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Abstract
The rise of antibiotic-resistant bacteria presents a significant
global health threat by reducing the effectiveness of essen-
tial treatments. This study evaluates the potential of clinical
decision support systems powered by biomedical language
foundation models to enhance antibiotic stewardship using
electronic health records (EHRs). We test several state-of-
the-art models, focusing on predicting whether each of eight
different antibiotics will be effective for an individual pa-
tient. Additionally, we emphasize interpretability, aiming to
understand how the models make decisions, where they excel,
and where they fall short. Unlike previous research, which
primarily benchmarks accuracy metrics, we provide insights
into both the successes and limitations of these models, of-
fering clinical and non-clinical experts a clearer understand-
ing of their current state and reliability. These findings high-
light the potential of AI systems to combat this global health
threat, as well as the need for further improvements to address
the limitations of existing models. We hope this work offers
valuable guidance for improving AI-driven decision support
systems and leveraging these advanced models for other clin-
ical applications.

Code — https://github.com/Simonlee711/antibiotics-fm-
benchmark

Datasets — https://physionet.org/content/mimiciv/3.1/

Introduction
The Centers for Disease Control and Prevention (CDC)
identifies antibiotic-resistant bacteria as a critical global
health challenge, undermining the effectiveness of tradi-
tional antibiotics (Ventola 2015; Golkar, Bagasra, and Pace
2014; Gould and Bal 2013; Sengupta, Chattopadhyay, and
Grossart 2013; Nature 2013; Lushniak 2014). The primary
drivers of this resistance include the misuse and overuse
of antibiotics, which promotes resistance through repeated
exposure (Viswanathan 2014; Read and Woods 2014). Ad-
ditionally, the decline in new antibiotic development, at-
tributed to high costs and regulatory hurdles, exacerbates
this issue (Piddock 2012). Consequently, once-manageable
infections are now more difficult to treat, increasing hospital
durations and healthcare costs (Bartlett, Gilbert, and Spell-
berg 2013).
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The proliferation of multidrug-resistant pathogens,
termed “superbugs”, further aggravates the crisis, rendering
many conventional treatments ineffective (Adegoke et al.
2016; Alpert 2017). Increasingly common multidrug-
resistant strains, such as Staphylococcus aureus (MRSA),
Escherichia coli, and Klebsiella pneumoniae, lead to severe
infections with higher mortality rates (Warnke et al. 2013;
De Kraker et al. 2011; Gandra et al. 2019). These pathogens
significantly challenge infection management during
medical procedures like surgeries and cancer treatments,
which depend on effective antibiotics (Jones, Bunn, and
Bell-Syer 2014; Gao et al. 2020). The rising prevalence of
superbugs highlights the critical need for global strategies,
enhanced surveillance, and innovative treatments to mitigate
resistance spread.

To address this challenge, this study introduces and evalu-
ates a clinical decision support framework utilizing biomed-
ical language foundation models to improve antibiotic stew-
ardship. By using pretrained language models, the frame-
work analyzes extensive patient data to provide real-time ad-
herence to antibiotic guidelines (Hoerbst and Ammenwerth
2010; Kohli and Tan 2016).

Unlike previous research that primarily showcases accu-
racy metrics, this paper conducts a comprehensive evalua-
tion of various models, focusing on their predictive perfor-
mance and interpretability. The evaluation assesses the mod-
els’ effectiveness across eight different antibiotics, quantify-
ing the accuracy of prescriptions and identifying the rates of
incorrect and missed prescriptions. This analysis highlights
the practical reliability of these models in clinical settings.
The findings provide critical insights for clinicians and re-
searchers, delineating the current capabilities and limitations
of these models. By elucidating these models’ strengths and
weaknesses, this research contributes to the global initiative
to combat antibiotic resistance through an foundation model
based framework.

Contributions
• This study introduces the use of advanced biomedical

language models to enhance antibiotic prescribing prac-
tices and adherence to stewardship guidelines.

• It evaluates the predictive accuracy and interpretability
of these models, specifically assessing their performance
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in prescribing eight different antibiotics and identifying
areas of strength and limitation.

• The work shares the number and types of errors giving
insights into the models reliability.

Related Works
Clinical Outcomes Prediction using AI
The use of Artificial Intelligence (AI) to predict clinical out-
comes is a well-established practice (Magrabi et al. 2019;
Shortliffe and Sepúlveda 2018). However, these systems en-
tail more than the mere application of computational al-
gorithms to existing datasets (Xie et al. 2022). Initially,
the focus was on traditional tabular models such as logis-
tic regression (Nick and Campbell 2007), random forests
(Breiman 2001), and gradient boosting methods (Chen and
Guestrin 2016; Ke et al. 2017; Prokhorenkova et al. 2018).
These methods, known for their relative simplicity and inter-
pretability, particularly in tree-based models, establish deci-
sion boundaries that guide predictions through deterministic
categories and are valued in clinical studies for their trans-
parency and the clarity they provide in understanding model
decisions.

The introduction of deep learning has significantly trans-
formed this field, as researchers now use large-scale models
to predict a range of clinical outcomes (Miotto et al. 2018;
Choi et al. 2017; Li, Huang, and Zitnik 2022). Despite their
complexity and the “black-box” nature of their decision-
making processes, these models are favored for their ability
to handle high-dimensional data and approximate complex
functions with remarkable sophistication (Nielsen 2016; Lu
et al. 2021; Lu and Lu 2020). They are applied in various do-
mains, including medical image interpretation, drug discov-
ery and delivery, diagnosis, and prognosis (Tajbakhsh et al.
2020; Mullowney et al. 2023; Farnoud et al. 2022; Ávila-
Jiménez et al. 2024; Kumar et al. 2024; Khalighi et al. 2024),
among others (Al Kuwaiti et al. 2023; Lee, Brokowski, and
Chiang 2024; Idowu et al. 2023).

Recent studies have examined whether language mod-
els trained on general or biomedical scientific text can
accurately predict clinical outcomes directly from patient
records. Examples include works such as (Gupta et al.
2022), Gatortron (Yang et al. 2022), MIMIC-IV-Ext (Hager,
Jungmann, and Rueckert), (Yang et al. 2023a), MEME (Lee
et al. 2024), CliBench (Ma et al. 2024), (Lee and Lindsey
2024) (Hager et al. 2024), and (Li et al. 2024). These meth-
ods rely on representing EHR as text, use discharge sum-
maries, or perform feature engineering to make tabular EHR
data fields compatible with emerging language model tech-
nologies.

Measuring Susceptibility to Antibiotics Using AST
Biomedical Language Models
Biomedical language models like BioBERT (Lee et al. 2020)
and ClinicalBERT (Alsentzer et al. 2019) are specialized
adaptations of BERT (Devlin 2018), designed for healthcare
applications. BERT, a transformer-based (Vaswani 2017)
model, captures the context of words bidirectionally, en-
hancing its effectiveness for complex language patterns.

