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ABSTRACT

Partial perception deficits can compromise autonomous vehicle safety by disrupt-
ing environmental understanding. Existing protocols typically default to entirely
risk-avoidant actions such as immediate stops, which are detrimental to naviga-
tion goals and lack flexibility for rare driving scenarios. Yet, in cases of minor
risk, halting the vehicle may be unnecessary, and more adaptive responses are
preferable. In this paper, we propose LLM-RCO, a risk-averse framework leverag-
ing large language models (LLMs) to integrate human-like driving commonsense
into autonomous systems facing perception deficits. LLM-RCO features four
key modules interacting with the dynamic driving environment: hazard inference,
short-term motion planner, action condition verifier, and safety constraint genera-
tor, enabling proactive and context-aware actions in such challenging conditions.
To enhance the driving decision-making of LLMs, we construct DriveLM-Deficit,
a dataset of 53,895 video clips featuring deficits of safety-critical objects, anno-
tated for LLM fine-tuning in hazard detection and motion planning. Extensive ex-
periments in adverse driving conditions with the CARLA simulator demonstrate
that LLM-RCO promotes proactive maneuvers over purely risk-averse actions in
perception deficit scenarios, underscoring its value for boosting autonomous driv-
ing resilience against perception loss challenges.

1 INTRODUCTION

Modern autonomous driving systems rely on sensor data inputs from cameras and LiDARs, pro-
cessed by deep neural networks, to enable perception, understanding, and interaction with the en-
vironment (Hu et al., 2023; Liu et al., 2023; Casas et al., 2020; Li et al., 2022). Since perception
directly influences driving decisions, partial perception deficits caused by sensor failures or attacks
can be fatal, leading to catastrophic consequences (Ceccarelli & Secci, 2022; Min et al., 2023;
Shafaei et al., 2018; Wang et al., 2020).

Considering driving scenarios with perception deficits, as illustrated in Figure 1, the loss of safety-
critical object information can undermine the driving safety of autonomous agents. Conventional
fail-safe protocols default to entirely risk-avoidant actions such as immediate stops. However, not
all perception loss are catastrophic to autonomous driving safety, so triggering a fail-safe maneu-
ver for every detected perception loss event is impractical and detrimental to the navigation goals
(Antonante et al., 2023; Chakraborty et al., 2024). Moreover, risk-avoidant fail-safe strategies lack
the flexibility to handle diverse driving scenarios and rely on fully restored perception inputs before
resuming motion, further limiting their effectiveness (Vom Dorff et al., 2020).

Human drivers demonstrate that safe navigation is possible with limited visibility by leveraging
commonsense reasoning and driving experience to infer critical visual information (Fu et al., 2024).
For example, obstructions in peripheral vision may not impact immediate driving decisions, and cau-
tious proceeding remains viable when maintaining sufficient physical distance from deficit regions
or when these deficit regions show temporal stability. This human-inspired insight suggests that
autonomous systems should conduct risk-averse, proactive, and context-aware strategies rather than
defaulting to overly conservative actions. While commonsense plays a crucial role in human judg-
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AV Actions with [Traffic Light]  Deficit: 
Stop for an extended period until forcibly moved.  

LLM-RCO Override AV Actions:
1.Deceleration to zero; 2.Observe; 3.Move.

Traffic
 Light?

Stop
Sign?

Speed
Limit?

AV Actions with [Pedestrian] Deficit: 
Move forward without reducing speed.  

LLM-RCO Override AV Actions:
Full stop, Deceleration to zero.  

Bike?
Pedestrian?

Figure 1: With perception deficits, deep learning-based AV agents take either over-conservative or
unsafe actions, while LLM-RCO draws on LLM commonsense to infer possible hazards and plan
safe motions.

ment to ensure a smooth and safe driving experience, current autonomous driving research has yet
to explore how to integrate commonsense into decision-making under such challenging conditions.

Multimodal large language models (LLMs) have demonstrated remarkable reasoning capabilities
and extensive commonsense knowledge across diverse applications (Huang & Chang, 2022; Zhao
et al., 2024; Sap et al., 2020). Trained on vast web-scale corpora, multimodal LLMs inherently en-
code a wealth of traffic rules and driving knowledge, potentially equipping them with a strong driv-
ing commonsense. However, effectively leveraging this knowledge for autonomous driving remains
an open question. Unlike end-to-end LLM driving agents (Shao et al., 2024; Mao et al., 2023a),
which can be trained through imitation learning from rule-based pilots, there is no well-established
expert to provide optimal strategies for proactive movement under incomplete perception. Most fail-
safe mechanisms simply default to simple stops, making it challenging to collect training data for a
deep learning model that can guide autonomous vehicle movement with perception deficits.

To address these challenges, we propose LLM-Guided Resilient Control Override (LLM-RCO), a
risk-averse framework that harnesses the commonsense and reasoning capabilities of multimodal
LLMs to enhance the resilience and safety of autonomous vehicles under partial perception deficits.
LLM-RCO overrides autonomous vehicle control to mitigate the risk of hazardous actions resulting
from erroneous predictions on compromised perception data, ensuring safer operation in adverse
conditions. Drawing from human drivers’ reasoning in perception deficit scenarios, we break down
this process into four modules in LLM-RCO: (1) Hazard Inference Module, which evaluates poten-
tial risks in deficit areas using past camera frames; (2) Short-Term Motion Planner, which generates
a flexible sequence of action-condition pairs tailored to the driving context and hazard inference
outcomes; (3) Action Condition Verifier, which checks the consistency of information deficits and
immediate hazards in current observations to ensure action feasibility for safe and reliable vehicle
control; (4) Safety Constraints Generator, which sets vehicle control limits based on safety-critical
factors like weather, lighting, and traffic density. Additionally, we construct the DriveLM-Deficit
dataset based on DriveLM-GVQA (Sima et al., 2023) to fine-tune the LLM for hazard inference and
planning, enhancing the subsequent short-term motion planning process.

