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ABSTRACT

Rich Feature Learning (RFL) aims to extract all beneficial features from the train-
ing distribution and has demonstrated significant efficacy in Out-of-Distribution
(OOD) generalization. Despite its success, a precise and comprehensive definition
of “richness” remains elusive. Through an in-depth analysis of RFL algorithms
and empirical risk minimization (ERM), the standard OOD baseline, we identify
feature diversity as the key differentiator driving RFL’s superior OOD performance.
Building on this insight, we formally define rich features as those that exhibit
both high informativeness and diversity. Leveraging this foundation, we propose
Diversity-fOunded Rich fEature lEarniNg (DOREEN), a simple yet highly effective
RFL algorithm. We theoretically demonstrate that DOREEN not only realizes the
benefits of RFL but also addresses the limitations of prior RFL algorithms. Ex-
tensive experiments validate that DOREEN learns richer features and consistently
enhances OOD performance across various OOD objectives.

1 INTRODUCTION

The significant performance degradation of models trained with ERM on OOD data is commonly
attributed to learning spurious features (Arjovsky et al., 2019; Beery et al., 2018). To address this
challenge, there has been a surge of efforts in developing OOD objectives to regularize ERM feature
learning (Arjovsky et al., 2019; Ahuja et al., 2021; Krueger et al., 2021; Shi et al., 2021; Koyama &
Yamaguchi, 2020; Rame et al., 2022a; Chen et al., 2023b). However, such regularization can disrupt
the standard ERM feature learning process, introducing substantial optimization dilemma (Zhang
et al., 2022; Chen et al., 2023a).

To overcome these optimization difficulties, the concept of Rich Feature Learning (RFL) was
introduced (Zhang et al., 2022; Chen et al., 2023a). As illustrated in Figure 1(a), RFL focuses on
training a rich featurizer Φ during Phase 1, which extracts a broader and more comprehensive set of
features from the training data compared to ERM. This featurizer lays the groundwork for Phase 2,
where a simple (often linear) classifier ω is trained on Φ to yield the final model ω · Φ. Despite its
success, RFL still lacks a formal and clear definition of “rich features”.

Our experiments, approached through the lens of diversity, delve into what sets “rich features” apart
from those learned via ERM. Specifically, we assess the diversity of the features learned by ERM
together with two SOTA RFL algorithms: BONSAI (also called RFC) (Zhang et al., 2022) and FeAT
(Chen et al., 2023a) using Vendi Score (Friedman & Dieng, 2022) and examine the corresponding
OOD performance. In Section 3 we first compare the diversity and OOD performance of the features
learned by ERM with those of RFL methods. The results indicate that ERM-trained featurizers
exhibit lower feature diversity and inferior OOD performance compared to RFL methods. Then we
provide a comprehensive analysis of ERM’s training process, observing that the OOD performance
closely aligns with the feature diversity, which initially rises briefly before consistently declining. We
also find that, while the number of learned features increases early in the training, this growth quickly
plateaus and the intrinsic similarity within each feature intensifies over time.

These empirical findings collectively highlight that feature diversity is the primary factor distinguish-
ing RFL from ERM. Consequently, we propose a formal definition of rich features as those that are
both diverse and informative. Based on this theoretical foundation, in Section 4, we first demonstrate
that the existing SOTA RFL methods can fail in scenarios with strong spurious correlations. Then we
propose a simple yet powerful RFL algorithm, DOREEN (Diversity-fOunded Rich fEature lEarniNg).
We show that, by embedding diversity directly into the learning process, DOREEN can integrate
richer features than ERM and effectively addresses scenarios where existing RFL methods struggle.
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Algorithm RFL Diversity Usage Implementation Scope

ERM ✗ ✗ N/A N/A

BONSAI
✓ ✗ N/A N/A(Zhang et al., 2022)

FeAT
✓ ✗ N/A N/A(Chen et al., 2023a)

DiWA
✗ ✓ implicit whole model(Rame et al., 2022b)

Deep Emsemble
✗ ✓ implicit whole model(Lakshminarayanan et al., 2017)

Teney et al. (2022) ✗ ✓ explicit classifier

DivDis
✗ ✓ explicit classfier(Lee et al., 2022)

WLD-Reg
✗ ✓ explicit single featurizerLaakom et al. (2023)

DOREEN (Ours) ✓ ✓ explicit multiple featurizer

(b)
Figure 1: (a) Illustration of DOREEN vs. ERM: DOREEN leverages intra-model and inter-model
diversity losses to encourage the learning of richer features compared to ERM, fostering robust
representations well-suited for OOD training. (b) Overview of diversity-based algorithms for OOD
generalization: Algorithms are classified as “explicitly” if they include a diversity penalty. Only
BONSAI, FeAT, and DOREEN are RFL methods.

DOREEN trains multiple models with identical structures, each optimized with individual ERM losses
and a shared diversity loss that promotes both intra-model and inter-model diversity. The final rich
feature representation is obtained by concatenating the featurizers of the trained models, as illustrated
in Figure 1 (a). Extensive experiments (Section 5) demonstrate that DOREEN not only significantly
outperforms ERM but also matches or surpasses existing RFL algorithms.

We summarize our contributions as follows: 1) Key observation: We identify feature diversity as a
critical factor for cultivating rich features. 2) Novel algorithm and theoretical analysis: Based on the
observation, we propose a formal definition for rich features and introduce a novel RFL algorithm
named DOREEN. We provide theoretical evidence for its ability to incorporate richer features than
ERM and address limitations of existing RFL methods. 3) Empirical validation: We validate DOREEN
across various settings, demonstrating that it significantly improves upon ERM and rivals or surpasses
existing RFL algorithms. Moreover, we verify that DOREEN effectively handles scenarios where
existing RFL methods may encounter challenges.

2 RELATED WORK

OOD generalization. Empirical Risk Minimization (ERM) has long been criticized for its failure
in Out-of-Distribution (OOD) generalization due to its reliance on spurious features. This has
spurred extensive research to develop OOD objectives that foster invariant feature learning robust to
distribution shifts (Arjovsky et al., 2019; Chen et al., 2022; Ahuja et al., 2021; Krueger et al., 2021; Shi
et al., 2021; Koyama & Yamaguchi, 2020; Rame et al., 2022a). However, the optimization challenges
posed by these objectives often surpass the complexities of ERM (Chen et al., 2023b) and introduce
heavy disturbance to the ERM feature learning (Zhang et al., 2022), leading to empirical observations
by Zhang et al. (2022) that question the effectiveness of these OOD objectives in real-world tasks. The
difficulty lies in striking the fine balance: overly restrictive objectives necessitate ERM pre-training
and precise hyperparameter adjustments while overly permissive ones fail to preserve invariant
features, potentially causing model degeneration. Contrasting with these approaches, the concept
of Rich Feature Learning (RFL) has emerged. It aims to develop representations that encapsulate a
broader spectrum of useful features, offering novel insights into enhancing OOD performance.

Rich Feature Learning (RFL). RFL focuses on improving OOD performance by developing feature
representations that are broader and more comprehensive than those learned by ERM. BONSAI
(Zhang et al., 2022) constructs rich representations by iteratively learning new features from incor-
rectly predicted subsets (augmentation sets) while retaining previously learned features that correctly
predict data segments (retention sets). While effective, BONSAI relies on multiple initializations
of the whole network and the final intricate process to integrate insights from all models demands
numerous training epochs to achieve convergence. Alternatively, FeAT (Chen et al., 2023a) efficiently
learn rich representations by optimizing a combined loss that includes ERM loss on the retention
sets and DRO loss (Namkoong & Duchi, 2016) on the augmentation sets. Both BONSAI and FeAT
exhibit superior OOD performance compared to ERM, suggesting their success in fostering richer
representations. However, they lack a precise definition of “richness”, obtaining a broader spectrum
of useful features by training over multiple rounds on reweighted datasets.
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Leveraging Diversity for Enhanced OOD Generalization. Allen-Zhu & Li (2020) argue that
numerous parameter values can adequately explain observations within finite training data which
they call “multi-view” and emphasize the importance of capturing this diversity for robust OOD
performance (Kendall & Gal, 2017). Multi-view structures are common in real-world data—for
example, lions can be identified by either their manes or faces. Capturing these diverse views
facilitates robust predictions, even in test sets that include female lions without manes. There has
been a surge of efforts aimed at leveraging diversity to enhance OOD generalization. Rame et al.
(2022b) propose weight averaging across multiple models to encourage diversity. However, this
approach primarily relies on the randomness of initialization to generate model variance, failing
to explicitly promote diversity among them, which may lead to redundancy (Rame & Cord, 2021).
Teney et al. (2022); Lee et al. (2022) instead opt to capture diverse features by training multiple
classifiers and ensuring they produce distinct predictions. Our approach stands apart by directly
encouraging diversity among feature extractors, enabling the learning of a wider range of features
that generalize to new distributions. Additionally, while Laakom et al. (2023) introduces diversity
within a single feature extractor, our method extends this by incorporating inter-model diversity—an
enhancement both theoretically grounded and empirically validated to yield richer representations
and stronger OOD performance.

