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Abstract

A key challenge in transportation planning is that the collective preferences of1

heterogeneous travelers often diverge from the policies produced by model-driven2

decision tools. This misalignment frequently results in implementation delays or3

failures. Here, we investigate whether large language models (LLMs)—noted for4

their capabilities in reasoning and simulating human decision-making—can help5

inform and address this alignment problem. We develop a multi-agent simulation6

in which LLMs, acting as agents representing residents from different communities7

in a city, participate in a referendum on a set of transit policy proposals. Using8

chain-of-thought reasoning, LLM agents provide Ranked-Choice or approval-9

based preferences, which are aggregated using instant-runoff voting (IRV) to model10

democratic consensus. We implement this simulation framework with both GPT-4o11

and Claude-3.5-Sonnet, and apply it for Chicago and Houston. Our findings suggest12

that LLM agents are capable of approximating plausible collective preferences and13

responding to local context, while also displaying model-specific behavioral biases14

and modest divergences from optimization-based benchmarks. These capabilities15

underscore both promise and limitations of LLMs as tools for solving the alignment16

problem in transportation decision-making.17

1 Introduction18

Urban transportation policy plays a central role in shaping regional development. Designing effective19

policy requires access to multidimensional data and a deep understanding of individual preferences20

across heterogeneous communities. Conventional approaches typically rely on structured mathemati-21

cal models that identify an optimal policy under specified objectives and constraints. However, these22

models often rest on rigid assumptions and oversimplified behavioral representations. As a result, they23

may produce solutions that are analytically tractable yet poorly aligned with public sentiment or the24

complex realities of policy implementation. This misalignment frequently contributes to delays—or25

even failures—in policy approval and execution.26

Recent advances in large language models (LLMs) offer a promising opportunity to address this27

alignment problem. Trained on vast corpora of text encompassing news, facts, and human discourse,28

LLMs possess a rich contextual understanding that could help policymakers infer public preferences29

and explore trade-offs before implementation. Their ability to interpret unstructured information,30

reason about competing objectives in natural language, and adapt to specific contexts suggests a new31

form of decision support—one that complements the traditional paradigm.32

In this study, we implement a multi-agent voting framework to examine the potential of LLMs33

in supporting transportation policy design. We simulate collective decision-making by deploying34

autonomous LLM agents as representatives of heterogeneous communities within a large city. These35

agents deliberate over transit policy proposals involving three levers: a dedicated sales tax for transit36

services, fare policies, and driver fees (e.g., congestion charges). This design enables us to study how37

collective preferences form, how trade-offs are negotiated across constituencies, and how democratic38
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mechanisms can be modeled within an AI-driven environment. Crucially, the framework distributes39

reasoning tasks across agents, enabling scalable deliberation.40

To ground the experiment in established transportation planning practices, we incorporate a standard41

utility-based travel demand model. Travelers, characterized by their daily disposable income, choose42

between driving and transit, both affected by congestion externalities. The model estimates how43

each policy scenario impacts travel experience and utility. These outputs are provided to LLM44

agents to guide deliberation. Additionally, the model yields utility distributions across the income45

spectrum, allowing us to rank policy alternatives based on normative objectives. The rankings serve as46

benchmarks to evaluate LLM agents’ choices. We implement both ranked-choice and approval voting47

to examine how different aggregation rules shape collective outcomes. Finally, we systematically48

vary the information available to agents to assess how domain knowledge affects decision quality and49

alignment with model-based benchmarks.50

Our research addresses several key questions: (1) To what extent can LLM agents generate coherent,51

collective policy preferences in a simulated voting environment? (2) How do different voting52

mechanisms and prompt designs influence stability, diversity, and bias in decision outcomes? (3) To53

what extent do the policies emerged from LLM-based voting deviate from those recommended by the54

conventional model and how do we explain these discrepancies? (4) How do results generalize across55

different urban contexts and language models?56

We find LLM-based referendums often align with model-based benchmarks, selecting similar priori-57

ties despite detail differences. LLM agents show stronger tax aversion than model optima. GPT-4o58

yields more consistent patterns than Claude-3.5-Sonnet, though both converge on average preferences.59

Top policies remain stable across voting methods, indicating procedural robustness. Sentiment60

analysis shows GPT-4o maintains uniformly positive tones, while Claude-3.5-Sonnet is more varied,61

affecting vote dispersion. Context sensitivity emerges: in Houston, GPT-4o favors lower taxes and62

higher driver fees than in Chicago, reflecting awareness of local sociopolitical conditions.63

2 Related studies64

Transportation planning Travel forecasting models have guided urban transportation planning65

for more than half a century [3, 18, 33, 21, 4]. The traditional four-step model, developed in the66

postwar era, forecasts long-term demand based on assumptions about population, land use, and67

infrastructure. Since the 1970’s, these models have been grounded in random utility theory, assuming68

travelers maximize latent utility based on cost, time, and socio-demographic attributes [20]. While69

statistically convenient and influential in shaping investments, this paradigm faces enduring criticism70

for behavioral rigidity, inability to capture bounded rationality and social influence [2, 16, 30],71

and poor adaptation to structural shifts and exogenous shocks [28, 14]. More fundamentally, the72

optimization focus of these models—typically welfare or efficiency—often clashes with public values.73

Model-derived “optimal” policies can misalign with community preferences, generating friction74

during implementation, a phenomenon termed the technocratic disconnect [12, 31, 32]. The process,75

portrayed as value-neutral, overlooks the inherently political nature of planning and its distributive76

consequences [19, 9]. Accuracy issues further compound these challenges. Studies report demand77

forecast errors exceeding 20% for most rail projects and ±30–50% for major road investments78

[34, 11, 14]. These persistent deficiencies underscore the need for complementary tools that integrate79

public sentiment and deliberation. Motivated by this gap, we explore whether LLMs can serve as a80

bridge between technical analysis and democratic alignment in transportation planning.81

Applications of LLMs in simulating complex human decision-making processes Recent82

work has leveraged LLMs to simulate complex human decision-making without relying on explicit83

structural assumptions. Han [13] showed that LLMs adaptively infer relevant factors in classical84

decision tasks, while Ross et al. [29] mapped behavioral biases in LLMs across economic games,85

finding decision patterns distinct from both rational-agent and human baselines. LLMs have also been86

used to model social dynamics. Park et al. [26] demonstrated that persona-driven agents can reproduce87

opinion formation and collective behaviors, and Park et al. [27] showed strong alignment between88

LLM-generated survey responses and human data, supporting their use as proxies in behavioral89

experiments. Beyond experimental contexts, LLM agents have been applied to practical domains,90

including auction design [7], legal reasoning [6], and macroeconomic forecasting [17], underscoring91

their potential as flexible tools for decision analysis in complex, high-stakes environments.92
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LLMs in urban and transportation planning Recent studies highlight the potential of LLMs in93

urban planning. Zhou et al. [36] showed that LLMs can match or surpass traditional reinforcement94

learning in complex city planning tasks. Building on this, Zhou et al. [37] introduced a multi-agent95

framework where LLM agents, simulating diverse community residents, used a fishbowl discussion96

mechanism to allocate land under competing priorities, demonstrating LLMs’ ability to support97

participatory planning. Similarly, Ni et al. [23] developed a closed-loop system where resident98

agents provided real-time evaluations of planning proposals, enabling adaptive, stakeholder-informed99

strategies and modeling human-centered planning dynamics.100

3 Methodology101

We consider a stylized city composed of I = {1, · · · , I} communities. Its transportation agency is102

evaluating a policy change to its current transit system, consisting of three key components: a flat103

fare paid by each rider (denote by r), a dedicated sales tax levied on all residents (t), and a per-trip104

fee paid by drivers (τ ). Accordingly, use a tuple pk = {rk, tk, τk} to denote the values of a policy105

k ∈ K = {1, · · · ,K}. To streamline the decision process, the agency defines three levels—low106

(l), medium (m), and high(h)—for each of the three policy levers. In other words, rk, tk, and τk107

must take one of three values contained in set {l,m, h}. This results in a policy set K consisting of108

K = 27 distinct policy proposals.109

The analysis proceeds in two stages. First, the agency evaluates the K proposals using a conventional110

transit policy design model. This model provides estimates of performance metrics such as travel111

times, trip costs, and congestion levels. Second, the same set of proposals is submitted to a multi-agent112

simulation framework powered by a LLM. This simulator emulates a city-wide referendum, where113

agents representing different communities deliberate and vote, informed in part by the output of the114

conventional model.115

3.1 Transit design model116

We take the transit design model from Dai et al. [9], which begins with a simplified representation of117

a city and its transportation system. The city is modeled as a square with a grid street network and118

evenly distributed residents and travel demand. Individuals differ by income level, which shapes their119

travel choices and how they experience transportation costs and benefits. A bus network is overlaid120

on the city’s street grid. Its service quality is governed by three operational parameters: headway121

(how frequently buses arrive), stop spacing, and route spacing. These design elements collectively122

determine the accessibility of the bus system. Moreover, the system is financed through a combination123

of rider fare r, a local sales tax on residents t, a fee paid by drivers τ (e.g., a congestion charge or124

fuel tax), and an exogenous government subsidy. The transit agency must determine both the service125

configuration and the financing strategy, balancing operational quality with fiscal feasibility.126

Figure 1: Joint design of public transit service and policy.

