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Abstract

A key challenge in transportation planning is that the collective preferences of
heterogeneous travelers often diverge from the policies produced by model-driven
decision tools. This misalignment frequently results in implementation delays or
failures. Here, we investigate whether large language models (LLMs)—noted for
their capabilities in reasoning and simulating human decision-making—can help
inform and address this alignment problem. We develop a multi-agent simulation
in which LLMs, acting as agents representing residents from different communities
in a city, participate in a referendum on a set of transit policy proposals. Using
chain-of-thought reasoning, LLM agents provide Ranked-Choice or approval-
based preferences, which are aggregated using instant-runoff voting (IRV) to model
democratic consensus. We implement this simulation framework with both GPT-4o
and Claude-3.5-Sonnet, and apply it for Chicago and Houston. Our findings suggest
that LLM agents are capable of approximating plausible collective preferences and
responding to local context, while also displaying model-specific behavioral biases
and modest divergences from optimization-based benchmarks. These capabilities
underscore both promise and limitations of LLMs as tools for solving the alignment
problem in transportation decision-making.

1 Introduction

Urban transportation policy plays a central role in shaping regional development. Designing effective
policy requires access to multidimensional data and a deep understanding of individual preferences
across heterogeneous communities. Conventional approaches typically rely on structured mathemati-
cal models that identify an optimal policy under specified objectives and constraints. However, these
models often rest on rigid assumptions and oversimplified behavioral representations. As a result, they
may produce solutions that are analytically tractable yet poorly aligned with public sentiment or the
complex realities of policy implementation. This misalignment frequently contributes to delays—or
even failures—in policy approval and execution.

Recent advances in large language models (LLMs) offer a promising opportunity to address this
alignment problem. Trained on vast corpora of text encompassing news, facts, and human discourse,
LLMs possess a rich contextual understanding that could help policymakers infer public preferences
and explore trade-offs before implementation. Their ability to interpret unstructured information,
reason about competing objectives in natural language, and adapt to specific contexts suggests a new
form of decision support—one that complements the traditional paradigm.
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In this study, we implement a multi-agent voting framework to examine the potential of LLMs
in supporting transportation policy design. We simulate collective decision-making by deploying
autonomous LLM agents as representatives of heterogeneous communities within a large city. These
agents deliberate over transit policy proposals involving three levers: a dedicated sales tax for transit
services, fare policies, and driver fees (e.g., congestion charges). This design enables us to study how
collective preferences form, how trade-offs are negotiated across constituencies, and how democratic
mechanisms can be modeled within an AI-driven environment. Crucially, the framework distributes
reasoning tasks across agents, enabling scalable deliberation.

To ground the experiment in established transportation planning practices, we incorporate a standard
utility-based travel demand model. Travelers, characterized by their daily disposable income, choose
between driving and transit, both affected by congestion externalities. The model estimates how
each policy scenario impacts travel experience and utility. These outputs are provided to LLM
agents to guide deliberation. Additionally, the model yields utility distributions across the income
spectrum, allowing us to rank policy alternatives based on normative objectives. The rankings serve as
benchmarks to evaluate LLM agents’ choices. We implement both ranked-choice and approval voting
to examine how different aggregation rules shape collective outcomes. Finally, we systematically
vary the information available to agents to assess how domain knowledge affects decision quality and
alignment with model-based benchmarks.

Our research addresses several key questions: (1) To what extent can LLM agents generate coherent,
collective policy preferences in a simulated voting environment? (2) How do different voting
mechanisms and prompt designs influence stability, diversity, and bias in decision outcomes? (3) To
what extent do the policies emerged from LLM-based voting deviate from those recommended by the
conventional model and how do we explain these discrepancies? (4) How do results generalize across
different urban contexts and language models?

We find LLM-based referendums often align with model-based benchmarks, selecting similar priori-
ties despite detail differences. LLM agents show stronger tax aversion than model optima. GPT-4o
yields more consistent patterns than Claude-3.5-Sonnet, though both converge on average preferences.
Top policies remain stable across voting methods, indicating procedural robustness. Sentiment
analysis shows GPT-4o maintains uniformly positive tones, while Claude-3.5-Sonnet is more varied,
affecting vote dispersion. Context sensitivity emerges: in Houston, GPT-4o favors lower taxes and
higher driver fees than in Chicago, reflecting awareness of local sociopolitical conditions.

2 Related studies

Transportation planning Travel forecasting models have guided urban transportation planning
for more than half a century [3, 18, 33, 21, 4]. The traditional four-step model, developed in the
postwar era, forecasts long-term demand based on assumptions about population, land use, and
infrastructure. Since the 1970’s, these models have been grounded in random utility theory, assuming
travelers maximize latent utility based on cost, time, and socio-demographic attributes [20]. While
statistically convenient and influential in shaping investments, this paradigm faces enduring criticism
for behavioral rigidity, inability to capture bounded rationality and social influence [2, 16, 30],
and poor adaptation to structural shifts and exogenous shocks [28, 14]. More fundamentally, the
optimization focus of these models—typically welfare or efficiency—often clashes with public values.
Model-derived “optimal” policies can misalign with community preferences, generating friction
during implementation, a phenomenon termed the technocratic disconnect [12, 31, 32]. The process,
portrayed as value-neutral, overlooks the inherently political nature of planning and its distributive
consequences [19, 9]. Accuracy issues further compound these challenges. Studies report demand
forecast errors exceeding 20% for most rail projects and ±30–50% for major road investments
[34, 11, 14]. These persistent deficiencies underscore the need for complementary tools that integrate
public sentiment and deliberation. Motivated by this gap, we explore whether LLMs can serve as a
bridge between technical analysis and democratic alignment in transportation planning.

Applications of LLMs in simulating complex human decision-making processes Recent
work has leveraged LLMs to simulate complex human decision-making without relying on explicit
structural assumptions. Han [13] showed that LLMs adaptively infer relevant factors in classical
decision tasks, while Ross et al. [29] mapped behavioral biases in LLMs across economic games,
finding decision patterns distinct from both rational-agent and human baselines. LLMs have also been
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used to model social dynamics. Park et al. [26] demonstrated that persona-driven agents can reproduce
opinion formation and collective behaviors, and Park et al. [27] showed strong alignment between
LLM-generated survey responses and human data, supporting their use as proxies in behavioral
experiments. Beyond experimental contexts, LLM agents have been applied to practical domains,
including auction design [7], legal reasoning [6], and macroeconomic forecasting [17], underscoring
their potential as flexible tools for decision analysis in complex, high-stakes environments.

LLMs in urban and transportation planning Recent studies highlight the potential of LLMs in
urban planning. Zhou et al. [36] showed that LLMs can match or surpass traditional reinforcement
learning in complex city planning tasks. Building on this, Zhou et al. [37] introduced a multi-agent
framework where LLM agents, simulating diverse community residents, used a fishbowl discussion
mechanism to allocate land under competing priorities, demonstrating LLMs’ ability to support
participatory planning. Similarly, Ni et al. [23] developed a closed-loop system where resident
agents provided real-time evaluations of planning proposals, enabling adaptive, stakeholder-informed
strategies and modeling human-centered planning dynamics.

