane-
ous denoising network v̂θ with the structural expert branches, accompanied by the improved noise
schedule and time-step sampling strategy give the first-stage Latent Structural Diffusion Model G1.

3.3 STRUCTURE-GUIDED REFINER

Compose Structures for Controllable Generation. With the unified latent structural diffusion
model, spatially-aligned conditions of depth and surface-normal can be predicted. We then learn a
refiner network to render high-quality image x̂high-res by composing multi-conditions of caption c,
pose skeleton p, the predicted depth d̂, and the predicted surface-normal n̂. In contrast to Zhang
& Agrawala (2023) and Mou et al. (2023) that can only handle a singular condition per run, we
propose to unify multiple control signals at the training phase. Specifically, we first project each
condition from input image size (e.g., 1024 × 1024) to feature space vector that matches the size
of SDXL (e.g., 128 × 128). Each condition is encoded via a light-weight embedder of four stacked
convolutional layers with 4 × 4 kernels, 2 × 2 strides, and ReLU activation. Next, the embeddings
from each branch are summed up coordinate-wise and further feed into the trainable copy of SDXL
Encoder Blocks. Since involving more conditions only incurs negligible computational overhead of a
tiny encoder network, our method can be trivially extended to new structural conditions. Although a
recent work also incorporates multiple conditions in one model (Huang et al., 2023), they have to re-
train the whole backbone, making the training cost unaffordable when scaling up to high resolution.

Random Dropout for Robust Conditioning. Since the predicted depth and surface-normal condi-
tions from G1 may contain artifacts, a potential issue for such two-stage pipeline is the error accu-
mulation, which typically leads to the train-test performance gap. To solve this problem, we propose
to dropout structural maps for robust conditioning. In particular, we randomly mask out any of the
control signals, such as replace text prompt with empty string, or substitute the structural maps with
zero-value images. In this way, the model will not solely rely on a single guidance for synthesis,
thus balancing the impact of each condition robustly. To sum up, the structure-composing refiner
network with robust conditioning scheme constitute the second-stage Structure-Guided Refiner G2.
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4 HUMANVERSE DATASET

Large-scale datasets with high quality samples, rich annotations, and diverse distribution are crucial
for image generation tasks (Schuhmann et al., 2022; Podell et al., 2023), especially in the human
domain (Liu et al., 2016; Fu et al., 2022). To facilitate controllable human generation of high-fidelity,
we establish a comprehensive human dataset with extensive annotations named HumanVerse. Please
kindly refer to Appendix A.17 for more details about the dataset and annotation resources we use.

Dataset Preprocessing. We curate from two principled datasets: LAION-2B-en (Schuhmann et al.,
2022) and COYO-700M (Byeon et al., 2022). To isolate human images, we employ YOLOS (Fang
et al., 2021) for human detection. Specifically, only those images containing 1 to 3 human bounding
boxes are retained, where people should be visible with an area ratio exceeding 15%. We further rule
out samples of poor aesthetics (< 4.5) or low resolution (< 200 × 200). This yields a high-quality
subset by eliminating blurry and over-small humans. Unlike existing models that mostly train on
full-body humans of simple context (Zhang & Agrawala, 2023), our dataset encompasses a wider
spectrum, including various backgrounds and partial human regions such as clothing and limbs.

2D Human Poses. 2D human poses (skeleton of joints), which serve as one of the most flexible and
easiest obtainable coarse-level condition signals, are widely used in controllable human generation
studies (Ju et al., 2023b; Zhu et al., 2023; Yu et al., 2023; Liu et al., 2023; 2022a;b;c). To achieve
accurate keypoint annotations, we resort to MMPose (Contributors, 2020) as inference interface and
choose ViTPose-H (Xu et al., 2022) as backbone that performs best over several pose estimation
benchmarks. In particular, the per-instance bounding box, keypoint coordinates and confidence are
labeled, including whole-body skeleton, body skeleton, hand, and facial landmarks.

Depth and Surface-Normal Maps are fine-grained structures that reflect the spatial geometry of
images (Wu et al., 2022), which are commonly used in conditional generation (Mou et al., 2023).
We apply Omnidata (Eftekhar et al., 2021) for monocular depth and normal. The MiDaS (Ranftl
et al., 2022) is further annotated following recent depth-to-image pipelines (Rombach et al., 2022).

Outpaint for Accurate Annotations. Diffusion models have shown promising results on image in-
painting and outpainting, where the appearance and structure of unseen regions can be hallucinated
based on the visible parts. Motivated by this, we propose to outpaint each image for a more holistic
view given that most off-the-shelf structure estimators are trained on the “complete” image views.
Although the outpainted region may be imperfect with artifacts, it can complement a more compre-
hensive human structure. To this end, we utilize the powerful SD-Inpaint to outpaint the surrounding
areas of the original canvas. These images are further processed by off-the-shelf estimators, where
we only use the labeling within the original image region for more accurate annotations.

Overall Statistics. In summary, COYO subset contains 90, 948, 474 (91M) images and LAION-2B
subset contains 248, 396, 109 (248M) images, which is 18.12% and 20.77% of fullset, respectively.
The whole annotation process takes 640 16/32G NVIDIA V100 GPUs for two weeks in parallel.

5 EXPERIMENTS

Experimental Settings. For the comprehensive evaluation, we divide our comparisons into two
settings: 1) Quantitative analysis. All the methods are tested on the same benchmark, using the
same prompt with DDIM Scheduler (Song et al., 2020a) for 50 denoising steps to generate the same
resolution images of 512× 512. 2) Qualitative analysis. We generate high-resolution 1024× 1024
results for each model with the officially provided best configurations, such as the prompt engineer-
ing, noise scheduler, and classifier-free guidance (CFG) scale. Note that we use the RGB output
of the first-stage Latent Structural Diffusion Model for numerical comparison, while the improved
results from the second-stage Structure-Guided Refiner are merely utilized for visual comparison.