Comparison to previous works. A detailed comparison of DOREEN with relevant algorithms is
presented in Figure 1(b). As an RFL method, DOREEN explicitly introduces both inter-model and
intra-model diversity into feature extractors, enabling the development of richer features.

3 MOTIVATING STUDIES AND FEATURIZER RICHNESS

To explore the distinctive aspects of “rich features” compared to those learned by ERM, we initiated
a series of experiments focused on feature diversity utilizing the COLOREDMNIST dataset (Arjovsky
et al., 2019) (denoted as COLOREDMNIST-025). We also encompass a modified version named
COLOREDMNIST-01. The primary distinction between these two datasets lies in the feature-label
correlation: spurious (COLOREDMNIST-025) or invariant (COLOREDMNIST-01) features are better
correlated with labels. Due to the space limit, the results on COLOREDMNIST-01 are shown in
Figure 4. Detailed information about the COLOREDMNIST dataset and other configurations of these
experiments are provided in Appendix C.1.

We begin our analysis by comparing ERM and two RFL algorithms: BONSAI (also known as RFC)
and FeAT. To assess feature diversity, we utilize the Vendi Score, as conceptualized by Friedman &
Dieng (2022). After training the featurizer, we gather its outputs using a small, randomly selected
subset of the training data. These outputs are then employed to construct a similarity matrix that
measures the mutual similarity between every pair of dimensions, from which we calculate the Vendi
Score. Subsequently, we freeze the featurizer and utilize V-REX (Krueger et al., 2021) to train a
classifier atop it to evaluate the OOD performance on test data, in that V-REX is a SOTA OOD
objective and can better showcase the quality of the learned features. The results in Figure 2 (a)
reveal a marked difference in feature diversity: features learned through ERM exhibit significantly
lower diversity compared to those obtained via RFC and FeAT. This, in turn, leads to a notably lower
OOD accuracy for ERM when these features are applied for inference in contrast to the performance
achieved by RFC and FeAT.

We also conducted experiments to track the evolution of the feature diversity and OOD performance
throughout the training process of a featurizer trained with ERM. Over the course of 1,000 epochs, the
featurizer trained with ERM was evaluated every 5 epochs. At these intervals, we recorded the Vendi
Score of the featurizer, then froze it to train a new classifier using V-REX, subsequently measuring
the OOD accuracy. The results of these experiments are detailed in Figure 2 (b). Initially, due to the
random initialization of the featurizer, a wide variety of random features are created, resulting in an
almost-maximal Vendi Score. During the early stages of training, there is a pronounced synchrony
between the rise in feature diversity and the improvement in OOD accuracy, indicating that the
featurizer is rapidly learning diverse and informative features. ERM-trained featurizers transiently
possess high feature diversity and show promising OOD performance. Yet, this diversity diminishes
as training advances, resulting in a parallel decrease in OOD accuracy. We also discern the features
learned by ERM during the training period, the results in Figure 5 further validate the point.

The above experiments highlight the essence of RFL: acquiring diverse representations. This aspect
forms a critical distinction between ERM and RFL algorithms and underpins the success of the latter

3
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Figure 2: The empirical results on COLOREDMNIST-025. Post featurizer training, we measure the
feature diversity using the Vendi Score (vs), freeze the featurizer, and subsequently train a classifier
using V-REX for OOD performance (acc) assessment. (a): The feature diversity (x-axis) and OOD
performance (y-axis) of featurizers trained with ERM and two RFL algorithms over five different
random seeds. (b): ERM training dynamics over three different random seeds. The x-axis illustrates
the evaluation epochs of the featurizer. The y-axis displays the corresponding OOD accuracy and
Vendi Score values at each evaluation epoch.

in achieving superior OOD performance. While existing RFL methods Zhang et al. (2022); Chen
et al. (2023a) rely on iterative training on reweighted datasets to achieve this diversity, we propose
a rigorous formulation of feature richness for featurizers, which naturally induce DOREEN. Due to
space constraints, the theoretical foundations, including the necessary definitions and assumptions,
are provided in Appendix A.

Definition 1 (Feature richness). For two featurizers Φ1 and Φ2 learned on training data, we say Φ1

extracts richer features than Φ2 do iff S(Φ1) ⊃ S(Φ2).

Grounded in the theoretical framework that formally defines “richness”, we analyze the existing RFL
methods and identify potential shortcomings. We then propose a more direct yet efficient approach to
enhance Rich Feature Learning.

4 DOREEN METHOD AND ANALYSIS

DOREEN incorporates feature diversity into the loss function during training. This approach serves as
a more effective means to foster the learning of rich features.

Analysis of existing RFL methods. We first conduct an analysis on the current RFL methods
utilizing our theoretical framework. Due to the methodological similarities within the existing
RFL methods in how they integrate features, we select FeAT Chen et al. (2023a) for our analysis,
revealing that these methods might falter in extreme cases, resulting in a feature extractor Φ where
S(Φ) = S(ΦERM ), fail to integrate richer features.

Proposition 1 (FeAT fails with a small µ). If ΦERM satisfies L∗
Dtr

(ΦERM ) = µ ≤ θ
|Dtr| , FeAT

degrades to ERM. FeAT can not learn ϕ ∈ (Str − S(ΦERM )).

Where θ is introduced in Definition 5 and the detailed proof is provided in Appendix B.2 due to the
space limits. When the existing RFL methods incorporate features strongly correlated with the label,
the augmentation set becomes negligible. This limitation hinders their ability to identify additional
informative features, restricting the development of a richer featurizer according to Definition 1.

The DOREENmethod. The richness formulation naturally induce DOREEN: an approach optimizing
on both informativeness and diversity that involves two models of identical structure and extendable
to multiple models. This process minimizes a composite loss function comprising the ERM loss and
diversity penalty, formally represented as: L̂ptr

(Φk) = Lptr
(Φk)+ LDiv(Φk). The diversity penalty

encompasses the inter-model part (the first term) and the intra-model part (the second term) as:

LDiv(Φk) = α1
k ∗

n∑
i=1

n∑
j=1

1Φ1i=Φ2j
+ α2

k ∗
∑

1≤i<j≤n

1Φki=Φkj (1)
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Algorithm 1: The DOREEN Algorithm
Input :Training data Dtr; models f1 := ω1 ◦ Φ1, f2 := ω2 ◦ Φ2, ... , fk := ωk ◦ Φk; training

epochs e; hyperparameter α;

1 Randomly initialize f1, f2, ..., fk;
2 for i← 1 to e do
3 Obtain LERM for f1, f2, ..., fk;
4 Randomly sample a subset X of Dtr and obtain [Φ1(X ), Φ2(X ), ..., Φk(X )];
5 Compute LDiv for Φ1,Φ2, ...,Φk;
6 Update each fi by minimizing LERM(fi) + α ∗ LDiv(Φi);

Output :Φ = [Φ1 Φ2 ... Φk]

where k ∈ {1, 2} is the index of different models, αi
k, i ∈ {1, 2} are constant hyper-parameters. The

procedure of DOREEN is shown in Algorithm 1.

Due to the non-differentiability of the indicator function in Equation (1), we adopt the Determinantal
Point Process (DPP) Kulesza et al. (2012) as a regularizer Elfeki et al. (2019); Xie et al. (2017) to
promote diversity in the outputs of the featurizer. Alternatives such as the Vendi Score or various
pairwise similarity metrics can also be utilized to assess diversity within the framework of DOREEN.
Users can flexibly tailor the choice of diversity measurement to align with the specific requirements
of their task to ensuring optimal performance. This incorporation of DPP into our loss function
modification effectively ensures diversity in the feature extraction process.