3 Methodology

We consider a stylized city composed of I = {1, · · · , I} communities. Its transportation agency is
evaluating a policy change to its current transit system, consisting of three key components: a flat
fare paid by each rider (denote by r), a dedicated sales tax levied on all residents (t), and a per-trip
fee paid by drivers (τ ). Accordingly, use a tuple pk = {rk, tk, τk} to denote the values of a policy
k ∈ K = {1, · · · ,K}. To streamline the decision process, the agency defines three levels—low
(l), medium (m), and high(h)—for each of the three policy levers. In other words, rk, tk, and τk
must take one of three values contained in set {l,m, h}. This results in a policy set K consisting of
K = 27 distinct policy proposals.

The analysis proceeds in two stages. First, the agency evaluates the K proposals using a conventional
transit policy design model. This model provides estimates of performance metrics such as travel
times, trip costs, and congestion levels. Second, the same set of proposals is submitted to a multi-agent
simulation framework powered by a LLM. This simulator emulates a city-wide referendum, where
agents representing different communities deliberate and vote, informed in part by the output of the
conventional model.

3.1 Transit design model

We take the transit design model from Dai et al. [9], which begins with a simplified representation of
a city and its transportation system. The city is modeled as a square with a grid street network and
evenly distributed residents and travel demand. Individuals differ by income level, which shapes their
travel choices and how they experience transportation costs and benefits. A bus network is overlaid
on the city’s street grid. Its service quality is governed by three operational parameters: headway
(how frequently buses arrive), stop spacing, and route spacing. These design elements collectively
determine the accessibility of the bus system. Moreover, the system is financed through a combination
of rider fare r, a local sales tax on residents t, a fee paid by drivers τ (e.g., a congestion charge or
fuel tax), and an exogenous government subsidy. The transit agency must determine both the service
configuration and the financing strategy, balancing operational quality with fiscal feasibility.

Figure 1: Joint design of public transit service and policy.
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Figure 1 illustrates the structure of this integrated design model. Key decision variables include both
service parameters (headway, stop spacing, and route coverage) and policy instruments (r, t, and
τ ). At the center of the system is individual mode choice between bus or car, which depends on
the utility of each mode. The utility is a function of income, cost, and accessibility. At the same
time, individual choices aggregate into system-level travel patterns that shape congestion, influence
accessibility and affect overall revenue for transit through a complex feedback loop. The agency then
adjusts its service and financial decisions, subject to a budget constraint requiring that operating costs
be covered by fares, taxes, driver fees, and subsidies.

The above model is employed to evaluate system objectives, transit ridership, and distributive effects
after a transit policy k ∈ K is implemented. For each policy k ∈ K, the corresponding transit mode
share is denoted as γk. We produce two normative objectives: the total utility of all travelers Uk (a
utilitarian objective) and the utility of the most disadvantaged traveler uk(an egalitarian objective).
Roughly speaking, Uk measures efficiency whereas uk gauges distributive effects. Another metric, a
more direct indicator of distribution effects, is the Gini index, denoted as Gk. These metrics serve as
a benchmark for evaluating the performance of our LLM-based simulation framework.

3.2 LLM-based multi-agent simulation

We implement a multi-agent simulation framework in which LLM agents serve as representatives of
communities within a city, as illustrated in Figure 2. Each agent is tasked with evaluating and voting
on the K transit policies, as described at the beginning of Section 3. Recall that each policy p ∈ K
is formed by choosing a transit fare rk, sales tax rate tk, and driver fee τk from one of three values
{l,m, h}. The simulation is designed to explore whether LLMs can approximate community-based
deliberation and consensus formation across diverse constituencies.Two state-of-the-art LLMs are
used in our simulation: GPT-4o from OpenAI [25] and Claude-3.5-Sonnet from Anthropic [1]. Both
models are used with temperature set to zero to ensure reproducibility and eliminate stochastic
variation in the outputs. See Appendix G for the sample prompts.

Figure 2: Framework of the multi-agent LLM simulation.

We construct three types of agents to examine the role of context and knowledge in shaping LLM
decision-making: (1) Community-based agents (CHI-com) represent individual communities and
acted based solely with pre-tained knowledge; (2) Knowledge-augmented agents (CHI-know) build
on the first configuration, but are additionally prompted using localized demographic and economic
data—such as average household expenditures, transit reliance, and income levels—to test whether
broader contextual grounding improves judgment; (3) City-average agents (CHI-avg) simulate a
generic “average” resident of the city, without community-specific difference.

Each agent i ∈ I is instructed to evaluate the K policy alternatives and cast votes based on what best
serves its community’s interests. Let vi = {vi,0, . . . , vi,K−1} denote the vote cast by agent i. Since
there is no universally accepted voting rule for simulated multi-agent environments, we experiment
with three collective decision rules commonly studied in the literature [35]: (1) 5-Approval voting:
Each agent approves exactly five proposals. Formally, vi,k ∈ {0, 1} for all k, with

∑K−1
k=0 vi,k = 5

for each i ∈ I; (2) All-approval voting: Agents may approve any number of proposals they deem
acceptable, i.e., vi,k ∈ {0, 1}, without any constraint on the number of approvals; (3) Ranked-choice
voting: Each agent assigns a unique rank to up to five proposals. Formally, vi,k ∈ {1, 2, 3, 4, 5, null},
where lower values indicate higher preference, and each agent assigns at most one value from
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{1, 2, 3, 4, 5} to any proposal. That is, for all i ∈ I , |{k : vi,k ∈ {1, 2, 3, 4, 5}}| ≤ 5 and vi,k ̸= vi,k′

for k ̸= k′ whenever both are ranked.

To encourage deeper reasoning over pattern matching, we use structured chain-of-thought prompts,
directing each agent to consider three key factors before voting: (1) Disposable income: How the
proposed policy affects residents’ income after taxes, fares, and fees; (2) Discretionary consumption:
How much income is left for non-essential goods and services; (3) Accessibility: The ability to
reach daily destinations—such as work, shopping, or healthcare—under the transit and congestion
conditions implied by each policy.

The prompts aim to elicit civic-style reasoning, allowing LLMs to weigh trade-offs using contextual
knowledge. Each agent outputs its community ID, a written rationale, and a ranked vote. To ensure
consistent and structured reasoning, we designed standardized system and user prompts (Appendix G).
The system prompt casts the agent as a representative of a specific community, directing it to reason
step by step and rank policy proposals based on three key factors. The user prompt outlines the
referendum context, describes the 27 policy options, and presents performance metrics (e.g., cost,
travel time), emphasizing their effects on travel behavior and household budgets.