Datasets. We follow common practices in T2I generation (Yu et al., 2022a) and filter out a human
subset from MS-COCO 2014 validation (Lin et al., 2014) for zero-shot evaluation. In particular, off-
the-shelf human detector and pose estimator are used to obtain 8, 236 images with clearly-visible
humans for evaluation. All the ground truth images are resized and center-cropped to 512× 512. To
guarantee fair comparisons, we train first-stage Latent Structural Diffusion on HumanVerse, which
is a subset of public LAION-2B and COYO, to report quantitative metrics. In addition, an internal
dataset is adopted to train second-stage Structure-Guided Refiner only for visually pleasing results.
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Table 1: Zero-Shot Evaluation on MS-COCO 2014 Validation Human. We compare our model
with recent SOTA general T2I models (Rombach et al., 2022; Podell et al., 2023; DeepFloyd, 2023)
and controllable methods (Zhang & Agrawala, 2023; Mou et al., 2023; Ju et al., 2023b). Note that
†SDXL generates artistic style in 512, and ‡IF only creates fixed-size images, we first generate
1024 × 1024 results, then resize back to 512 × 512 for these two methods. We bold the best and
underline the second results for clarity. Our improvements over the second method are shown in red.

Image Quality Alignment Pose Accuracy

Methods FID ↓ KID×1k ↓ FIDCLIP ↓ CLIP ↑ AP ↑ AR ↑ APclean ↑ ARclean ↑
SD 1.5 24.26 8.69 12.93 31.72 - - - -
SD 2.0 22.98 9.45 11.41 32.13 - - - -
SD 2.1 24.63 9.52 15.01 32.11 - - - -
SDXL† 29.08 12.16 19.00 32.90 - - - -
DeepFloyd-IF‡ 29.72 15.27 17.01 32.11 - - - -

ControlNet 27.16 10.29 15.59 31.60 20.46 30.23 25.92 38.67
T2I-Adapter 23.54 7.98 11.95 32.16 27.54 36.62 34.86 46.53
HumanSD 52.49 33.96 21.11 29.48 26.71 36.85 32.84 45.87

HyperHuman 17.18 25.2%↓ 4.11 48.5%↓ 7.82 31.5%↓ 32.17 30.38 37.84 38.84 48.70

Comparison Methods. We compare with two categories of open-source SOTA works: 1) General
T2I models, including SD (Rombach et al., 2022) (SD 1.x & 2.x), SDXL (Podell et al., 2023), and
IF (DeepFloyd, 2023). 2) Controllable methods with pose condition. Notably, ControlNet (Zhang
& Agrawala, 2023) and T2I-Adapter (Mou et al., 2023) can handle multiple structural signals like
canny, depth, and normal, where we take their skeleton-conditioned variant for comparison. Hu-
manSD (Ju et al., 2023b) is the most recent work that specializes in pose-guided human generation.

Implementation Details. We resize and random-crop the RGB, depth, and normal to the target
resolution of each stage. To enforce the model with size and location awareness, the original image
height/width and crop coordinates are embedded in a similar way to time embedding (Podell et al.,
2023). Our code is developed based on diffusers (von Platen et al., 2022). 1) For the Latent Struc-
tural Diffusion, we fine-tune the whole UNet from the pretrained SD-2.0-base to v-prediction (Sal-
imans & Ho, 2022) in 512× 512 resolution. The DDIMScheduler with improved noise schedule is
used for both training and sampling. We train on 128 80G NVIDIA A100 GPUs in a batch size of
2, 048 for one week. 2) For the Structure-Guided Refiner, we choose SDXL-1.0-base as the frozen
backbone and fine-tune to ϵ-prediction for high-resolution synthesis of 1024×1024. We train on 256
80G NVIDIA A100 GPUs in a batch size of 2, 048 for one week. The whole two-stage inference
process takes 12 seconds on a single 40G NVIDIA A100 GPU. The overall framework is optimized
with AdamW (Kingma & Ba, 2015) in 1e− 5 learning rate, and 0.01 weight decay.

5.1 MAIN RESULTS

Evaluation Metrics. We adopt commonly-used metrics to make comprehensive comparisons from
three perspectives: 1) Image Quality. FID, KID, and FIDCLIP are used to reflect quality and diversity.
2) Text-Image Alignment, where the CLIP similarity between text and image embeddings is reported.
3) Pose Accuracy. We use the state-of-the-art pose estimator to extract poses from synthetic images
and compare with the input (GT) pose conditions. The Average Precision (AP) and Average Recall
(AR) are adopted to evaluate the pose alignment. Note that due to the noisy pose estimation of in-
the-wild COCO, we also use APclean and ARclean to only evaluate on the three most salient persons.

Quantitative Analysis. We report zero-shot evaluation results in Tab. 1. For all methods, we use
the default CFG scale of 7.5, which well balances the quality and diversity with appealing results.
Thanks to the structural awareness from expert branches, our proposed HyperHuman outperforms
previous works by a clear margin, achieving the best results on image quality and pose accuracy
metrics and ranks second on CLIP score. Note that SDXL (Podell et al., 2023) uses two text encoders
with 3× larger UNet of more cross-attention layers, leading to superior text-image alignment. In
spite of this, we still obtain an on-par CLIP score and surpass all the other baselines that have similar
text encoder parameters. We also show the FID-CLIP and FIDCLIP-CLIP curves over multiple CFG
scales in Fig. 3, where our model balances well between image quality and text-alignment, especially
for the commonly-used CFG scales (bottom right). Please see Sec. A.1 for more quantitative results.
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Figure 3: Evaluation Curves on COCO-Val Human.
We show FID-CLIP (left) and FIDCLIP-CLIP (right) curves
with CFG scale ranging from 4.0 to 20.0 for all methods.

Table 2: Ablation Results. We explore design
choices for simultaneous denoising targets, num-
ber of expert branch layers, and noise schedules.
The image quality and alignment are evaluated.

Ablation Settings FID ↓ FIDCLIP ↓ Ld
2 ↓ Ln

2 ↓
Denoise RGB 21.68 10.27 - -
Denoise RGB + Depth 19.89 9.30 544.2 -
Denoise RGB + Normal 19.24 9.15 - 130.6
Half DownBlocks & UpBlocks 22.85 11.38 508.3 124.3
Two DownBlocks & UpBlocks 17.94 8.85 677.4 145.9
Default SNR with ϵ-pred 17.70 8.41 867.0 180.2
Different Timesteps t 29.36 18.29 854.8 176.1
HyperHuman (Ours) 17.18 7.82 502.1 121.6

Table 3: User Preference Comparisons. We report the ratio of users prefer our model to baselines.