Figure 1 illustrates the structure of this integrated design model. Key decision variables include both127

service parameters (headway, stop spacing, and route coverage) and policy instruments (r, t, and128

τ ). At the center of the system is individual mode choice between bus or car, which depends on129

the utility of each mode. The utility is a function of income, cost, and accessibility. At the same130

time, individual choices aggregate into system-level travel patterns that shape congestion, influence131

accessibility and affect overall revenue for transit through a complex feedback loop. The agency then132
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adjusts its service and financial decisions, subject to a budget constraint requiring that operating costs133

be covered by fares, taxes, driver fees, and subsidies.134

The above model is employed to evaluate system objectives, transit ridership, and distributive effects135

after a transit policy k ∈ K is implemented. For each policy k ∈ K, the corresponding transit mode136

share is denoted as γk. We produce two normative objectives: the total utility of all travelers Uk (a137

utilitarian objective) and the utility of the most disadvantaged traveler uk(an egalitarian objective).138

Roughly speaking, Uk measures efficiency whereas uk gauges distributive effects. Another metric, a139

more direct indicator of distribution effects, is the Gini index, denoted as Gk. These metrics serve as140

a benchmark for evaluating the performance of our LLM-based simulation framework.141

3.2 LLM-based multi-agent simulation142

We implement a multi-agent simulation framework in which LLM agents serve as representatives of143

communities within a city, as illustrated in Figure 2. Each agent is tasked with evaluating and voting144

on the K transit policies, as described at the beginning of Section 3. Recall that each policy p ∈ K145

is formed by choosing a transit fare rk, sales tax rate tk, and driver fee τk from one of three values146

{l,m, h}. The simulation is designed to explore whether LLMs can approximate community-based147

deliberation and consensus formation across diverse constituencies.Two state-of-the-art LLMs are148

used in our simulation: GPT-4o from OpenAI [25] and Claude-3.5-Sonnet from Anthropic [1]. Both149

models are used with temperature set to zero to ensure reproducibility and eliminate stochastic150

variation in the outputs. See Appendix G for the sample prompts.151

Figure 2: Framework of the multi-agent LLM simulation.

We construct three types of agents to examine the role of context and knowledge in shaping LLM152

decision-making: (1) Community-based agents (CHI-com) represent individual communities and153

acted based solely with pre-tained knowledge; (2) Knowledge-augmented agents (CHI-know) build154

on the first configuration, but are additionally prompted using localized demographic and economic155

data—such as average household expenditures, transit reliance, and income levels—to test whether156

broader contextual grounding improves judgment; (3) City-average agents (CHI-avg) simulate a157

generic “average” resident of the city, without community-specific difference.158

Each agent i ∈ I is instructed to evaluate the K policy alternatives and cast votes based on what best159

serves its community’s interests. Let vi = {vi,0, . . . , vi,K−1} denote the vote cast by agent i. Since160

there is no universally accepted voting rule for simulated multi-agent environments, we experiment161

with three collective decision rules commonly studied in the literature [35]: (1) 5-Approval voting:162

Each agent approves exactly five proposals. Formally, vi,k ∈ {0, 1} for all k, with
∑K−1

k=0 vi,k = 5163

for each i ∈ I; (2) All-approval voting: Agents may approve any number of proposals they deem164

acceptable, i.e., vi,k ∈ {0, 1}, without any constraint on the number of approvals; (3) Ranked-choice165

voting: Each agent assigns a unique rank to up to five proposals. Formally, vi,k ∈ {1, 2, 3, 4, 5, null},166

where lower values indicate higher preference, and each agent assigns at most one value from167

{1, 2, 3, 4, 5} to any proposal. That is, for all i ∈ I , |{k : vi,k ∈ {1, 2, 3, 4, 5}}| ≤ 5 and vi,k ̸= vi,k′168

for k ̸= k′ whenever both are ranked.169

To encourage deeper reasoning over pattern matching, we use structured chain-of-thought prompts,170

directing each agent to consider three key factors before voting: (1) Disposable income: How the171

proposed policy affects residents’ income after taxes, fares, and fees; (2) Discretionary consumption:172

How much income is left for non-essential goods and services; (3) Accessibility: The ability to173
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reach daily destinations—such as work, shopping, or healthcare—under the transit and congestion174

conditions implied by each policy.175

The prompts aim to elicit civic-style reasoning, allowing LLMs to weigh trade-offs using contextual176

knowledge. Each agent outputs its community ID, a written rationale, and a ranked vote. To ensure177

consistent and structured reasoning, we designed standardized system and user prompts (Appendix G).178

The system prompt casts the agent as a representative of a specific community, directing it to reason179

step by step and rank policy proposals based on three key factors. The user prompt outlines the180

referendum context, describes the 27 policy options, and presents performance metrics (e.g., cost,181

travel time), emphasizing their effects on travel behavior and household budgets.182

4 Results183

In this section, we first benchmark the conventional model as a normative reference. Then we report184

Chicago simulation outcomes and compare different voting methods, contextual information and185

LLM models. We also conduct a regression analysis to better understand LLM agents’ preference and186

voting behavior. Lastly, we test generalizability via a Chicago–Houston comparison. Experiments are187

performed in Python 3.11 with Apple M2 chip, 10 GB memory.188

4.1 Model-based results189

The transit design model by Dai et al. [9] employs utility-based mode choice, with utility influenced190

by income, congestion, service levels, fares, and policy levers (taxes and driver fees). The model is191

calibrated to match four key statistics: (i) mode share, (ii) ridership, (iii) farebox recovery, and (iv)192

budget. We adopt the same parameters for Chicago; Houston is re-calibrated to local conditions. See193

Table 6 in Appendix C for calibration outcomes.194

In all experiments, the policy space has three levers {l,m, h} with three levels each: sales tax t :195

{0.5%, 1%, 1.5%}; fare r: {$0.75, $1.25, $1.75}/trip; driver fee τ : {$0, $0.50, $1}/trip. We evaluate196

27 policy combinations with performance metrics computed by the calibrated model for both the197

case of Chicago and Houston (see Appendix B). LLM agents receive only mode-specific travel times198

and trip costs to guide voting, while other outputs—average utility (Uk), minimum utility (uk), Gini199

index (Gk), and transit mode share (γk)—are reserved for evaluation. Uk measures system efficiency,200

and uk, Gk, and γk capture distributional equity.201

Figure 3: Comparison of uk, γk, and Gk against Uk for different policy configurations in Chicago.

The status quo (Policy 12) does not lie on the Pareto frontier, which is defined by the upper-right202

envelope in the left and middle plots and the lower-right envelope in the right plot of Figure 3. By203

increasing the sales tax and driver fee while keeping the transit fare constant or reduced, one can204

simultaneously increase Uk and γk, and decrease Gk, thereby achieving both more utilitarian and205

more egalitarian outcomes. The underlying mechanism is intuitive: greater transit subsidy via taxes206

and driver fees enhances the level of service, induces a shift from driving to transit, and ultimately207

reduces congestion—improving the overall efficiency of the transportation system.208

In terms of model-optimal outcomes, Figure 3 shows that the Utilitarian solution corresponds to209

Policy 19, which maximizes the total utility Uk. However, the minimum utility u19 under this policy210

is not the highest among all uk, indicating that maximizing Uk doesn’t necessarily benefit the most211

disadvantaged travelers. By contrast, the Egalitarian solution is Policy 20 , which achieves the212

highest minimum utility, the greatest transit mode share, and the lowest Gini index among all policy213

options. Generally, lowering the transit fare tends to move outcomes closer to the Pareto frontier.214
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More importantly, we observe a tight cluster of policies located near the Pareto frontiers, meaning that215

many policies produce outcomes similar to the utility-based Pareto-optimal policies. If one were to216

adopt an alternative social welfare function, any of these clustered policies could emerge as optimal.217

This diversity sets the stage for the LLM-based voting experiment that follows.218

4.2 LLM referendum for Chicago219

Chicago has 77 community areas. Thus, the simulated referendum is participated by 77 communities220

members represented by LLM agents. We begin by comparing the outcomes produced by the three221

voting methods described earlier. We then explore how contextual information and knowledge222

embedded in the prompts influence agents’ voting patterns. All results reported in this section are223

generated using the GPT-4o model. The comparison with Claude-3.5-Sonnet will be discussed later.224

Figure 4: Voting counts of different voting types (single round).