4 Results

In this section, we first benchmark the conventional model as a normative reference. Then we report
Chicago simulation outcomes and compare different voting methods, contextual information and
LLM models. We also conduct a regression analysis to better understand LLM agents’ preference and
voting behavior. Lastly, we test generalizability via a Chicago–Houston comparison. Experiments are
performed in Python 3.11 with Apple M2 chip, 10 GB memory.

4.1 Model-based results

The transit design model by Dai et al. [9] employs utility-based mode choice, with utility influenced
by income, congestion, service levels, fares, and policy levers (taxes and driver fees). The model is
calibrated to match four key statistics: (i) mode share, (ii) ridership, (iii) farebox recovery, and (iv)
budget. We adopt the same parameters for Chicago; Houston is re-calibrated to local conditions. See
Table 6 in Appendix C for calibration outcomes.

In all experiments, the policy space has three levers {l,m, h} with three levels each: sales tax t :
{0.5%, 1%, 1.5%}; fare r: {$0.75, $1.25, $1.75}/trip; driver fee τ : {$0, $0.50, $1}/trip. We evaluate
27 policy combinations with performance metrics computed by the calibrated model for both the
case of Chicago and Houston (see Appendix B). LLM agents receive only mode-specific travel times
and trip costs to guide voting, while other outputs—average utility (Uk), minimum utility (uk), Gini
index (Gk), and transit mode share (γk)—are reserved for evaluation. Uk measures system efficiency,
and uk, Gk, and γk capture distributional equity.

Figure 3: Comparison of uk, γk, and Gk against Uk for different policy configurations in Chicago.

The status quo (Policy 12) does not lie on the Pareto frontier, which is defined by the upper-right
envelope in the left and middle plots and the lower-right envelope in the right plot of Figure 3. By
increasing the sales tax and driver fee while keeping the transit fare constant or reduced, one can
simultaneously increase Uk and γk, and decrease Gk, thereby achieving both more utilitarian and
more egalitarian outcomes. The underlying mechanism is intuitive: greater transit subsidy via taxes
and driver fees enhances the level of service, induces a shift from driving to transit, and ultimately
reduces congestion—improving the overall efficiency of the transportation system.
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In terms of model-optimal outcomes, Figure 3 shows that the Utilitarian solution corresponds to
Policy 19, which maximizes the total utility Uk. However, the minimum utility u19 under this policy
is not the highest among all uk, indicating that maximizing Uk doesn’t necessarily benefit the most
disadvantaged travelers. By contrast, the Egalitarian solution is Policy 20 , which achieves the
highest minimum utility, the greatest transit mode share, and the lowest Gini index among all policy
options. Generally, lowering the transit fare tends to move outcomes closer to the Pareto frontier.
More importantly, we observe a tight cluster of policies located near the Pareto frontiers, meaning that
many policies produce outcomes similar to the utility-based Pareto-optimal policies. If one were to
adopt an alternative social welfare function, any of these clustered policies could emerge as optimal.
This diversity sets the stage for the LLM-based voting experiment that follows.

4.2 LLM referendum for Chicago

Chicago has 77 community areas. Thus, the simulated referendum is participated by 77 communities
members represented by LLM agents. We begin by comparing the outcomes produced by the three
voting methods described earlier. We then explore how contextual information and knowledge
embedded in the prompts influence agents’ voting patterns. All results reported in this section are
generated using the GPT-4o model. The comparison with Claude-3.5-Sonnet will be discussed later.

Figure 4: Voting counts of different voting types (single round).

Results from different voting methods The readers are referred to Appendix H for examples of
responses from the three voting methods. Figure 4 shows the distribution of votes from a single round
under each of the three voting methods. Overall, the results reveal a broadly consistent preference
for a small set of top-ranked policies, particularly Policies 10, 13, and 19. Under the Instant Runoff
Voting rule, Policy 10 emerges as the winner in the ranked-choice voting scheme (see Appendix A.1
for the mathematical definition of the winning policy under different voting methods). It also receives
the highest number of votes in both the 5-approval and all-approval settings, making it the winning
policy across all three methods. While Policy 10 is neither the Utilitarian nor the Egalitarian optimum
identified by the model, it lies close to the Pareto frontier (see Figure 3), suggesting that the simulated
referendum is capable of selecting policies that align well with model-based recommendations.

That said, the approval-based methods (5-approval and all-approval) produced more dispersed voting
patterns, showing a greater tendency to favor policies with lower tax rates beyond the commonly
agreed-upon options. The all-approval method, in particular, admits several policies (e.g., Policies 5,
7, 8, 9, 16, and 26) that are not selected under either the ranked-choice or 5-approval methods. These
outlier policies are neither efficient nor equitable based on the model-based evaluation in Figure 3.

Table 1: Winning policies, mean policy values and entropy (single round).
Winning Policy Mean policy values Entropy

ID t r τ t r τ E
Ranked-Choice 10 1.000 0.750 0.500 0.833 0.917 0.750 2.739
5-Approval 10 1.000 0.750 0.500 1.077 1.096 0.731 2.928
All-Approval 10 1.000 0.750 0.500 0.978 1.185 0.587 3.565

Table 1 shows that Policy 10 wins across all voting methods. Compared to mean policy values, it
features similar tax rates but lower fares and driver fees—indicating a democratic compromise that
favors broader support over stronger user-based funding preferences. Among all options, Policy 19
consistently ranks as a favored policy in all three voting methods. Notably, this policy coincides with
the Utilitarian policy identified by the model. In contrast, the Egalitarian policy, Policy 20, receives
substantially fewer votes—failing to make the top five even under the all-approval method. This
result suggests that the aggregate preferences captured by GPT-4o agents in the Chicago simulation
tend to align more closely with utilitarian values than with egalitarian ones.
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Overall, we find strong consistency across the three voting mechanisms, with ranked-choice and
5-approval producing especially similar outcomes. All-approval voting, on the other hand, yields
more scattered results and diverges notably from the other two. For this reason, we focus on the
ranked-choice method in the remainder of our analysis.

Impact of contextual information We introduce three referendum scenarios for the three types of
agents previously introduced: (1) CHI-com - community-based agents, (2) CHI-know - knowledge-
augmented agents, and (3) CHI-avg - City-average agents. For each scenario, we run the simulation
for 10 rounds, identify the winner for each round and analyze the distribution of votes across policies
and the three policy levers. As shown in Table 2, GPT-4o under the CHI-com setting exhibits highly
stable preferences. Across 10 simulated referendum rounds, Policy 10 consistently emerges as the
winning option. The distribution of votes across all policies shows only modest variation, reflected in
a moderate entropy value of E = 2.739 (the larger the entropy, the more variations in the votes, see
Appendix A.2 for details). The mean policy values indicate a clear and consistent preference for low
fares, medium tax rates, and medium driver fees.