Methods SD 2.1 SDXL IF ControlNet T2I-Adapter HumanSD

HyperHuman 89.24% 60.45% 82.45% 92.33% 98.06% 99.08%

Qualitative Analysis. Fig. 1 shows results (top) and comparisons with baselines (bottom). We
can generate both photo-realistic images and stylistic rendering, showing better realism, quality,
diversity, and controllability. A comprehensive user study is further conducted as shown in Tab. 3,
where the users prefer HyperHuman to the general and controllable T2I models. Please refer to
Appendix A.4, A.15, and A.16 for more user study details, comparisons, and qualitative results.

5.2 ABLATION STUDY

In this section, we present the key ablation studies. Except for the image quality metrics, we also
use the depth/normal prediction error as a proxy for spatial alignment between the synthesized RGB
and structural maps. Specifically, we extract the depth and surface-normal by off-the-shelf estimator
as pseudo ground truth. The Ld

2 and Ln
2 denote the L2-error of depth and normal, respectively.

Simultaneous Denoise with Expert Branch. We explore whether latent structural diffusion model
helps, and how many layers to replicate in the structural expert branches: 1) Denoise RGB, that only
learns to denoise an image. 2) Denoise RGB + Depth, which also predicts depth. 3) Denoise RGB +
Normal, which also predicts surface-normal map. 4) Half DownBlock & UpBlock. We replicate
half of the first DownBlock and the last UpBlock, which contains one down/up-sample ResBlock
and one AttnBlock. 5) Two DownBlocks & UpBlocks, where we copy the first two DownBlocks and
the last two UpBlocks. The results are shown in Tab. 2 (top), which prove that the joint learning of
image appearance, spatial relationship, and geometry is beneficial. We also find that while fewer
replicate layers give more spatially aligned results, the per-branch parameters are insufficient to
capture distributions of each modality. In contrast, excessive replicate layers lead to less feature
fusion across different targets, which fails to complement to each other branches.

Noise Schedules. The ablation is conducted on two settings: 1) Default SNR with ϵ-pred, where
we use the original noise sampler schedules with ϵ-prediction. 2) Different Timesteps t. We sample
different noise levels (tx, td, and tn) for each modality. We can see from Tab. 2 (bottom) that zero-
terminal SNR is important for learning of monotonous structural maps. Besides, different timesteps
harm the performance with more sparse perturbation sampling and harder information sharing.

6 DISCUSSION

Conclusion. In this paper, we propose a novel framework HyperHuman to generate in-the-wild hu-
man images of high quality. To enforce the joint learning of image appearance, spatial relationship,
and geometry in a unified network, we propose Latent Structural Diffusion Model that simultane-
ously denoises the depth and normal along with RGB. Then we devise Structure-Guided Refiner to
compose the predicted conditions for detailed generation. Extensive experiments demonstrate that
our framework yields superior performance, generating realistic humans under diverse scenarios.

Limitation and Future Work. As an early attempt in human generation foundation model, our
approach creates controllable human of high realism. However, due to the limited performance of
existing pose/depth/normal estimators for in-the-wild humans, we find it sometimes fails to generate
subtle details like finger and eyes. Besides, the current pipeline still requires body skeleton as input,
where deep priors like LLMs can be explored to achieve text-to-pose generation in future work.
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A APPENDIX

In this supplemental document, we provide more details of the following contents: 1) Additional
quantitative results (Sec. A.1). 2) More implementation details like network architecture, hyper-
parameters, and training setups, etc (Sec. A.2). 3) More ablation study results (Sec. A.3). 4) More
user study details (Sec. A.4). 5) The impact of random seed to our model to show the robustness
of our method (Sec. A.5). 6) Boarder impact and the ethical consideration of this work (Sec. A.6).
7) Model’s robustness on the unseen and challenging pose (Sec. A.7). 8) Potential optimization
for the annotation and training pipeline (Sec. A.8). textbf9) Model’s performance on unconditional
generation without input poses (Sec. A.9). 10) Model’s performance on the jittered poses and image
animation results (Sec. A.10). textbf11) More first-stage generation results (Sec. A.11). 12) The
detailed intuition of updated noise schedule (Sec. A.12). 13) More details on pose processing and
encoding (Sec. A.13). 14) Reconstruction performance of RGB VAE on other modality-specific in-
puts (Sec. A.14). 15) More visual comparison results with recent T2I models (Sec. A.15). 16) More
qualitative results of our model (Sec. A.16). 17) The asset licenses we use in this work (Sec. A.17).

A.1 ADDITIONAL QUANTITATIVE RESULTS

FID-CLIP Curves. Due to the page limit, we only show tiny-size FID-CLIP and FIDCLIP-CLIP
curves in the main paper and omit the curves of HumanSD (Ju et al., 2023b) due to its too large
FID and FIDCLIP results for reasonable axis scale. Here, we show a clearer version of FID-CLIP
and FIDCLIP-CLIP curves in Fig. 4. As broadly proven in recent text-to-image studies (Rombach
et al., 2022; Nichol et al., 2021; Saharia et al., 2022), the classifier-free guidance (CFG) plays an
important role in trading-off image quality and diversity, where the CFG scales around 7.0 − 8.0
(corresponding to the bottom-right part of the curve) are the commonly-used choices in practice.
We can see from Fig. 4 that our model can achieve a competitive CLIP Score while maintaining
superior image quality results, showing the efficacy of our proposed HyperHuman framework.

Human Preference-Related Metrics. As shown in recent text-to-image generation evaluation stud-
ies, conventional image quality metrics like FID (Heusel et al., 2017), KID (Bińkowski et al., 2018)
and text-image alignment CLIP Score (Radford et al., 2021) diverge a lot from the human pref-
erence (Kirstain et al., 2023). To this end, we adopt two very recent human preference-related
metrics: 1) PickScore (Kirstain et al., 2023), which is trained on the side-by-side comparisons of
two T2I models. 2) HPS (Human Preference Score) V2 (Wu et al., 2023), which takes the user
like/dislike statistics for scoring model training. The evaluation results are reported in Tab. 4, which
show that our framework performs better than the baselines. Although the improvement seems to be
marginal, we find current human preference-related metrics to be highly biased: The scoring models
are mostly trained on the synthetic data with highest resolution of 1024× 1024, which makes them
favor unrealistic images of 1024 resolution, as they rarely see real images of higher resolution in
score model training. In spite of this, we still achieve superior quantitative and qualitative results on
these two metrics and a comprehensive user study, outperforming all the baseline methods.
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Figure 4: Clear Evaluation Curves on MS-COCO2014 Validation Human. We show FID-CLIP (left) and
FIDCLIP-CLIP (right) curves with CFG scale ranging from 4.0 to 20.0 for all methods.
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Table 4: Quantitative Results on Human Preference-Related Metrics. We report on two recent
metrics PickScore and HPS V2. The first row denotes the ratio of preferring ours to others, where
larger than 50% means the superior one. The second row is the human preference score, where the
higher the better. It can be seen that our proposed HyperHuman achieves the best performance.