Contributions.

• We propose LLM-RCO, a risk-averse framework leveraging LLM commonsense and rea-
soning capabilities to enable proactive movement under perception deficits.

• We build DriveLM-Deficit, a dataset having 53, 895 driving videos with perception deficits
of safety-critical objects. We benchmark the performance of advanced LLMs on DriveLM-
Deficit, highlighting their limitations. We fine-tune Qwen2-VL-2B-Instruct on DriveLM-
Deficit using LoRA to enhance hazard inference and motion planning of LLM-RCO.

• We validate LLM-RCO in closed-loop environments using the CARLA (Dosovitskiy et al.,
2017) simulator separately with TransFuser (Prakash et al., 2021) and InterFuser (Shao
et al., 2022) agents, showing that LLM-RCO consistently enhances driving scores by adopt-
ing a cautious yet proactive driving style.
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Figure 2: LLM-RCO overview.

2 RELATED WORK

LLM in Autonomous Driving. Recent work has integrated multimodal LLMs into autonomous
driving, improving agent performance in closed-loop settings (Mao et al., 2023a;b; Huang et al.,
2024; Long et al., 2024; Shao et al., 2024), enhancing security against adversarial attacks (Kong
et al., 2024; Song et al., 2024; Chung et al., 2024; Aldeen et al., 2024b;a), and supporting explain-
ability in decision-making (Chen et al., 2024; Peng et al., 2024; Xu et al., 2024). LLMs also enable
commonsense, knowledge-driven decisions when integrated into existing stacks (Cui et al., 2024;
Sha et al., 2023; Wang et al., 2024b; Fang et al., 2024). However, motion planning under partial
perception deficits, such as attacks or sensor failures, remains an underexplored area where LLMs
could further enhance driving resilience.

Fail-Safe Strategies in Autonomous Driving. Fail-safe strategies in autonomous driving are typ-
ically composite with multi-sensor fusion (Liu et al., 2023; Cao et al., 2021), degraded modes
(Magdici & Althoff, 2016; Jiang et al., 2024), and risk-avoidant emergency maneuvers such as
stops or pull-overs (Bogdoll et al., 2022; Gao et al., 2021). However, these methods have key
limitations: rule-based logic struggles with long-tail events, emergency stops disrupt traffic, and
perception-dependent planning remains vulnerable to failures and attacks (Magdici & Althoff, 2016;
Ramanagopal et al., 2018; Koopman & Wagner, 2016; Pek & Althoff, 2020). Hard-coded safety
rules, such as overriding stops for uncertain traffic light detections, lack adaptability in dynamic
conditions (Ren et al., 2019; Yurtsever et al., 2020; Koopman & Wagner, 2017). This motivates
LLM-RCO, which aims to provide a more risk-averse and flexible solution for handling perception
failures in autonomous driving systems.

3 RISK-AVERSE CONTROL: LLM-RCO

In this section, we propose LLM-RCO, which features the incorporation of LLM commonsense
in multiple steps of planning and reasoning processes to enhance the resilience and safety of au-
tonomous vehicle control strategies.

Preliminary. We define the action of autonomous driving at time t as At. Action contains three
vehicle control parameters: throttle, brake, and steering wheel, i.e., At = [throttlet, braket, steert] ∈
[0, 1] × [0, 1] × [−1, 1]. An action sequence is a collection of pairs, each consisting of a ten-
tative candidate action and its execution condition, spanning from time t to time t + n, de-
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noted as St = {(Ct,At), · · · , (Ct+n,At+n)}. The environmental information at t is Et =
[Perceptiont,Navit, Surroundingt], where Perceptiont = {ILt , IFt , IRt } is the real-time images sep-
arately collected by left, front, and right camera sensors; Navit is the navigation contains the coor-
dinate of the target point, current direction, and road geometry; and Surroundingt is the surround-
ing environmental information that describe traffic, weather, and daylight information. The safety
conditions of the vehicle at time t is SCt, describing constraints such as the maximum following
distance.

Framework Overview. Unlike the LLM-based autonomous driving agents that employ continuous,
real-time action inference, our LLM-RCO framework adopts a proactive, plan-ahead strategy. By
reducing the frequency of interactions with the LLM, it lowers inference latency, leading to more ef-
ficient and smoother driving. Figure 2 shows the LLM-RCO framework, which consists of planning
and acting phases.

(1) When planning, if St is empty, LLM-RCO updates n-steps in St based on the perception context
and navigation:

St = Fplan(Navit,Percetion{t−k,··· ,t}). (1)

LLM-RCO planning first launches a Hazard Inference Module, an LLM agent that takes multiple
frames of sensor context information Percetion{t−k,··· ,t}, and concludes the potential hazard and its
movement into Hazardt in Eq. equation 3. Then, a Short-term Motion Planning Module, another
LLM agent takes concluded hazard information Hazardt, navigation information Navit and current
time perception information Perceptiont, and then generates a variable-length (we denote as n)
condition-action sequence as St.

(2) When acting, LLM-RCO reads condition-action pairs from St sequentially, referencing environ-
ment information: {

(Ct,At) = Fact(St, Et)
St+1 = St \ {(Ct,At)}.

(2)

The condition-action pairs will first be verified by the Action Condition Verifier, which deter-
mines whether the current environment perception Et is suitable for executing the condition-action
(Ct,At). If suitable, LLM-RCO executes the action At by the acting phase. If the Action Condition
Verifier denies action At or the St is empty, then LLM-RCO will start a new round of planning.