Results from different voting methods The readers are referred to Appendix H for examples of225

responses from the three voting methods. Figure 4 shows the distribution of votes from a single round226

under each of the three voting methods. Overall, the results reveal a broadly consistent preference227

for a small set of top-ranked policies, particularly Policies 10, 13, and 19. Under the Instant Runoff228

Voting rule, Policy 10 emerges as the winner in the ranked-choice voting scheme (see Appendix A.1229

for the mathematical definition of the winning policy under different voting methods). It also receives230

the highest number of votes in both the 5-approval and all-approval settings, making it the winning231

policy across all three methods. While Policy 10 is neither the Utilitarian nor the Egalitarian optimum232

identified by the model, it lies close to the Pareto frontier (see Figure 3), suggesting that the simulated233

referendum is capable of selecting policies that align well with model-based recommendations.234

That said, the approval-based methods (5-approval and all-approval) produced more dispersed voting235

patterns, showing a greater tendency to favor policies with lower tax rates beyond the commonly236

agreed-upon options. The all-approval method, in particular, admits several policies (e.g., Policies 5,237

7, 8, 9, 16, and 26) that are not selected under either the ranked-choice or 5-approval methods. These238

outlier policies are neither efficient nor equitable based on the model-based evaluation in Figure 3.239

Table 1: Winning policies, mean policy values and entropy (single round).
Winning Policy Mean policy values Entropy

ID t r τ t r τ E
Ranked-Choice 10 1.000 0.750 0.500 0.833 0.917 0.750 2.739
5-Approval 10 1.000 0.750 0.500 1.077 1.096 0.731 2.928
All-Approval 10 1.000 0.750 0.500 0.978 1.185 0.587 3.565

Table 1 shows that Policy 10 wins across all voting methods. Compared to mean policy values, it240

features similar tax rates but lower fares and driver fees—indicating a democratic compromise that241

favors broader support over stronger user-based funding preferences. Among all options, Policy 19242

consistently ranks as a favored policy in all three voting methods. Notably, this policy coincides with243

the Utilitarian policy identified by the model. In contrast, the Egalitarian policy, Policy 20, receives244

substantially fewer votes—failing to make the top five even under the all-approval method. This245

result suggests that the aggregate preferences captured by GPT-4o agents in the Chicago simulation246

tend to align more closely with utilitarian values than with egalitarian ones.247

Overall, we find strong consistency across the three voting mechanisms, with ranked-choice and248

5-approval producing especially similar outcomes. All-approval voting, on the other hand, yields249

more scattered results and diverges notably from the other two. For this reason, we focus on the250

ranked-choice method in the remainder of our analysis.251
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Impact of contextual information We introduce three referendum scenarios for the three types of252

agents previously introduced: (1) CHI-com - community-based agents, (2) CHI-know - knowledge-253

augmented agents, and (3) CHI-avg - City-average agents. For each scenario, we run the simulation254

for 10 rounds, identify the winner for each round and analyze the distribution of votes across policies255

and the three policy levers. As shown in Table 2, GPT-4o under the CHI-com setting exhibits highly256

stable preferences. Across 10 simulated referendum rounds, Policy 10 consistently emerges as the257

winning option. The distribution of votes across all policies shows only modest variation, reflected in258

a moderate entropy value of E = 2.739 (the larger the entropy, the more variations in the votes, see259

Appendix A.2 for details). The mean policy values indicate a clear and consistent preference for low260

fares, medium tax rates, and medium driver fees.261

Table 2: Winning policy, mean entropy values and mean policy values across ten-round referendums.
Model Scenario Winner (counts) Entropy Ē t̄1 (ēt|1) r̄1 (ēr|1) τ̄1 (ēτ |1)

CHI-com P10 (10) 2.739 0.983 (0.21) 0.782 (0.34) 0.511 (0.15)
GPT-4o CHI-know P10 (8), P11 (2) 2.804 0.999 (0.02) 0.772 (0.25) 0.721 (0.98)

CHI-avg P10 (8), P11 (2) 2.611 1.000 (0.00) 0.750 (0.00) 0.600 (0.72)

Claude-3.5 CHI-com P1 (6), P10 (4) 4.022 0.802 (1.29) 0.951 (1.08) 0.546 (1.52)
CHI-know P1 (8), P4 (2) 3.902 0.782 (1.34) 0.986 (1.04) 0.579 (1.28)

GPT-4o HOU-com P2 (10) 3.583 0.635 (0.92) 0.785 (0.29) 0.895 (0.74)
Note: E ∈ [0, 4.75] measures the concentration of votes across all policies; ēx|s ∈ [0, 1.58] measures the

concentration of the rank s votes on the three policy levers (x) across the three levels.

When agents are augmented with external contextual knowledge (CHI-know), the preference land-262

scape shifts slightly. The winning set expands to include higher driver fee options—Policy 11 wins in263

20% of the rounds. This change is also evident in the rank-1 mean policy values, where the average264

driver fee increases by 50% compared to CHI-com. The entropy value rises slightly, suggesting a265

more dispersed distribution of preferences when additional knowledge is available. In the CHI-avg266

setting, where a single agent represents the average Chicagoan, the set and frequency of winning267

policies mirror those under CHI-know. However, the entropy value for CHI-avg is noticeably lower,268

indicating more concentrated preferences. Most strikingly, all rank-1 votes in this scenario support269

policies with a medium tax rate and the lowest fare—resulting in zero entropy for those policy levers.270

In sum, while all three scenarios broadly agree on the most preferred policies, community-specific271

simulations introduce greater diversity in preference expression — more so when additional contextual272

information is provided, while the averaged-agent setting yields more concentrated but potentially273

less nuanced outcomes.274

4.3 GPT-4o vs. Calude-3.5-Sonnet275

Table 2 shows that, for CHI-com, the winning policy set expands from Policy 10 under GPT-4o to276

include both Policy 10 and Policy 1 under Claude-3.5-Sonnet and the winning probability of Policy 10277

falls from 100% to just 40% when switching to Claude-3.5-Sonnet. The key distinction between these278

two policies lies in the sales tax rate: Policy 10 preserves the status quo at 1%, while Policy 1 lowers279

it to 0.5%. For CHI-know, the winning policies diverge entirely: Claude-3.5-Sonnet selects Policy 1280

and Policy 4, while GPT-4o favors Policy 10 and Policy 11. Their mean policy values also drift much281

further apart, underscoring that the two LLMs respond to local contexts in markedly different ways.282

Compared to GPT-4o, Claude-3.5-Sonnet exhibits significantly more dispersed voting behavior, as283

reflected in a roughly 50% increase in the overall entropy measure (also see Appendix D for vote284

distribution visualizations). The entropy values for individual policy levers are even higher—for285

instance, the entropy of rank-1 votes for the driver fee is 1.52, indicating a near-uniform distribution286

and aggregate indifference. To verify this difference between the two models, we conducted sentiment287

analyses of the LLM-generated rationale texts from both models and found that GPT-4o exhibits288

consistent positive sentiments across all communities while Claude-3.5-Sonnet produces a wider289

dispersion of sentiments. See the definition and results in Appendix A.3 and E, respectively.290

4.4 Preference of LLM agents via regression291

To delve deeper into the decision making rationale of LLM agents and unveil the impact of contextual292

information, we specify a set of regression models to reveal the relation between the agents’ pref-293

erences for each of the three policy levers and their sociodemographic attributes. To quantify each294
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agent’s preference, we apply the Borda Count method, which assigns scores based on the rank order295

of each policy. Formally, let s̄ix denote the average Borda score assigned according to the policy296

lever x ∈ L for community area i over 10 simulation rounds, i.e297

s̄ix =
1

J

J∑
j=1

∑5
s=1(6− s)q(x|k(i, j, s))∑5

s=1 s
. (1)

where j indexes the referendum round in the total set of J rounds, and s ∈{1, 2, 3, 4, 5} denotes the298

rank position (with s = 1 corresponding to the top rank). The term 6−s∑5
s=1 s

specifies the normalized299

weight for the s-th rank, while q(x|k(i, j, s)) returns the level (i.e., l,m or h) of policy lever x in300

policy k that is ranked by community i at s in round j. Thus, s̄ix is the average normalized Borda301

score assigned to policy lever x by community i across J rounds under the ranked voting process.302

In addition to standard sociodemographic attributes, we introduce interaction terms between each303

attribute and a binary treatment indicator Di, where Di = 1 if the observation originates from the304