Originally pretrained on general text such as Wikipedia
and BookCorpus, BERT is fine-tuned for specific tasks like
named entity recognition (NER), text classification, and
question answering. However, the unique vocabulary and
syntax of medical language necessitate domain-specific pre-
training for clinical applications.

Biomedical language models extend BERT’s capabili-
ties by further pretraining on biomedical texts, including
PubMed abstracts (Gu et al. 2020), full-text articles (Belt-
agy, Lo, and Cohan 2019), and clinical notes (Alsentzer et al.
2019). These models are adept at capturing intricate relation-
ships in medical language, making them suitable for clini-
cal concept extraction and patient outcome prediction. The
primary data sources for these models are electronic health
records (EHRs) and clinical text data, which include both
structured information (e.g., lab values, medication records)
and unstructured text such as discharge summaries and radi-
ology reports. Together, these data sources provide a com-
prehensive set of medical terminologies and contextual in-
formation essential for learning medical language represen-
tations.

To utilize EHR data, structured information is trans-
formed into tokenized text that models can process. For
example, an EHR dataset containing patient records with
n features (e.g., demographics, diagnoses, lab results)
represents each patient i with a feature vector xi =
{xi1, xi2, . . . , xin}. Each feature xij is converted into a text
token, creating a sequence Ti = [ti1, ti2, . . . , tin], which is
then tokenized using methods like WordPiece (Song et al.
2020), producing a sequence of subword tokens Si =
[si1, si2, . . . , sim].

These tokens are embedded into a high-dimensional space
using BERT’s embedding layer, mapping each token sij
to a d-dimensional vector eij ∈ Rd, where d is typically
768 for BERT-base. The sequence of embedding vectors
Ei = [ei1, ei2, . . . , eim] is processed through multiple trans-
former layers to capture contextual information, resulting
in final contextualized embeddings Ci = [ci1, ci2, . . . , cim].
Each contextualized embedding cij ∈ Rd encapsulates the
semantic meaning of the token sij within the sequence, en-
abling these embeddings to be used for downstream tasks
such as similarity search or patient outcome prediction.

Building on BERT’s success in natural language process-
ing, numerous studies have explored its application in the
biomedical field. Early models like BEHRT (Li et al. 2020)
and MedBERT (Rasmy et al. 2021) demonstrated the poten-
tial of adapting BERT’s architecture to large-scale patient
data by encoding sequences of diagnoses, prescriptions, and
laboratory values as tokens. Recent advancements have ex-
panded the range of features integrated into these models,
with examples like ExBEHRT (Rupp, Peter, and Pattipaka
2023), IRENE (Zhou et al. 2023), and M-BioBERTa (An-
tal et al. 2024) enhancing contextual embedding processes.
Additionally, models such as TransformEHR (Yang et al.
2023b), Gatortron (Yang et al. 2022), and CLMBR (Wornow
et al. 2023) demonstrate that transformer decoders focusing
on forward-directional attention can further improve predic-
tive performance on tasks aimed at forecasting future medi-
cal events.



Figure 1: Antimicrobial Susceptibility Testing (AST). This figure demonstrates the experimental setup of how susceptibility to
antibiotics is determined as “Susceptible”, “Intermediate”, or “Resistant”.

Data
This section explains the data source and modeling frame-
work used in this study, which are crucial for defining and
contextualizing the problem addressed. It details the elec-
tronic health record (EHR) data used, including the origin
of the data, the criteria for cohort selection, and how these
elements contribute to and support the overall modeling ap-
proach.

Data Source
The MIMIC-IV-ED dataset 1 (Johnson et al. 2023) is a com-
prehensive, publicly available resource that contains detailed
records of emergency department (ED) admissions at Beth
Israel Deaconess Medical Center, spanning the years 2011 to
2019. This dataset encompasses a total of 448,972 ED stays,
providing rich information on vital signs, triage assessments,
medication administration, and discharge diagnoses. Such
extensive and granular data make the MIMIC-IV-ED dataset
a valuable resource for developing and evaluating models in
clinical research, particularly in the context of patient out-
comes and treatment optimization.

Cohort Selection
For this study, we focused on emergency department (ED)
patients with presumed Staphylococcus aureus (STAPH) in-
fections (Tenover and Gorwitz 2006). Inclusion criteria in-
cluded positive cultures and relevant diagnostic codes. From
this, we defined a cohort by filtering for cases with available
antimicrobial susceptibility testing (AST) results, focusing
on Staphylococcus aureus to precisely model the problem
and use susceptibility labels as the target outcome.

Our objective was to predict susceptibility to eight an-
tibiotics—Clindamycin, Erythromycin, Gentamicin, Lev-
ofloxacin, Oxacillin, Tetracycline, Trimethoprim, and Van-
comycin—according to the protocols in (Lee, Brokowski,

1https://physionet.org/content/mimic-iv-ed/2.2/

and Chiang 2024). We identified 4,161 patients with Staphy-
lococcus aureus infections in the ED, which corresponded to
5,976 antibiotic prescriptions with clearly labeled data. Fur-
ther details about the cohort and antibiotic prevalence are
provided in Table 1.

Measuring a patient’s susceptibility to antibiotics involves
antimicrobial susceptibility testing (AST) (Reller et al.
2009; Hindler and Munro 2010; Lalitha et al. 2004). This
laboratory procedure requires obtaining a bacterial sample
from the patient—from sites such as blood, urine, or tis-
sue—and culturing it in a controlled environment to promote
bacterial growth. The bacteria are then exposed to various
antibiotics to assess which are effective at inhibiting growth
or eradicating the bacteria (Figure 1). This testing is typi-
cally conducted using standardized methods like disk diffu-
sion (Jorgensen and Turnidge 2015) or broth microdilution
(Thornsberry and Mcdougal 1983), which evaluate bacterial
growth in the presence of antibiotics at various concentra-
tions. Results are categorized as “Susceptible,” “Intermedi-
ate,” or “Resistant,” according to thresholds set by clinical
guidelines. For our modeling, we designated “susceptible”
as indicating an effective antibiotic, while “intermediate”
and “resistant” were considered indicators of ineffective an-
tibiotics.

AST results are crucial for clinicians in selecting the most
appropriate antibiotic treatment. However, a significant lim-
itation of this method is the time required to culture cells,
which can delay treatment for patients requiring immediate
care.

Opportunities for AI Integration
In addition to using antimicrobial susceptibility testing
(AST) results, the extensive structured data in electronic
health records (EHRs) provides an opportunity for AI mod-
els to predict patient susceptibility before AST results are
available. By analyzing a patient’s medical history, AI could
facilitate early intervention with effective antibiotic treat-
ments, thereby accelerating clinical decision-making and



Table 1: MIMIC IV Cohort Data Overview and Antibiotic Prevalence

Cohort Data Overview Antibiotic Prevalence
Description Category Train Test Totals Antibiotic Train Test Total Prevalence (%)

Prescription, n Total 4803 1173 5976 Clindamycin 2645 624 54.69%
Unique ID, n Total 3283 878 4161 Erythromycin 2626 639 54.59%
Age Mean (SD) 59 (17) 58 (17) Gentamicin 4549 1127 94.89%
Sex Male 1942 527 2469 Levofloxacin 2866 715 60.00%
Race/Ethnicity % White 2212 583 2795 Oxacillin 2702 667 56.32%

Black 416 119 535 Tetracycline 3747 909 76.57%
Other 567 156 497 Trimethoprim/sul 3671 908 71.66%
Asian 88 20 108 Vancomycin 2529 611 52.53%

potentially reducing treatment delays. Utilizing a patient’s
medical history to predict suitable antibiotics at the time of
hospital admission through AI could streamline the treat-
ment process and enhance patient treatment optimizations.