4 KEY COMPONENTS IN LLM-RCO

Hazard Inference. Partial perception loss can severely impact driving when the AV system cannot
detect potential hazards in compromised areas. Inferring these hazards in the perception deficit area
enables the system to make more informed driving decisions. We define a hazard based on the object
and its movement. Moreover, multiple hazards (denoted asNt) may exist simultaneously. Formally:

hazardt = {[objecti,motioni]|Nt
i=1}. (3)

In LLM-RCO, the hazard inference module is essential for ensuring safe driving decisions by com-
pensating for perception loss. To enhance the hazard inference accuracy, we fine-tune LLMs to
jointly infer potential hazards within compromised image regions and the corresponding short-term
planning strategies. Assuming that sensor failures or attack patterns remain consistent in the short
term, tracking the temporal motion of the unaffected surroundings provides vital insights into their
evolving dynamics, enabling the LLM to produce more accurate hazard predictions. Consequently,
we input a sequence of the past k multi-view images from the cameras, allowing the model to infer
potential hazards and plan with historical context.

(hazardt, plant) = LLMHI(Percetion{t−k,··· ,t}). (4)

where LLMHI is a multimodal LLM with the specified hazard inference prompt preset (same below).

Short-term Motion Planing. Short-term Motion Planner employs two distinct operational strate-
gies plan that emulate human-like adaptability: Move and Stop-Observe-Move. As demonstrated in
Figure 3, under Move strategy, the vehicle proceeds cautiously with short-term motions plan ahead,

4
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Planning: Move Replanning: Move

Planning: Stop-Observe-Move Replanning: Move

move forward 
deceleration

move forward 
deceleration

move forward 
deceleration

stop1 stop2 stop3

Figure 3: Driving visualization with LLM-RCO under Move and Stop-Observe-Move strategies.

while Stop-Observe-Move requires temporary halting to gather additional information before pro-
ceeding to ensure safety in uncertain situations. Under the Move strategy, the system generates an
adaptive-length sequence of planning steps. For Stop-Observe-Move strategy, when the LLM de-
termines that an immediate stop is necessary, it specifies both the waiting duration wait and move
trigger conditions Cmove to initiate a new round of motion planning for the vehicle’s movement.
During the waiting period, only ‘stop’ actions are added into St.

St = LLMSMP([hazardt, plant,Navit,Perceptiont]). (5)

Different from conventional fail-safe strategies that only output control actions, LLM-RCO tasks
the LLMs to generate an execution condition for each action to enhance driving safety and allow
better adaptation to dynamic road conditions. In St, each element from (Ct,At) to (Ct+n,At+n) is
a condition-action pair, indicates that the action will be executed only when the condition is met.
We define conditions as combinations of ‘consistent deficit’ with either ‘no immediate hazard’ or
‘immediate hazard’. When the observed deficits are inconsistent across frames, it implies extreme
uncertainty about potential hazards arising from perception deficits. In such cases, the LLM is tasked
with real-time motion inference by immediate replanning. Conversely, if deficit patterns remain con-
sistent across frames, the LLM can utilize unaffected perception information and hazard inference
results to generate proactive action sequences. As illustrated in Figure 4, under consistent deficits,
the LLM may plan more stable actions to enable smooth driving if there is no immediate hazard or
opt for more aggressive maneuvers such as sudden brake in the presence of an immediate hazard.

Inconsistent Deficit Consistent Deficit
Previous Frame Current Frame Previous Frame Current Frame

(a)

(b)

(c)

(a)

(b)

(c)
Figure 4: Deficits across frames. Left: Scenarios of Incon-
sistent Deficits: (a) spatial shift, (b) quantity realignment,
and (c) deficit disappearance. Right: Scenarios of Consis-
tent Deficits: (a) no immediate hazard, (b) immediate hazard
due to a large deficit size, (c) immediate hazard from nearby
objects in unaffected regions.

Action Condition Verifier. At each
timestep, LLM-RCO’s acting phase
reads and executes the next action At

in St. To ensure the safe execution
of plan-ahead actions, we design a
rule-based action condition verifier to
check Ct based on real-time percep-
tion observation. As the road con-
ditions might be highly dynamic, we
introduce a deficit consistency check
to enable real-time action inference
by motion replanning. As shown in
Figure 4, the deficit consistency is
evaluated by examining the temporal
quantity and spatial shifts of deficits
observed across frames. We compare
deficit regions across image frames in
terms of both their quantity and relative spatial positions against the background. If the quantity of
deficits does not align or if the spatial shift of deficit regions exceeds a predefined threshold, the
condition check will fail, prompting instant motion replanning. If the consistency check passes, we
assess immediate hazards by analyzing the ratio of deficit regions and detected traffic objects (e.g.,
cars, trucks, buses, bicycles, pedestrians, motorcycles using YOLOv11) to the camera image. This
ratio, computed as the area of deficit regions and traffic object bounding boxes relative to the image
size, serves as a hazard proximity indicator. If it exceeds a predefined threshold (set to 0.05), it
indicates an immediate hazard near the vehicle.
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(a) Driving-Oriented Fine-tuning Scheme. (b) DriveLM-Deficit Dataset.

Figure 5: Fine-tuning on DriveLM-Deficit.

Safety Constraint Module. In LLM-RCO, the Safety Constraint Module adjusts the action At from
the Action Condition Verifier to ensure compliance with safety constraints. As safety constraints
depend on various factors, for example, the maximum following distance in snowy conditions differs
from that in normal conditions, we leverage the extensive commonsense knowledge of LLMs to
improve driving safety. Specifically, based on the driving context including weather, daylight, traffic
density, road geometry, etc., we task LLMs to generate a set of loose safety constraints SCt to
enhance vehicle control safety. As driving conditions remain stable over short time periods, we
don’t need real-time inference for SCt generation. Due to space limitations, more implementation
details are provided in the Appendix A.2.