Methods Ours SD 2.1 SDXL IF ControlNet Adapter HumanSD

PickScore - 66.87% 52.11% 63.37% 74.47% 83.25% 87.18%
HPS V2 0.2905 0.2772 0.2832 0.2849 0.2783 0.2732 0.2656

Pose Accuracy Results on Different CFG Scales. We additionally report the pose accuracy results
over different CFG scales. Specifically, we evaluate the conditional human generation methods
of ControlNet (Zhang & Agrawala, 2023), T2I-Adapter (Mou et al., 2023), HumanSD (Ju et al.,
2023b), and ours on four metrics Average Precision (AP), Average Recall (AR), clean AP (APclean),
and clean AR (ARclean) as mentioned in Sec. 5.1. We report on CFG scales ranging from 4.0 to 13.0
in Tab. 5, where our method is constantly better in terms of pose accuracy and controllability.

A.2 MORE IMPLEMENTATION DETAILS

We report implementation details like training hyper-parameters, and model architecture in Tab. 6.

A.3 MORE ABLATION STUDY RESULTS

We implement additional ablation study experiments on the second stage Structure-Guided Refiner.
Note that due to the training resource limit and the resolution discrepancy between MS-COCO real
images (512 × 512) and high-quality renderings (1024 × 1024), we conduct several toy ablation
experiments in the lightweight 512 × 512 variant of our model: 1) w/o random dropout, where
the all the input conditions are not dropout or masked out during the conditional training stage. 2)
Only Text, where not any structural prediction is input to the model and we only use the text prompt
as condition. 3) Condition on p, where we only use human pose skeleton p as input condition to
the refiner network. 4) Condition on d that uses depth map d as input condition. 5) Condition
on n that uses surface-normal n as input condition. And their combinations of 6) Condition on
p, d; 7) Condition on p, n; 8) Condition on d, n, to verify the impact of each condition and the
necessity of using such multi-level hierarchical structural guidance for fine-grained generation. The
results are reported in Tab. 7. We can see that the random dropout conditioning scheme is crucial
for more robust training with better image quality, especially in the two-stage generation pipeline.
Besides, the structural map/guidance contains geometry and spatial relationship information, which
are beneficial to image generation of higher quality. Another interesting phenomenon is that only
conditioned on surface-normal n is better than conditioned on both the pose skeleton p and depth
map d, which aligns with our intuition that surface-normal conveys rich structural information that
mostly cover coarse-level skeleton and depth map, except for the keypoint location and foreground-
background relationship. Overall, we can conclude from ablation results that: 1) Each condition
(i.e., pose skeleton, depth map, and surface-normal) is important for higher-quality and more aligned
generation, which validates the necessity of our first-stage Latent Structural Diffusion Model to
jointly capture them. 2) The random dropout scheme for robust conditioning can essentially bridge
the train-test error accumulation in two-stage pipeline, leading to better image results.

A.4 MORE USER STUDY DETAILS

The study involves 25 participants and annotates for a total of 8236 images in the zero-shot MS-
COCO 2014 validation human subset. They take 2-3 days to complete all the user study task, with
a final review to examine the validity of human preference. Specifically, we conduct side-by-side
comparisons between our generated results and each baseline model’s results. The asking question
is “Considering both the image aesthetics and text-image alignment, which image is better?
Prompt: <prompt>.” The labelers are unaware of which image corresponds to which baseline,
i.e., the place of two compared images are shuffled to achieve fair comparison without bias.
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Table 5: Additional Pose Accuracy Results for Different CFG Scales. We evaluate on four pose
alignment metrics AP, AR, APclean, and ARclean for the CFG scales ranging from 4.0 to 13.0.

CFG 4.0 CFG 5.0

Methods AP ↑ AR ↑ APclean ↑ ARclean ↑ AP ↑ AR ↑ APclean ↑ ARclean ↑
ControlNet 20.37 29.54 25.98 37.96 20.42 29.94 26.09 38.31
T2I-Adapter 28.18 36.71 35.68 46.77 27.90 36.76 35.31 46.78
HumanSD 26.05 35.89 32.27 44.90 26.51 36.44 32.84 45.48

HyperHuman 30.45 37.87 38.88 48.75 30.57 37.96 39.01 48.84

CFG 6.0 CFG 7.0

Methods AP ↑ AR ↑ APclean ↑ ARclean ↑ AP ↑ AR ↑ APclean ↑ ARclean ↑
ControlNet 20.54 30.16 26.09 38.64 20.44 30.29 26.01 38.79
T2I-Adapter 27.90 36.77 35.37 46.80 27.66 36.62 35.00 46.55
HumanSD 26.79 36.79 33.10 45.91 26.73 36.84 32.94 45.80

HyperHuman 30.44 37.92 38.91 48.77 30.49 37.90 38.82 48.72

CFG 8.0 CFG 9.0

Methods AP ↑ AR ↑ APclean ↑ ARclean ↑ AP ↑ AR ↑ APclean ↑ ARclean ↑
ControlNet 20.54 30.28 26.06 38.74 20.35 30.11 25.80 38.43
T2I-Adapter 27.46 36.50 34.80 46.39 27.10 36.32 34.14 46.04
HumanSD 26.76 36.86 32.96 45.88 26.67 36.91 32.74 45.93

HyperHuman 30.23 37.80 38.72 48.59 29.93 37.67 38.30 48.45

CFG 10.0 CFG 11.0

Methods AP ↑ AR ↑ APclean ↑ ARclean ↑ AP ↑ AR ↑ APclean ↑ ARclean ↑
ControlNet 20.10 30.08 25.50 38.29 19.81 29.93 25.23 38.23
T2I-Adapter 26.89 36.19 33.83 45.83 26.65 36.10 33.51 45.67
HumanSD 26.67 36.86 32.80 46.00 26.53 36.74 32.63 45.85

HyperHuman 29.75 37.60 38.20 48.38 29.58 37.31 37.88 48.07

CFG 12.0 CFG 13.0

Methods AP ↑ AR ↑ APclean ↑ ARclean ↑ AP ↑ AR ↑ APclean ↑ ARclean ↑
ControlNet 19.57 29.84 25.02 38.15 19.52 29.74 24.93 38.08
T2I-Adapter 26.49 35.95 33.39 45.52 26.41 35.90 33.22 45.44
HumanSD 26.46 36.71 32.53 45.82 26.26 36.65 32.39 45.70

HyperHuman 29.40 37.18 37.75 47.90 29.29 37.11 37.64 47.87
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Table 6: Training Hyper-parameters and Network Architecture in HyperHuman.