CHI-know condition (with factual context) and Di = 0 if from the CHI-com condition (without305

additional facts). We specify an Ordinary Least Squares (OLS) regression model as follows:306

s̄ix = βx0 + β⊤
x Xi + γx0Di + γ⊤

x XiDi + εix, (2)
where βx0 is the intersect associated with policy lever x, Xi denotes the vector of sociodemographic307

covariates for agent i, γx0 is the coefficient for the treatment indicator Di, βx is the vector of308

coefficients for the covariates and γx is the vector of coefficients of the interaction terms.309

Table 3: Regression results for tax rate, transit fare, and driver fee under GPT-4o and Claude-3.5.
Tax rate Transit fare Driver fee

GPT-4o Claude-3.5 GPT-4o Claude-3.5 GPT-4o Claude-3.5
constant 1.123∗∗∗ 0.868∗∗∗ 0.968∗∗∗ 0.963∗∗∗ 0.535∗∗∗ 0.522∗∗∗

none-white % 0.004 -0.031 0.005 0.010 -0.003 -0.085∗

number of cars -0.009 0.073∗∗ 0.008 0.018 0.024∗∗ 0.032
transit commuter % 0.010† 0.025 -0.002 -0.059∗∗∗ -0.008 0.036
income < 25k % -0.033∗∗∗ -0.056∗ -0.013† 0.001 -0.008 0.010
income > 150k % -0.013 0.076∗∗∗ 0.021∗∗ 0.157∗∗∗ 0.024∗∗ 0.111∗

info_dummy -0.025∗∗∗ -0.018 -0.047∗∗∗ 0.037∗∗ 0.150∗∗∗ 0.024
none-white % × info 0.007 0.017 0.001 -0.005 0.008 0.086†

number of cars × info 0.000 -0.017 0.003 -0.048† 0.001 0.011
transit commuter % × info -0.009 0.004 -0.030∗∗∗ 0.026 0.025∗∗ 0.032
income < 25k % × info 0.035∗∗ 0.020 -0.012 -0.015 0.014 -0.037
income > 150k % × info -0.006 0.045 0.015 -0.067∗ 0.018 0.035
R2 0.45 0.724 0.729 0.782 0.875 0.593
Adj. R2 0.407 0.702 0.708 0.765 0.865 0.561
F-statistics 10.54 ∗∗∗ 33.81∗∗∗ 34.79∗∗∗ 46.18∗∗∗ 89.99∗∗∗ 18.79∗∗∗

Note. Significance: †p < 0.1, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

Table 3 reports the regression results (refer to Appendix F for the details on model selection). The310

effect of the information dummy is pronounced in the GPT-4o models. Across all three policy311

domains, the variable is highly significant, indicating that the provision of additional information312

systematically shapes preferences and improves explanatory power. Notably, the negative coefficients313

for tax rate and transit fare suggest that, when contextual signals are incorporated, GPT-4o registers314

stronger aversion to financial burdens imposed by higher taxes or fares. By contrast, the positive and315

relatively large coefficient for driver fee implies that information makes the model more inclined to316

endorse this revenue instrument, reflecting a redistribution logic that shifts costs toward car users317

rather than vulnerable transit riders. Claude-3.5-Sonnet, in comparison, shows weaker and less318

consistent responses to the information variable, suggesting that it internalizes contextual cues less319

directly. With local context, Claude-3.5-Sonnet agents become more open to raising transit fare,320

while indifferent to the other two instruments.321

Overall, the regression model explains more variance in tax rate and transit fare outcomes in the data322

generated by Claude-3.5-Sonnet, while showing stronger explanatory power for driver fee outcomes323

in GPT-4o. Substantively, GPT-4o agents focus narrowly on income and car ownership as key324

determinants, whereas Claude-3.5-Sonnet agents draw on a broader set of sociodemographic factors,325

including car ownership, transit share, and minority status. Reassuringly, the signs of the significant326

correlations align with intuitive expectations: low-income communities tend to resist higher taxes327

and fares, while car-less or transit-reliant communities support higher fees on drivers.328
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4.5 Chicago vs Houston329

To assess urban context effects, we replicate the simulation in Houston, a similarly sized but more330

car-oriented city with lower transit use and less public investment than Chicago. These contrasts331

provide a testbed for evaluating the LLM-based voting framework’s adaptability and generalization.332

Figure 5: Comparison of uk, γk, and Gk against Uk for different policy configurations in Houston.

Figure 5 presents the model-based evaluation of the 27 policy proposals for Houston. Notably, Policy333

20 emerges as the clear Pareto-optimal choice—it lies at the frontier in all three metrics considered:334

total utility (Uk), minimum utility (uk), and the Gini index (Gk). Compared to the common winner335

in Chicago (Policy 10), Policy 20 maintains the same transit fare but sets both the sales tax and driver336

fee at their highest levels (1.5% and $1, respectively). This result is consistent with the model’s337

logic. Given Houston’s low transit share and poor service levels, there is significant potential for338

improvement. Raising additional revenue through broader taxation and congestion-based fees—while339

keeping fares affordable—is the most effective way to boost transit access and system efficiency.340

In Houston, GPT-4o agents consistently select Policy 2 as the winning option in all ten rounds. The341

only divergence from the model’s optimal Policy 20 is the tax rate: while the model favors the342

maximum (1%), GPT-4o agents prefer the minimum (0.5%). Comparing Policy 2 (Houston) with343

Policy 10 (Chicago) suggests Houston agents are less supportive of taxation and more accepting of344

driver fees. Entropy values in Table 3 further show higher dispersion in Houston, indicating more345

diverse preferences among agents.346

While preliminary, these findings offer intriguing clues about the LLM’s capacity to reflect contextual347

variation. The divergence in voting patterns may signal an implicit sensitivity to the political and348

cultural ethos of different urban environments—an area that warrants further investigation.349

5 Discussion350

This study investigates how large language models (LLMs), operating as autonomous agents in351

a simulated citywide referendum, compare to conventional analytical models in shaping urban352

transportation policy. By embedding agents within a realistic decision framework and prompting353

them with localized context and performance metrics, we evaluate their collective behavior across354

voting methods, model types, and urban environments.355

Insights include: First, LLM agents selected policies that, while often differing in detail, reflect356

broadly similar priorities as the model-based Pareto-optimal solutions. Second, GPT-4o produced357

more consistent and concentrated voting patterns than Claude-3.5-Sonnet, and generally reason with358

positive sentiments. GPT-4o results are stable across different voting methods. Lastly, while sensitive359

to contexts and information, GPT-4o agents are generally aware of the cultural variation across urban360

settings, proving generalizability.361

The observed variation in LLM behavior across urban contexts and model types bring up key questions362

for future research. First, divergence in GPT-4o and Claude-3.5-Sonnet model outcomes deserves363

systematic scrutiny on model alignment and interpretability. Second, verification of the reasoning364

output to survey or ethnographic data is crucial to assess how faithfully models simulate actual365

community preferences. Lastly, prompt structure and persona design could be explored to enhance366

validity of the results.367

At their core, LLMs are not just decision aids or behavioral simulators—they are also repositories368

of embedded social priors. As such models increasingly participate in policy deliberation, under-369

standing—and where necessary, correcting—these priors will be essential to safeguarding democratic370

legitimacy, procedural fairness, and value alignment in AI-assisted public planning.371
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A Evaluation metrics447

A.1 Winner of referendum and policy means of selected policies448

In the simulation, voting is carried out in multiple rounds to ensure the results are stable. Accordingly,449

we let vj
i = {vji,k} be the vote of agent i ∈ I in round j. In each round, we can determine the winner450

and compute the mean values of the polices voted for in a voting method. The policy means can then451

be averaged over the rounds.452

1. 5-Approval voting: The winner in each round is the policy that receives the most votes, i.e.,453

k∗ = argmaxk
∑

i∈I vi,k. We can compute the mean values of all polices that receives at454

least one vote as455

p̄j
A =

∑
k∈K

∑
i∈I pkv

j
i,k

I
.
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2. All-approval voting: Both the determination of the winner and the calculation of the mean456

policy values are identical to Top-5 approval voting.457

3. Ranked-choice voting: In ranked-choice voting, the winner is determined using the instant-458

runoff process [22], where voters rank 5 policies in order of preference, and the policy with459

the fewest rank 1 votes is eliminated in successive rounds until one policy has a majority.460

Assuming all agents cast complete ranked ballots of five proposals in referendum round j, let461

pj
i,s denote the value vector associated with the policy ranked at position s ∈ {1, 2, 3, 4, 5}462

by agent i ∈ I. The mean policy value at rank s in round j is then defined as:463

p̄j
s =

1

|I|
∑
i∈I

pj
i,s.

This yields a ranked list of average policy vectors {p̄j
1, p̄

j
2, . . . , p̄

j
5}, which summarizes464

aggregate preferences across agents at each rank level.465

A.2 Entropy466

We measure cross-agent variation in round j via Shannon entropy. Let P j
k be the probability of policy467

k being selected. For 5- or All-Approval Voting,468

P j
k =

1

|I|
∑
i∈I

vji,k,

and for Ranked-Choice Voting,469

P j
k =

1

|I|
∑
i∈I

I(policy k ∈ {kji,1, . . . , k
j
i,5}).