Using Gaussian kernel function, we define the diversity loss based on DPP as:

LDPP(Φ1,Φ2) = Det(K([Φ1(X ) Φ2(X )])) (2)

X = {xi}mi=1 is a randomly sampled set of inputs, then [Φ1(X ) Φ2(X )] is a concatenation of outputs
of Φ1 and Φ2 on X of size m ∗ 2n, K(A = {a1, a2...at}) where ais are column vectors is a kernel
matrix whose size is t ∗ t and K(A)(i,j) = Sim(ai, aj) is the similarity between ai and aj measured
by function Sim(·). Sim(·) must ensure that K is positive (semi-)definite Kulesza et al. (2012).

Then we minimize the loss:

L̂ptr
(ωk,Φk) = LERM(ωk,Φk) + α ∗ LDPP(Φ1,Φ2) (3)

where k is the index of different models, LERM(ω,Φ) = 1
|Dtr|

∑
(xi,yi)∈Dtr

ℓ(ω∗⊤Φ(xi), yi) is a
standard ERM loss computed for two models respectively, LDPP(Φ1,Φ2) is a shared diversity loss of
both models. The analysis of additional computational overhead introduced by the diversity loss is
provided in Appendix B.5.

Improvement over ERM. We compare ΦDOREEN = [Φ1 Φ2] and ΦERM , where we let α1
1 =

α2
1 = 0 for DOREEN and thus Φ1 = ΦERM . The detailed proof is provided in Appendix B.3.

Proposition 2 (Inter-model diversity helps achieve feature richness). When L∗
ptr

(S(Φ1)) =

L∗
ptr

(S(Φ1)∪Φs) = λ for any Φs ⊆ Str, Φ2 can learn ϕ ∈ (Str−S(Φ1)) if α1
2 satisfies α1

2 > δ−λ,
then [Φ1 Φ2] is richer than ΦERM .

Thus, DOREEN is capable of capturing richer features by setting a sufficiently large α1
2. In situations

with correlations strongly correlated with the labels corresponding to a negligible λ, where current
RFL methods may struggle, as discussed earlier, DOREEN can effectively address these challenges by
adjusting α1

2 appropriately. Furthermore, as discussed in Addepalli et al. (2022) and demonstrated by
the empirical findings in Figure 5, ERM is hindered by feature replication. DOREEN can also address
this issue with a relatively large α2

2 (intra-model diversity) in our analysis shown in Appendix B.4.

5 EXPERIMENTS

We first mirror the experiments in Section 3 to assess the feature diversity and OOD performance
during the training process of DOREEN. The results in Figure 3 illustrate that DOREEN exhibits

5
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Table 1: Results on two COLOREDMNIST datasets.
Algorithm COLOREDMNIST-025 COLOREDMNIST-01 COLOREDMNIST-sp

ERM BONSAI FeAT DOREEN ERM BONSAI FeAT DOREEN ERM FeAT DOREEN

ERM 12.40(±0.32) 11.21(±0.49) 17.27(±2.55) 17.65(±4.60) 73.75(±0.49) 70.95(±0.93) 76.05(±1.45) 76.16(±0.54) 10.00 (±0.35) 9.87(±0.43) 18.62(±2.11)
IRMv1 59.81(±4.46) 70.28(±0.72) 70.57(±0.68) 69.18(±0.87) 73.84(±0.56) 76.71(±4.10) 82.33(±1.71) 82.55(±1.88) 48.75(±2.60) 48.88(±2.67) 56.21(±3.21)
V-REX 65.96(±1.29) 70.31(±0.66) 70.82(±0.59) 69.61(±0.75) 81.20(±3.27) 82.61(±1.76) 84.70(±0.69) 85.80(±0.55) 49.01(±3.86) 49.66(±1.40) 56.66(±2.34)
IRMX 64.05(±0.88) 70.46(±0.42) 70.78(±0.61) 69.79(±0.64) 75.97(±0.88) 80.28(±1.62) 84.34(±0.97) 85.53(±0.97) 48.50(±2.80) 48.77(±2.05) 52.30(±1.69)
IB-IRM 59.81(±4.46) 70.28(±0.72) 70.57(±0.68) 69.36(±0.88) 73.84(±0.56) 76.71(±4.10) 82.33(±1.77) 83.00(±2.09) 48.62(±2.61) 48.70(±2.01) 53.50(±1.86)

consistently higher feature diversity and ensures superior OOD performance. Detailed empirical
settings and further analysis are provided in Appendix C.2.
A controlled study. We then conducted a controlled study on the COLOREDMNIST dataset (Arjovsky
et al., 2019) to assess the feature learning capabilities of DOREEN under various conditions. In
addition to the two previously mentioned COLOREDMNIST datasets, we extended our experiments to
COLOREDMNIST-sp characterized by εtr = {(0.1, 0), (0.1, 0)} to represent scenarios with extreme
spurious correlations and corroborate the assertions in Proposition 1. We compared the OOD
performance of the features learned by DOREEN, against those acquired via ERM, BONSAI and FeAT.
Detailed empirical settings are listed in Appendix C.3. As presented in Table 1, DOREEN demonstrates
a notable improvement over ERM in all three datasets. When compared to the two SOTA RFL
algorithms, DOREEN exhibits a slightly lower performance on COLOREDMNIST-025 but surpasses
both FeAT and BONSAI on COLOREDMNIST-01 and COLOREDMNIST-sp, achieving the highest
overall average performance across the three datasets. Notably, in scenarios with radical spurious
correlations, BONSAI encounters issues due to an empty augmentation set. FeAT’s performance
aligns closely with that of ERM. This is consistent with our theoretical findings in Proposition 1
and confirms our concerns about the dependency of existing RFL methods on the quality of the
augmentation set. In contrast, DOREEN shows marked improvements by leveraging the multi-
view structure of the data, effectively learns richer features, demonstrating significantly enhanced
performance. We also conduct comparison between DOREEN and other OOD methods incorporating
diversity techniques: Deep Ensemble, DIWA, WLD-Reg. The results in Table 5 illustrate that directly
encouraging diversity among feature extractors help to yield richer representations and stronger OOD
performance. Detailed empirical settings, more empirical results and comprehensive analysis and are
listed in Appendix C.3.2.

Table 2: OOD performances on the WILDS benchmark.

Dataset OOD Training ERM BONSAI FeAT DOREEN

CAMELYON17
V-REX 71.60 (±7.88) 76.39 (±5.32) 75.12 (±6.55) 76.84(±5.88)

GroupDRO 76.09 (±6.46) 72.82 (±5.37) 80.41 (±3.30) 81.64(±4.38)
DFR 95.14 (±1.96) 95.17 (±0.18) 95.28 (±0.19) 96.90(±0.10)

FMOW
V-REX 33.06 (±0.46) 33.17 (±1.26) 34.00 (±0.71) 34.60 (±0.62)

GroupDRO 33.03 (±0.52) 33.12 (±1.20) 34.04 (±0.70) 35.21 (±0.30)
DFR 41.96 (±1.90) 43.26 (±0.82) 43.54 (±1.26) 45.06(±1.78)

Feature learning with realistic benchmarks. Finally, we compared DOREEN with ERM, BONSAI
and FeAT in 2 real-world OOD generalization datasets: Camelyon17 Bandi et al. (2018) and FMoW
Christie et al. (2018) that contain complicated features and notable distribution shifts. More details
about the datasets and empirical settings can be found in Appendix C.4. The results, shown in Table 2,
demonstrate that DOREEN consistently outperforms ERM and the two SOTA RFL methods across
both datasets and all three OOD objectives, validating the effectiveness of DOREEN in real-world
scenarios. We further use Integrated Gradients Sundararajan et al. (2017) to assess the feature learning
performance of different algorithms. The visualization shown in Figure 8 demonstrate that DOREEN
is able to learn more meaningful and diverse features than ERM, BONSAI and FeAT.

6 CONCLUSION

In this study, we have undertaken a thorough investigation into the RFL methods and ERM, highlight-
ing the critical role of diversity in Rich Feature Learning. Our study not only presents a clear and
formal definition of “rich features” – characterized as diverse and informative – but also introduces
DOREEN, a novel approach designed to enhance feature diversity and thereby facilitate Rich Feature
Learning. Theoretically, we demonstrate that DOREEN effectively incorporate richer features than
ERM. Furthermore, we identify and empirically validate that the existing RFL methods falter when
confronted with radical spurious correlations while DOREEN efficiently handle such challenging
scenarios. In our extensive experiments conducted across both controlled and realistic settings, the
results consistently illustrate the superior performance of DOREEN.
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A THEORETICAL FOUNDATION OF FEATURE RICHNESS

We start by establishing the foundational theoretical framework following the setups by Allen-Zhu &
Li (2020); Zhang & Bottou (2023).