Table 2: Winning policy, mean entropy values and mean policy values across ten-round referendums.
Model Scenario Winner (counts) Entropy Ē t̄1 (ēt|1) r̄1 (ēr|1) τ̄1 (ēτ |1)

CHI-com P10 (10) 2.739 0.983 (0.21) 0.782 (0.34) 0.511 (0.15)
GPT-4o CHI-know P10 (8), P11 (2) 2.804 0.999 (0.02) 0.772 (0.25) 0.721 (0.98)

CHI-avg P10 (8), P11 (2) 2.611 1.000 (0.00) 0.750 (0.00) 0.600 (0.72)

Claude-3.5 CHI-com P1 (6), P10 (4) 4.022 0.802 (1.29) 0.951 (1.08) 0.546 (1.52)
CHI-know P1 (8), P4 (2) 3.902 0.782 (1.34) 0.986 (1.04) 0.579 (1.28)

GPT-4o HOU-com P2 (10) 3.583 0.635 (0.92) 0.785 (0.29) 0.895 (0.74)
Note: E ∈ [0, 4.75] measures the concentration of votes across all policies; ēx|s ∈ [0, 1.58] measures the

concentration of the rank s votes on the three policy levers (x) across the three levels.

When agents are augmented with external contextual knowledge (CHI-know), the preference land-
scape shifts slightly. The winning set expands to include higher driver fee options—Policy 11 wins in
20% of the rounds. This change is also evident in the rank-1 mean policy values, where the average
driver fee increases by 50% compared to CHI-com. The entropy value rises slightly, suggesting a
more dispersed distribution of preferences when additional knowledge is available. In the CHI-avg
setting, where a single agent represents the average Chicagoan, the set and frequency of winning
policies mirror those under CHI-know. However, the entropy value for CHI-avg is noticeably lower,
indicating more concentrated preferences. Most strikingly, all rank-1 votes in this scenario support
policies with a medium tax rate and the lowest fare—resulting in zero entropy for those policy levers.

In sum, while all three scenarios broadly agree on the most preferred policies, community-specific
simulations introduce greater diversity in preference expression — more so when additional contextual
information is provided, while the averaged-agent setting yields more concentrated but potentially
less nuanced outcomes.

4.3 GPT-4o vs. Calude-3.5-Sonnet

Table 2 shows that, for CHI-com, the winning policy set expands from Policy 10 under GPT-4o to
include both Policy 10 and Policy 1 under Claude-3.5-Sonnet and the winning probability of Policy 10
falls from 100% to just 40% when switching to Claude-3.5-Sonnet. The key distinction between these
two policies lies in the sales tax rate: Policy 10 preserves the status quo at 1%, while Policy 1 lowers
it to 0.5%. For CHI-know, the winning policies diverge entirely: Claude-3.5-Sonnet selects Policy 1
and Policy 4, while GPT-4o favors Policy 10 and Policy 11. Their mean policy values also drift much
further apart, underscoring that the two LLMs respond to local contexts in markedly different ways.

Compared to GPT-4o, Claude-3.5-Sonnet exhibits significantly more dispersed voting behavior, as
reflected in a roughly 50% increase in the overall entropy measure (also see Appendix D for vote
distribution visualizations). The entropy values for individual policy levers are even higher—for
instance, the entropy of rank-1 votes for the driver fee is 1.52, indicating a near-uniform distribution
and aggregate indifference. To verify this difference between the two models, we conducted sentiment
analyses of the LLM-generated rationale texts from both models and found that GPT-4o exhibits
consistent positive sentiments across all communities while Claude-3.5-Sonnet produces a wider
dispersion of sentiments. See the definition and results in Appendix A.3 and E, respectively.
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4.4 Preference of LLM agents via regression

To delve deeper into the decision making rationale of LLM agents and unveil the impact of contextual
information, we specify a set of regression models to reveal the relation between the agents’ pref-
erences for each of the three policy levers and their sociodemographic attributes. To quantify each
agent’s preference, we apply the Borda Count method, which assigns scores based on the rank order
of each policy. Formally, let s̄ix denote the average Borda score assigned according to the policy
lever x ∈ L for community area i over 10 simulation rounds, i.e

s̄ix =
1

J

J∑
j=1

∑5
s=1(6− s)q(x|k(i, j, s))∑5

s=1 s
. (1)

where j indexes the referendum round in the total set of J rounds, and s ∈{1, 2, 3, 4, 5} denotes the
rank position (with s = 1 corresponding to the top rank). The term 6−s∑5

s=1 s
specifies the normalized

weight for the s-th rank, while q(x|k(i, j, s)) returns the level (i.e., l,m or h) of policy lever x in
policy k that is ranked by community i at s in round j. Thus, s̄ix is the average normalized Borda
score assigned to policy lever x by community i across J rounds under the ranked voting process.

In addition to standard sociodemographic attributes, we introduce interaction terms between each
attribute and a binary treatment indicator Di, where Di = 1 if the observation originates from the
CHI-know condition (with factual context) and Di = 0 if from the CHI-com condition (without
additional facts). We specify an Ordinary Least Squares (OLS) regression model as follows:

s̄ix = βx0 + β⊤
x Xi + γx0Di + γ⊤

x XiDi + εix, (2)

where βx0 is the intersect associated with policy lever x, Xi denotes the vector of sociodemographic
covariates for agent i, γx0 is the coefficient for the treatment indicator Di, βx is the vector of
coefficients for the covariates and γx is the vector of coefficients of the interaction terms.

Table 3: Regression results for tax rate, transit fare, and driver fee under GPT-4o and Claude-3.5.
Tax rate Transit fare Driver fee

GPT-4o Claude-3.5 GPT-4o Claude-3.5 GPT-4o Claude-3.5
constant 1.123∗∗∗ 0.868∗∗∗ 0.968∗∗∗ 0.963∗∗∗ 0.535∗∗∗ 0.522∗∗∗

none-white % 0.004 -0.031 0.005 0.010 -0.003 -0.085∗

number of cars -0.009 0.073∗∗ 0.008 0.018 0.024∗∗ 0.032
transit commuter % 0.010† 0.025 -0.002 -0.059∗∗∗ -0.008 0.036
income < 25k % -0.033∗∗∗ -0.056∗ -0.013† 0.001 -0.008 0.010
income > 150k % -0.013 0.076∗∗∗ 0.021∗∗ 0.157∗∗∗ 0.024∗∗ 0.111∗

info_dummy -0.025∗∗∗ -0.018 -0.047∗∗∗ 0.037∗∗ 0.150∗∗∗ 0.024
none-white % × info 0.007 0.017 0.001 -0.005 0.008 0.086†

number of cars × info 0.000 -0.017 0.003 -0.048† 0.001 0.011
transit commuter % × info -0.009 0.004 -0.030∗∗∗ 0.026 0.025∗∗ 0.032
income < 25k % × info 0.035∗∗ 0.020 -0.012 -0.015 0.014 -0.037
income > 150k % × info -0.006 0.045 0.015 -0.067∗ 0.018 0.035
R2 0.45 0.724 0.729 0.782 0.875 0.593
Adj. R2 0.407 0.702 0.708 0.765 0.865 0.561
F-statistics 10.54 ∗∗∗ 33.81∗∗∗ 34.79∗∗∗ 46.18∗∗∗ 89.99∗∗∗ 18.79∗∗∗