Policy entropy is470

Ej = −
∑
k

P j
k log2 P

j
k .

For levers, let P j
x,y be the probability of choosing lever x ∈ {r, t, τ} at level y ∈ {l,m, h}. Lever471

entropy is472

ejx = −
∑
y

P j
x,y log2 P

j
x,y,

and for ranked votes, conditional on rank s,473

ejx|s = −
∑
y

P j
x,y|s log2 P

j
x,y|s.

A.3 VADER sentimental analysis474

We apply VADER (Valence Aware Dictionary and sEntiment Reasoner) to measure the sentiment of475

LLM-generated rationale texts [15]. VADER assigns a compound score Si ∈ [−1, 1] for each agent i,476

computed as477

Si =
oi − ni√

(oi − ni)2 + α
= VADER(Ti), α = 15,

where oi and ni are the aggregated positive and negative polarity scores assigned by the VADER478

lexicon. α is a normalized constant. We analyze Si across agents to examine sentiment trends and479

the strength of preferences in policy deliberations.480
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B Available policy package sets481

Table 4: Policy and their model-based performance metrics for Chicago.
ID tax rate transit fare driver fee drive_time bus_time drive_cost bus_cost Transit% Utotal Umin Gini

0 0.5 0.75 0 25.5 68.72 5.43 0.75 12.51 865.0972 0.2093 0.1544
1 0.5 0.75 0.5 19.11 57.43 5.93 0.75 39.28 977.3733 0.3212 0.1086
2 0.5 0.75 1 18.02 54.64 6.43 0.75 50.50 973.0646 0.3386 0.0957
3 0.5 1.25 0 23.16 64.12 5.43 1.25 20.98 911.2723 0.2552 0.1365
4 0.5 1.25 0.5 19.01 54.51 5.93 1.25 40.49 978.7941 0.3153 0.1096
5 0.5 1.25 1 17.97 51.99 6.43 1.25 50.98 971.9173 0.3287 0.0991
6 0.5 1.75 0 22.40 60.33 5.43 1.75 23.71 926.1360 0.2617 0.1326
7 0.5 1.75 0.5 19.06 52.48 5.93 1.75 39.89 971.5802 0.3019 0.1149
8 0.5 1.75 1 18.08 50.56 6.43 1.75 50.00 973.1771 0.3111 0.1071
9 1.0 0.75 0 21.72 62.79 5.43 0.75 26.14 934.5490 0.2827 0.1257

10 1.0 0.75 0.5 18.80 55.79 5.93 0.75 42.79 982.4324 0.3287 0.1027
11 1.0 0.75 1 17.80 53.32 6.43 0.75 52.44 978.2246 0.3425 0.0917
12 1.0 1.25 0 21.00 58.80 5.43 1.25 28.72 950.1400 0.2884 0.1219
13 1.0 1.25 0.5 18.76 53.21 5.93 1.25 43.31 980.2506 0.3196 0.1056
14 1.0 1.25 1 17.79 51.00 6.43 1.25 52.56 973.3634 0.3304 0.0964
15 1.0 1.75 0 20.98 56.44 5.43 1.75 28.80 948.0086 0.2799 0.1244
16 1.0 1.75 0.5 18.86 51.47 5.93 1.75 42.21 970.1432 0.3039 0.1123
17 1.0 1.75 1 18.08 51.07 6.43 1.75 50.00 961.5373 0.3061 0.1089
18 1.5 0.75 0 20.07 58.51 5.43 0.75 32.02 965.1986 0.3074 0.1142
19 1.5 0.75 0.5 18.52 54.37 5.93 0.75 45.82 985.7996 0.3340 0.0981
20 1.5 0.75 1 17.58 52.16 6.43 0.75 54.21 981.6979 0.3454 0.0883
21 1.5 1.25 0 19.81 55.50 5.43 1.25 32.94 969.0859 0.3030 0.1150
22 1.5 1.25 0.5 18.52 52.10 5.93 1.25 45.79 980.4515 0.3224 0.1025
23 1.5 1.25 1 17.61 50.14 6.43 1.25 54.02 973.6848 0.3315 0.0942
24 1.5 1.75 0 20.07 53.91 5.43 1.75 32.03 959.1524 0.2888 0.1201
25 1.5 1.75 0.5 18.66 50.61 5.93 1.75 44.28 967.8360 0.3050 0.1102
26 1.5 1.75 1 17.74 48.82 6.43 1.75 52.92 957.9162 0.3126 0.1029

Table 5: Policy and their model-based performance metrics for Houston.
ID tax rate transit fare driver fee drive_time transit time drive cost transit cost Transit % Utotal Umin Gini

0 0.5 0.75 0 25.98 61.55 7.19 0.75 0.00 645.5176 0.1611 0.1416
1 0.5 0.75 0.5 23.47 58.58 7.69 0.75 16.99 669.2392 0.2977 0.1316
2 0.5 0.75 1 22.62 56.06 8.19 0.75 27.06 674.7613 0.3336 0.1208
3 0.5 1.25 0 25.98 61.25 7.19 1.25 0.00 645.5176 0.1662 0.1416
4 0.5 1.25 0.5 23.42 57.54 7.69 1.25 17.53 670.3823 0.2985 0.1309
5 0.5 1.25 1 22.61 55.05 8.19 1.25 27.17 674.3346 0.3297 0.1216
6 0.5 1.75 0 25.98 61.01 7.19 1.75 0.00 645.5176 0.1677 0.1416
7 0.5 1.75 0.5 23.41 56.62 7.69 1.75 17.65 670.2816 0.2958 0.1312
8 0.5 1.75 1 22.64 54.23 8.19 1.75 26.88 672.4483 0.3229 0.1237
9 1.0 0.75 0 25.12 61.23 7.19 0.75 3.48 650.2375 0.2009 0.1426
10 1.0 0.75 0.5 23.17 57.20 7.69 0.75 20.67 672.5462 0.3159 0.1252
11 1.0 0.75 1 22.40 55.07 8.19 0.75 29.39 675.7829 0.3413 0.1168
12 1.0 1.25 0 25.00 60.77 7.19 1.25 3.96 652.0485 0.2068 0.1421
13 1.0 1.25 0.5 23.16 56.22 7.69 1.25 20.87 672.6134 0.3135 0.1255
14 1.0 1.25 1 22.41 54.17 8.19 1.25 29.27 674.4099 0.3356 0.1184
15 1.0 1.75 0 24.91 60.25 7.19 1.75 4.33 653.4359 0.2107 0.1417
16 1.0 1.75 0.5 23.18 55.39 7.69 1.75 20.64 671.3721 0.3080 0.1269
17 1.0 1.75 1 22.46 53.45 8.19 1.75 28.78 671.6410 0.3274 0.1212
18 1.5 0.75 0 23.88 58.93 7.19 0.75 11.37 667.4096 0.2761 0.1324
19 1.5 0.75 0.5 22.92 56.03 7.69 0.75 23.68 674.4277 0.3280 0.1203
20 1.5 0.75 1 22.19 54.20 8.19 0.75 31.47 676.1273 0.3470 0.1135
21 1.5 1.25 0 23.85 58.10 7.19 1.25 11.80 668.2043 0.2773 0.1318
22 1.5 1.25 0.5 22.93 55.14 7.69 1.25 23.58 673.4684 0.3232 0.1215
23 1.5 1.25 1 22.23 53.40 8.19 1.25 31.16 673.8875 0.3400 0.1158
24 1.5 1.75 0 23.84 57.33 7.19 1.75 11.83 668.0523 0.2751 0.1321
25 1.5 1.75 0.5 22.97 54.41 7.69 1.75 23.08 671.2299 0.3157 0.1238
26 1.5 1.75 1 22.29 52.77 8.19 1.75 30.50 670.3263 0.3306 0.1192
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C Transit design model calibration482

Table 6: Key statistics produced by the calibrated model vs. empirical data.

Chicago Houston
Data Model Data Model

Transit mode share 30% [8] 29% 4% [5] 4%
Daily ridership 1.47 million [24] 1.46 million 0.29 million [24] 0.30 million
Farebox 43% [24] 44% 12% [24] 11%
Peak hour budget $441/km2 [24] $441/km2 $125/km2 [24] $125/km2

Congestion index 0.77 [10] 0.74 0.79 [10] 0.77

D Voting distribution483

Figure 6 compares the full Ranked-Choice voting distributions generated in the referendums using484

GPT-4o and Claude-3.5-Sonnet. Each plot contains 27 lattice points representing the policy alterna-485

tives, with the size of each point proportional to the number of votes the policy received at a given486

rank across ten simulation rounds.487

(a) GPT-4o. (b) Claude-3.5-Sonnet.