5 DRIVING-ORIENTED FINE-TUNING

To deliver straightforward optimal driving actions to LLM, we propose fine-tuning an LLM for
hazard inference and strategy selection to guide subsequent short-term motion planning. The fine-
tuning process involves three tasks: (1) Object Inference, which identifies objects within deficit
regions using contextual cues from unaffected parts of the image; (2) Motion Inference, which
analyzes motion behaviors in deficit regions based on historical perception frames; and (3) Planning
Strategy, which decides between “move” or “stop-observe-move” approaches using insights from
the previous tasks. For example, the system may choose “move” with the cue “Bicycle, oncoming at
a constant speed,” or “stop-observe-move” with the cue “Pedestrian, crossing to the other side of the
road.” As shown in Figure 5a, we use three Low Rank Adaptation (LoRA) (Hu et al., 2022) modules
to adapt the model to these tasks.

We process GVQA dataset in DriveLM-Carla (Sima et al., 2023) for fine-tuning, which is collected
using PDM-Lite (Beißwenger, 2024) and achieves 100% completion with zero infractions. GVQA
dataset comprises 1.6M QA pairs along with sensor data, keyframes, and frame-level QAs covering
perception, prediction, and planning. It employs a rule-based annotation pipeline to determine the
ego vehicle’s braking status using privileged information about objects, hazards, and scene mea-
surements. Building on DriveLM-GVQA, we construct the DriveLM-Deficit dataset tailored to our
specific case. DriveLM-Deficit consists of 53, 895 videos, each composed of five frames sampled
every two steps, forming a 5-second clip at 1 fps. It includes deficits related to traffic lights, traf-
fic signs, pedestrians, and bicycles for fine-tuning. The statistics of DriveLM-Deficit is shown in
Figure 5b, and more details are in Appendix A.3.

6 EXPERIMENTS

Fine-tuning Details. We choose to supervise fine-tune a lightweight pre-trained vision language
model “Qwen2-VL-2B-Instruct” (Wang et al., 2024a) with LoRA using DriveLM-Deficit. we only
add LoRA to the “q proj” and “v proj” attention layers, and we set the rank to 4 for all experiments.

LLM-RCO Implementation. To control the autonomous agent, we define high-level actions with
driving behavior (move forward, stop, change lane to left, change lane to right, turn left, turn right)
and speed control (constant speed, deceleration, quick deceleration, deceleration to zero, acceler-
ation, quick acceleration), the action tokens are mapped to control parameters in a deterministic
manner based on the navigation to the next target point, more details are provided in Appendix A.1.
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(a) Hazard inference. (b) Motion strategy.

Figure 6: Accuracy of various LLM backbones on Drive-Deficit.

We employ GPT-4o-mini (Achiam et al., 2023) and fine-tuned Qwen2-VL-2B as LLM-RCO back-
bone models.

Perception Deficit Scenarios. In the experiments, we simulate different perception deficits of
safety-critical objects using YOLO11 (Jocher & Qiu, 2024). We track and mask safety-critical ob-
jects in real-time, including traffic lights, stop signs, pedestrians, and bicycles. When these objects
are masked out, control transfers to LLM-RCO.

Carla Simulator. Our implementation employs CARLA 0.9.10.1 simulator with the Transfuser
(TF) and Interfuser (IF) agents, which integrate both image and LiDAR data for end-to-end vehicle
control. Transfuser incorporates rule-based stuck detection and employs a force-move command
within its control prediction. Similarly, Interfuser features a rule-based force-move mechanism in-
tegrated into its safe controller module. In our setup, both force-move mechanisms remain at their
original default settings to enable a fair comparison with LLM-RCO. Experiments are conducted on
the Longest6 benchmark, which comprises 36 routes averaging 1.5 km in length and featuring high
densities of dynamic actors in diverse environmental conditions.

Metrics. We adopt three primary metrics employed by the CARLA Leaderboard for evaluations:
Route Completion (RC), Infraction Score (IS), and Driving Score (DS). The IS typically accounts
for collisions and traffic rule violations, including running red lights and stop signs. In the experi-
ments, we modified the IS calculation correspondingly in the deficit scenarios of traffic lights and
traffic signs by excluding red lights and stop sign violations from scoring. The DS is calculated
as the product of RC and IS, reflecting both driving progress and safety. We report the metrics for
three runs. Additionally, we report the Average Speed (AS) to assess driving efficiency, which is
calculated as the total route length divided by the game time. Note that the game time is counted by
the ticks in the simulation, and the model inference time is not factored into this count.

7 RESULTS

Fine-tuning results on DriveLM-Deficit. In Figure 6, we evaluate the hazard inference and motion
planning accuracy of GPT-4o-mini, Gemini-2-flash Team et al. (2023), Qwen2-VL, and fine-tuned
Qwen2-VL on the Drive-Deficit dataset. As shown in Figure 6a, even advanced LLMs struggle to
infer possible objects in occluded or missing image regions under driving scenarios. While they ex-
cel at identifying traffic lights and stop signs, they perform poorly in rare cases involving pedestrians
and bicycles. To address this limitation, we fine-tuned the open-source Qwen2-VL model for hazard
inference and it achieves higher accuracy on both pedestrians and bicycles than GPT-4o-mini and
Gemini2-flash. In Figure 6b, we evaluate the LLMs’ ability to infer appropriate motion plan based
on past camera frames under perception deficits. The results indicate that advanced LLMs often
opt to conservative stop even in scenarios where movement is feasible, which is reflected in lower
prediction accuracy for “move” motion strategy across all deficit cases.

Overall Results. We report the evaluation results of the LLM-RCO against various perception
deficits in two experimental settings: without game time limit shown in Table 1 and with 30-min
system time limit shown in Table 2. The game time excludes model inference time, and system
time accounts for inference time. In Table 1, we report the average speed (AS) to evaluate the stop
rate in the AV movement, where a lower AS indicates more frequent stops. The results in both

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Comparison of driving performance with unlimited game time. † denotes the highest
driving score.