Latent Structural Diffusion Structure-Guided Refiner

Activation Function SiLU SiLU
Additional Embed Type Time Text + Time
# of Heads in Additional Embed 64 64
Additional Time Embed Dimension 256 256
Attention Head Dimension [5, 10, 20, 20] [5, 10, 20]
Block Out Channels [320, 640, 1280, 1280] [320, 640, 1280]
Cross-Attention Dimension 1024 2048
Down Block Types [“CrossAttn”×3,“ResBlock”×1] [“ResBlock”×1,“CrossAttn”×2]
Input Channel 8 4
# of Input Head 3 3
Condition Embedder Channels - [16, 32, 96, 256]
Transformer Layers per Block [1, 1, 1, 1] [1, 2, 10]
Layers per Block [2, 2, 2, 2] [2, 2, 2]
Input Class Embedding Dimension − 2816
Sampler Training Step T 1000 1000
Learning Rate 1e− 5 1e− 5
Weight Decay 0.01 0.01
Warmup Steps 0 0
AdamW Betas (0.9, 0.999) (0.9, 0.999)
Batch Size 2048 2048
Condition Dropout 15% 50%
Text Encoder OpenCLIP ViT-H (Radford et al., 2021) CLIP ViT-L & OpenCLIP ViT-bigG (Radford et al., 2021)
Pretrained Model SD-2.0-base (Rombach et al., 2022) SDXL-1.0-base (Podell et al., 2023)

Table 7: Additional Ablation Results for Structure-Guided Refiner. Due to the resource limit
and resolution discrepancy, we experiment on 512×512 resolution to illustrate our design’s efficacy.

Ablation Settings FID ↓ KID×1k ↓ FIDCLIP ↓ CLIP ↑
w/o random dropout 25.69 11.84 13.48 31.83
Only Text 23.99 10.42 13.22 32.23
Condition on p 20.97 7.51 12.86 31.95
Condition on d 14.97 3.75 9.88 31.74
Condition on n 12.67 2.61 7.09 31.59
Condition on p, d 14.98 3.78 9.47 31.74
Condition on p, n 12.65 2.66 6.93 31.63
Condition on d, n 12.42 2.59 6.89 31.57

Ours w/ Refiner 12.38 2.55 6.76 32.23

We note that all the labelers are well-trained for such text-to-image generation comparison tasks,
who have passed the examination on a test set and have experience in this kind of comparisons for
over 50 times. Below, we include the user study rating details for our method vs. baseline models.
Each labeler can click on four options: a) The left image is better, in this case the corresponding
model will get +1 grade. b) The right image is better. c) NSFW, which means the prompt/image
contain NSFW contents, in this case both models will get 0 grade. d) Hard Case, where the labelers
find it hard to tell which one’s image quality is better, in this case both models will get +0.5 grade.
The detailed comparison statistics are shown in Table 8, where we report the grades of HyperHu-
man vs. baseline methods. It can be clearly seen that our proposed framework is superior than all
the existing models, with better image quality, realism, aesthetics, and text-image alignment.

Table 8: Detailed Comparison Statistics in User Study. We conduct a comprehensive user study
on zero-shot MS-COCO 2014 validation human subset with well-trained participants.

Methods SD 2.1 SDXL IF

HyperHuman 7350 vs. 886 4978.5 vs. 3257.5 6787.5 vs. 1444.5

Methods ControlNet T2I-Adapter HumanSD

HyperHuman 7604 vs. 632 8076 vs. 160 8160 vs. 76

18



Published as a conference paper at ICLR 2024

A.5 IMPACT OF RANDOM SEED AND MODEL ROBUSTNESS

To further validate our model’s robustness to the impact of random seed, we inference with the same
input conditions (i.e., text prompt and pose skeleton) and use different random seeds for generation.
The results are shown in Fig. 5, which suggest that our proposed framework is robust to generate
high-quality and text-aligned human images over multiple arbitrary random seeds.

A bearded, bald man wears a multicolored tie.

A smiling man in a skiing outfit holds his skis and poles

A handsome man holds a glass of white wine and looks at the camera.

Figure 5: Impact of Random Seed and Model Robustness. We use the same input text prompt
and pose skeleton with different random seeds to generate multiple results. The results suggest that
our proposed framework is robust to generate high-quality and text-aligned human images.

A.6 BOARDER IMPACT AND ETHICAL CONSIDERATION

Generating realistic humans conditioned on text benefits a wide range of applications. It enriches
creative domains such as art, design, and entertainment by enabling the creation of highly realis-
tic and emotionally resonant visuals. Besides, it streamlines design processes, reducing time and
resources needed for tasks like content production. However, it could be misused for malicious
purposes like deepfake or forgery generation. We believe that the proper use of this technique will
enhance the machine learning research and digital entertainment. We also advocate all the generated
images should be labeled as “synthetic” to avoid negative social impacts.

A.7 MODEL ROBUSTNESS ON UNSEEN AND CHALLENGING POSE

In this section, we show the robustness of HyperHuman to generalize to unseen or challenging
poses. Specifically, we choose an acrobatic-related image from the Human-Art dataset (Ju et al.,
2023a), which is a highly challenging and rare pose unseen from the common human-centric images.
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The results are shown in Fig. 6. In the visualized results, (a) is the ground-truth image from the
Human-Art dataset; (b) is the associated pose skeleton, which is challenging and unseen; (c), (d), (e),
and (f) are four generated images from our proposed framework. It can be seen that HyperHuman
is robust to unseen poses, even for the rare acrobatic case.

(a) Ground Truth Image

Acrobatics of a woman doing a handstand on a wooden floor.