Methods
Text-based Electronic Health Records
Electronic Health Records (EHR) in the MIMIC database
are organized into multiple tables, which store varied as-
pects of a patient’s medical history such as demograph-
ics, diagnostic history, and medications. This fragmentation
presents significant challenges in data modeling and integra-
tion for machine learning applications. Traditional models
tailored for tabular data, such as boosting methods includ-
ing CatBoost and XGBoost, often struggle with the effec-
tive handling of categorical and free-text fields. Moreover,
feature engineering techniques like one-hot encoding can
greatly increase dimensionality, leading to sparsity and mul-
ticollinearity issues.

To overcome these challenges, we adopted a method used
by (Lee et al. 2024) that transforms EHR data into a textual
format via a structured template. This approach creates text
“narratives” from the raw tabular data, which prevents the
hallucinations typically associated with generative models
(Hegselmann et al. 2024). This text-based data representa-
tion has shown to be effective in few-shot learning scenarios
as demonstrated by (Hegselmann et al. 2023), and subse-
quent studies (Ono and Lee 2024) have reported competitive
results when fine-tuned against traditional machine learning
models.

Mathematically, this transformation can be expressed as a
function f : T → Xtext, where f(T1, T2, . . . , Tn) = Xtext.
In this function, T1, T2, . . . , Tn represent the individual ta-
bles in the EHR, such as medications and diagnoses, and
Xtext is the resultant unified textual representation of a pa-
tient’s data. The mapping for each table f(Ti) is defined as:

f(Ti) =

m∑
k=1

g(xk)

Here, xk ∈ Ti denotes the individual entries (e.g., lab val-
ues, diagnosis codes), and g(xk) converts each entry into
a textual description. This transformation ensures that all

tables can be aligned with a unique patient identifier and
visit identifier, thus integrating various visits into a coher-
ent structured narrative. A comprehensive list of the tabular
data fields used is detailed in Table 6.

Benchmarking
In this study, we benchmark state-of-the-art foundation
models in biology and medicine to evaluate their perfor-
mance on eight specific antibiotic prediction tasks, each de-
fined as a binary classification problem to determine an-
tibiotic efficacy. This benchmarking is necessary due to the
rapid development of these models and claims by (Lee, Lee,
and Chiang 2024) that foundation models are inadequately
assessed. A summary of the foundation models under review
is presented in Table 2.

Models are tested using their pre-trained parameters,
which remain unchanged during inference. Predictions are
generated by extracting the classification (CLS) token from
the models and inputting it into a LightGBM model (Ke et al.
2017) for final prediction output. Performance is assessed
using several key metrics: the Matthews Correlation Coeffi-
cient (MCC), the Area Under the Receiver Operating Char-
acteristic Curve (ROC-AUC), the Area Under the Precision-
Recall Curve (PRC-AUC), and the F1-score. These metrics
evaluate how effectively each model handles the nuances of
biomedical text and patient data.

The MCC provides a balanced measure across classes in
imbalanced datasets, preventing an overemphasis on the ma-
jority class. The ROC-AUC measures the model’s ability to
distinguish between classes, which is critical for identify-
ing susceptible versus resistant outcomes. The PRC-AUC
is important for its focus on precision and recall, crucial
in biomedical contexts where the costs of false positives or
negatives are significant. The F1-score, which combines pre-
cision and recall, serves as a practical performance measure
when both error types are significant. To ensure robust sta-
tistical validity, we bootstrap and resample our test set 1,000
times to establish 95% confidence intervals for each metric.

Furthermore, we rank each model for each antibiotic
based on these metrics to determine which performs best on
average. This analysis helps us quantify the performance im-
provements relative to the top-performing model, providing
insights into the practical implications of model advance-
ments.



Table 2: Foundation Models evaluated in our Benchmarking Study. We take a wide range of foundation models found in
biomedicine that were trained on EHR sequences, scientific text, discharge summaries, among many others. Some of these
models were trained solely on the Masked language modeling objective while others were trained in more specialized tasks like
named entity recognition.

Name/HuggingFace Model Card Source Name/HuggingFace Model Card Source

pritamdeka/BioBert-PubMed200kRCT (Deka, Jurek-Loughrey et al. 2022) distil-bert (Sanh et al. 2019)
emilyalsentzer/Bio ClinicalBERT (Alsentzer et al. 2019) UFNLP/gatortron-base (Yang et al. 2022)
EMBO/bio-lm ————————— michiyasunaga/LinkBERT-large (Yasunaga, Leskovec, and Liang 2022)
allenai/biomed roberta base (Gururangan et al. 2020) Charangan/MedBERT (Vasantharajan et al. 2022)
EMBO/BioMegatron345mUncased (Shin et al. 2020) NeuML/pubmedbert-base —————————
bionlp/bluebert pubmed mimic uncased (Peng, Yan, and Lu 2019) StanfordAIMI/RadBERT (Chambon, Cook, and Langlotz 2022)
medicalai/ClinicalBERT (Wang et al. 2023) allenai/scibert scivocab uncased (Beltagy, Lo, and Cohan 2019)

These comprehensive metrics ensure a thorough evalu-
ation of each model’s discriminative ability and reliability
in predicting antibiotic efficacy. We hypothesize that model
performance will vary depending on the complexity and
prevalence of the antibiotic-related tasks, with some mod-
els performing better in specific scenarios.

Evaluating Missed and Incorrect Prescriptions
Missed and incorrect predictions in antibiotic susceptibil-
ity models are significant concerns, particularly in clinical
settings where errors can adversely affect patient outcomes.
Clinicians require insights not only into the overall perfor-
mance of language foundation models but also into their
specific failures, notably in terms of false positives and false
negatives. A false positive—where a model incorrectly pre-
dicts susceptibility to an antibiotic when the pathogen is ac-
tually resistant—may result in the wrong treatment, poten-
tially prolonging infection and leading to ineffective therapy.
Our study aims to mitigate these false positives to enhance
AI-driven stewardship methods. Conversely, a false nega-
tive—where a model incorrectly predicts resistance when
the pathogen is actually susceptible—could cause clinicians
to bypass effective treatment options, potentially resorting to
more aggressive or costly alternatives unnecessarily.

Investigating these types of errors is crucial for enhanc-
ing model reliability and building clinician trust. By metic-
ulously analyzing and documenting instances of false pos-
itives and false negatives, researchers can pinpoint patterns
or specific conditions under which the models falter, such
as with certain antibiotics or within particular patient sub-
groups. This detailed insight is invaluable to clinicians as it
aids their decision-making process by identifying potential
error-prone areas in the models.