Figure 6: Ranked-Choice voting outcomes generated by GPT-4o and Claude-3.5-Sonnet. Scenario
CHI-com, ten rounds.

(a) CHI-know GPT-4o. (b) CHI-know Claude-3.5-Sonnet.

Figure 7: Ranked-Choice voting outcomes generated by GPT-4o and Claude-3.5-Sonnet. Scenario
CHI-know, ten rounds.

For CHI-com, the plots confirm that GPT-4o generates a much more concentrated voting distribution488

than Claude-3.5-Sonnet, as evidenced by the larger and more clearly defined clusters in Figure 6(a).489

Despite the greater dispersion in Claude-3.5-Sonnet’s rankings, the average policy values associated490

with rank-1 votes remain similar across the two models, though Claude-3.5-Sonnet shows a slight tilt491

toward policies with higher transit fares (see Table 2).492

As shown in Figure 7, providing additional contextual information disperses GPT-4o’s voting patterns,493

leading to consistently higher entropy values across the board (see Table 2). Interestingly, the494
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effect is reversed for Claude-3.5-Sonnet. While less pronounced, the evidence—from the shift in495

winning policies (from a 4:6 split to a 2:8 split) and from the entropy values in Table 2—indicates496

that Claude-3.5-Sonnet’s voting patterns become more concentrated once contextual information is497

introduced.498

E Sentiment analysis499

To better understand the divergent voting behaviors exhibited by the two LLMs—despite their broadly500

similar aggregate preferences—we turn to the sentiments expressed in the agents’ rationale texts.501

These rationales, generated as part of the structured response for each agent, provide insight into502

the tone and emotional framing of their decision-making. We process these texts using the VADER503

sentiment analyzer, which produces a compound score ranging from -1 (highly negative) to 1 (highly504

positive) for each community.505

(a) GPT-4o. (b) Claude-3.5-Sonnet.

Figure 8: Sentiment scores of rationale texts for CHI-com. GPT-4o vs. Claude-3.5-Sonnet across ten
rounds. The scores range from -1 to 1. Each column corresponds to a distinct community area in
Chicago, ordered by their official community area index used by the City of Chicago.

(a) GPT-4o. (b) Claude-3.5-Sonnet.

Figure 9: Differences in the sentiment scores of rationale texts between CHI-know (with contextual
information) and CHI-com (without). GPT-4o vs. Claude-3.5-Sonnet agents across ten rounds.

As shown in Figure 8, GPT-4o agents exhibit consistently positive sentiment across all communities.506

In contrast, Claude-3.5-Sonnet produces a much wider dispersion: while some agents are equally507

upbeat, a notable share—nearly one-third—express neutral or negative sentiment in their reasoning.508

This discrepancy is striking and may offer a partial explanation for the higher entropy and broader509

vote distribution observed with Claude-3.5-Sonnet.510

In Figure 9, we compare the differences in sentiment scores between the CHI-know and CHI-511

com scenarios. The results highlight distinct ways in which the two models respond to contextual512

information. For GPT-4o, the information tends to moderate overly optimistic tones, pushing513

sentiment scores downward. While corrections are frequent, the overall variation remains within514

a relatively narrow range. GPT-4o thus appears to internalize contextual information in a cautious515

manner, limiting drastic changes across community areas. In contrast, Claude-3.5-Sonnet exhibits516

much stronger sensitivity to contextual inputs. The sentiment differences are both larger in magnitude517

and more polarized, with sharp positive spikes in some community areas and pronounced negative518

shifts in others.519

While we cannot assert a direct causal link between sentiment and vote outcome, it is reasonable to520

hypothesize that sentiment affects how agents weigh trade-offs and interpret community needs. For521

15



example, a more pessimistic framing might lead agents to avoid policies with perceived downside522

risks, whereas a more optimistic tone could favor ambitious, redistributive strategies.523

The more uniformly positive tone of GPT-4o raises further questions. Might this reflect a bias524

introduced during pretraining—perhaps an overexposure to institutional or promotional language525

that emphasizes uplift and resolution? Or could it indicate an under-representation of narratives from526

marginalized communities, which may affect how the model perceives hardship that some of the527

Chicago communities must have been experiencing? These questions, though beyond the scope of528

the present study, point to a broader concern: sentiment in LLM-generated reasoning may not merely529

reflect mood but encode deeper assumptions about the world. As such, it deserves closer scrutiny in530

future research on model alignment and fairness.531

F Regression model selection and summary statistics532

We begin with a full set of available sociodemographic variables (e.g. income and race) and travel533

attributes (e.g., car ownership and access to transit). Using the voting results simulated by GPT-4o,534

we iteratively test the explanatory power of each variable. A variable is retained if it (i) exhibits535

statistical significance according to standard t-tests and F-tests and (ii) is not strongly correlated with536

one another. We also attempt to balance across different categories so that the selection includes at537

least one variable related to either race, car ownership, travel mode, or income. As the final step, we538

compute the Variance Inflation Factors (VIFs) of the included variables to rule out the concern for539

multicollinearity. Table 7 reports descriptive statistics for the selected variables. Since all variables540

are measured in percentages, they are all represented by a real number between 0 and 1 in regression541

to avoid the bias from scale differences.542

Table 7: Summary statistics of sociodemographic and travel variables.
Variable Description Min Max Mean Std
none-white Percentage of residents of non-White

race
16.00% 99.80% 72.77% 25.80%

number of cars Percentage of households without cars 3.70% 58.00% 24.12% 12.92%
transit commuter % Percentage of commuters traveling by

public transit
4.20% 36.90% 19.50% 7.53%

income < 25k Percentage of households with annual
income below $25k

6.10% 70.00% 23.19% 12.26%

income > 150k Percentage of households with annual
income above $150k

0.60% 49.50% 17.21% 12.26%
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G Sample prompt543

Figure 10: Example Prompt.
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H Sample LLM response in CHI-com scenario544

H.1 Sample response of All-Approval by GPT-4o545

Community Area: Loop546

Chain-of-Thought:547

1. Disposable Income: “The Loop is a central business district with a mix of high-income548

professionals and lower-income service workers. Disposable income varies significantly,549

but there is a substantial portion of residents with higher disposable income."550

2. Discretionary Consumption: “Residents in the Loop have a high level of discretionary551

consumption due to the presence of numerous dining, entertainment, and shopping options.552

However, the cost of living is also high, which can impact discretionary spending."553

3. Accessibility: “The Loop has excellent accessibility to resources and services, with extensive554

public transit options including buses and trains. Car ownership is less common due to the555

availability of public transit and the high cost of parking."556

4. Decision Rationale: “Given the Loop’s strong public transit infrastructure and the presence557

of high-income residents, policies that enhance transit services while maintaining reasonable558

costs are preferred. A lower transit fare and moderate driver fees can encourage transit use559

and reduce congestion. A moderate sales tax is acceptable if it significantly improves transit560

services, as many residents can absorb the cost. Therefore, policies with a $0.75 fare and a561

$0.5 driver fee, combined with a 1% or 1.5% sales tax, are prioritized to balance cost and562

service improvement."563

Vote Decision: [10, 11, 19, 20]564

H.2 Sample response of 5-Approval by GPT-4o565

Community Area: Loop566

Chain-of-Thought:567

1. Disposable Income: “The Loop is a central business district with a mix of high-income568

professionals and lower-income service workers. Disposable income varies significantly,569

but there is a substantial portion of residents with higher disposable income."570

2. Discretionary Consumption: “Residents in the Loop have a higher level of discretionary571

consumption due to the presence of numerous dining, entertainment, and shopping options.572

However, the cost of living is also high, which affects overall discretionary spending."573

3. Accessibility: “The Loop has excellent accessibility to resources and services, with extensive574

public transit options including buses and trains. Car ownership is lower compared to other575

areas due to the availability of public transit and the high cost of parking."576

4. Decision Rationale: “Given the Loop’s strong public transit infrastructure and the mixed577

income levels, policies that enhance transit services without significantly increasing costs578

for lower-income residents are preferred. A lower transit fare is beneficial for encouraging579

public transit use, while a moderate driver fee can help reduce congestion and emissions.580

A moderate sales tax is acceptable if it significantly improves transit services. Therefore,581

policies with lower fares and moderate driver fees are prioritized, while ensuring the sales582

tax does not overly burden residents."583

Vote Decision: [1, 4, 10, 13, 19].584

H.3 Sample response of ranked-choice voting by GPT-4o585

Community Area: Loop586

Chain-of-Thought:587

1. Disposable Income: “The Loop is a central business district with a mix of high-income588

professionals and lower-income service workers. Disposable income varies significantly,589

but overall, the area has a relatively high average income."590
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2. Discretionary Consumption: “Residents in the Loop have a high level of discretionary591

consumption due to the presence of numerous dining, shopping, and entertainment options.592