(b) Challenging Pose (c) Our Results - 1

(d) Our Results - 2 (e) Our Results - 3 (f) Our Results - 4

Figure 6: Model Robustness on Unseen and Challenging Pose. We show multiple high-quality
generation results on the unseen acrobatic pose, which shows the robustness of our method.

A.8 POTENTIAL OPTIMIZATION FOR ANNOTATION AND TRAINING

From the perspective of optimizing training: 1) We can change our models into a smaller diffusion
backbone to save the training and memory cost, e.g., Small SD and Tiny SD (Kim et al., 2023),
which achieve on-par performance with Stable Diffusion, but lighter and faster in training and in-
ference. 2) We can leverage some efficient parameter finetuning techniques like LoRA (Hu et al.,
2021) and Adapter (Houlsby et al., 2019) to finetune the shared backbone with fewer parameters.
3) We can adopt some common engineering tricks to reduce memory consumption, e.g., gradient
checkpointing, gradient accumulation with smaller batch size, deepspeed model parallelism, lower
floating point precision like fp16, efficient xformers, etc.

From the perspective of optimizing annotation: 1) Our efficient architecture design (only add
lightweight branches) can actually produce reasonable results with smaller dataset scale and fewer
training iterations, capturing the joint distribution of RGB, depth, and surface-normal. Before the
large-scale training, we first verify method effectiveness on a small-scale 1M subset, which is less
than 3% of the HumanVerse fullset scale. In spite of this, we can still obtain good results with only
8 40GB A100 within one day, generating spatially aligned results for each modality. A generation
sample is shown in Fig. 7, where (a) is the conditioning pose skeleton; (b), (c), and (d) are the si-
multaneously denoised depth map, surface-normal map, and RGB images. Note that since this is an
early-stage experiment, the pose conditioning and visualization are little bit different from the final
version we have used. In spite of this, we manage to achieve simultaneous denoising of multiple
modalities with a much smaller dataset scale. 2) The annotation overhead mostly comes from the
diffusion-based image outpainting process (Sec. 4), while the cost for depth and normal estimation is
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relatively low. Though facilitating more accurate pose annotations, it is not a mandatory step. More-
over, in the final evaluation process, we use the raw human pose without the help of outpainting, but
can still achieve superior performance.

(a) Pose Skeleton

Two beautiful women walking on the street.

(b) Denoised Depth (c) Denoised Surface-Normal (d) Denoised RGB

Figure 7: An Early-Stage Generation Sample on Small-Scale Dataset. We show a generation
sample on a small-scale 1M subset, which is less than 3% of the HumanVerse fullset scale. Note
that since this is an early-stage experiment, the pose conditioning and visualization are little bit
different from the final version we have used.

A.9 MODEL PERFORMANCE WITHOUT INPUT POSE

In this section, we show the unconditional generation results of our model, where no pose input is
taken. The generated images are shown in Fig. 8. All the text prompts are from the zero-shot MS-
COCO 2014 Human Validation dataset, which is unseen during the model training process. Thanks
to our framework design of robust conditioning scheme, the model is trained to predict reasonable
denoising results, even when the conditions are dropout or masked. Therefore, we manage to create
realistic human images with superior performance even without the pose skeleton as input.

A.10 MODEL PERFORMANCE ON JITTERED POSE AND IMAGE ANIMATION

We show additional results on the jittered human poses in Fig. 9. Specifically, we first condition on
the original pose skeleton (a) and obtain the generated image (b) based on text prompt “A woman
standing near a lake with a snow capped mountain behind”. Then we gradually add Gaussian noise
to all the joints, from the sigma scale of 2.5 to 12.5. It can be seen that HyperHuman could produce
pleasant results under Gaussian noises to all joints, creating highly pose-aligned images.

To further verify if we can animate a certain image by gradually changing the input pose, we fix the
random seed, the initial starting noise xT , and text prompt. The sequential generation results are
shown in Fig. 10. Note that we fix the text prompt of “A woman standing near a lake with a snow
capped mountain behind”. The input skeleton are shifted towards the right side, each step by 10
pixels. Even though we maintain other conditions fixed, we can still see background and appearance
changes. We regard this as a promising research problem and will explore it in future work.

A.11 MORE FIRST-STAGE GENERATION RESULTS

We show more first-stage Latent Structural Diffusion Model generation results in Fig. 11, where the
spatially aligned RGB images, depth maps, and surface-normal maps are simultaneously denoised
and generated. Though not as high-quality as the final output from the second-stage pipeline, it can
still generate plausible humans with coherent structures.

A.12 DETAILED INTUITION OF UPDATED NOISE SCHEDULE

First, it is hard to finetune the Stable Diffusion to generate pure-color images. As shown in the
paper (Lin et al., 2023), we can not even overfit to a single solid-black image with the text prompt
of ”Solid black background”. The main reason is that common diffusion noise schedules are flawed,
which corrupts image incompletely when sampling t = T at the training phase: xT = αT ·x0+σT ·ϵ,
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A man sitting down with a brown 
teddy bear on his shoulders.

Two women holding surfboards while 
smiling at the camera.

A guy in a brown jacket standing near a 
sign holding a cellphone to his ear.

A woman poses with avocado 
sandwich lunch at an outdoor 

restaurant.

An elderly woman looks to the side as
she sits in front of a cheese pizza in a 

restaurant.

A picture of a man with suit, 
tie and wild hair.

Figure 8: Unconditional Generation Results without Input Pose. All the text prompts are from
the zero-shot MS-COCO 2014 Human Validation dataset.

but αT ̸= 0, σT ̸= 1. Due to this reason, a small amount of signal is still included, which leaks the
lowest frequency information such as the overall mean of each channel. In contrast, at the inference
stage, the sampling starts from a pure Gaussian noise, which has a zero mean. Such train-test gap
hinders SD from generating pure-color images.

Second, similar to pure color images, the depth and surface-normal maps are visualized based on
certain scheme, where its color and patterns are highly constrained. For example, the depth map is
grey-scale image without colorful textures, and current estimators tend to infer similar depth values
for each local patch. Therefore, the low frequency information of per-channel mean and standard
deviation could be misused by network as shortcut for denoising, which harms the joint learning of
multiple modalities (RGB, depth, and surface-normal). Motivated by this, we propose to enforce the
zero-terminal SNR (xT = 0.0·x0+1.0·ϵ, that is, αT = 0, σT = 1) to fully eliminate low-frequency
information at the training stage, so that we manage generate both RGB images and structural maps
of high quality at the inference stage.