Note. Significance: †p < 0.1, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

Table 3 reports the regression results (refer to Appendix F for the details on model selection). The
effect of the information dummy is pronounced in the GPT-4o models. Across all three policy
domains, the variable is highly significant, indicating that the provision of additional information
systematically shapes preferences and improves explanatory power. Notably, the negative coefficients
for tax rate and transit fare suggest that, when contextual signals are incorporated, GPT-4o registers
stronger aversion to financial burdens imposed by higher taxes or fares. By contrast, the positive and
relatively large coefficient for driver fee implies that information makes the model more inclined to
endorse this revenue instrument, reflecting a redistribution logic that shifts costs toward car users
rather than vulnerable transit riders. Claude-3.5-Sonnet, in comparison, shows weaker and less
consistent responses to the information variable, suggesting that it internalizes contextual cues less
directly. With local context, Claude-3.5-Sonnet agents become more open to raising transit fare,
while indifferent to the other two instruments.
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Overall, the regression model explains more variance in tax rate and transit fare outcomes in the data
generated by Claude-3.5-Sonnet, while showing stronger explanatory power for driver fee outcomes
in GPT-4o. Substantively, GPT-4o agents focus narrowly on income and car ownership as key
determinants, whereas Claude-3.5-Sonnet agents draw on a broader set of sociodemographic factors,
including car ownership, transit share, and minority status. Reassuringly, the signs of the significant
correlations align with intuitive expectations: low-income communities tend to resist higher taxes
and fares, while car-less or transit-reliant communities support higher fees on drivers.

4.5 Chicago vs Houston

To assess urban context effects, we replicate the simulation in Houston, a similarly sized but more
car-oriented city with lower transit use and less public investment than Chicago. These contrasts
provide a testbed for evaluating the LLM-based voting framework’s adaptability and generalization.

Figure 5: Comparison of uk, γk, and Gk against Uk for different policy configurations in Houston.

Figure 5 presents the model-based evaluation of the 27 policy proposals for Houston. Notably, Policy
20 emerges as the clear Pareto-optimal choice—it lies at the frontier in all three metrics considered:
total utility (Uk), minimum utility (uk), and the Gini index (Gk). Compared to the common winner
in Chicago (Policy 10), Policy 20 maintains the same transit fare but sets both the sales tax and driver
fee at their highest levels (1.5% and $1, respectively). This result is consistent with the model’s
logic. Given Houston’s low transit share and poor service levels, there is significant potential for
improvement. Raising additional revenue through broader taxation and congestion-based fees—while
keeping fares affordable—is the most effective way to boost transit access and system efficiency.

In Houston, GPT-4o agents consistently select Policy 2 as the winning option in all ten rounds. The
only divergence from the model’s optimal Policy 20 is the tax rate: while the model favors the
maximum (1%), GPT-4o agents prefer the minimum (0.5%). Comparing Policy 2 (Houston) with
Policy 10 (Chicago) suggests Houston agents are less supportive of taxation and more accepting of
driver fees. Entropy values in Table 3 further show higher dispersion in Houston, indicating more
diverse preferences among agents.

While preliminary, these findings offer intriguing clues about the LLM’s capacity to reflect contextual
variation. The divergence in voting patterns may signal an implicit sensitivity to the political and
cultural ethos of different urban environments—an area that warrants further investigation.

5 Discussion

This study investigates how large language models (LLMs), operating as autonomous agents in
a simulated citywide referendum, compare to conventional analytical models in shaping urban
transportation policy. By embedding agents within a realistic decision framework and prompting
them with localized context and performance metrics, we evaluate their collective behavior across
voting methods, model types, and urban environments.

Insights include: First, LLM agents selected policies that, while often differing in detail, reflect
broadly similar priorities as the model-based Pareto-optimal solutions. Second, GPT-4o produced
more consistent and concentrated voting patterns than Claude-3.5-Sonnet, and generally reason with
positive sentiments. GPT-4o results are stable across different voting methods. Lastly, while sensitive
to contexts and information, GPT-4o agents are generally aware of the cultural variation across urban
settings, proving generalizability.

The observed variation in LLM behavior across urban contexts and model types bring up key questions
for future research. First, divergence in GPT-4o and Claude-3.5-Sonnet model outcomes deserves
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systematic scrutiny on model alignment and interpretability. Second, verification of the reasoning
output to survey or ethnographic data is crucial to assess how faithfully models simulate actual
community preferences. Lastly, prompt structure and persona design could be explored to enhance
validity of the results.

At their core, LLMs are not just decision aids or behavioral simulators—they are also repositories
of embedded social priors. As such models increasingly participate in policy deliberation, under-
standing—and where necessary, correcting—these priors will be essential to safeguarding democratic
legitimacy, procedural fairness, and value alignment in AI-assisted public planning.
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A Evaluation metrics

A.1 Winner of referendum and policy means of selected policies

In the simulation, voting is carried out in multiple rounds to ensure the results are stable. Accordingly,
we let vj

i = {vji,k} be the vote of agent i ∈ I in round j. In each round, we can determine the winner
and compute the mean values of the polices voted for in a voting method. The policy means can then
be averaged over the rounds.

1. 5-Approval voting: The winner in each round is the policy that receives the most votes, i.e.,
k∗ = argmaxk

∑
i∈I vi,k. We can compute the mean values of all polices that receives at

least one vote as

p̄j
A =

∑
k∈K

∑
i∈I pkv

j
i,k

I
.
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2. All-approval voting: Both the determination of the winner and the calculation of the mean
policy values are identical to Top-5 approval voting.

3. Ranked-choice voting: In ranked-choice voting, the winner is determined using the instant-
runoff process [22], where voters rank 5 policies in order of preference, and the policy with
the fewest rank 1 votes is eliminated in successive rounds until one policy has a majority.
Assuming all agents cast complete ranked ballots of five proposals in referendum round j, let
pj
i,s denote the value vector associated with the policy ranked at position s ∈ {1, 2, 3, 4, 5}

by agent i ∈ I. The mean policy value at rank s in round j is then defined as:

p̄j
s =

1

|I|
∑
i∈I

pj
i,s.

This yields a ranked list of average policy vectors {p̄j
1, p̄

j
2, . . . , p̄

j
5}, which summarizes

aggregate preferences across agents at each rank level.

A.2 Entropy

We measure cross-agent variation in round j via Shannon entropy. Let P j
k be the probability of policy

k being selected. For 5- or All-Approval Voting,

P j
k =

1

|I|
∑
i∈I

vji,k,

and for Ranked-Choice Voting,

P j
k =

1

|I|
∑
i∈I

I(policy k ∈ {kji,1, . . . , k
j
i,5}).