Topic Modeling and Concordance analysis
provides Interpretability
To enhance the interpretability of our text-based EHR ap-
proach, we utilize BERTopic (Grootendorst 2022), a topic
modeling technique that combines BERT embeddings with
hierarchical clustering (HDBSCAN (McInnes et al. 2017)).
Each patient’s text-based EHR record, represented as a se-
quence of tokens Si = [si1, si2, . . . , sim], is embedded into
a high-dimensional space Rd using BERT. This process re-
sults in a sequence of embeddings Ei = [ei1, ei2, . . . , eim],
where each eij belongs to Rd.

The dimensionality of the embeddings is reduced using
UMAP:

E′
i = UMAP(Ei)

where E′
i is mapped to a lower-dimensional space Rk and

k represents the reduced dimensions. Subsequently, HDB-
SCAN is applied to these reduced embeddings to identify
clusters, forming topic groups T1, T2, . . . , Tl:

Ti = HDBSCAN(E′)

These clusters provide insights into patient groups with
similar medical histories or conditions, thereby offering a
way to understand patterns in the model’s internal represen-
tations. We then perform a concordance analysis taking two
random exemplars to try to understand the decision-making
processes of these foundation models. This analysis allows
for the interpretability of how the model predicts the appro-
priateness of specific antibiotics for new patients, based on
the internal representations and similarities identified within
these topic clusters.

Results
Benchmarking Results
Table 4 displays the raw performance metrics—F1 score,
Matthews Correlation Coefficient (MCC), Receiver Oper-
ating Characteristic Area Under the Curve (ROC-AUC),
and Precision-Recall Curve Area Under the Curve (PRC-
AUC)—for various models in multiple antibiotic suscepti-
bility prediction tasks. For each model, performance metrics
are detailed for every task, providing an extensive overview
of their effectiveness in different scenarios. The numbers in
parentheses represent the 95% confidence intervals, which
are derived from bootstrapping the test set 1,000 times. This
method helps in estimating the uncertainty of the metrics
and assessing the statistical significance of the results.

Table 5 aggregates these metrics by listing the average
ranks of the models across all four performance indicators.
The models are ranked from best to worst based on their
average overall rank, with lower ranks indicating superior
performance. Notably, BioClinicalBERT and PubMedBERT
exhibit the lowest average ranks at 5.22 and 5.25, respec-
tively, closely followed by SciBERT and BioMedRoBERTa.
This ranking system provides a standardized measure for
comparing the efficacy of different models across various

https://huggingface.co/pritamdeka/BioBert-PubMed200kRCT
https://huggingface.co/docs/transformers/en/model_doc/distilbert
https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT
https://huggingface.co/UFNLP/gatortron-base
https://huggingface.co/EMBO/bio-lm
https://huggingface.co/michiyasunaga/LinkBERT-large
https://huggingface.co/allenai/biomed_roberta_base
https://huggingface.co/Charangan/MedBERT
https://huggingface.co/EMBO/BioMegatron345mUncased
https://huggingface.co/NeuML/pubmedbert-base-embeddings
https://huggingface.co/bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12
https://huggingface.co/StanfordAIMI/RadBERT
https://huggingface.co/medicalai/ClinicalBERT
https://huggingface.co/allenai/scibert_scivocab_uncased


Table 3: Results for CLINDAMYCIN, ERYTHROMYCIN, GENTAMICIN, and LEVOFLOXACIN

Model/Task CLINDAMYCIN ERYTHROMYCIN GENTAMICIN LEVOFLOXACIN
F1 MCC ROC-AUC PRC-AUC F1 MCC ROC-AUC PRC-AUC F1 MCC ROC-AUC PRC-AUC F1 MCC ROC-AUC PRC-AUC

BioclinicalBERT 0.777 (±0.031) 0.354 (±0.023) 0.750 (±0.039) 0.788 (±0.047) 0.661 (±0.044) 0.367 (±0.041) 0.754 (±0.040) 0.694 (±0.059) 0.978 (±0.009) 0.397 (±0.037) 0.684 (±0.122) 0.970 (±0.017) 0.817 (±0.027) 0.453 (±0.029) 0.801 (±0.036) 0.844 (±0.041)
MedBERT 0.780 (±0.029) 0.369 (±0.045) 0.742 (±0.040) 0.773 (±0.045) 0.655 (±0.042) 0.362 (±0.015) 0.755 (±0.038) 0.692 (±0.060) 0.977 (±0.008) 0.397 (±0.020) 0.731 (±0.111) 0.973 (±0.017) 0.810 (±0.029) 0.421 (±0.039) 0.779 (±0.037) 0.822 (±0.043)
DistilBERT 0.778 (±0.031) 0.371 (±0.034) 0.740 (±0.041) 0.768 (±0.055) 0.656 (±0.045) 0.353 (±0.048) 0.749 (±0.041) 0.682 (±0.067) 0.977 (±0.008) 0.397 (±0.013) 0.693 (±0.106) 0.972 (±0.017) 0.810 (±0.028) 0.428 (±0.027) 0.792 (±0.037) 0.841 (±0.039)
BioMegatron 0.775 (±0.030) 0.353 (±0.032) 0.726 (±0.040) 0.762 (±0.052) 0.659 (±0.040) 0.352 (±0.049) 0.764 (±0.038) 0.702 (±0.060) 0.978 (±0.009) 0.397 (±0.035) 0.663 (±0.114) 0.970 (±0.016) 0.810 (±0.030) 0.426 (±0.025) 0.791 (±0.038) 0.845 (±0.041)
BlueBERT 0.783 (±0.031) 0.404 (±0.038) 0.738 (±0.038) 0.768 (±0.049) 0.652 (±0.041) 0.346 (±0.017) 0.736 (±0.040) 0.670 (±0.063) 0.978 (±0.008) 0.367 (±0.042) 0.681 (±0.112) 0.967 (±0.020) 0.819 (±0.028) 0.466 (±0.012) 0.780 (±0.039) 0.829 (±0.040)
PubMedBERT 0.781 (±0.031) 0.375 (±0.031) 0.738 (±0.039) 0.773 (±0.052) 0.660 (±0.042) 0.369 (±0.026) 0.770 (±0.038) 0.717 (±0.055) 0.979 (±0.008) 0.393 (±0.043) 0.618 (±0.118) 0.962 (±0.020) 0.829 (±0.029) 0.499 (±0.014) 0.816 (±0.035) 0.862 (±0.035)
GatorTron 0.776 (±0.031) 0.364 (±0.024) 0.711 (±0.042) 0.753 (±0.049) 0.656 (±0.042) 0.357 (±0.046) 0.747 (±0.038) 0.675 (±0.061) 0.977 (±0.009) 0.397 (±0.018) 0.684 (±0.100) 0.970 (±0.018) 0.819 (±0.027) 0.457 (±0.050) 0.803 (±0.033) 0.855 (±0.035)
BioMedRoBERTa 0.775 (±0.030) 0.351 (±0.021) 0.731 (±0.041) 0.778 (±0.048) 0.667 (±0.042) 0.384 (±0.030) 0.768 (±0.039) 0.715 (±0.055) 0.978 (±0.008) 0.393 (±0.019) 0.629 (±0.127) 0.961 (±0.021) 0.826 (±0.026) 0.502 (±0.040) 0.800 (±0.035) 0.842 (±0.039)
SciBERT 0.780 (±0.030) 0.371 (±0.028) 0.740 (±0.038) 0.780 (±0.048) 0.648 (±0.041) 0.329 (±0.033) 0.743 (±0.040) 0.685 (±0.057) 0.978 (±0.009) 0.355 (±0.044) 0.704 (±0.116) 0.967 (±0.022) 0.817 (±0.029) 0.457 (±0.011) 0.803 (±0.035) 0.846 (±0.040)
BioLM 0.782 (±0.030) 0.369 (±0.016) 0.729 (±0.040) 0.764 (±0.049) 0.660 (±0.041) 0.364 (±0.047) 0.752 (±0.039) 0.682 (±0.062) 0.978 (±0.008) 0.367 (±0.036) 0.669 (±0.117) 0.966 (±0.020) 0.822 (±0.028) 0.468 (±0.022) 0.799 (±0.039) 0.828 (±0.047)
RadBERT 0.778 (±0.030) 0.364 (±0.025) 0.731 (±0.041) 0.772 (±0.048) 0.670 (±0.043) 0.408 (±0.041) 0.768 (±0.041) 0.708 (±0.058) 0.977 (±0.008) 0.397 (±0.039) 0.688 (±0.111) 0.969 (±0.019) 0.812 (±0.028) 0.437 (±0.031) 0.799 (±0.035) 0.842 (±0.043)
LinkBERT 0.783 (±0.030) 0.384 (±0.015) 0.739 (±0.038) 0.779 (±0.049) 0.645 (±0.041) 0.330 (±0.029) 0.731 (±0.040) 0.669 (±0.060) 0.978 (±0.008) 0.395 (±0.043) 0.699 (±0.119) 0.968 (±0.020) 0.828 (±0.027) 0.510 (±0.012) 0.800 (±0.038) 0.844 (±0.037)
ClinicalBERT 0.777 (±0.031) 0.354 (±0.038) 0.750 (±0.039) 0.788 (±0.047) 0.661 (±0.044) 0.367 (±0.026) 0.754 (±0.040) 0.694 (±0.059) 0.978 (±0.009) 0.397 (±0.045) 0.684 (±0.122) 0.970 (±0.017) 0.817 (±0.027) 0.453 (±0.013) 0.801 (±0.036) 0.844 (±0.041)
BioBERT 0.778 (±0.029) 0.373 (±0.024) 0.706 (±0.042) 0.737 (±0.054) 0.648 (±0.040) 0.331 (±0.046) 0.736 (±0.039) 0.660 (±0.064) 0.978 (±0.009) 0.381 (±0.018) 0.704 (±0.127) 0.964 (±0.023) 0.811 (±0.028) 0.432 (±0.050) 0.768 (±0.039) 0.809 (±0.046)

