
Under review as submission to TMLR

Balancing Privacy and Performance for Private Federated
Learning Algorithms

Anonymous authors
Paper under double-blind review

Abstract

Federated learning (FL) is a distributed machine learning (ML) framework where multiple
clients collaborate to train a model without exposing their private data. FL involves cycles
of local computations and bi-directional communications between the clients and server.
To bolster data security during this process, FL algorithms frequently employ a differen-
tial privacy (DP) mechanism that introduces noise into each client’s model updates before
sharing. However, while enhancing privacy, the DP mechanism often hampers convergence
performance. In this paper, we posit that an optimal balance exists between the number
of local steps and communication rounds, one that maximizes the convergence performance
within a given privacy budget. Specifically, we prove the optimal number of local steps
and communication rounds that enhance the convergence bounds of the DP version of the
ScaffNew algorithm. Our findings reveal a direct correlation between the optimal number
of local steps, communication rounds, and a set of variables, e.g the DP privacy budget and
other problem parameters, specifically in the context of strongly convex optimization. We
furthermore provide empirical evidence to validate our theoretical findings.

1 Introduction

Recent success of machine learning (ML) can be attributed to the increasing size of both ML models and
their training data without significantly modifying existing well-performing architectures. This phenomenon
has been demonstrated in several studies, e.g., Sun et al. (2017); Kaplan et al. (2020); Chowdhery et al.
(2022); Taylor et al. (2022). However, this approach is infeasible since it needs to store a massive training
dataset in a single location.

Federated learning. To address this issue, federated learning (FL) Konečný et al. (2016); Konečný et al.
(2016b;a) has emerged as a distributed framework, where many clients collaborate to train ML models by
sharing only their local updates while keeping their local data for security and privacy concerns Dwork et al.
(2014); Apple (2017); Burki (2019); Viorescu et al. (2017). Two types of FL include (1) cross-device FL which
leverages millions of edge, mobile devices, and (2) cross-silo FL where clients are data centers or companies
and the client number is very small. Both FL types pose distinct challenges and are suited for specific
use cases Kairouz et al. (2021). While cross-device FL solves problems over the network of statistically
heterogeneous clients with low network bandwidth in IoT applications Nguyen et al. (2021), cross-silo FL
is characterized by high inter-client dataset heterogeneity in healthcare and bank domains Kairouz et al.
(2021); Wang et al. (2021). In this paper, we focus mainly on cross-silo FL algorithms which are usually
efficient and scalable due to low communication costs among a very few clients at each step.

Differential privacy. Although private data is only kept at each client in FL, clients’ local updates can still
leak a lot of information about their private data, Shokri et al. (2017); Zhu et al. (2019). This necessitates
several tools for ensuring privacy for FL. Privacy-preserving variations of FL algorithms therefore have
been proposed in the literature, based on the concept of differential privacy (DP) Dwork et al. (2014) to
bound the amount of information leakage. To provide privacy guarantees of FL algorithms 1, we can apply

1For the detailed review of the DP training methods, we recommend (Ponomareva et al., 2023, Section 4).
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Figure 1: Visualization of differentially private federated methods: Each client computes its local update,
which is then clipped and partially masked using DP noise. The adjusted update is then aggregated and
used by all clients to update the global model.

DP mechanisms at clients, Terrail et al. (2022); Truex et al. (2020); Sun et al. (2020); Kim et al. (2021);
Geyer et al. (2017); Abadi et al. (2016). These client-level DP mechanisms enhance privacy by clipping and
then injecting noise into clients’ local updates before they are communicated in each communication round
of running DP federated algorithms (see Figure 1). These mechanisms prevent attackers from deducing
original data even though they obtain perturbed gradients.

Privacy-and-utility trade-off. While enhancing privacy, the DP mechanisms exacerbates convergence
performance of DP federated algorithms. This motivates the study of a set of hyper-parameters for DP
federated algorithms that optimally balance privacy and convergence speed. For instance, Wei et al. (2020)
proves that DP-FedProx algorithms have the optimal number of communication rounds that guarantee the
highest convergence performance given a privacy budget. Nonetheless, their algorithm requires solving the
proximal updates exactly on each local client, and their convergence and utility are guaranteed under very
restrictive assumptions. In particular, the optimal number of communication rounds exists only for the
cases when (1) the client number and privacy level are high enough, and (2) the Euclidean distance between
the client’s local gradient and the global gradient is sufficiently low (i.e., each client has the same unique
minimizer).

Contributions. The goal of this paper is to show the optimal number of local steps and communication
rounds for DP federated learning algorithms for a given privacy budget. Our contributions are summarized
as follows:

• We analyze the DP version of the ScaffNew algorithm under standard but non-restrictive assump-
tions. Our analysis reveals there is an optimal number of local steps and communication rounds
each client should take for solving strongly convex problems. Unlike Wei et al. (2020), we provide
an explicit expression for the optimal number of total communication rounds that achieves the best
model performance at a fixed privacy budget.