Definition 2 (Feature & Model Zhang & Bottou (2023)). Let (x, y) ∼ P be a data point from
the distribution P . We call feature a function x 7→ ϕ(x) ∈ R. A deep learning model is denoted
as f = ω⊤Φ. Φ = [ϕ1, ϕ2, ...ϕn]

⊤ ∈ Rn is a featurizer where ϕis are features and exploited
with a linear classifier ω = [ω1, ω2, ...ωn]

⊤ ∈ Rn. For a input x, the output of the model f is
f(x) = ω⊤Φ(x) =

∑n
i=1 ωiϕi(x). The expected loss of a model f with a convex loss ℓ on data from

distribution P is:

LP (f) = LP (ω,Φ) = E(x,y)∼P [ℓ(ω
⊤Φ(x), y)]. (4)

And we make the following assumption about the optimality of the classifier based on the features.

Assumption 1 (Optimal classifier). Given a featurizer Φ, we assume the optimal classifier
ω∗ = argmin

ω
Lp(ω,Φ) is achievable by convex optimization methods. We use L∗

p(Φ) to denote

min
ω
Lp(ω,Φ) for convenience.

In this study, we focus on developing a richer featurizer, thus we will directly adopt the optimal
classifier for clarity.

Building on the concept of “multi-view structure” Allen-Zhu & Li (2020), we postulate the existence
of multiple “informative” features within the given training data distribution. For instance, when
identifying whether an animal is an elephant, we might extract the shape features to observe the trunk
and large ear flaps. We can also examine the texture and color features to assess the distinctive tough
but sensitive grey skin. We define “informative” as follows.

Definition 3 (Informative features). For a given training data distribution Ptr, there exists an set of
underlying and informative features denoted as Str = {ϕ∗

1, ϕ
∗
2, ..., ϕ

∗
t } where L∗

ptr
(ϕ∗

i ) ≤ δ, ∀i. δ is
a constant helping to distinguish whether a feature is informative or not.

Meanwhile, it is also natural to establish the following assumption about the classifier weights onto
the uninformative and unseen features that have not appeared during training.

Assumption 2. With the optimal classifier, f(x) = ω⊤Φ(x) =
∑

ϕ∈Str
ωϕϕ(x), which means

ωi = 0 if ϕi /∈ Str. Intuitively, the classifier would not assign weights on uninformative features.
Moreover, a ϕj ∈ Str would get ωj ̸= 0, while the later repeated ϕjs in the learned featurizer Φ
would get zero weights.

We then formalize a proxy metric for the informativity of a featurizer, measured by empirical risks.

Definition 4 (Set of informative & non-redundant features of a learned featurizer). Suppose a learned
featurizer Φ = [ϕ̃1, ..., ϕ̃k, ϕ1, ϕ1, ϕ2, ϕ2, ...ϕm]⊤ where ∀i, ϕ̃i /∈ Str, ϕi ∈ Str. We then define
S(Φ) = {ϕ1, ϕ2, ...ϕm}, representing the features extracted by Φ that are included in Str. According
to Assumption 1, we further say L∗

p(Φ) = L∗
p(S(Φ)).

With the aforementioned setup, for the informative features (Str = {ϕ∗
1, ϕ

∗
2, ..., ϕ

∗
t }), there may

exist some linear combinations ϕc =
∑t

i=1 αi ∗ ϕ∗
i satisfies L∗

ptr
(ϕc) ≤ δ. (The complete proof is

available in Appendix B.1). If a feature extractor Φc learns ϕc, we let S(Φc) = {ϕi|αi ̸= 0}. When
a feature extractor learns their linear combination, we believe it have the potential to be distinguished
into individual informative features.

Then, based on the empirical observation above, we can establish a formal definition of feature
richness.

B PROOFS

We first introduce the notations used for theoretical analysis in Table 3
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Table 3: Notations for key concepts involved in this paper

Symbols Definitions
x ∈ Rm A single input
X = {(xi, yi)}Ni=1 A set of inputs
ϕ : Rm → R A single feature
n the hidden dimension
Φ = [ϕ1, ϕ2, ...ϕn]

⊤ : Rm → Rn A featurizer
Φi The ith feature in featurizer Φ
ω = [ω1, ω2, ...ωn]

⊤ ∈ Rn A linear classifier
f = ω ◦ Φ : Rm → R A predictor (model)
P A certain data distribution
Ptr The training data distribution
ℓ : R× R→ R A convex loss function
LP (·) The expected loss of a model on data distribution P
ω∗ The optimal classifier
L∗
p(Φ) The expected loss of featurizer Φ on distribution P with the optimal classifier

Sim(, ) ∈ R the similarity between two features
Str The set of informative features under the training distribution
S(Φ) The set of features extracted by featurizer Φ that are included in Str
LDiv The diversity penalty
α1
k The penalty weight of inter-model diversity penalty of the kth model

α2
k The penalty weight of intra-model diversity penalty of the kth model
LDPP The diversity penalty based on DPP

B.1 THE LINEAR COMBINATION OF THE INFORMATIVE FEATURES.

We first assume the utilized loss ℓ(·) is convex and define the addition as well as scalar multiplication
on features as follows:

◦ Addition: for features ϕ1, ϕ2, (ϕ1 + ϕ2)(x) = ϕ1(x) + ϕ2(x),∀x ∈ Rm.

◦ Scalar multiplication: for feature ϕ, (λ · ϕ)(x) = λ · ϕ(x),∀x ∈ Rm.

Then, for the informative features (Str = {ϕ∗
1, ϕ

∗
2, ..., ϕ

∗
t }), there may exist some linear combinations

ϕc =
∑t

i=1 αi ∗ ϕ∗
i satisfies L∗

ptr
(ϕc) ≤ δ. If a feature extractor Φc learns ϕc, we let S(Φc) =

{ϕi|αi ̸= 0}. That is, when a feature extractor learns their linear combination, we believe it have the
potential to be distinguished into individual informative features.

Proof. We proved the case with two informative features and the result can be easily extended into
the case with multiple informative features. For ϕ1, ϕ2 ∈ Str:

◦ Scalar multiplication: assume that argmin
ω
LPtr (ω, ϕ) = ω∗, then for any real number λ:

L∗
ptr

(λ ∗ ϕ) = LPtr (
ω∗

λ
, ϕ) = δ

◦ Addition: assume that argmin
ω
LPtr

(ω, ϕ1) = ω1, argmin
ω
LPtr

(ω, ϕ2) = ω2. we have:

L∗
ptr

(ϕ1 + ϕ2) ≤ LPtr
(

ω1ω2

ω1 + ω2
, ϕ1 + ϕ2) = E(x,y)∼Ptr

[ℓ(
ω1ω2

ω1 + ω2
(ϕ1 + ϕ2)(x), y)]

= E(x,y)∼Ptr
[ℓ(

ω2

ω1 + ω2
ω1 ∗ ϕ1(x) +

ω1

ω1 + ω2
ω2 ∗ ϕ2(x), y)]
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If ω1, ω2 satisfy that 0 ≤ ω2

ω1+ω2
≤ 1, since ℓ(·) is a convex function, we will have:

L∗
ptr

(ϕ1 + ϕ2) ≤
ω2

ω1 + ω2
E(x,y)∼Ptr

[ℓ(ω1 ∗ ϕ1(x), y)]

+
ω1

ω1 + ω2
E(x,y)∼Ptr

[ℓ(ω2 ∗ ϕ2(x), y)]

=
ω2

ω1 + ω2
∗ L∗

ptr
(ϕ1) +

ω1

ω1 + ω2
∗ L∗

ptr
(ϕ2)

≤ ω2

ω1 + ω2
∗ δ + ω1

ω1 + ω2
∗ δ = δ

Before we delve into the analysis of DOREEN, we first present two lemmas about inter-model
and intra-model diversity to help with the following proof. Suppose a learned featurizer
Φ = [ϕ̃1, ..., ϕ̃k, ϕ1, ϕ1, ϕ2, ϕ2, ...ϕm]⊤ is of length n, we let Φ(x) be indexed as Φ(x)1 =

ϕ̃1(x),Φ(x)n = ϕm(x). With two feature extractors Φ1,Φ2, we divide the diversity penalty
LDiv(Φk) into the inter-model part div(Φ1,Φ2) = α1

k ∗
∑n

i=1

∑n
j=1 1Φ1i=Φ2j

and intra-model
part div(Φk) = α2

k ∗
∑

1≤i<j≤n 1Φki=Φkj
.