Experiment Metric Traffic Light Stop Sign Pedestrian Bicycle

TF IF TF IF TF IF TF IF

NO Visual Deficit

RC 100 100 100 100 100 100 100 100
IS 0.13± 0.06 0.71± 0.08 0.13± 0.06 0.71± 0.08 0.13± 0.06 0.71± 0.08 0.13± 0.06 0.71± 0.08
DS 13.18± 6.17 71.30± 8.09 13.18± 6.17 71.30± 8.09 13.18± 6.17 71.30± 8.09 13.18± 6.17 71.30± 8.09
AS 1.55± 0.28 2.14± 0.07 1.55± 0.28 2.14± 0.07 1.55± 0.28 2.14± 0.07 1.55± 0.28 2.14± 0.07

Visual Deficit
LLM-RCO ✗

RC 100 94.30± 5.01 100 95.39± 5.26 100 94.99± 5.01 100 100
IS 0.05± 0.04 0.29± 0.05 0.02± 0.01 0.23± 0.07 0.003± 0.001 0.16± 0.08 0.07± 0.02 0.36± 0.07
DS 4.88± 3.76 27.44± 3.43 2.18± 0.97 21.20± 5.67 0.32± 0.11 15.12± 6.48 6.54± 2.10 36.47± 6.93
AS 1.76± 0.07 1.78± 0.01 1.87± 0.02 2.44± 0.23 1.95± 0.21 1.05± 0.13 1.88± 0.07 2.27± 0.06

Visual Deficit
LLM-RCO ✓

HI-GPT,STP-GPT

RC 94.53± 0.24 98.31± 4.28 100 100 100 94.10± 3.45 100 95.41± 0.11
IS 0.11± 0.05 0.32± 0.06 0.03± 0.01 0.22± 0.07 0.019± 0.004 0.21± 0.04 0.09± 0.03 0.43± 0.07
DS 10.97± 3.96 30.70±5.53† 2.67±0.88† 21.19± 6.84 1.87± 0.37 19.99±4.76† 9.07± 2.71 41.80±6.95†

AS 1.97± 0.04 1.89± 0.04 1.94± 0.02 1.72± 0.03 1.48± 0.03 0.94± 0.17 1.40± 0.07 0.86± 0.01

Visual Deficit
LLM-RCO ✓

HI-Qwen,STP-GPT

RC 94.15± 0.33 99.10± 5.15 100 100 100 95.30± 4.17 100 100
IS 0.12±0.04 0.31± 0.06 0.03±0.01 0.23± 0.07 0.023±0.006 0.19± 0.03 0.09± 0.02 0.42± 0.08
DS 11.18±3.87† 30.4± 5.66 2.59±0.73 22.65±6.91† 2.34±0.64† 18.71±4.05 9.13±2.45† 41.54± 8.10
AS 2.08± 0.03 1.82± 0.06 1.96± 0.03 1.73± 0.02 1.15± 0.02 0.92± 0.33 1.42± 0.08 0.97± 0.03

Table 2: Comparison of driving performance with a 30-minute system time limit. † denotes the
highest driving score.

Experiment Metric Traffic Light Stop Sign Pedestrian Bicycle

TF IF TF IF TF IF TF IF

NO Visual Deficit
RC 97.35± 3.89 99.13± 1.41 97.35± 3.89 99.13± 1.41 97.35± 3.89 99.13± 1.41 97.35± 3.89 99.13± 1.41
IS 0.14± 0.06 0.71± 0.03 0.14± 0.06 0.71± 0.03 0.14± 0.06 0.71± 0.03 0.14± 0.06 0.71± 0.03
DS 13.52± 4.93 70.62± 5.15 13.52± 4.93 70.62± 5.15 13.52± 4.93 70.62± 5.15 13.52± 4.93 70.62± 5.15

Visual Deficit
LLM-RCO ✗

RC 30.19± 5.32 44.90± 0.55 37.03± 0.18 45.33±0.21 37.11±0.06 42.20± 1.07 38.22±0.04 44.70± 0.93
IS 0.6±0.11 0.63±0.09 0.14± 0.03 0.68± 0.10 0.20± 0.05 0.36± 0.09 0.17± 0.08 0.70± 0.06
DS 17.89± 3.53 31.43± 3.07 5.0± 1.16 32.73± 3.89 7.48± 1.87 16.12± 3.82 6.43± 3.11 31.29± 2.82

Visual Deficit
LLM-RCO ✓

HI-GPT,STP-GPT

RC 58.57±3.07 56.11± 1.92 37.17±0.45 43.15± 1.22 36.20± 0.16 41.10± 1.32 32.50± 0.42 42.92± 0.91
IS 0.32±0.06 0.60± 0.07 0.24± 0.03 0.78±0.09 0.28±0.02 0.42±0.09 0.80± 0.13 0.78±0.07
DS 18.58±3.51† 33.43± 4.18 8.95± 0.72 33.70±4.09† 9.94±0.81 18.79±4.66† 26.26±4.† 32.88± 3.01

Visual Deficit
LLM-RCO ✓

HI-Qwen,STP-GPT

RC 61.02±4.88 58.44±2.31 36.39± 0.87 43.60± 1.27 40.12±0.70 44.81±1.33 30.52± 0.62 46.80±1.21
IS 0.28± 0.04 0.58± 0.04 0.29±0.03 0.74± 0.08 0.28± 0.03 0.41± 0.08 0.81±0.07 0.76± 0.06
DS 17.13± 2.44 33.90±2.34† 10.60±1.17† 32.26± 3.51 11.03±1.66† 18.27± 4.40 25.02± 2.94 35.60±4.56†

settings reveal that perception deficits significantly impair autonomous driving performance. For
Transfuser, the average speed steadily increases with perception deficits, indicating that the loss of
critical hazard information leads to inattentive driving. In contrast, for the Interfuser, we observe
that the loss of traffic light information results in overly conservative driving due to incorrect traffic
light state predictions, causing it to remain stationary until forcibly moved by its rule-based safe
controller.