Policy entropy is

Ej = −
∑
k

P j
k log2 P

j
k .

For levers, let P j
x,y be the probability of choosing lever x ∈ {r, t, τ} at level y ∈ {l,m, h}. Lever

entropy is

ejx = −
∑
y

P j
x,y log2 P

j
x,y,

and for ranked votes, conditional on rank s,

ejx|s = −
∑
y

P j
x,y|s log2 P

j
x,y|s.

A.3 VADER sentimental analysis

We apply VADER (Valence Aware Dictionary and sEntiment Reasoner) to measure the sentiment of
LLM-generated rationale texts [15]. VADER assigns a compound score Si ∈ [−1, 1] for each agent i,
computed as

Si =
oi − ni√

(oi − ni)2 + α
= VADER(Ti), α = 15,

where oi and ni are the aggregated positive and negative polarity scores assigned by the VADER
lexicon. α is a normalized constant. We analyze Si across agents to examine sentiment trends and
the strength of preferences in policy deliberations.
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B Available policy package sets

Table 4: Policy and their model-based performance metrics for Chicago.
ID tax rate transit fare driver fee drive_time bus_time drive_cost bus_cost Transit% Utotal Umin Gini

0 0.5 0.75 0 25.5 68.72 5.43 0.75 12.51 865.0972 0.2093 0.1544
1 0.5 0.75 0.5 19.11 57.43 5.93 0.75 39.28 977.3733 0.3212 0.1086
2 0.5 0.75 1 18.02 54.64 6.43 0.75 50.50 973.0646 0.3386 0.0957
3 0.5 1.25 0 23.16 64.12 5.43 1.25 20.98 911.2723 0.2552 0.1365
4 0.5 1.25 0.5 19.01 54.51 5.93 1.25 40.49 978.7941 0.3153 0.1096
5 0.5 1.25 1 17.97 51.99 6.43 1.25 50.98 971.9173 0.3287 0.0991
6 0.5 1.75 0 22.40 60.33 5.43 1.75 23.71 926.1360 0.2617 0.1326
7 0.5 1.75 0.5 19.06 52.48 5.93 1.75 39.89 971.5802 0.3019 0.1149
8 0.5 1.75 1 18.08 50.56 6.43 1.75 50.00 973.1771 0.3111 0.1071
9 1.0 0.75 0 21.72 62.79 5.43 0.75 26.14 934.5490 0.2827 0.1257

10 1.0 0.75 0.5 18.80 55.79 5.93 0.75 42.79 982.4324 0.3287 0.1027
11 1.0 0.75 1 17.80 53.32 6.43 0.75 52.44 978.2246 0.3425 0.0917
12 1.0 1.25 0 21.00 58.80 5.43 1.25 28.72 950.1400 0.2884 0.1219
13 1.0 1.25 0.5 18.76 53.21 5.93 1.25 43.31 980.2506 0.3196 0.1056
14 1.0 1.25 1 17.79 51.00 6.43 1.25 52.56 973.3634 0.3304 0.0964
15 1.0 1.75 0 20.98 56.44 5.43 1.75 28.80 948.0086 0.2799 0.1244
16 1.0 1.75 0.5 18.86 51.47 5.93 1.75 42.21 970.1432 0.3039 0.1123
17 1.0 1.75 1 18.08 51.07 6.43 1.75 50.00 961.5373 0.3061 0.1089
18 1.5 0.75 0 20.07 58.51 5.43 0.75 32.02 965.1986 0.3074 0.1142
19 1.5 0.75 0.5 18.52 54.37 5.93 0.75 45.82 985.7996 0.3340 0.0981
20 1.5 0.75 1 17.58 52.16 6.43 0.75 54.21 981.6979 0.3454 0.0883
21 1.5 1.25 0 19.81 55.50 5.43 1.25 32.94 969.0859 0.3030 0.1150
22 1.5 1.25 0.5 18.52 52.10 5.93 1.25 45.79 980.4515 0.3224 0.1025
23 1.5 1.25 1 17.61 50.14 6.43 1.25 54.02 973.6848 0.3315 0.0942
24 1.5 1.75 0 20.07 53.91 5.43 1.75 32.03 959.1524 0.2888 0.1201
25 1.5 1.75 0.5 18.66 50.61 5.93 1.75 44.28 967.8360 0.3050 0.1102
26 1.5 1.75 1 17.74 48.82 6.43 1.75 52.92 957.9162 0.3126 0.1029

Table 5: Policy and their model-based performance metrics for Houston.
ID tax rate transit fare driver fee drive_time transit time drive cost transit cost Transit % Utotal Umin Gini

0 0.5 0.75 0 25.98 61.55 7.19 0.75 0.00 645.5176 0.1611 0.1416
1 0.5 0.75 0.5 23.47 58.58 7.69 0.75 16.99 669.2392 0.2977 0.1316
2 0.5 0.75 1 22.62 56.06 8.19 0.75 27.06 674.7613 0.3336 0.1208
3 0.5 1.25 0 25.98 61.25 7.19 1.25 0.00 645.5176 0.1662 0.1416
4 0.5 1.25 0.5 23.42 57.54 7.69 1.25 17.53 670.3823 0.2985 0.1309
5 0.5 1.25 1 22.61 55.05 8.19 1.25 27.17 674.3346 0.3297 0.1216
6 0.5 1.75 0 25.98 61.01 7.19 1.75 0.00 645.5176 0.1677 0.1416
7 0.5 1.75 0.5 23.41 56.62 7.69 1.75 17.65 670.2816 0.2958 0.1312
8 0.5 1.75 1 22.64 54.23 8.19 1.75 26.88 672.4483 0.3229 0.1237
9 1.0 0.75 0 25.12 61.23 7.19 0.75 3.48 650.2375 0.2009 0.1426
10 1.0 0.75 0.5 23.17 57.20 7.69 0.75 20.67 672.5462 0.3159 0.1252
11 1.0 0.75 1 22.40 55.07 8.19 0.75 29.39 675.7829 0.3413 0.1168
12 1.0 1.25 0 25.00 60.77 7.19 1.25 3.96 652.0485 0.2068 0.1421
13 1.0 1.25 0.5 23.16 56.22 7.69 1.25 20.87 672.6134 0.3135 0.1255
14 1.0 1.25 1 22.41 54.17 8.19 1.25 29.27 674.4099 0.3356 0.1184
15 1.0 1.75 0 24.91 60.25 7.19 1.75 4.33 653.4359 0.2107 0.1417
16 1.0 1.75 0.5 23.18 55.39 7.69 1.75 20.64 671.3721 0.3080 0.1269
17 1.0 1.75 1 22.46 53.45 8.19 1.75 28.78 671.6410 0.3274 0.1212
18 1.5 0.75 0 23.88 58.93 7.19 0.75 11.37 667.4096 0.2761 0.1324
19 1.5 0.75 0.5 22.92 56.03 7.69 0.75 23.68 674.4277 0.3280 0.1203
20 1.5 0.75 1 22.19 54.20 8.19 0.75 31.47 676.1273 0.3470 0.1135
21 1.5 1.25 0 23.85 58.10 7.19 1.25 11.80 668.2043 0.2773 0.1318
22 1.5 1.25 0.5 22.93 55.14 7.69 1.25 23.58 673.4684 0.3232 0.1215
23 1.5 1.25 1 22.23 53.40 8.19 1.25 31.16 673.8875 0.3400 0.1158
24 1.5 1.75 0 23.84 57.33 7.19 1.75 11.83 668.0523 0.2751 0.1321
25 1.5 1.75 0.5 22.97 54.41 7.69 1.75 23.08 671.2299 0.3157 0.1238
26 1.5 1.75 1 22.29 52.77 8.19 1.75 30.50 670.3263 0.3306 0.1192
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C Transit design model calibration