Lemma B.1. div(Φ1,Φ2) = div(Φ1,Φ2/Φ2t) + div(Φ1,Φ2t). Here Φ2/Φ2t is a featurizer of
dimension n-1, without the t-th feature in Φ2, and we slightly abuse Φ2t in div(Φ1,Φ2t) to mean a
featurizer of dimension 1 with only the t-th feature in Φ2.

Proof.

div(Φ1,Φ2) =
∑

1≤i≤n

∑
1≤j≤n

1Φ1i=Φ2j

=
∑

1≤i≤n

∑
1≤j≤n

(1j=t + 1j ̸=t)1Φ1i=Φ2j

=
∑

1≤i≤n

∑
1≤j≤n

1j ̸=t1Φ1i=Φ2j
+

∑
1≤i≤n

∑
1≤j≤n

1j=t1Φ1i=Φ2j

=
∑

1≤i≤n

∑
1≤j≤n,j ̸=t

1Φ1i=Φ2j
+

∑
1≤i≤n

1Φ1i=Φ2j

= div(Φ1,Φ2/Φ2t) + div(Φ1,Φ2t).

Lemma B.2. Given one featurizer Φ, the diversity penalty div(Φ) = div(Φ/Φt) + div(Φ/Φt,Φt).
Here Φ/Φt is a featurizer of dimension n-1, without the t-th feature in Φ, and we slightly abuse the
second Φt in div(Φ/Φt,Φt) to mean a featurizer of dimension 1 with only the t-th feature of Φ.

Proof.

div(Φ) =
∑

1≤i<j≤n

1Φi=Φj

=
∑

1≤i<j≤n

(1j=t + 1j ̸=t)1Φi=Φj

=
∑

1≤i<j≤n

1j=t1Φi=Φj
+

∑
1≤i<j≤n

(1i=t + 1i̸=t)1j ̸=t1Φi=Φj

=
∑

1≤i<t

1Φi=Φt +
∑

1≤i<j≤n

1i=t1j ̸=t1Φi=Φj +
∑

1≤i<j≤n

1i ̸=t1j ̸=t1Φi=Φj

=
∑

1≤i<t

1Φi=Φt
+

∑
t<j≤n

1Φt=Φj
+

∑
1≤i<j≤n

1i̸=t1j ̸=t1Φi=Φj

= div(Φ/Φt,Φt) + div(Φ/Φt).
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B.2 PROOF OF PROPOSITION 1

In the kth training round, FeAT obtain Φk by minimizing:

LFeAT = max
Da

i ∈Ga
LDa

i
(w⊤

k Φ) + λ
∑

Dr
i ∈Gr

LDr
i
(w⊤

i Φ) (5)

where G = {Gr, Ga} is a collection of datasets, divided into 2k subsets. The group for new feature
augmentation is Ga = {Da

i }
k−1
i=0 , where Da

j represents the subset of data points incorrectly predicted
by the model in (j − 1)th round and the initial augmentation set Da

0 corresponds to the entire
training set Dtr. Conversely, Gr = {Dr

j}
k−1
j=0 comprises subsets of correctly predicted data for

retaining features already learned and Dr
0 is initially empty. The loss on subset D is defined as

LD(w⊤Φ) = 1
|D|

∑
(xi,yi)∈D ℓ(ω⊤Φ(xi), yi). We use L∗

D(Φ) = min
ω
LD(ω,Φ) to denote the loss

with the optimal classifier (Assumption 1) in set D. In the first round, FeAT in fact conduct ERM
training and Φ1 = ΦERM .

Before we start the proof, we need another definition as follows.

Definition 5 (Correct prediction). For a single data point xi and its corresponding label yi, we say
the model f = ω⊤Φ correctly predict on xi if ℓ(ω⊤Φ(xi), yi) ≤ θ.

Then if ΦERM satisfies L∗
Dtr

(ΦERM ) = µ ≤ θ
|Dtr| , FeAT degrades to ERM and can not learn

ϕ ∈ (Str − S(ΦERM )).

Proof. Assume there exists data points incorrectly predicted by ΦERM together with the best classifier
ω∗, then L∗

Dtr
(ΦERM ) = 1

|Dtr|
∑

(xi,yi)∈Dtr
ℓ(ω∗⊤Φ(xi), yi) = µ would be larger than θ

|Dtr| ,
contradictory to µ ≤ θ

|Dtr| , thus we have Da
1 = ∅ as Da

j represents the subset of data points that are
incorrectly predicted by the model in the (j − 1)th round.

When Da
1 = ∅, in the second round, Equation (5) degrades to :

LFeAT = (1 + λ)LDtr
(Φ) = (1 + λ)LERM

Then FeAT fails to learn richer featurizer than ERM in the later rounds whatever rounds it runs.

B.3 PROOF OF PROPOSITION 2

For ERM, If the current featurizer Φ̄ satisfying L∗
ptr

(S(Φ̄)) = L∗
ptr

(S(Φ̄) ∪ Φs) = λ, ∀Φs ⊆ Str,
then ERM can not learn ϕ ∈ (Str − S(Φ̄)). Intuitively, ERM rapidly acquires simple features that
are effective on the training set. However, if these simple features exhibit a strong correlation with
the labels within the training distribution, ERM may neglect to learn additional, more complex but
beneficial features.

(Inter-model diversity helps incorporate new informative features) When L∗
ptr

(S(Φ1)) =

L∗
ptr

(S(Φ1)∪Φs) = λ for any Φs ⊆ Str, Φ2 can learn ϕ ∈ (Str−S(Φ1)) if α1
2 satisfies α1

2 > δ−λ,
then [Φ1 Φ2] is richer than ΦERM .

Proof. For simplicity, we assume now S(Φ2) = ∅, which means current Φ2 is filled with uninforma-
tive features. we have:

◦ L∗
ptr

(ϕ̃) ≥ λ, ∀ϕ̃ ∈ S(Φ1), λ ≤ δ.

δ ≥ L∗
ptr

(ϕ̃) = min
ω1

Lptr
(ω1, ϕ̃)

≥ min
ω=ω1,...,ωm

Lptr
(ω, S(Φ1) = {ϕ̃, ϕ̃1, . . . , ϕ̃m−1})

= L∗
ptr

(S(Φ1)) = λ.

◦ L∗
ptr

(ϕ) ≤ δ, ∀ϕ ∈ (Str − S(Φ1)), according to Definition 3 .
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Then for Φ2, the loss by Equation (1) is:

◦ when it learns ϕ̃ ∈ S(Φ1)

L̂ptr
(Φ2) = L∗

ptr
(Φ2) + α1

2 · div(Φ1,Φ2) + α2
2 · div(Φ2)

= L∗
ptr

(ϕ̃) + α1
2 ·

(
div(Φ1,Φ2/ϕ̃) + div(Φ1, ϕ̃)

)
+ α2

2 ·
(
div(Φ2/ϕ̃) + div(Φ2/ϕ̃, ϕ̃)

)
= L∗

ptr
(ϕ̃) + α1

2 · (div(Φ1,Φ2/ϕ̃) + 1) + α2
2 · (div(Φ2/ϕ̃) + 0)

= L∗
ptr

(ϕ̃) + α1
2 + α1

2 · div(Φ1,Φ2/ϕ̃) + α2
2 · div(Φ2/ϕ̃)

Let α1
2 ∗ div(Φ1,Φ2/ϕ̃) + α2

2 ∗ div(Φ2/ϕ̃) = η, we have:

L̂ptr (Φ2) ≥ λ+ α1
2 + η

◦ when it learns ϕ ∈ (Str − S(Φ1))

L̂ptr
(Φ2) = L∗

ptr
(Φ2) + α1

2 ∗ div(Φ1,Φ2) + α2
2 ∗ div(Φ2)

= L∗
ptr

(ϕ) + α1
2 ∗ (div(Φ1,Φ2/ϕ) + div(Φ1, ϕ)) + α2

2 ∗ (div(Φ2/ϕ) + div(Φ2/ϕ, ϕ))