A.13 MORE DETAILS ON POSE PROCESSING AND ENCODING

The encoder used for pose is the pretrained VAE encoder of Stable Diffusion, which is the same as
the encoder used for RGB, depth, and surface-normal maps. Before pose encoding, we visualize
the body keypoints on a black canvas to form a skeleton map, similar to previous controllable meth-
ods (Zhang & Agrawala, 2023; Mou et al., 2023; Ju et al., 2023b) with pose condition. Specifically,
we use exactly the same pose drawing method as HumanSD (Ju et al., 2023b) and T2I-Adapter (Mou
et al., 2023) to ensure fairness.
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(a) Original Pose

A woman standing near a lake with a snow capped mountain behind.

(b) Original Generation (c) Noisy Pose, sigma=2.5

(e) Noisy Pose, sigma=5.0 (f) Generation, sigma=5.0 (g) Noisy Pose, sigma=7.5

(d) Generation, sigma=2.5

(h) Generation, sigma=7.5

(i) Noisy Pose, sigma=10.0 (j) Generation, sigma=10.0 (k) Noisy Pose, sigma=12.5 (l) Generation, sigma=12.5

Figure 9: Generation Results under the Jittered Poses. We use the text prompt “A woman stand-
ing near a lake with a snow capped mountain behind” and gradually add Gaussian noise to all the
joints, from the sigma scale of 2.5 to 12.5.

A.14 VAE RECONSTRUCTION PERFORMANCE ON MODALITY-SPECIFIC INPUT

We use an improved auto-encoder of the pretrained Stable Diffusion “sd-vae-ft-mse”1 as VAE to
encode inputs from all the modalities, including RGB, depth, surface-normal, and body skeleton
maps. To further validate that RGB VAE can be directly used for other structural maps, we exten-
sively evaluate the reconstruction metrics of all the involved structural maps on 100k samples. The
results are reported in Tab. 9, which show that the pre-trained RGB VAE is robust enough to handle
different modality images, including the structural maps we use in this work. Besides, we addition-
ally show some visualized reconstruction samples in Fig. 12, where in each group, the first row is the
input structural maps, and the second row is the reconstructed structural maps from the pretrained
RGB VAE. Therefore, both the quantitative metrics and visual results show that the pretrained RGB
VAE is robust enough to faithfully reconstruct structural maps.

Table 9: RGB VAE Reconstruction Performance. We evaluate the reconstruction performance of
the pretrained RGB VAE on the depth and surface-normal maps.

Modality rFID ↓ PSNR ↑ SSIM ↑ PSIM ↓
Body Skeleton 0.49 39.24 0.96 0.188
MiDaS Depth 0.19 47.08 0.99 0.004
Surface-Normal 0.24 40.11 0.97 0.010

1https://huggingface.co/stabilityai/sd-vae-ft-mse
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A woman standing near a lake with a snow capped mountain behind.

Figure 10: Animation Results. We gradually shift skeleton to right side, each step by 10 pixels.

A.15 MORE COMPARISON RESULTS

We additionally compare our proposed HyperHuman with recent open-source general text-to-
image models and controllable human generation baselines, including ControlNet (Zhang &
Agrawala, 2023), T2I-Adapter (Mou et al., 2023), HumanSD (Ju et al., 2023b), SD v2.1 (Rombach
et al., 2022), DeepFloyd-IF (DeepFloyd, 2023), SDXL 1.0 w/ refiner (Podell et al., 2023). Besides,
we also compare with the concurrently released T2I-Adapter+SDXL2. We use the officially-released
models to generate high-resolution images of 1024 × 1024 for all methods. The results are shown
in Fig. 13, 14, 15, and 16, which demonstrates that we can generate humans of high realism.

A.16 ADDITIONAL QUALITATIVE RESULTS

We further inference on the challenging zero-shot MS-COCO 2014 validation human subset prompts
and show additional qualitative results in Fig. 17, 18, and 19. All the images are in high resolution
of 1024× 1024. It can be seen that our proposed HyperHuman framework manages to synthesize
realistic human images of various layouts under diverse scenarios, e.g., different age groups of baby,
child, young people, middle-aged people, and old persons; different contexts of canteen, in-the-wild
roads, snowy mountains, and streetview, etc. Please kindly zoom in for the best viewing.

2https://huggingface.co/Adapter/t2iadapter

24

https://huggingface.co/Adapter/t2iadapter


Published as a conference paper at ICLR 2024

A man standing on a busy sidewalk 
while talking on his cellphone.

A man with glasses and his eyes closed 
dressed in a black shirt and a necktie.

A person is sitting in front of a camera 
and ready for a game.

Two men standing next to each other 
holding hands.

A woman wearing a wedding gown holding 
flowers is in a car with a man in a suit and tie.

Two small young girls hold hands as 
they look into a bedroom.

A younger man and an older man 
skiing in the forest.

A young man is in the middle of 
cutting his hair while posing.

A man with a button up shirt, sport coat 
and necktie with a knit cap on his head.

An individual wearing a comical 
mustache with a serious facial expression.

The two young girls are petting the goats.
A smiling man in a skiing outfit holds 

his skis and poles.

Figure 11: First-Stage Results. We show the jointly denoised RGB, depth, and normal maps.
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Figure 12: RGB VAE Reconstruction Results. We show the visualized reconstruction results on
depth and surface-normal maps.
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(a) HyperHuman (Ours) (b) ControlNet (c) T2I-Adapter (d) HumanSD

(e) SD v2.1 (f) DeepFloyd-IF (g) SDXL (h) T2I-Adapter+SDXL

A man kiteboarding on the ocean on top of a wave.

(a) HyperHuman (Ours) (b) ControlNet (c) T2I-Adapter (d) HumanSD

(e) SD v2.1 (f) DeepFloyd-IF (g) SDXL (h) T2I-Adapter+SDXL

Group of snowboarders in transportation vehicle near ski area.

(a) HyperHuman (Ours) (b) ControlNet (c) T2I-Adapter (d) HumanSD

(e) SD v2.1 (f) DeepFloyd-IF (g) SDXL (h) T2I-Adapter+SDXL

A man on a motorcycle that is on a road that has grass fields on both sides and a stop sign.