When LLM-RCO intervenes in vehicle control, as shown in Table 1, we observe that the driving
score shows improvement with little compromised route completion score with unlimited game
time. In stop sign, pedestrian, and motorcycle cases, the ego vehicle makes more stops, reflected by
a decrease in average speed. This cautious driving control of LLM-RCO leads to a higher driving
score. For traffic light scenarios, LLM-RCO increases the average speed by reducing unnecessary
stops, resolving issues where Interfuser’s incorrect traffic light predictions cause vehicles to remain
stuck until forcibly moved. Moreover, considering the inference time cost of LLM, as shown in
Table 2, despite the lower infraction score of LLM-RCO in the traffic light deficit scenario, where
the longer completed routes increase exposure to potential risks for transfuser, the infraction and
driving scores of LLM-RCO present a consistent increase in all other perception deficit scenarios.
These results demonstrate the fine-tuned Qwen with more accurate hazard inference and motion
planning can effectively reduce stops, enabling more proactive movements.

Figure 7: Speed control analysis.

Speed Control Analysis. In Fig-
ure 7, we report the percentage of
various speed control decisions of
LLM-RCO against various percep-
tion deficits. The results are from
Transfuser on route0 of Town01 in
longest6. The result shows that the
percentage of different speed control
remains relatively consistent across
different deficit scenarios: approx-
imately 50% of actions maintain a
constant speed, around 40% involve
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Figure 8: LLM-RCO performance under different action step length limit. Higher ∆RC, ∆IS, and
∆DS indicate better performance.

deceleration, and only about 10% involve acceleration, indicating that LLM-RCO adopts a cautious
driving style, prioritizing safety. Additionally, we observe that the percentage of acceleration actions
is lowest in the pedestrian masking scenario, in accordance with rigorous human safety.

Short-term Motion Planning Analysis. In Figure 8, we examine the performance of LLM-RCO
with different limits on planning step lengths. Within the LLM-RCO framework, a maximum length
limit is applied to short-term motion planning, enabling the LLM to reason through a variable num-
ber of actions based on the current driving context. We report the evaluation metric change with
and without LLM-RCO intervention in Transfuser. Our results reveal that extending planning steps
increases accident exposure and lowers infraction scores. While a moderate increase in the step limit
can improve driving scores, infraction scores drop sharply at higher limits, indicating that excessive
planning steps ultimately degrade performance. We also observe that LLM-RCO exhibits different
control strategies for static objects (Traffic Lights, Stop Signs) versus moving objects (Bicycles,
Pedestrians). When facing static objects, LLM-RCO tends to execute more proactive maneuvers,
reflected in higher average speeds and greater route completion (see Tables 1 and 2). Moderately
enlarging the planning step limit can further improve driving scores with more route completion.
For moving objects, LLM-RCO typically makes conservative stops, which lowers average speeds
and hinders route completion. Slightly extending the step length limit prompts the agent to make
additional stops, thereby increasing driving scores with increasing infraction scores.

Table 3: Ablation study on the LLM-RCO module design.
LLM-RCO TF IF

HI ST AV SC RC ↑ IS ↑ DS ↑ RC ↑ IS ↑ DS ↑
✗ ✗ ✗ ✗ 37.14 0.13 5.01 44.70 0.70 31.29
✗ ✓ ✗ ✗ 36.35 0.25 9.16 41.27 0.70 28.89
✓ ✓ ✗ ✗ 36.35 0.42 15.27 41.19 0.75 30.89
✓ ✓ ✓ ✗ 34.36 0.77 26.50 43.27 0.77 33.31
✓ ✓ ✓ ✓ 33.77 0.80 27.08 42.92 0.78 32.88

Ablation Study. In Table 3, we con-
duct ablation studies over the LLM-
RCO components based on Trans-
fuser and Interfuser: the Safety Con-
straint Generator (SC), Hazard Infer-
ence Module (HI), Short-Term Mo-
tion Planner (ST), and Action Condi-
tion Verifier (AC). We report the abla-
tion results in the scenario of motor-
cycle deficit. The results illustrate the contribution of each module to overall driving performance
and safety. The test demonstrates that full configuration with all modules active achieves the highest
infraction and driving scores. Especially, the core modules of LLM-RCO (HI, ST, AV) are especially
necessary to enable valid control override.

8 CONCLUSIONS

In this paper, we address a new and challenging problem: enabling proactive safe driving under per-
ception deficits with LLM commonsense and reasoning capabilities. As not all perception deficits
are catastrophic to autonomous driving safety, this highlights the need for AVs to be risk-averse, but
not entirely risk-avoidant. Therefore, we propose a risk-averse vehicle control framework, LLM-
RCO, which incorporates several novel features: action-condition pair generation for verifying ac-
tion safety with human-crafted rules, a plan-ahead short-term motion planning strategy to reduce
latency and inference costs, and safety constraints generation to limit vehicle control based on fac-
tors like weather, lighting, and traffic density. Experimental validation demonstrates LLM-RCO’s
performance to enable proactive movement despite visual data loss, underlining its potential for
modern autonomous driving systems.
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A APPENDIX

A.1 AUTONOMOUS VEHICLE CONTROL

The control parameters in the CARLA simulator include steering, throttle, and brake. We define ac-
tion as a combination of driving behavior (e.g., move forward, stop, change lane to the left, change
lane to the right, turn left, or turn right) and speed control (e.g., constant speed, deceleration, quick
deceleration, deceleration to zero, acceleration, or quick acceleration). To translate speed control
tokens into CARLA control parameters, we apply the mapping outlined in Table 4. For driving be-
haviors that influence the steering angle, we use CARLA’s PIDController of Autopilot to determine
the exact steer parameter based on the ego vehicle’s relative position to the next navigation target
point. If the LLM-generated action involves a direction change instruction in driving behavior and
it aligns with the moving direction on the navigation map, the steering parameters are subsequently
computed by the autopilot.