= L∗
ptr

(ϕ) + α1
2 ∗ (div(Φ1,Φ2/ϕ) + 0) + α2

2 ∗ (div(Φ2/ϕ) + 0)

= L∗
ptr

(ϕ) + α1
2 ∗ div(Φ1,Φ2/ϕ) + α2

2 ∗ div(Φ2/ϕ)

= L∗
ptr

(ϕ) + η

≤ δ + η

◦ when it learns ϕ̂ /∈ Str

L̂ptr
(Φ2) = L∗

ptr
(Φ2) + α1

2 ∗ div(Φ1,Φ2) + α2
2 ∗ div(Φ2)

= L∗
ptr

(ϕ̂) + α1
2 ∗ (div(Φ1,Φ2/ϕ̂) + div(Φ1, ϕ̂)) + α2

2 ∗ (div(Φ2/ϕ̂) + div(Φ2/ϕ̂, ϕ̂))

≥ L∗
ptr

(ϕ̂) + α1
2 ∗ (div(Φ1,Φ2/ϕ̂) + 0) + α2

2 ∗ (div(Φ2/ϕ̂) + 0)

≥ L∗
ptr

(ϕ̂) + α1
2 ∗ div(Φ1,Φ2/ϕ̂) + α2

2 ∗ div(Φ2/ϕ̂)

≥ L∗
ptr

(ϕ̂) + η

> δ + η

Then Φ2 will learn ϕ ∈ (Str − S(Φ1)) if δ + η < λ+ α1
2 + η, i.e., α1

2 > δ − λ ≥ 0.

B.4 INTRA-MODEL DIVERSITY HELPS MINIGATE FEATURE REPLICATION

We useR(Φ, ϕ) to denote the times that ϕ replicates in Φ,R(Φ, ϕ) ≥ 1 for ϕ ∈ Φ andR(Φ, ϕ) = 0
for ϕ /∈ Φ. Appendix B.4 depicts that the frequency of replication across different features does not
exhibit significant variation.
Proposition 3 (Intra-model diversity helps minigate feature replication). max

ϕ
R(Φ2, ϕ) −

min
ϕ
R(Φ2, ϕ) ≤ 2 if α2

2 > n ∗ α1
2.

Proof. Assume that there are feature replication in Φ1 and max
ϕ
R(Φ1, ϕ) = q ≤ n, there exists two

features ϕ and ϕ̃ such thatR(Φ, ϕ)−R(Φ, ϕ̃) = k ≥ 2 in the current featurizer Φ, now we look at
another featurizer Φ̂ which is the same as Φ but substitute one ϕ with ϕ̃.

L̂ptr (Φ̂) = L∗
ptr

(S(Φ̂)) + α1
2 ∗ div(Φ1, Φ̂) + α2

2 ∗ div(Φ̂)

= L∗
ptr

(S(Φ̂)) + α1
2 ∗ (div(Φ1, Φ̂/ϕ̃) + div(Φ1, ϕ̃)) + α2

2 ∗ (div(Φ̂/ϕ̃) + div(Φ̂/ϕ̃, /ϕ̃))

= α1
2 ∗ div(Φ1, ϕ̃) + α2

2 ∗ div(Φ̂/ϕ̃, /ϕ̃) + η1

13
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where η1 = L∗
ptr

(S(Φ̂)) + α1
2 ∗ div(Φ1, Φ̂/ϕ̃) + α2

2 ∗ div(Φ̂/ϕ̃).
L̂ptr (Φ) = L∗

ptr
(S(Φ)) + α1

2 ∗ div(Φ1,Φ) + α2
2 ∗ div(Φ)

= L∗
ptr

(S(Φ)) + α1
2 ∗ (div(Φ1,Φ/ϕ) + div(Φ1, ϕ)) + α2

2 ∗ (div(Φ/ϕ) + div(Φ/ϕ, /ϕ))

= α1
2 ∗ div(Φ1, ϕ) + α2

2 ∗ div(Φ/ϕ, /ϕ) + η2

where η2 = L∗
ptr

(S(Φ)) + α1
2 ∗ div(Φ1,Φ/ϕ) + α2

2 ∗ div(Φ/ϕ).
Then

L̂ptr
(Φ̂)− L̂ptr

(Φ) = α1
2 ∗ (div(Φ1, ϕ̃)− div(Φ1, ϕ)) + α2

2 ∗ (div(Φ̂/ϕ̃, /ϕ̃)− div(Φ/ϕ, /ϕ)) + η1 − η2

We have η1 − η2 = 0 since:

◦ L∗
ptr

(S(Φ)) = L∗
ptr

(S(Φ̂)) according to Assumption 2

◦ Φ/ϕ = Φ̂/ϕ̃

Thus
L̂ptr

(Φ̂)− L̂ptr
(Φ) = α1

2 ∗ (div(Φ1, ϕ̃)− div(Φ1, ϕ)) + α2
2 ∗ (div(Φ̂/ϕ̃, /ϕ̃)− div(Φ/ϕ, /ϕ))

≤ α1
2 ∗ q + α2

2 ∗ (1− k)

let L̂ptr
(Φ̂)− L̂ptr

(Φ) < 0, we get α2
2 >

q∗α1
2

k−1 , since q ≤ n,k ≥ 2, we finally get α2
2 > n ∗ α1

2.

B.5 ADDITIONAL COMPUTATIONAL OVERHEAD OF THE DIVERSITY LOSS

For simplicity, let’s consider the computational overhead of a MLP with N hidden layers. Assume
the input layer has dimension n0, the ith hidden layer has dimension ni, and the output layer has
dimension nN+1. During a single training iteration over m examples, the time complexity for
calculating the ERM loss is O(m

∑N+1
i=1 nini−1).

Directly leveraging the outputs from the penultimate layer across a tiny training subset of size k, the
diversity loss calculation breaks down into two stages: constructing the similarity matrix, which is
O(n2

Nk), and calculating the determinant of this matrix by computing and multiplying its eigenvalues,
which is O(n3

N ). If we choose k to be roughly equal to nN , then the complexity for diversity loss
computation simplifies to O(n3

N ). In practical scenarios where m is much larger than nN , the
incremental computational cost of the diversity loss is almost negligible.

C DETAILED EXPERIMENTS

In this section, we provide more details and the implementation, evaluation and hyperparameter
setups in complementary to the experiments in Section 3 and Section 5.

C.1 MORE DETAILS ABOUT THE EXPERIMENTS IN THE MOTIVATING STUDIES

Vendi Score. Let x1, x2, ..., xn ∈ X denote a collection of samples, k : X × X 7→ R be a
positive semidefinite similarity function, and k(x, x) = 1 for all x, K ∈ Rn×n is a kernel ma-
trix with entry Ki,j = k(xi, xj). Then the Vendi Score (VS) is defined as V Sk(x1, . . . , xn) =
exp (−

∑n
i=1 λi log λi) where λ1, λ2, ..., λn are the eigenvalues of K/n.

Datasets. We conducted experiments on the COLOREDMNIST dataset (Arjovsky et al.,
2019), including the original version where εtr = {(0.25, 0.1), (0.25, 0.2)}(denoted as as
COLOREDMNIST-025) and a modified COLOREDMNIST (denoted as COLOREDMNIST-01) with
εtr = {(0.1, 0.2), (0.1, 0.25)}. The COLOREDMNIST-025 is generated as follows: first, assign
a preliminary binary label ỹ to the image based on the digit: ỹ = 0 for digits 0-4 and ỹ = 1 for
5-9. Second, obtain the final label y by flipping ỹ with probability 0.25. Third, sample the color
id z by flipping y with probability pe (0.1/0.2). The distinction between the two versions of the
COLOREDMNIST dataset lies in the feature-label correlation: spurious (COLOREDMNIST-025) or
invariant(COLOREDMNIST-01) features are better correlated with labels.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

                      

     

   

   

   

   

   

   

 
 
 

  

   

         

          

 

   

   

   

   

   

                      

     

    

    

    

    

    

    

    

    

    

 
 
 

  

   

         

          

 

   

   

   

   

   

(b) COLOREDMNIST-01(a) COLOREDMNIST-025

Figure 3: Comparison between DOREEN and ensemble-based methods. The x-axis illustrates the
evaluation epochs of the featurizer. The y-axis displays the OOD accuracy (acc) and Vendi Score
(vs). The acc/vs-DOREEN: Training dynamics of DOREEN. The acc/vs: Training dynamics of the
concatenation of two ERM models with different random initializations.