Model/Task OXACILLIN TETRACYCLINE TRIMETHOPRIM/SULFA VANCOMYCIN
F1 MCC ROC-AUC PRC-AUC F1 MCC ROC-AUC PRC-AUC F1 MCC ROC-AUC PRC-AUC F1 MCC ROC-AUC PRC-AUC

BioclinicalBERT 0.791 (±0.030) 0.441 (±0.015) 0.779 (±0.038) 0.805 (±0.046) 0.904 (±0.019) 0.372 (±0.041) 0.673 (±0.062) 0.863 (±0.040) 0.910 (±0.017) 0.435 (±0.025) 0.706 (±0.058) 0.878 (±0.036) 0.742 (±0.035) 0.384 (±0.033) 0.771 (±0.036) 0.788 (±0.043)
MedBERT 0.785 (±0.031) 0.413 (±0.028) 0.771 (±0.035) 0.797 (±0.043) 0.904 (±0.019) 0.372 (±0.047) 0.646 (±0.061) 0.848 (±0.043) 0.910 (±0.018) 0.415 (±0.016) 0.723 (±0.054) 0.898 (±0.029) 0.731 (±0.036) 0.355 (±0.032) 0.759 (±0.037) 0.791 (±0.041)
DistilBERT 0.782 (±0.031) 0.409 (±0.013) 0.762 (±0.038) 0.767 (±0.055) 0.904 (±0.019) 0.380 (±0.038) 0.669 (±0.060) 0.862 (±0.040) 0.908 (±0.019) 0.407 (±0.020) 0.708 (±0.057) 0.878 (±0.038) 0.725 (±0.033) 0.324 (±0.046) 0.756 (±0.036) 0.779 (±0.043)
BioMegatron 0.791 (±0.031) 0.433 (±0.014) 0.781 (±0.039) 0.803 (±0.048) 0.904 (±0.018) 0.369 (±0.045) 0.673 (±0.054) 0.872 (±0.036) 0.911 (±0.017) 0.416 (±0.022) 0.723 (±0.053) 0.883 (±0.036) 0.734 (±0.036) 0.360 (±0.049) 0.759 (±0.038) 0.769 (±0.050)
BlueBERT 0.793 (±0.029) 0.441 (±0.036) 0.764 (±0.038) 0.787 (±0.046) 0.905 (±0.019) 0.380 (±0.011) 0.654 (±0.055) 0.861 (±0.039) 0.909 (±0.018) 0.410 (±0.042) 0.734 (±0.054) 0.894 (±0.036) 0.734 (±0.034) 0.376 (±0.030) 0.773 (±0.036) 0.796 (±0.042)
PubMedBERT 0.796 (±0.029) 0.454 (±0.019) 0.786 (±0.036) 0.815 (±0.042) 0.905 (±0.019) 0.380 (±0.043) 0.668 (±0.057) 0.867 (±0.037) 0.911 (±0.018) 0.433 (±0.024) 0.695 (±0.056) 0.872 (±0.038) 0.729 (±0.033) 0.336 (±0.035) 0.772 (±0.036) 0.797 (±0.041)
GatorTron 0.788 (±0.030) 0.424 (±0.027) 0.770 (±0.038) 0.798 (±0.048) 0.904 (±0.018) 0.378 (±0.039) 0.634 (±0.058) 0.844 (±0.043) 0.911 (±0.017) 0.436 (±0.012) 0.710 (±0.055) 0.877 (±0.038) 0.731 (±0.036) 0.356 (±0.044) 0.756 (±0.037) 0.785 (±0.041)
BioMedRoBERTa 0.797 (±0.029) 0.465 (±0.021) 0.800 (±0.033) 0.824 (±0.042) 0.904 (±0.018) 0.372 (±0.040) 0.661 (±0.058) 0.866 (±0.037) 0.910 (±0.019) 0.418 (±0.018) 0.751 (±0.049) 0.909 (±0.029) 0.738 (±0.035) 0.399 (±0.048) 0.787 (±0.037) 0.808 (±0.045)
SciBERT 0.791 (±0.030) 0.443 (±0.029) 0.785 (±0.037) 0.803 (±0.047) 0.905 (±0.019) 0.380 (±0.031) 0.676 (±0.060) 0.876 (±0.033) 0.910 (±0.018) 0.424 (±0.017) 0.751 (±0.051) 0.900 (±0.033) 0.750 (±0.035) 0.417 (±0.034) 0.783 (±0.036) 0.802 (±0.040)
BioLM 0.797 (±0.030) 0.449 (±0.023) 0.785 (±0.035) 0.802 (±0.047) 0.904 (±0.019) 0.372 (±0.050) 0.666 (±0.060) 0.859 (±0.040) 0.910 (±0.018) 0.424 (±0.013) 0.717 (±0.055) 0.887 (±0.035) 0.731 (±0.033) 0.343 (±0.037) 0.776 (±0.037) 0.797 (±0.045)
RadBERT 0.790 (±0.029) 0.429 (±0.026) 0.778 (±0.037) 0.805 (±0.045) 0.904 (±0.018) 0.371 (±0.045) 0.663 (±0.054) 0.873 (±0.036) 0.908 (±0.018) 0.410 (±0.020) 0.700 (±0.059) 0.884 (±0.035) 0.725 (±0.033) 0.334 (±0.020) 0.749 (±0.037) 0.776 (±0.044)
LinkBERT 0.792 (±0.031) 0.448 (±0.047) 0.773 (±0.039) 0.785 (±0.052) 0.904 (±0.018) 0.372 (±0.015) 0.670 (±0.061) 0.863 (±0.040) 0.911 (±0.018) 0.424 (±0.033) 0.719 (±0.056) 0.892 (±0.032) 0.735 (±0.035) 0.382 (±0.019) 0.777 (±0.036) 0.803 (±0.041)
ClinicalBERT 0.791 (±0.030) 0.441 (±0.049) 0.779 (±0.038) 0.805 (±0.046) 0.904 (±0.019) 0.372 (±0.025) 0.673 (±0.062) 0.863 (±0.040) 0.910 (±0.017) 0.435 (±0.041) 0.706 (±0.058) 0.878 (±0.036) 0.742 (±0.035) 0.384 (±0.028) 0.771 (±0.036) 0.788 (±0.043)
BioBERT 0.788 (±0.030) 0.420 (±0.038) 0.774 (±0.037) 0.786 (±0.052) 0.904 (±0.018) 0.372 (±0.014) 0.637 (±0.061) 0.849 (±0.039) 0.908 (±0.018) 0.410 (±0.046) 0.722 (±0.056) 0.891 (±0.036) 0.731 (±0.034) 0.345 (±0.012) 0.758 (±0.037) 0.770 (±0.047)