Speed Control Carla Control Parameter
constant speed throttlet = 0.7, braket = 0
deceleration throttlet = max(0, throttlet−1 − 0.2), braket = 0.2
quick deceleration throttlet = max(0, throttlet−1 − 0.4), braket = 0.4
deceleration to zero throttlet = 0, braket = 0.8
acceleration throttlet = min(1, throttlet−1 + 0.2), braket = 0
quick acceleration throttlet = min(1, throttlet−1 + 0.4), braket = 0

Table 4: Mapping of speed control commands to vehicle control.

A.2 SAFETY-CONSTRAINTS GENERATION

The Safety Constraint Module adjusts the action At transported from the Action Condition Veri-
fier to meet the safety constraints in conjunction with measurements of the current vehicle’s driving
conditions. To accomplish this, the Safety Constraint Module obtains the precise measurements of
the vehicle’s speed v, longitudinal acceleration ax, yaw rate ωz, and distance from the vehicle in
front dfollow through built-in Inertial Measurement Unit and Speedometer. If these measurements
satisfy the Trigger Condition in Table 5, we transform the action accordingly so that our vehicle
meets the appropriate safety constraints. We utilize LLM to gauge the current safety constraints
SCt = {vmax, dmin, acmax, demax, ψmax, dbrake} as in Table 5 in conjunction with navigation informa-
tion Navit, surrounding information Surroundingt and LiDAR sensor information ILiDAR

t :

SCt = LLMSC([Navit, Surroundingt, I
LiDAR
t ]) (6)

For each safety constraint, when the trigger condition is satisfied, we perform the corresponding
transformation on the corresponding action At’s manifold (throttlet,braket or steert). We set two
hyperparameters ∆throttle and ∆brake here, as the transformation factors for the throttle and the brake
specifically. Thus, we get the final action manifold:

ˆthrottlet =throttlet − 1v≥vmax ·∆throttle

− 1dfollow<dmin ·∆throttle

− 1ax>acmax ·∆throttle · (ax − acmax),

(7)

ˆbraket =braket + 1 v2

2×demax
>dbrake

·∆brake

+ 1ax<−demax ·∆brake · (ax − demax),
(8)

ˆsteert = steert × [1− 1|ωz|>ψmax · (1−
ψmax

|ωz|
)] (9)

Compositing Eq. equation 7, equation 8, and equation 9, we arrive at the final action At that is
executed at time t:

At = [ ˆthrottlet, ˆbraket, ˆsteert] (10)
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Safety Constraint Trigger Condition Action Transformation

Max Speed Limit v ≥ vmax throttlet −∆throttle
Min Following Distance dfollow < dmin throttlet −∆throttle
Max Acceleration Limit ax > acmax throttlet −∆throttle · (ax − acmax)
Max Deceleration Limit ax < −demax braket −∆brake · (−demax − ax)

Max Yaw Rate Limit |ωz| > ψmax steert × ψmax
|ωz|

Min Braking Distance v2

2×demax
> dbrake braket +∆brake

Table 5: Safety constraints and corresponding transformation of autonomous vehicle control param-
eters.

Front Car Bicycle Red Light Stop Sign

Bicycle Red Light Stop SignCar

Stop Sign Traffic LightCar Bicycle Pedestrian

Pedestrian

Pedestrian

(a)

(b)

(c)

Figure 9: Examples of brake in DriveLM-GVQA and ‘Stop-Observe-Move’ in DriveLM-Deficit.

(a)

(b)

tt-2t-4t-6t-8

Stop-Observe-Move

Move

Figure 10: Examples of ‘Move’ and ‘Stop-Observe-Move’ motion strategies when the front bicycle
is not visible in DriveLM-Deficit.

A.3 DRIVELM-DEFICIT DATASET

To fine-tune an LLM for hazard inference and motion planning under perception deficits, we post-
process DriveLM-GVQA to create DriveLM-Deficit. Specifically, we construct videos using 5 con-
secutive camera frames from DriveLM-GVQA. The hazard detection and braking annotations of
DriveLM-GVQA at the final frame are used to derive the hazard motion and planning strategy label,
either “move” or “stop-observe-move”. If the last frame indicates braking, we assign the “stop-
observe-move” label; otherwise, we set it to “move”. As shown in Figure 9 (a), in DriveLM-GVQA,
the detected hazards are used to determine the brake status for question “Does the ego vehicle need
to brake? Why?” For example, “the ego vehicle should stop because of the traffic light that is red.”
or “The ego vehicle should stop because of the pedestrian that is crossing the road.” Otherwise, the
answer is: ”There is no reason for the ego vehicle to brake.” which corresponds to “move” strategy
in our case.

To construct DriveLM-Deficit, we utilize YOLOv11 to track and occlude critical objects in the
video, considering two occlusion scenarios. First, as shown in Figure 9 (b), we directly occlude
labeled hazards from DriveLM-GVQA, such as a “stop sign.” In this case, the rationale for the “stop-
observe-move” label is: ”The ego vehicle should stop because the invisible region may contain a stop
sign.” Second, as shown in Figure 9 (c), we occlude other objects, such as a “pedestrian” near a stop
sign. In this scenario, the ego vehicle must still stop due to the stop sign, regardless of any hazards
inferred in the occluded region. We show two data examples of “move” or “stop-observe-move”
planning strategy with occluded bicycle in the perception in Figure 10.
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A.4 PROMPT AND OUTPUT EXAMPLES

System Prompt
You are a driving assistant to ensure safe driving in Carla simulator. The following context describes the current driving conditions:
1. Weather: #weather
2. Daylight: #daylight
2. Traffic Environment: #traffic_env
3. Road Geometry: #road_geometry
4. Navigation Direction: #direction
5. Relative Position: The relative position of the next moving target point to the location of ego vehicle is #target_point.
6. Traffic Density: There are #traffic_density moving objects within 50 meters of the ego vehicle.
Based on the above context, please provide the following vehicle control constraints to ensure safe driving:
1. Max Speed Limit (km/h)
2. Minimum Following Distance (seconds)
3. Max Acceleration Rate Limit (m/s²)
4. Max Deceleration Rate Limit (m/s²)
5. Max Yaw Rate Limit (degrees/second)
6. Minimum Safe Braking Distance (m)