Architecture and optimization. We use a 4-Layer MLP with a hidden dimension of 512 as the
backbone model for all methods, where we take the first 3 layers as the featurizer and the last layer as
the classifier, following the common practice (Gulrajani & Lopez-Paz, 2020; Koh et al., 2021). For
the optimization of the models, we use the Adam (Kingma & Ba, 2014) optimizer with a learning
rate of 1e− 3 and a weight decay of 1e− 3. For the model pretrained by ERM, BONSAI and FeAT,
we use V-REX (Krueger et al., 2021) to train the classifier and report results.

Implementation of feature learning and OOD training methods. For the common feature
learning protocol with ERM and two SOTA RFL methods: BONSAI (Zhang et al., 2022), FeAT
(Chen et al., 2023a), our implementation follows (Chen et al., 2023a). For experiments in Section 3,
we use V-REX (Krueger et al., 2021) as the OOD objective to apply the OOD regularization and
adopt the implementations from (Zhang et al., 2022).

C.2 MORE DETAILS ABOUT THE EXPERIMENTS ASSESSING THE FEATURE DIVERSITY AND
OOD PERFORMANCE OF DOREEN

Experimental setups. We conduct experiments to evaluate the feature diversity and OOD accuracy
during the training process of DOREEN. The experimental setup mirrors that of the experiments in
Section 3 to track the evolution of the feature diversity and OOD performance throughout the training
process of a featurizer trained with ERM, but we train two models, each with a dimension of 256,
and then concatenate them to form a 512-dimensional model in DOREEN.

Results. The results in Figure 3 illustrate that DOREEN exhibits consistently higher feature diversity
and ensures superior OOD performance. Notably, DOREEN not only matches or surpasses the peak
OOD accuracy of ERM but also maintains this performance across a broader range of training epochs.
This stability provides a wider margin for effective model selection. In contrast, Figure 2 (b) reveals
that ERM reaches its peak OOD accuracy only during a brief phase, making it challenging to precisely
pinpoint and leverage its optimal performance window.

To further analyze the impact of explicitly promoting diversity, we conducted an ablation study by
training two ERM models with different random initializations, each with a hidden dimension of 256,
and concatenating them to assess the feature diversity and OOD performance. As shown in Figure 3,
the concatenated ERM model outperforms a single ERM model but still falls short of the stability
exhibited by DOREEN. This deficiency arises from the limited diversity achieved solely through
different random initializations, which does not fundamentally alter ERM’s inherent characteristics.
Throughout the training process, the feature diversity of the learned representations consistently
decrease. This highlights the effectiveness and superiority of directly integrating feature diversity
into DOREEN.
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Table 4: Number of epochs in each round of various feature learning algorithms.

COLOREDMNIST-025 Round-1 Round-2 Round-3 Syn. Round COLOREDMNIST-01 Round-1 Round-2 Round-3 Syn. Round COLOREDMNIST-sp Round-1 Round-2

ERM 150 - - - ERM 500 - - - ERM 150 -
BONSAI 50 150 - 500 BONSAI 150 400 - 500 BONSAI ✕ ✕

FeAT 150 150 - - FeAT 150 150 150 - FeAT 150 150
DOREEN 300 - - - DOREEN 500 - - - DOREEN 150 -

C.3 MORE DETAILS ABOUT THE EXPERIMENTS IN THE CONTROLLED STUDY

In this section we show the detailed empirical settings and more results in the controlled study on
COLOREDMNIST. We conducted all the experiments utilizing NVIDIA GeForce RTX 3090.

C.3.1 DETAILS ABOUT THE EXPERIMENTAL SETTINGS

As for dataset, in addition to the original version where εtr = {(0.25, 0.1), (0.25, 0.2)}(denoted
as as COLOREDMNIST-025) and a modified COLOREDMNIST (denoted as COLOREDMNIST-01)
with εtr = {(0.1, 0.2), (0.1, 0.25)}, we further utilize COLOREDMNIST-sp, characterized by
εtr = {(0.1, 0), (0.1, 0)}, to address scenarios with extreme spurious correlations and corrobo-
rate the assertions in Proposition 1. For architecture and optimization, the settings are the same as
that of Appendix C.1, except that we use a hidden dimension of 256 as in (Chen et al., 2023a) to
obtain a fair comparison.

Implementation of feature learning and OOD training methods. For the common feature
learning protocol with ERM and two SOTA RFL methods: BONSAI (Zhang et al., 2022), FeAT
(Chen et al., 2023a), our implementation follows (Chen et al., 2023a). For OOD objectives, we adopt
the implementations from (Zhang et al., 2022) for IRMv1 (Arjovsky et al., 2019),V-REX (Krueger
et al., 2021) and IB-IRM (Ahuja et al., 2021); and the implementations from (Chen et al., 2023a) for
IRMX (Chen et al., 2022).

Evaluation of feature learning methods. For the sake of fairness in comparison, by default, we
train all feature learning methods by the same number of epochs and rounds (if applicable). We
strictly follow the recommended setups provided by (Zhang et al., 2022) for BONSAI and (Chen
et al., 2023a) for FeAT. The settings of training rounds and epochs in each round are shown in Table 4.
For the experiments on COLOREDMNIST-025 and COLOREDMNIST-01, we reported findings from
Chen et al. (2023a) for ERM, BONSAI and FeAT, using the same empirical settings for DOREEN
to ensure comparability. For experiments on COLOREDMNIST-sp, classifiers can not find the causal
features with any OOD objectives when only trained with the training set, so we instead train the
classifiers with access to data from the test distribution (excluding the exact test set data), while
keeping all other settings consistent.

Implementation of OOD Methods Incorporating Diversity Techniques. While Deep Ensemble,
DIWA, and DOREEN leverage multiple models, WLD-Reg promotes diversity within a single feature
extractor. For fairness, we configured Deep Ensemble, DIWA, and DOREEN with two models (each
with a hidden dimension of 256) and WLD-Reg with a single model (hidden dimension of 512). We
used the DPP loss as the diversity metric for WLD-Reg, aligning it with DOREEN. Other experimental
parameters, such as training epochs and learning rates, were kept consistent across all methods, with
V-REX serving as the OOD training objective.

C.3.2 MORE EMPIRICAL RESULTS

Comparison between ERM and RFL methods together with ERM training dynamics on
COLOREDMNIST-01. Figure 4(a) reveals that features learned through ERM exhibit significantly
lower diversity compared to those obtained via RFC and FeAT. This, in turn, leads to a notably lower
OOD accuracy for ERM when these features are applied for inference in contrast to the performance
achieved by RFC and FeAT. Moreover, ERM-trained featurizers transiently possess high feature
diversity and show promising OOD performance but this diversity diminishes as training advances,
resulting in a parallel decrease in OOD performance as shown in Figure 4(b).

Shifts of Features during ERM Training Process We further sought to analyze the features
developed during ERM training. We began by calculating the linear correlation between the outputs of
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(a) (b)

Figure 4: The empirical results on COLOREDMNIST-01. Post featurizer training, we measure the
feature diversity using the Vendi Score (vs), freeze the featurizer, and subsequently train a classifier
using V-REX for OOD performance (acc) assessment. (a): The feature diversity (x-axis) and OOD
performance (y-axis) of featurizers trained with ERM and two RFL algorithms over five different
random seeds. (b): ERM training dynamics over three different random seeds. The x-axis illustrates
the evaluation epochs of the featurizer. The y-axis displays the corresponding OOD accuracy and
Vendi Score values at each evaluation epoch.
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(b) COLOREDMNIST-01

Figure 5: ERM training dynamics. The x-axis illustrates the evaluation epochs of the featurizer.
The y-axis shows the number of extracted features (N-) and their intrinsic similarities (S-). At
each evaluation epoch, we categorize each feature as related to shape, color, or as uninformative by
calculating its linear correlation with the two label types, applying a predefined threshold value for
categorization. Following this, we compute the similarities within the identified groups of shape and
color features, respectively.

the penultimate layer of the ERM-trained model and the shape or color labels, identifying dimensions
that strongly correlate (surpassing a set threshold) with either shape (shape features) or color (color
features). We then assessed the feature similarity within these identified groups using the Average
Pairwise Similarity Score (APSS) with the exponential similarity function(Friedman & Dieng, 2022).
The results, detailed in Figure 5, reveal an initial increase in the number of features, which quickly
reaches a plateau. Meanwhile, the similarity within these features continues to intensify. This
pattern echoes the findings on feature diversity and OOD accuracy presented in Figure 2(b) and
Figure 4(b), collectively indicating that representations with greater feature diversity yield improved
OOD robustness. Furthermore, these empirical findings are in line with the Feature Replication
Hypothesis by Addepalli et al. (2022), suggesting that simplicity bias drives the repeated learning of
simpler features at the expense of more complex ones.