Table 4: Average Ranks of Models Across Metrics

Model F1 MCC PRC-AUC ROC-AUC Avg. Rank
BioclinicalBERT 4.88 5.25 5.25 5.50 5.22
PubMedBERT 3.75 4.75 5.88 6.63 5.25
SciBERT 6.50 6.88 4.38 3.63 5.34
BioMedRoBERTa 5.63 5.88 4.63 5.88 5.50
LinkBERT 6.50 6.00 7.50 6.88 6.72
ClinicalBERT 8.50 6.88 6.25 6.50 7.03
BlueBERT 5.50 6.63 9.25 9.13 7.62
BioLM 6.38 7.50 9.13 7.63 7.66
BioMegatron 7.25 9.63 7.38 7.63 7.97
MedBERT 8.75 9.00 7.50 7.50 8.19
RadBERT 10.13 9.38 6.75 8.75 8.75
GatorTron 8.88 6.88 9.63 10.13 8.88
DistilBERT 10.63 9.75 9.38 9.00 9.69
BioBERT 11.75 10.63 12.13 10.25 11.19

metrics and tasks, focusing on ranks rather than absolute
scores to facilitate a consistent assessment of relative model
performance.

Figure 2 features violin plots that illustrate the distribu-
tion of performance gains and losses of various biomedi-
cal language models compared to BioClinicalBERT, iden-
tified as the top-performing model across the four primary
metrics: F1 score, MCC, ROC-AUC, and PRC-AUC. Gen-
erally, most models demonstrate marginal performance de-
viations from BioClinicalBERT, with differences typically
close to zero, indicating that their performance is compara-
ble to that of BioClinicalBERT. Given that these models are
all derived from similar sources with different pre-training
or other techniques, we believe these results fall in line with
what we expected and is known in the literature (Lee, Lee,
and Chiang 2024).

Missed and Improper Prescriptions
Table 6 presents data on the percentage of incorrect and
missed prescriptions by various language models across all
antibiotic prescription tasks. Incorrect prescriptions, or false
positives, occur when a model recommends an inappropriate
antibiotic, and missed prescriptions, or false negatives, oc-
cur when a model fails to recommend a necessary antibiotic.
These errors are clinically significant because incorrect pre-

Table 5: Percentage of Missed and Incorrect Prescriptions
per Model

Model Incorrect Prescriptions (%) Missed Prescriptions (%)
DistilBERT 10.44% 1.60%
BioMegatron 10.91% 1.38%
MedBERT 11.61% 1.08%
BlueBERT 10.45% 1.61%
BioBERT 11.67% 1.12%
PubMedBERT 10.32% 1.51%
BioMedRoBERTa 9.32% 2.15%
ClinicalBERT 10.93% 1.23%
BioClinicalBERT 9.92% 1.64%
SciBERT 10.65% 1.41%
BioLM 10.93% 1.32%
RadBERT 10.36% 1.62%
LinkBERT 10.25% 1.73%
Gatortron 10.60% 1.48%

scriptions can promote antibiotic resistance, while missed
prescriptions can result in inadequate treatment of bacterial
infections. We totaled the number of false positives and false
negatives across all antibiotic tasks then divided by eight
times the test sample size (Each sample across all antibi-
otic tasks are treated independently) to obtain percentages
displayed in Table 6.

Among the evaluated models, BioMedRoBERTa has the
lowest percentage of incorrect prescriptions at 9.32%, but
it also has the highest percentage of missed prescriptions
at 2.15%. Conversely, MedBERT exhibits a lower rate of
missed prescriptions at 1.08% but a higher rate of incor-
rect prescriptions at 11.61%. PubMedBERT and BioClini-
calBERT strike a balance, with incorrect prescription rates
of 10.32% and 9.92%, respectively, and missed prescription
rates between 1.5-1.6%.

The variation in these error rates across models under-
scores the trade-offs involved in minimizing incorrect versus
missed prescriptions. From an antibiotic stewardship per-
spective, these results indicate that while the models are ef-
fective to some extent, there is still considerable room for
improvement, especially in reducing the high rates of false
positives. Managing incorrect prescriptions is crucial for ef-
fective treatment and combating antibiotic resistance.