However, the cost of living is also high, which affects disposable income."593

3. Accessibility: “The Loop has excellent accessibility to resources and services, with extensive594

public transit options including buses and trains. Walking and biking are also viable options595

due to the dense urban environment."596

4. Decision Rationale: “Given the high accessibility to public transit and the mixed income597

levels, the Loop community would benefit from policies that enhance transit services while598

keeping costs manageable. Lower transit fares and moderate driver fees can encourage more599

transit use, reducing congestion and emissions. A moderate sales tax is acceptable if it600

significantly improves transit services. The focus is on balancing cost with improved transit601

efficiency and reduced travel times."602

Voting Decision: [11, 14, 13, 10, 19]603

I Limitations604

Our evaluation is limited by the absence of direct human ground truth. We compare LLM-simulated605

community preferences against outcomes from a calibrated transportation model, rather than against606

empirically observed public opinion, stakeholder input, or stated-preference data from real residents.607

This gap reflects a practical challenge: for hypothetical policy scenarios (e.g., introducing a new608

driver fee or restructuring fare policy), it is difficult to obtain high-resolution, representative human609

responses at city scale, especially across dozens of neighborhoods. As a result, the best we can do is610

alignment with a stylized model of welfare.611

Another limitation of the current study is setting GPT-4o and Claude-3.5-Sonnet as static “agents,”612

sampled deterministically. This preserves tractability and interpretability of the model outcomes but613

it suppresses several dynamics that matter in real decision-making. In particular: (1) different models614

have different alignment tuning and normative priors, which directly shapes their stated community615

preferences; (2) there is no iterative feedback loop, so models do not update their positions in response616

to criticism, persuasion, or evidence over time.617

J Broader impacts618

This work explores a new paradigm for transportation policy design. Traditional approaches rely619

on optimization models that encode behavioral assumptions and attempt to identify a single “best”620

policy under specified objectives and constraints. Our LLM-based multi-agent framework follows a621

similar decision-making logic, but it has the capacity to reason in natural language about trade-offs,622

distributional impacts, and local context. As such, it can reveal policy tensions that are difficult to623

capture with parametric utility-based formulations.624

We view this approach as complementary rather than substitutive. In principle, model-driven perfor-625

mance metrics and LLM-simulated community preferences could be used together to iteratively cali-626

brate policy choices. With appropriate integration of real public feedback, such as stated-preference627

surveys and stakeholder input, the system could support more equitable and more representative628

decision-making in practice. LLM-based simulations should be used as a supplementary tool, along-629

side transparent reporting, validation against empirical data, and direct engagement with the people630

affected.631
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NeurIPS Paper Checklist632

1. Claims633

Question: Do the main claims made in the abstract and introduction accurately reflect the634

paper’s contributions and scope?635

Answer: [Yes]636

Justification: We outline the scope and contribution of our work. Specifically, we list the637

contribution on the last paragraph.638

Guidelines:639

• The answer NA means that the abstract and introduction do not include the claims640

made in the paper.641

• The abstract and/or introduction should clearly state the claims made, including the642

contributions made in the paper and important assumptions and limitations. A No or643

NA answer to this question will not be perceived well by the reviewers.644

• The claims made should match theoretical and experimental results, and reflect how645

much the results can be expected to generalize to other settings.646

• It is fine to include aspirational goals as motivation as long as it is clear that these goals647

are not attained by the paper.648

2. Limitations649

Question: Does the paper discuss the limitations of the work performed by the authors?650

Answer: [Yes]651

Justification: It’s discussed in Section I.652

Guidelines:653

• The answer NA means that the paper has no limitation while the answer No means that654

the paper has limitations, but those are not discussed in the paper.655

• The authors are encouraged to create a separate "Limitations" section in their paper.656

• The paper should point out any strong assumptions and how robust the results are to657

violations of these assumptions (e.g., independence assumptions, noiseless settings,658

model well-specification, asymptotic approximations only holding locally). The authors659

should reflect on how these assumptions might be violated in practice and what the660

implications would be.661

• The authors should reflect on the scope of the claims made, e.g., if the approach was662

only tested on a few datasets or with a few runs. In general, empirical results often663

depend on implicit assumptions, which should be articulated.664

• The authors should reflect on the factors that influence the performance of the approach.665

For example, a facial recognition algorithm may perform poorly when image resolution666

is low or images are taken in low lighting. Or a speech-to-text system might not be667

used reliably to provide closed captions for online lectures because it fails to handle668

technical jargon.669

• The authors should discuss the computational efficiency of the proposed algorithms670

and how they scale with dataset size.671

• If applicable, the authors should discuss possible limitations of their approach to672

address problems of privacy and fairness.673

• While the authors might fear that complete honesty about limitations might be used by674

reviewers as grounds for rejection, a worse outcome might be that reviewers discover675

limitations that aren’t acknowledged in the paper. The authors should use their best676

judgment and recognize that individual actions in favor of transparency play an impor-677

tant role in developing norms that preserve the integrity of the community. Reviewers678

will be specifically instructed to not penalize honesty concerning limitations.679

3. Theory assumptions and proofs680

Question: For each theoretical result, does the paper provide the full set of assumptions and681

a complete (and correct) proof?682

Answer: [NA]683
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Justification: There is no theory assumptions nor proofs in this paper.684

Guidelines:685

• The answer NA means that the paper does not include theoretical results.686

• All the theorems, formulas, and proofs in the paper should be numbered and cross-687

referenced.688

• All assumptions should be clearly stated or referenced in the statement of any theorems.689

• The proofs can either appear in the main paper or the supplemental material, but if690

they appear in the supplemental material, the authors are encouraged to provide a short691

proof sketch to provide intuition.692

• Inversely, any informal proof provided in the core of the paper should be complemented693

by formal proofs provided in appendix or supplemental material.694

• Theorems and Lemmas that the proof relies upon should be properly referenced.695

4. Experimental result reproducibility696

Question: Does the paper fully disclose all the information needed to reproduce the main ex-697

perimental results of the paper to the extent that it affects the main claims and/or conclusions698

of the paper (regardless of whether the code and data are provided or not)?699

Answer: [Yes]700

Justification: It includes the parameter setting and the selected models with the prompts and701

example responses in the Appendix.702

Guidelines:703

• The answer NA means that the paper does not include experiments.704

• If the paper includes experiments, a No answer to this question will not be perceived705

well by the reviewers: Making the paper reproducible is important, regardless of706

whether the code and data are provided or not.707

• If the contribution is a dataset and/or model, the authors should describe the steps taken708

to make their results reproducible or verifiable.709

• Depending on the contribution, reproducibility can be accomplished in various ways.710

For example, if the contribution is a novel architecture, describing the architecture fully711

might suffice, or if the contribution is a specific model and empirical evaluation, it may712

be necessary to either make it possible for others to replicate the model with the same713

dataset, or provide access to the model. In general. releasing code and data is often714

one good way to accomplish this, but reproducibility can also be provided via detailed715

instructions for how to replicate the results, access to a hosted model (e.g., in the case716

of a large language model), releasing of a model checkpoint, or other means that are717

appropriate to the research performed.718

• While NeurIPS does not require releasing code, the conference does require all submis-719

sions to provide some reasonable avenue for reproducibility, which may depend on the720

nature of the contribution. For example721

(a) If the contribution is primarily a new algorithm, the paper should make it clear how722

to reproduce that algorithm.723

(b) If the contribution is primarily a new model architecture, the paper should describe724

the architecture clearly and fully.725

(c) If the contribution is a new model (e.g., a large language model), then there should726

either be a way to access this model for reproducing the results or a way to reproduce727

the model (e.g., with an open-source dataset or instructions for how to construct728

the dataset).729

(d) We recognize that reproducibility may be tricky in some cases, in which case730

authors are welcome to describe the particular way they provide for reproducibility.731

In the case of closed-source models, it may be that access to the model is limited in732

some way (e.g., to registered users), but it should be possible for other researchers733

to have some path to reproducing or verifying the results.734

5. Open access to data and code735

Question: Does the paper provide open access to the data and code, with sufficient instruc-736

tions to faithfully reproduce the main experimental results, as described in supplemental737

material?738
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Answer: [Yes]739

Justification: The code will be made publicly available upon acceptance.740
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/743
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reproduce the results. See the NeurIPS code and data submission guidelines (https:750

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.751

• The authors should provide instructions on data access and preparation, including how752

to access the raw data, preprocessed data, intermediate data, and generated data, etc.753