Figure 13: Additional Comparison Results.
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(a) HyperHuman (Ours) (b) ControlNet (c) T2I-Adapter (d) HumanSD

(e) SD v2.1 (f) DeepFloyd-IF (g) SDXL (h) T2I-Adapter+SDXL

A girl is standing by a storefront while talking on her phone.

(a) HyperHuman (Ours) (b) ControlNet (c) T2I-Adapter (d) HumanSD

(e) SD v2.1 (f) DeepFloyd-IF (g) SDXL (h) T2I-Adapter+SDXL

Small silver cell phone being held up any person's hand.

(a) HyperHuman (Ours) (b) ControlNet (c) T2I-Adapter (d) HumanSD

(e) SD v2.1 (f) DeepFloyd-IF (g) SDXL (h) T2I-Adapter+SDXL

A man holding various kites next to cabinet.

Figure 14: Additional Comparison Results.
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(a) HyperHuman (Ours) (b) ControlNet (c) T2I-Adapter (d) HumanSD

(e) SD v2.1 (f) DeepFloyd-IF (g) SDXL (h) T2I-Adapter+SDXL

Mastering the art of skateboarding is profoundly beneficial.

(a) HyperHuman (Ours) (b) ControlNet (c) T2I-Adapter (d) HumanSD

(e) SD v2.1 (f) DeepFloyd-IF (g) SDXL (h) T2I-Adapter+SDXL

A woman in an equestrian outfit riding a white horse.

(a) HyperHuman (Ours) (b) ControlNet (c) T2I-Adapter (d) HumanSD

(e) SD v2.1 (f) DeepFloyd-IF (g) SDXL (h) T2I-Adapter+SDXL

A group of men who are standing behind a banner that has various flags on it.

Figure 15: Additional Comparison Results.
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(a) HyperHuman (Ours) (b) ControlNet (c) T2I-Adapter (d) HumanSD

(e) SD v2.1 (f) DeepFloyd-IF (g) SDXL (h) T2I-Adapter+SDXL

A person is typing on a lap top and there is a person up on screen.

(a) HyperHuman (Ours) (b) ControlNet (c) T2I-Adapter (d) HumanSD

(e) SD v2.1 (f) DeepFloyd-IF (g) SDXL (h) T2I-Adapter+SDXL

A black and white photo of a girl's face with teddy bears behind her.

(a) HyperHuman (Ours) (b) ControlNet (c) T2I-Adapter (d) HumanSD

(e) SD v2.1 (f) DeepFloyd-IF (g) SDXL (h) T2I-Adapter+SDXL

Several People walking in a city street, one woman wears a head scarf, others have umbrellas.

Figure 16: Additional Comparison Results.
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A baby girl with beautiful blue eyes 
standing next to a brown teddy bear.

A little girl with wavy hair 
and smile holding a teddy bear.

A man and woman seated 
at a table in a restaurant.

A cow laying on the grass behind 
a man holding a cup of coffee.

A young kid stands before a birthday 
cake decorated with captain America.

A man who is sitting in a bus 
looking away from the window.

Figure 17: Additional Qualitative Results on Zero-Shot MS-COCO Validation.
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A man in a red shirt is holding 
a skate board up over his head.

Two men who are sitting next to each other 
with a large pizza in front of them.

Two children carry an enormous 
stuffed teddy bear.

The upper half of a man posing for a photograph wearing a 
suit with a blue tie and matching pocket corner.

An older man is wearing a funny hat 
in his dining room.

Young man on top of a 
snowboard wearing maroon jacket.

Figure 18: Additional Qualitative Results on Zero-Shot MS-COCO Validation.
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Man sitting on brick covered ground, 
appearing dirty and tired.

A man wearing a purple neck tie and 
glasses while sitting in a car.

A man standing on 
grassy area next to trees.

A girl with blue hair is 
taking a self portrait.

A man wearing a helmet is sitting 
on his blue motorcycle.

A person dressed up taking a picture 
at a street with his fist up.

Figure 19: Additional Qualitative Results on Zero-Shot MS-COCO Validation.
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A.17 LICENSES

Image Datasets:

• LAION-5B3 (Schuhmann et al., 2022): Creative Common CC-BY 4.0 license.
• COYO-700M4 (Byeon et al., 2022): Creative Common CC-BY 4.0 license.
• MS-COCO5 (Lin et al., 2014): Creative Commons Attribution 4.0 License.

Pretrained Models and Off-the-Shelf Annotation Tools:

• diffusers6 (von Platen et al., 2022): Apache 2.0 License.
• CLIP7 (Radford et al., 2021): MIT License.
• Stable Diffusion8 (Rombach et al., 2022): CreativeML Open RAIL++-M License.
• YOLOS-Tiny9 (Fang et al., 2021): Apache 2.0 License.
• BLIP210 (Guo et al., 2023): MIT License.
• MMPose11 (Contributors, 2020): Apache 2.0 License.
• ViTPose12 (Xu et al., 2022): Apache 2.0 License.
• Omnidata13 (Eftekhar et al., 2021): OMNIDATA STARTER DATASET License.
• MiDaS14 (Ranftl et al., 2022): MIT License.
• clean-fid15 (Parmar et al., 2022): MIT License.
• SDv2-inpainting16 (Rombach et al., 2022): CreativeML Open RAIL++-M License.
• SDXL-base-v1.017 (Podell et al., 2023): CreativeML Open RAIL++-M License.
• Improved Aesthetic Predictor18: Apache 2.0 License.

3https://laion.ai/blog/laion-5b/
4https://github.com/kakaobrain/coyo-dataset
5https://cocodataset.org/#home
6https://github.com/huggingface/diffusers
7https://github.com/openai/CLIP
8https://huggingface.co/stabilityai/stable-diffusion-2-base
9https://huggingface.co/hustvl/yolos-tiny

10https://huggingface.co/Salesforce/blip2-opt-2.7b
11https://github.com/open-mmlab/mmpose
12https://github.com/ViTAE-Transformer/ViTPose
13https://github.com/EPFL-VILAB/omnidata
14https://github.com/isl-org/MiDaS
15https://github.com/GaParmar/clean-fid
16https://huggingface.co/stabilityai/stable-diffusion-2-inpainting
17https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
18https://github.com/christophschuhmann/improved-aesthetic-predictor
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