Table 6: Key statistics produced by the calibrated model vs. empirical data.

Chicago Houston
Data Model Data Model

Transit mode share 30% [8] 29% 4% [5] 4%
Daily ridership 1.47 million [24] 1.46 million 0.29 million [24] 0.30 million
Farebox 43% [24] 44% 12% [24] 11%
Peak hour budget $441/km2 [24] $441/km2 $125/km2 [24] $125/km2

Congestion index 0.77 [10] 0.74 0.79 [10] 0.77

D Voting distribution

Figure 6 compares the full Ranked-Choice voting distributions generated in the referendums using
GPT-4o and Claude-3.5-Sonnet. Each plot contains 27 lattice points representing the policy alterna-
tives, with the size of each point proportional to the number of votes the policy received at a given
rank across ten simulation rounds.

(a) GPT-4o. (b) Claude-3.5-Sonnet.

Figure 6: Ranked-Choice voting outcomes generated by GPT-4o and Claude-3.5-Sonnet. Scenario
CHI-com, ten rounds.

(a) CHI-know GPT-4o. (b) CHI-know Claude-3.5-Sonnet.

Figure 7: Ranked-Choice voting outcomes generated by GPT-4o and Claude-3.5-Sonnet. Scenario
CHI-know, ten rounds.

For CHI-com, the plots confirm that GPT-4o generates a much more concentrated voting distribution
than Claude-3.5-Sonnet, as evidenced by the larger and more clearly defined clusters in Figure 6(a).
Despite the greater dispersion in Claude-3.5-Sonnet’s rankings, the average policy values associated
with rank-1 votes remain similar across the two models, though Claude-3.5-Sonnet shows a slight tilt
toward policies with higher transit fares (see Table 2).

As shown in Figure 7, providing additional contextual information disperses GPT-4o’s voting patterns,
leading to consistently higher entropy values across the board (see Table 2). Interestingly, the
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effect is reversed for Claude-3.5-Sonnet. While less pronounced, the evidence—from the shift in
winning policies (from a 4:6 split to a 2:8 split) and from the entropy values in Table 2—indicates
that Claude-3.5-Sonnet’s voting patterns become more concentrated once contextual information is
introduced.

E Sentiment analysis

To better understand the divergent voting behaviors exhibited by the two LLMs—despite their broadly
similar aggregate preferences—we turn to the sentiments expressed in the agents’ rationale texts.
These rationales, generated as part of the structured response for each agent, provide insight into
the tone and emotional framing of their decision-making. We process these texts using the VADER
sentiment analyzer, which produces a compound score ranging from -1 (highly negative) to 1 (highly
positive) for each community.

(a) GPT-4o. (b) Claude-3.5-Sonnet.

Figure 8: Sentiment scores of rationale texts for CHI-com. GPT-4o vs. Claude-3.5-Sonnet across ten
rounds. The scores range from -1 to 1. Each column corresponds to a distinct community area in
Chicago, ordered by their official community area index used by the City of Chicago.

(a) GPT-4o. (b) Claude-3.5-Sonnet.

Figure 9: Differences in the sentiment scores of rationale texts between CHI-know (with contextual
information) and CHI-com (without). GPT-4o vs. Claude-3.5-Sonnet agents across ten rounds.

As shown in Figure 8, GPT-4o agents exhibit consistently positive sentiment across all communities.
In contrast, Claude-3.5-Sonnet produces a much wider dispersion: while some agents are equally
upbeat, a notable share—nearly one-third—express neutral or negative sentiment in their reasoning.
This discrepancy is striking and may offer a partial explanation for the higher entropy and broader
vote distribution observed with Claude-3.5-Sonnet.

In Figure 9, we compare the differences in sentiment scores between the CHI-know and CHI-
com scenarios. The results highlight distinct ways in which the two models respond to contextual
information. For GPT-4o, the information tends to moderate overly optimistic tones, pushing
sentiment scores downward. While corrections are frequent, the overall variation remains within
a relatively narrow range. GPT-4o thus appears to internalize contextual information in a cautious
manner, limiting drastic changes across community areas. In contrast, Claude-3.5-Sonnet exhibits
much stronger sensitivity to contextual inputs. The sentiment differences are both larger in magnitude
and more polarized, with sharp positive spikes in some community areas and pronounced negative
shifts in others.

While we cannot assert a direct causal link between sentiment and vote outcome, it is reasonable to
hypothesize that sentiment affects how agents weigh trade-offs and interpret community needs. For
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example, a more pessimistic framing might lead agents to avoid policies with perceived downside
risks, whereas a more optimistic tone could favor ambitious, redistributive strategies.

The more uniformly positive tone of GPT-4o raises further questions. Might this reflect a bias
introduced during pretraining—perhaps an overexposure to institutional or promotional language
that emphasizes uplift and resolution? Or could it indicate an under-representation of narratives from
marginalized communities, which may affect how the model perceives hardship that some of the
Chicago communities must have been experiencing? These questions, though beyond the scope of
the present study, point to a broader concern: sentiment in LLM-generated reasoning may not merely
reflect mood but encode deeper assumptions about the world. As such, it deserves closer scrutiny in
future research on model alignment and fairness.

F Regression model selection and summary statistics

We begin with a full set of available sociodemographic variables (e.g. income and race) and travel
attributes (e.g., car ownership and access to transit). Using the voting results simulated by GPT-4o,
we iteratively test the explanatory power of each variable. A variable is retained if it (i) exhibits
statistical significance according to standard t-tests and F-tests and (ii) is not strongly correlated with
one another. We also attempt to balance across different categories so that the selection includes at
least one variable related to either race, car ownership, travel mode, or income. As the final step, we
compute the Variance Inflation Factors (VIFs) of the included variables to rule out the concern for
multicollinearity. Table 7 reports descriptive statistics for the selected variables. Since all variables
are measured in percentages, they are all represented by a real number between 0 and 1 in regression
to avoid the bias from scale differences.