Figure 2: Similarity matrix showing the relationships between various clinical features or patient groups, with darker colors
indicating higher similarity scores. Clusters of patients with similar characteristics are represented by dense squares. Topic
modeling was applied to identify these clusters, and concordance analysis confirmed consistent model predictions for patients
within the same group, suggesting coherent decision-making based on shared clinical profiles.

Topic Modeling Results
Figure 2 displays a similarity matrix resulting from hi-
erarchical topic modeling performed on electronic health
records (EHR) text data using BERTopic (Grootendorst
2022). This technique groups similar topics together based
on the semantic content of the EHR entries, which, upon
further analysis, predominantly involved patient diagnoses
and prescriptions. Utilizing the text-based structure of the
EHR, this method revealed underlying patterns in clinical
language, facilitating a thorough exploration of the relation-
ships between various medical conditions and treatments.

To enhance our understanding of how models make de-
cisions regarding antibiotic prescriptions, we performed a
concordance analysis and sampled two random entries from
each cluster identified by BERTopic. This sampling strategy
added a layer of interpretability by allowing us to explore the
nuances of model behavior within specific medical contexts.
Our analysis identified distinct topic clusters that encompass
key healthcare areas such as sepsis, diabetes, stomach acid
disorders, anxiety, pain management, respiratory conditions,
and the use of antidepressants.

The topic clusters provided insights into the effective-
ness of antibiotics across different medical conditions, shed-

ding light on how models categorize decisions. For exam-
ple, in the sepsis cluster, a concordance study of two sam-
ples from the same group indicated that common antibiotics
often failed, highlighting the critical need for accurate and
timely antibiotic selection in sepsis treatment to avert severe
outcomes like septic shock. Similarly, in clusters associated
with diabetes and respiratory conditions, challenges were
evident; for instance, infections in diabetic patients were of-
ten more difficult to manage, with certain antibiotics proving
less effective due to underlying metabolic complications.

Discussion
High Accuracy but Over-Prediction of Antibiotics
The results show that foundation models such as BioClini-
calBERT, PubMedBERT, and SciBERT consistently achieve
high accuracy in antibiotic prediction tasks, with correct
prescription rates averaging between 86% and 88% across
various tasks. These outcomes highlight the capability of
foundation models to enhance clinical decision-making by
effectively automating antibiotic selection. Despite these
strong performances, the models exhibit a tendency to over-
predict the positive label, that is, recommending antibiotics



more frequently than necessary. This propensity for over-
prescription, reflected in higher rates of incorrect prescrip-
tions (false positives), presents a challenge in the context of
antibiotic stewardship.

Antibiotic stewardship programs are designed to mini-
mize unnecessary antibiotic use to combat the rising threat
of antibiotic resistance. False positives, where an antibi-
otic is unnecessarily recommended, are problematic. Al-
though the models demonstrate high accuracy in identify-
ing appropriate cases for antibiotic use, their bias towards
over-predicting positive cases could contribute to antibiotic
overuse in clinical settings, potentially fostering resistance
and other negative outcomes. Future efforts aim to refine
these models to better balance sensitivity and specificity,
thereby reducing the incidence of false positives without di-
minishing their ability in detecting true positive cases.

Trade-offs Between Incorrect and Missed
Prescriptions
The results reveal a critical trade-off between incorrect (false
positive) and missed prescriptions (false negative). For in-
stance, BioMedRoBERTa achieves the lowest rate of in-
correct prescriptions at 9.32%, but this comes at the cost
of the highest rate of missed prescriptions at 2.15%. Con-
versely, models like MedBERT and PubMedBERT exhibit
lower rates of missed prescriptions but have higher rates of
incorrect prescriptions. This trade-off highlights the com-
plexity of optimizing model performance in clinical settings,
where both over- and under-prescription can have significant
consequences.

From a clinical perspective, reducing missed prescrip-
tions is essential to ensure that patients receive appropriate
and timely antibiotic treatments, particularly in severe con-
ditions such as sepsis. However, minimizing incorrect pre-
scriptions is equally important to avoid contributing to an-
tibiotic resistance. Future research should focus on balanc-
ing these two types of errors, enhancing the models’ capac-
ity to avoid both over-prescription and under-prescription.

Interpretability and Model Decision Insights
The topic modeling results yield important insights into how
foundation models categorize clinical data and approach
clinical outcome tasks, despite their “black box” nature as
deep learning systems. Utilizing BERTopic on EHR text
data, we identified clusters or topics associated with con-
ditions such as sepsis, diabetes, and respiratory diseases.
These clusters reveal the internal representations that foun-
dation models capture.

These findings not only improve the interpretability of
model decisions but also pinpoint areas for further refine-
ment of foundation models. For instance, incorporating clin-
ical guidelines or more comprehensive patient data could en-
hance the models’ ability to differentiate between cases re-
quiring distinct antibiotic strategies. Future research might
explore using similarity-based searches within these topic
clusters to tailor antibiotic selection more precisely, thereby
enhancing both prediction accuracy and clinical applicabil-
ity.

In summary, while foundation models demonstrate poten-
tial in antibiotic prescription tasks, addressing their propen-
sity to over-predict and achieving an optimal balance be-
tween incorrect and missed prescriptions remain critical for
their practical application in clinical settings. Continued ef-
forts to improve model interpretability and to incorporate
more patient-specific data are essential for advancing both
antibiotic stewardship and model performance.

Conclusion
This study proposed a framework to evaluated the perfor-
mance of biomedical language models in predicting antibi-
otic susceptibility from electronic health records (EHRs),
specifically focusing on eight crucial antibiotics used to treat
infections caused by Staphylococcus aureus. Although the
models generally predicted effective antibiotics accurately,
they exhibited a tendency to over-predict susceptibility, re-
sulting in a higher incidence of incorrect prescriptions. This
tendency is particularly problematic within the framework
of antibiotic stewardship, as unnecessary antibiotic usage
can hasten the development of resistant bacterial strains.

The analysis highlighted a trade-off between incorrect
and missed prescriptions among the evaluated models. Some
models reduced incorrect prescriptions but increased missed
prescriptions, illustrating the complexity involved in opti-
mizing model performance for clinical use. Additionally,
through topic modeling and interpretability analyses, it was
observed that models frequently make similar decisions
based on the representations of clinical concepts within their
internal frameworks.

Collaboration between AI researchers, clinicians, and
healthcare institutions is essential to develop models that
are technically sound, clinically relevant, and ethically ro-
bust. Enhancing the capabilities of AI systems and address-
ing their current limitations are vital steps towards harness-
ing AI-driven decision support to improve antibiotic stew-
ardship and address the global challenge of antibiotic resis-
tance.

Limitations A significant limitation of this study is its
reliance on data from a single source—the MIMIC-IV-ED
dataset—which might not reflect the diversity of patient
populations and clinical scenarios encountered in different
healthcare settings. This limitation could affect the general-
izability and applicability of the findings.

Future Works Future research should consider integrat-
ing more comprehensive patient data and clinical decision
rules into the predictive models. A study on fairness could
also be conducted to evaluate how much of the error was
caused by patients in imbalanced groups (e.g. Asian or Black
patients).