Prompting LLM for Safety Constraints Generation

LLM Answer 

"Max Speed Limit (km/h)": 40,   "Minimum Following Distance (seconds)": 3,    "Max Acceleration Rate Limit (m/s²)": 1.5,   "Max 
Deceleration Rate Limit (m/s²)": 3.0,  "Max Yaw Rate Limit (degrees/second)": 10,   "Minimum Safe Braking Distance (m)": 25

Example Values

#weather>> MidRain     #daylight>>Sunset     #traffic_env >>Urban   #direction >> straight     
#target point >> (x, y) = (-0.1240, -58.6818)  #road geometry >> straight 2-way road   # traffic_density >> 12

This is a 5s video recorded by a front-facing camera mounted on a moving ego vehicle in CARLA. Certain regions of the frames 
are occluded with black masks and outlined with red bounding boxes to indicate areas with perception deficits. 

System Prompt
You are a Vision Language Model specializing in interpreting visual data from driving images.
Your task is to analyze the provided driving image frames and respond to queries with concise answers follow the answer format 
defined in the queries. Focus on delivering accurate, succinct answers based on the visual information. Avoid additional 
explanation unless necessary.

Prompting LLM for Hazard Inference

Task Query Prefix

Task Specification

1. Hazard Object Inference
The black mask areas with red bounding boxes in the image are invisible. You need to infer the possible object in the invisible 
region. Return only one object, for example “traffic light”.

2. Hazard Motion Inference
The black mask areas with red bounding boxes in the image are invisible. You need to infer the motion behavior of the invisible 
region. For example, “it is is crossing paths with the ego vehicle” or “It is approaching from the opposite lane”.

3. Planning Strategy Inference
The black mask areas with red bounding boxes in the image maybe a {Object}, which is {Motion}. You need to infer whether the 
ego vehicle should stop or move. Return your answer with either “move” or “stop” and a brief rationale explaining your answer.

LLM Answer 

[Motorcycle]     [Oncoming from the opposite lane]      [Move, The motorcycle is oncoming from the opposite lane, meaning it is 
not directly in the ego vehicle's path. As long as the ego vehicle remains in its lane and there are no other obstacles, it can 
continue moving safely.]

Figure 11: Hazard inference example.
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I have uploaded the left, front, and right driving views captured by the cameras on the ego car in CARLA. The black masks with red 
bounding boxes indicates the perception deficits. Given the following context:
1. The deficit region maybe a #hazard_object, which is #hazard_motion.
2. Follow the route planner, your current navigation direction is #direction. The relative position between the next navigation waypoint 
and your current position is #target point. The current road geometry is #road geometry.
3. The speed of ego vehicle is #ego_speed.
Your task is to generate several steps of motion planning for the ego car to continue driving. The maximum step length is #planning 
length limit. Please analyze the potential hazards near the ego car and the distance to the deficit region to decide the length of the 
action steps that can be planned ahead. Please give the conditions of left, front, and right driving views to execute the next action. 
You need to include the conditions of all views for action generation: 
Condition option: ['no_immediate_hazard', 'immediate_hazard'].
The action should be the best combination of driving behavior and speed estimation from the following options: 
Driving behavior: ['move_forward', 'change_lane_to_left','change_lane_to_right','turn_left','turn_right','stop'], 
Speed estimation: ['constant_speed', 'deceleration', 'quick_deceleration', 'deceleration_to_zero', 'acceleration', 'quick_acceleration'].
Please adapt the steer to follow the navigation. Be careful with the lane-changing.

System Prompt
You are a Vision Language Model specializing in interpreting visual data from driving images.
Your task is to analyze the provided driving image frames and respond to queries with concise answers follow the answer format 
defined in the queries. Focus on delivering accurate, succinct answers based on the visual information. Avoid additional explanation 
unless necessary.

Prompting LLM for Short-term Motion Planning

Task Query for Move

LLM Answer 

[('no_immediate_hazard', 'no_immediate_hazard', 'no_immediate_hazard'), ('move_forward', 'constant_speed')], 
[('no_immediate_hazard', 'no_immediate_hazard', 'no_immediate_hazard'), ('move_forward', 'constant_speed ')], 

[('no_immediate_hazard', 'no_immediate_hazard', 'no_immediate_hazard'), ('move_forward', 'deceleration')],
[('immediate_hazard', 'no_immediate_hazard', 'no_immediate_hazard'), ('stop', 'quick_deceleration')]
[('immediate_hazard', 'immediate_hazard', 'no_immediate_hazard'), ('stop', 'deceleration_to_zero')]

Left View Front View Right View

Task Query for Stop-Observe-Move
I have uploaded the left, front, and right driving views captured by the cameras on the ego car in CARLA. The black masks with red 
bounding boxes indicates the perception deficits. The deficit region maybe a #hazard_object, which is #hazard_motion. You need to 
complete the motion planning for the ego car by stopping first, and then cautiously continuing to drive. Please give the the least stop 
steps (maximum is #wait_limit).

Example Values

#hazard_motion>>motorcycle     #hazard_object>> oncoming from the opposite lane    #ego_speed >>10.8m/s   #direction >> 
straight     #target point >> (x, y) = (-0.1240, -58.6818)     #road geometry >> straight 2-way road    #planning length limit >> 5

Figure 12: Short-term motion planning example.

A.5 LLM USAGE

In compliance with ICLR 2026 guidelines, we disclose the role of LLMs in preparing this paper.
LLMs are involved in our methodology design, dataset construction, and experimental implementa-
tion of this paper.
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