Table 7: Summary statistics of sociodemographic and travel variables.
Variable Description Min Max Mean Std
none-white Percentage of residents of non-White

race
16.00% 99.80% 72.77% 25.80%

number of cars Percentage of households without cars 3.70% 58.00% 24.12% 12.92%
transit commuter % Percentage of commuters traveling by

public transit
4.20% 36.90% 19.50% 7.53%

income < 25k Percentage of households with annual
income below $25k

6.10% 70.00% 23.19% 12.26%

income > 150k Percentage of households with annual
income above $150k

0.60% 49.50% 17.21% 12.26%

17



G Sample prompt

Figure 10: Example Prompt.
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H Sample LLM response in CHI-com scenario

H.1 Sample response of All-Approval by GPT-4o

Community Area: Loop
Chain-of-Thought:

1. Disposable Income: “The Loop is a central business district with a mix of high-income
professionals and lower-income service workers. Disposable income varies significantly,
but there is a substantial portion of residents with higher disposable income."

2. Discretionary Consumption: “Residents in the Loop have a high level of discretionary
consumption due to the presence of numerous dining, entertainment, and shopping options.
However, the cost of living is also high, which can impact discretionary spending."

3. Accessibility: “The Loop has excellent accessibility to resources and services, with extensive
public transit options including buses and trains. Car ownership is less common due to the
availability of public transit and the high cost of parking."

4. Decision Rationale: “Given the Loop’s strong public transit infrastructure and the presence
of high-income residents, policies that enhance transit services while maintaining reasonable
costs are preferred. A lower transit fare and moderate driver fees can encourage transit use
and reduce congestion. A moderate sales tax is acceptable if it significantly improves transit
services, as many residents can absorb the cost. Therefore, policies with a $0.75 fare and a
$0.5 driver fee, combined with a 1% or 1.5% sales tax, are prioritized to balance cost and
service improvement."

Vote Decision: [10, 11, 19, 20]

H.2 Sample response of 5-Approval by GPT-4o

Community Area: Loop
Chain-of-Thought:

1. Disposable Income: “The Loop is a central business district with a mix of high-income
professionals and lower-income service workers. Disposable income varies significantly,
but there is a substantial portion of residents with higher disposable income."

2. Discretionary Consumption: “Residents in the Loop have a higher level of discretionary
consumption due to the presence of numerous dining, entertainment, and shopping options.
However, the cost of living is also high, which affects overall discretionary spending."

3. Accessibility: “The Loop has excellent accessibility to resources and services, with extensive
public transit options including buses and trains. Car ownership is lower compared to other
areas due to the availability of public transit and the high cost of parking."

4. Decision Rationale: “Given the Loop’s strong public transit infrastructure and the mixed
income levels, policies that enhance transit services without significantly increasing costs
for lower-income residents are preferred. A lower transit fare is beneficial for encouraging
public transit use, while a moderate driver fee can help reduce congestion and emissions.
A moderate sales tax is acceptable if it significantly improves transit services. Therefore,
policies with lower fares and moderate driver fees are prioritized, while ensuring the sales
tax does not overly burden residents."

Vote Decision: [1, 4, 10, 13, 19].

H.3 Sample response of ranked-choice voting by GPT-4o

Community Area: Loop
Chain-of-Thought:

1. Disposable Income: “The Loop is a central business district with a mix of high-income
professionals and lower-income service workers. Disposable income varies significantly,
but overall, the area has a relatively high average income."
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2. Discretionary Consumption: “Residents in the Loop have a high level of discretionary
consumption due to the presence of numerous dining, shopping, and entertainment options.
However, the cost of living is also high, which affects disposable income."

3. Accessibility: “The Loop has excellent accessibility to resources and services, with extensive
public transit options including buses and trains. Walking and biking are also viable options
due to the dense urban environment."

4. Decision Rationale: “Given the high accessibility to public transit and the mixed income
levels, the Loop community would benefit from policies that enhance transit services while
keeping costs manageable. Lower transit fares and moderate driver fees can encourage more
transit use, reducing congestion and emissions. A moderate sales tax is acceptable if it
significantly improves transit services. The focus is on balancing cost with improved transit
efficiency and reduced travel times."

Voting Decision: [11, 14, 13, 10, 19]

I Limitations

Our evaluation is limited by the absence of direct human ground truth. We compare LLM-simulated
community preferences against outcomes from a calibrated transportation model, rather than against
empirically observed public opinion, stakeholder input, or stated-preference data from real residents.
This gap reflects a practical challenge: for hypothetical policy scenarios (e.g., introducing a new
driver fee or restructuring fare policy), it is difficult to obtain high-resolution, representative human
responses at city scale, especially across dozens of neighborhoods. As a result, the best we can do is
alignment with a stylized model of welfare.

Another limitation of the current study is setting GPT-4o and Claude-3.5-Sonnet as static “agents,”
sampled deterministically. This preserves tractability and interpretability of the model outcomes but
it suppresses several dynamics that matter in real decision-making. In particular: (1) different models
have different alignment tuning and normative priors, which directly shapes their stated community
preferences; (2) there is no iterative feedback loop, so models do not update their positions in response
to criticism, persuasion, or evidence over time.

J Broader impacts

This work explores a new paradigm for transportation policy design. Traditional approaches rely
on optimization models that encode behavioral assumptions and attempt to identify a single “best”
policy under specified objectives and constraints. Our LLM-based multi-agent framework follows a
similar decision-making logic, but it has the capacity to reason in natural language about trade-offs,
distributional impacts, and local context. As such, it can reveal policy tensions that are difficult to
capture with parametric utility-based formulations.

We view this approach as complementary rather than substitutive. In principle, model-driven perfor-
mance metrics and LLM-simulated community preferences could be used together to iteratively cali-
brate policy choices. With appropriate integration of real public feedback, such as stated-preference
surveys and stakeholder input, the system could support more equitable and more representative
decision-making in practice. LLM-based simulations should be used as a supplementary tool, along-
side transparent reporting, validation against empirical data, and direct engagement with the people
affected.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We outline the scope and contribution of our work. Specifically, we list the
contribution on the last paragraph.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: It’s discussed in Section I.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

21



Justification: There is no theory assumptions nor proofs in this paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: It includes the parameter setting and the selected models with the prompts and
example responses in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The code will be made publicly available upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: It’s stated in the Methodology and Results Section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: It’s stated in Table 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: It’s stated in Section 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We read and followed the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The broader impact is in Section J.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release high risk models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: We do not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not conduct crowdsourcing experiments and research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
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Justification: We deploy multiple autonomous agents instantiated with GPT-4o and Claude-
3.5-Sonnet to represent heterogeneous communities, generate policy rationales, and cast
votes over transportation policy options. These LLM-generated preferences and justifications
form the primary data analyzed in the paper. We describe the prompting framework, agent
design, voting protocol, and evaluation setup in detail in Section 3.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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