Another promising avenue is the use of decoder-based
generative large language models (LLMs), especially those
with extensive parameter counts (e.g., 70 billion parame-
ters). These models have shown remarkable proficiency in
understanding and generating complex language patterns,
which could potentially be applied to capture detailed clini-
cal nuances and patient-specific factors.
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EHR Concepts Table

Table 6: Overview of Clinical Tables transformed from tabular to text in the MIMIC Emergency Department Visits Data.

Modality Name Description

Arrival Information Records patient demographics, time of arrival, and mode of arrival (e.g., ambulance, walk-in).
Triage Information Documents vital signs, severity of condition using scales like ESI, and initial chief complaints upon arrival.
Medication Reconciliation Details previous and current medications the patient is taking, including dosages and frequency.
Patient Vitals Ongoing measurements throughout the ED visit including heart rate, blood pressure, temperature, etc.
Diagnosis Codes ICD-9/10 codes used to classify and record diagnoses during the visit.
Pyxis Information Information on medications administered during the ED stay via the Pyxis system, including timing and

dosage.

Full Results

Table 7: False Positives and False Negatives per Antibiotic per Model (with Percentages) - Part 1

Model Clindamycin Erythromycin Gentamicin Levofloxacin
FP FN FP FN FP FN FP FN

DistilBERT 168 (14.04%) 15 (1.25%) 156 (13.03%) 44 (3.68%) 23 (1.92%) 4 (0.33%) 122 (10.19%) 34 (2.84%)
BioMegatron 177 (14.79%) 16 (1.34%) 176 (14.71%) 39 (3.26%) 23 (1.92%) 4 (0.33%) 146 (12.20%) 18 (1.50%)
MedBERT 149 (12.45%) 29 (2.42%) 240 (20.05%) 17 (1.42%) 23 (1.92%) 4 (0.33%) 145 (12.11%) 14 (1.17%)
BlueBERT 142 (11.86%) 32 (2.67%) 221 (18.46%) 18 (1.50%) 25 (2.09%) 2 (0.17%) 129 (10.77%) 23 (1.92%)
BioBERT 181 (15.12%) 12 (1.00%) 214 (17.88%) 25 (2.09%) 24 (2.00%) 2 (0.17%) 144 (12.03%) 21 (1.75%)
PubMedBERT 164 (13.70%) 21 (1.75%) 139 (11.61%) 57 (4.76%) 26 (2.17%) 0 (0.00%) 114 (9.52%) 28 (2.34%)
BioMedRoBERTa 179 (14.96%) 15 (1.25%) 160 (13.36%) 41 (3.43%) 26 (2.17%) 0 (0.00%) 101 (8.44%) 39 (3.26%)
ClinicalBERT 178 (14.88%) 15 (1.25%) 197 (16.46%) 25 (2.09%) 23 (1.92%) 4 (0.33%) 150 (12.53%) 10 (0.84%)
BioClinicalBERT 174 (14.53%) 16 (1.34%) 134 (11.19%) 49 (4.09%) 24 (2.00%) 3 (0.25%) 141 (11.78%) 13 (1.09%)
SciBERT 178 (14.88%) 12 (1.00%) 211 (17.64%) 26 (2.17%) 26 (2.17%) 1 (0.08%) 135 (11.28%) 20 (1.67%)
BioLM 151 (12.61%) 28 (2.34%) 204 (17.04%) 22 (1.84%) 25 (2.09%) 2 (0.17%) 111 (9.27%) 35 (2.92%)
RadBERT 174 (14.53%) 16 (1.34%) 111 (9.28%) 66 (5.51%) 23 (1.92%) 4 (0.33%) 147 (12.28%) 15 (1.25%)
LinkBERT 170 (14.20%) 15 (1.25%) 237 (19.80%) 14 (1.17%) 25 (2.09%) 1 (0.08%) 103 (8.60%) 35 (2.92%)
Gatortron 168 (14.04%) 19 (1.56%) 185 (15.43%) 34 (2.85%) 24 (2.00%) 2 (0.17%) 130 (10.86%) 23 (1.92%)

Table 8: False Positives and False Negatives per Antibiotic per Model (with Percentages) - Part 2

Model Oxacillin Tetracycline Trimethoprim/Sulfa Vancomycin
FP FN FP FN FP FN FP FN

DistilBERT 160 (13.36%) 18 (1.50%) 91 (7.60%) 9 (0.75%) 88 (7.35%) 8 (0.67%) 192 (16.04%) 21 (1.75%)
BioMegatron 149 (12.45%) 22 (1.84%) 94 (7.86%) 7 (0.58%) 86 (7.19%) 9 (0.75%) 194 (16.20%) 17 (1.42%)
MedBERT 165 (13.78%) 13 (1.09%) 91 (7.60%) 10 (0.84%) 86 (7.19%) 8 (0.67%) 213 (17.79%) 8 (0.67%)
BlueBERT 168 (14.04%) 8 (0.67%) 91 (7.60%) 9 (0.75%) 85 (7.10%) 11 (0.92%) 140 (11.70%) 51 (4.26%)
BioBERT 177 (14.79%) 9 (0.75%) 91 (7.60%) 10 (0.84%) 80 (6.68%) 15 (1.25%) 206 (17.21%) 13 (1.09%)
PubMedBERT 147 (12.28%) 19 (1.59%) 93 (7.77%) 7 (0.58%) 89 (7.44%) 4 (0.33%) 216 (18.05%) 9 (0.75%)
BioMedRoBERTa 122 (10.19%) 36 (3.01%) 91 (7.60%) 10 (0.84%) 84 (7.02%) 11 (0.92%) 129 (10.77%) 54 (4.51%)
ClinicalBERT 163 (13.62%) 11 (0.92%) 91 (7.60%) 10 (0.84%) 82 (6.85%) 11 (0.92%) 163 (13.62%) 32 (2.67%)
BioClinicalBERT 139 (11.61%) 19 (1.59%) 93 (7.77%) 8 (0.67%) 85 (7.10%) 10 (0.84%) 160 (13.36%) 39 (3.26%)
SciBERT 132 (11.03%) 33 (2.76%) 91 (7.60%) 9 (0.75%) 86 (7.19%) 8 (0.67%) 161 (13.45%) 26 (2.17%)
BioLM 164 (13.70%) 12 (1.00%) 91 (7.60%) 10 (0.84%) 87 (7.27%) 7 (0.58%) 214 (17.87%) 10 (0.84%)
RadBERT 156 (13.03%) 18 (1.50%) 92 (7.68%) 9 (0.75%) 85 (7.10%) 11 (0.92%) 204 (17.04%) 16 (1.34%)
LinkBERT 133 (11.11%) 31 (2.59%) 91 (7.60%) 10 (0.84%) 86 (7.19%) 8 (0.67%) 137 (11.44%) 52 (4.34%)
Gatortron 152 (12.70%) 19 (1.59%) 92 (7.68%) 9 (0.75%) 85 (7.10%) 9 (0.75%) 179 (14.96%) 27 (2.26%)
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