• The authors should provide scripts to reproduce all experimental results for the new754

proposed method and baselines. If only a subset of experiments are reproducible, they755

should state which ones are omitted from the script and why.756

• At submission time, to preserve anonymity, the authors should release anonymized757

versions (if applicable).758

• Providing as much information as possible in supplemental material (appended to the759

paper) is recommended, but including URLs to data and code is permitted.760

6. Experimental setting/details761

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-762

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the763

results?764

Answer: [Yes]765

Justification: It’s stated in the Methodology and Results Section.766

Guidelines:767

• The answer NA means that the paper does not include experiments.768

• The experimental setting should be presented in the core of the paper to a level of detail769

that is necessary to appreciate the results and make sense of them.770

• The full details can be provided either with the code, in appendix, or as supplemental771

material.772

7. Experiment statistical significance773

Question: Does the paper report error bars suitably and correctly defined or other appropriate774

information about the statistical significance of the experiments?775

Answer: [Yes]776

Justification: It’s stated in Table 3.777
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• The answer NA means that the paper does not include experiments.779

• The authors should answer "Yes" if the results are accompanied by error bars, confi-780

dence intervals, or statistical significance tests, at least for the experiments that support781

the main claims of the paper.782

• The factors of variability that the error bars are capturing should be clearly stated (for783
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run with given experimental conditions).785

• The method for calculating the error bars should be explained (closed form formula,786

call to a library function, bootstrap, etc.)787

• The assumptions made should be given (e.g., Normally distributed errors).788

• It should be clear whether the error bar is the standard deviation or the standard error789

of the mean.790
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• It is OK to report 1-sigma error bars, but one should state it. The authors should791

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis792

of Normality of errors is not verified.793

• For asymmetric distributions, the authors should be careful not to show in tables or794

figures symmetric error bars that would yield results that are out of range (e.g. negative795

error rates).796

• If error bars are reported in tables or plots, The authors should explain in the text how797

they were calculated and reference the corresponding figures or tables in the text.798

8. Experiments compute resources799

Question: For each experiment, does the paper provide sufficient information on the com-800

puter resources (type of compute workers, memory, time of execution) needed to reproduce801

the experiments?802

Answer: [Yes]803

Justification: It’s stated in Section 3.804

Guidelines:805

• The answer NA means that the paper does not include experiments.806

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,807

or cloud provider, including relevant memory and storage.808

• The paper should provide the amount of compute required for each of the individual809

experimental runs as well as estimate the total compute.810

• The paper should disclose whether the full research project required more compute811

than the experiments reported in the paper (e.g., preliminary or failed experiments that812

didn’t make it into the paper).813

9. Code of ethics814

Question: Does the research conducted in the paper conform, in every respect, with the815

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?816

Answer: [Yes]817

Justification: We read and followed the NeurIPS Code of Ethics.818

Guidelines:819

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.820

• If the authors answer No, they should explain the special circumstances that require a821

deviation from the Code of Ethics.822

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-823

eration due to laws or regulations in their jurisdiction).824

10. Broader impacts825

Question: Does the paper discuss both potential positive societal impacts and negative826

societal impacts of the work performed?827

Answer: [Yes]828

Justification: The broader impact is in Section J.829

Guidelines:830

• The answer NA means that there is no societal impact of the work performed.831

• If the authors answer NA or No, they should explain why their work has no societal832

impact or why the paper does not address societal impact.833

• Examples of negative societal impacts include potential malicious or unintended uses834

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations835

(e.g., deployment of technologies that could make decisions that unfairly impact specific836

groups), privacy considerations, and security considerations.837

• The conference expects that many papers will be foundational research and not tied838

to particular applications, let alone deployments. However, if there is a direct path to839

any negative applications, the authors should point it out. For example, it is legitimate840

to point out that an improvement in the quality of generative models could be used to841
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generate deepfakes for disinformation. On the other hand, it is not needed to point out842

that a generic algorithm for optimizing neural networks could enable people to train843

models that generate Deepfakes faster.844

• The authors should consider possible harms that could arise when the technology is845

being used as intended and functioning correctly, harms that could arise when the846

technology is being used as intended but gives incorrect results, and harms following847

from (intentional or unintentional) misuse of the technology.848

• If there are negative societal impacts, the authors could also discuss possible mitigation849

strategies (e.g., gated release of models, providing defenses in addition to attacks,850

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from851

feedback over time, improving the efficiency and accessibility of ML).852

11. Safeguards853

Question: Does the paper describe safeguards that have been put in place for responsible854

release of data or models that have a high risk for misuse (e.g., pretrained language models,855

image generators, or scraped datasets)?856

Answer: [NA]857

Justification: We do not release high risk models.858

Guidelines:859

• The answer NA means that the paper poses no such risks.860

• Released models that have a high risk for misuse or dual-use should be released with861

necessary safeguards to allow for controlled use of the model, for example by requiring862

that users adhere to usage guidelines or restrictions to access the model or implementing863

safety filters.864

• Datasets that have been scraped from the Internet could pose safety risks. The authors865

should describe how they avoided releasing unsafe images.866

• We recognize that providing effective safeguards is challenging, and many papers do867

not require this, but we encourage authors to take this into account and make a best868

faith effort.869

12. Licenses for existing assets870

Question: Are the creators or original owners of assets (e.g., code, data, models), used in871

the paper, properly credited and are the license and terms of use explicitly mentioned and872

properly respected?873

Answer: [NA]874

Justification: We do not use existing assets.875

Guidelines:876

• The answer NA means that the paper does not use existing assets.877

• The authors should cite the original paper that produced the code package or dataset.878

• The authors should state which version of the asset is used and, if possible, include a879

URL.880

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.881

• For scraped data from a particular source (e.g., website), the copyright and terms of882

service of that source should be provided.883

• If assets are released, the license, copyright information, and terms of use in the884

package should be provided. For popular datasets, paperswithcode.com/datasets885

has curated licenses for some datasets. Their licensing guide can help determine the886

license of a dataset.887

• For existing datasets that are re-packaged, both the original license and the license of888

the derived asset (if it has changed) should be provided.889

• If this information is not available online, the authors are encouraged to reach out to890

the asset’s creators.891

13. New assets892

Question: Are new assets introduced in the paper well documented and is the documentation893

provided alongside the assets?894
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Answer: [NA]895

Justification: We do not release new assets.896

Guidelines:897

• The answer NA means that the paper does not release new assets.898

• Researchers should communicate the details of the dataset/code/model as part of their899

submissions via structured templates. This includes details about training, license,900

limitations, etc.901

• The paper should discuss whether and how consent was obtained from people whose902

asset is used.903

• At submission time, remember to anonymize your assets (if applicable). You can either904

create an anonymized URL or include an anonymized zip file.905

14. Crowdsourcing and research with human subjects906

Question: For crowdsourcing experiments and research with human subjects, does the paper907

include the full text of instructions given to participants and screenshots, if applicable, as908

well as details about compensation (if any)?909

Answer: [NA]910

Justification: We do not conduct crowdsourcing experiments and research with human911

subjects.912

Guidelines:913

• The answer NA means that the paper does not involve crowdsourcing nor research with914

human subjects.915

• Including this information in the supplemental material is fine, but if the main contribu-916

tion of the paper involves human subjects, then as much detail as possible should be917

included in the main paper.918

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,919

or other labor should be paid at least the minimum wage in the country of the data920

collector.921

15. Institutional review board (IRB) approvals or equivalent for research with human922

subjects923

Question: Does the paper describe potential risks incurred by study participants, whether924

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)925

approvals (or an equivalent approval/review based on the requirements of your country or926

institution) were obtained?927

Answer: [NA]928

Justification: This paper does not involve crowdsourcing nor research with human subjects.929

Guidelines:930

• The answer NA means that the paper does not involve crowdsourcing nor research with931

human subjects.932

• Depending on the country in which research is conducted, IRB approval (or equivalent)933

may be required for any human subjects research. If you obtained IRB approval, you934

should clearly state this in the paper.935

• We recognize that the procedures for this may vary significantly between institutions936

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the937

guidelines for their institution.938

• For initial submissions, do not include any information that would break anonymity (if939

applicable), such as the institution conducting the review.940

16. Declaration of LLM usage941

Question: Does the paper describe the usage of LLMs if it is an important, original, or942

non-standard component of the core methods in this research? Note that if the LLM is used943

only for writing, editing, or formatting purposes and does not impact the core methodology,944

scientific rigorousness, or originality of the research, declaration is not required.945

Answer: [Yes]946
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Justification: We deploy multiple autonomous agents instantiated with GPT-4o and Claude-947

3.5-Sonnet to represent heterogeneous communities, generate policy rationales, and cast948

votes over transportation policy options. These LLM-generated preferences and justifications949

form the primary data analyzed in the paper. We describe the prompting framework, agent950

design, voting protocol, and evaluation setup in detail in Section 3.951

Guidelines:952

• The answer NA means that the core method development in this research does not953

involve LLMs as any important, original, or non-standard components.954

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)955

for what should or should not be described.956
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