Feature diversity & OOD accuracy on COLOREDMNIST-sp. We further plot the empirical results
of ERM, FeAT and DOREEN on COLOREDMNIST-sp. The results in Figure 6 further demonstrate that
the OOD performance of a model is strongly correlated to the diversity of its featurizer. Moreover, in
this extreme scenario, the feature diversity of FeAT-trained featurizer gains few improvement over
that of ERM, leading to a almost the same or even worse OOD performance compared to ERM, while
DOREEN effectively learns richer features and show apparently powerful performance.

Hyper parameter tuning. In our experiments utilizing Determinantal Point Processes (DPP) to
apply a diversity penalty, two critical hyperparameters require tuning: sigma and penalty weight.
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Figure 6: The feature diversity (x-axis) and OOD performance (y-axis) of featurizers trained with
ERM, FeAT and DOREEN over five different random seeds. Post featurizer training, we measure the
feature diversity using the Vendi Score, freeze the featurizer, and subsequently train a classifier using
V-REX for OOD performance assessment.
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Figure 7: OOD performance corresponding to various combinations of sigma and penalty weight.
In our experiments, we calibrated the range of our grid search to roughly make that the weighted
diversity loss close to the ERM loss, maintaining a balance between informativeness and diversity.

Sigma serves as the hyperparameter for the DPP’s kernel function, specifically an Gaussian kernel in
our case, which measures the similarity between item pairs. A larger sigma value tends to increase
kernel values, even for items that are relatively distant in feature space. Too large a sigma can lead to
a more uniform kernel matrix, potentially diminishing the DPP’s effectiveness in fostering diversity.
On the other hand, too small a sigma might ignore useful similarities. Intuitively, when examining
a specific group of items, a smaller sigma value typically indicates a higher degree of diversity
among them. Conversely, a larger sigma value suggests that the items are less diverse. The key is
finding a balance that captures meaningful similarities while still promoting diversity. The penalty
weight, on the other hand, strikes a balance between diversity and informativeness. If set too high, it
may lead to the selection of diverse yet uninformative features. In our experiments, we calibrated
the range of our grid search to roughly make that the weighted diversity loss close to the ERM
loss, maintaining a balance between informativeness and diversity. The out-of-distribution (OOD)
performance, corresponding to various combinations of sigma and penalty weight, is illustrated in
Figure 7. This visualization provides an understanding of how these hyperparameter adjustments
impact the overall effectiveness of our approach. On one hand, This highlights DOREEN’s resilience
against fluctuations in hyperparameters. On the other hand, in scenarios with more pronounced
spurious correlations where identifying diverse features is more crucial, a higher value for sigma and
penalty weight of diversity loss proves advantageous.

Comparison with other OOD methods incorporating diversity techniques. The empirical
results, presented in Table 5, highlight the following: 1) Relying solely on random initialization
to foster diversity among models (e.g., in Deep Ensemble and DiWA) can lead to redundancy and
instability. 2) DOREEN outperforms WLD-Reg with fewer parameters and the same computational
cost, emphasizing the advantages of inter-model diversity. 3) All four diversity-promoting methods
outperform ERM and FeAT on COLOREDMNIST-sp. This supports our concerns regarding current
RFL methods: they may struggle to develop a richer featurizer when faced with spurious correlations
strongly tied to the labels, while promoting diversity effectively addresses this limitation.
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Table 5: Results of different diversity techniques.

Method COLOREDMNIST-025 COLOREDMNIST-01 COLOREDMNIST-sp

Deep Ensemble 65.41(±1.52) 82.47(±1.05) 51.46(±1.88)
DiWA 59.01(±3.97) 70.47(±7.01) 52.56(±0.66)

WLD-Reg 68.79(±1.42) 85.06(±0.92) 55.26(±3.12)
DOREEN 69.61(±0.75) 85.80(±0.55) 56.66(±2.34)

Table 6: Hyperparameter setups of feature learning algorithms for the experiments on WILDS

Dataset Overall steps Approx. epochs Num. of rounds Steps per round Penalty weight

CAMELYON17 10000 10 2 5000 0.3
FMOW 9600 4 2 4800 0.1

C.4 MORE DETAILS ABOUT THE WILDS EXPERIMENTS

In this section, we delve into further details about the WILDS datasets utilized in our experiments
and describe our evaluation methodologies. Our investigation into feature learning performance
under realistic conditions led us to choose two particularly challenging datasets from the WILDS
benchmark. (Koh et al., 2021): Camelyon17 (Bandi et al., 2018) and FMoW (Christie et al.,

(a) Camelyon17-ERM (b) Camelyon17-BONSAI (c) Camelyon17-FeAT (d) Camelyon17-DOREEN

(e) FMoW-ERM (f) FMoW-BONSAI (g) FMoW-FeAT (h) FMoW-DOREEN

Figure 8: Integrated Gradients visualization of models trained by ERM, BONSAI, FeAT and DOREEN
on Camelyon17 and FMoW. The blue dots are the salient features. A deeper blue color denotes more
salient features.

2018). These datasets are characterized by a range of realistic distribution shifts, including domain
distribution shifts, subpopulation shifts, and their combinations. Camelyon17 provides 450,000
lymph-node scans from 5 hospitals. The task is to take the input of 96 × 96 medical images to
predict whether there exists a tumor tissue in the image. The domains d refers to the index of the
hospital where the image was taken. The training data are sampled from the first 3 hospitals where
the OOD validation and test data are sampled from the 4-th and 5-th hospital, respectively. FMoW
provides satellite images from 16 years and 5 regions. The task in FMoW is to classify the images
into 62 classes of building or land use categories. The domain is split according to the year that the
satellite image was collected, as well as the regions in the image which could be Africa, America,
Asia, Europe or Oceania. Distribution shifts could happen across different years and regions.
The training data contains data collected before 2013, while the validation data contains images
collected within 2013 to 2015, and the test data contains images collected after 2015. Comprehen-

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 7: General hyperparameter settings for the experiments on WILDS

Dataset Num. of seeds Learning rate Weight decay Scheduler Batch size Architecture Optimizer Domains in minibatch Group by Training epochs

CAMELYON17 10 1e-4 0 n/a 32 DenseNet121 SGD 3 Hospitals 10
FMOW 3 1e-4 0 n/a 32 DenseNet121 Adam 5 Times × regions 12

sive details on the WILDS datasets can be found in the corresponding WILDS paper (Koh et al., 2021).

The learned features are evaluated with V-REX and GroupDRO Sagawa et al. (2019), two represen-
tative SOTA OOD objectives in WILDS. In addition to OOD objectives, we evaluate the learned
features with Deep Feature Reweighting (DFR) Kirichenko et al. (2022). DFR uses an additional
OOD validation set where the spurious correlation does not hold to perform logistic regression based
on the learned features. Intuitively, DFR can serve as a proper measure for the quality of learned
invariant features Izmailov et al. (2022).

To ensure a fair comparison, our empirical approach strictly adheres to the experimental settings used
by Chen et al. (2023a) in their analysis of the WILDS datasets listed in Table 6 and Table 7 and
report the results.

We further use Integrated Gradients (Sundararajan et al., 2017) to compute attributions for each
input feature with respect to the prediction of models trained by different algorithms. Integrated
Gradients helps enhance the interpretability of complex models and understand why a model makes a
certain prediction, which is as crucial as the prediction’s accuracy, especially in sensitive and critical
applications like healthcare, finance, and autonomous driving. By visualizing what the model is
focusing on when making predictions, Integrated Gradients can help determine whether the model is
considering the right features. The visualization is shown in Figure 8. The blue dots are the salient
features. A deeper blue color denotes more salient features. It can be found that DOREEN is able to
learn more meaningful and diverse features than ERM, BONSAI and FeAT.
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