• We verify our theory in empirical evaluations showing that the optimal number of local steps and
communication rounds exist for DP-FedAvg and DP-ScaffNew. In particular, these DP algorithms
with optimally tuned parameters can achieve almost the same convergence performance as their
non-private algorithms.

Notations. For x, y ∈ Rd, ⟨x, y⟩ := x⊤y is the inner product and ∥x∥ =
√

⟨x, x⟩ is the ℓ2-norm. A
continuously differentiable function f : Rd → R is µ-strongly convex if there exists a positive constant µ such
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that for x, y ∈ Rd

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ + µ

2 ∥y − x∥2,

and has L-Lipschitz continuous gradient if for all x, y ∈ Rd

∥∇f(y) − ∇f(x)∥ ≤ L∥y − x∥.

Finally, Pr(C) is the probability of event C happening.

1.1 Related Work

Now, we review existing literature closely related to our work in federated learning and differential privacy.

Federated learning. Two classical algorithms in federated learning include (1) FedAvg, which updates
its ML model by averaging local stochastic gradient updates McMahan et al. (2017), and (2) FedProx,
which computes its ML model by aggregating local proximal updates Li et al. (2020); Yuan & Li (2022).
The convergence of both algorithms has been extensively studied under the data heterogeneity assumption.
These classical algorithms suffer from slow convergence due to the small step-size range resulting from the
high level of data heterogeneity among the clients. Several other federated algorithms have been developed to
enhance the training performance of FedAvg and FedProx. For example, Proxskip Mishchenko et al. (2022),
SCAFFOLD Karimireddy et al. (2020), FedSplit Pathak & Wainwright (2020) and FedPD Zhang et al.
(2021) leverage proximal updates, variance reduction, operator-splitting schemes, and ADMM techniques,
respectively.

Differential privacy. Differential privacy (DP) Dwork et al. (2014) is a standard technique for char-
acterizing the amount of information leakage. A fundamental mechanism to design DP algorithms is the
Gaussian mechanism Dwork et al. (2014), which adds the Gaussian noise to the output before it is released.
The variance of a DP noise is adjusted according to the sensitivity function, which is upper-bounded by the
clipping threshold and the Lipschitz continuity of objective functions. The DP guarantee of running DP
algorithms for K steps can be obtained by the (advanced) composition theorem Dwork et al. (2014). Recent
tools such as Rényi Differential Privacy Mironov (2017) and the moments accountant Abadi et al. (2016)
allow to obtain tighter privacy bounds for the Gaussian mechanism under composition. In the context of
FL, many works attempted to develop DP federated learning algorithms with strong client-level privacy
and utility guarantees, e.g., DP-FedAvg Zhao et al. (2020); McMahan et al. (2017), DP-FedProx Wei et al.
(2020), and DP-SCAFFOLD Noble et al. (2022).

2 DP Federated Learning Algorithm

To show the optimal number of local steps and communication rounds for DP federated algorithms, we
consider the following federated minimization under privacy constraints:

minimize
x∈Rd

[
f(x) := 1

N

N∑
i=1

fi(x)
]
, (1)

where N is the number of clients, fi(x) is the loss function of ith client based on its own local data, and
x ∈ Rd is a vector storing global model parameters.

Local differential privacy. To quantify information leakage, we use local differential privacy (local
DP) Dwork et al. (2014). Local DP relies on the notion of neighboring sets, where we say that two federated
datasets D and D′ are neighbors if they differ in only one client. Local DP aims to protect the privacy of
each client whose data is being used for learning the ML model by ensuring that the obtained model does
not reveal any sensitive information about them. A formal definition follows.
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Algorithm 1 DP-FedAvg
1: Input: Initial point x0 ∈ Rd, the number of communication rounds T ≥ 1, the number of local steps
τ ≥ 1, step-size η > 0, clipping threshold C > 0, DP noise variance σ2

2: for t = 0, 1, . . . , T − 1 do
3: for each client i ∈ {1, 2, . . . , N} in parallel do
4: Set x(i)

t,0 = xt
5: for j = 0, . . . , τ − 1 do
6: Compute stochastic gradient gi(x(i)

t,j)
7: Update x(i)

t,j+1 = x
(i)
t,j − ηgi(x(i)

t,j)
8: end for
9: Compute clip(x(i)

t,τ − xt) where clip(x) := min
(

1, C
∥x∥

)
x

10: Send ∆(i)
t = clip(x(i)

t,τ − xt) + N (0, σ2I)
11: end for
12: Global averaging: xt+1 = xt + 1

N

∑N
i=1 ∆(i)

t .
13: end for
14: return xT

Definition 1 (Dwork et al. (2014)). A randomized algorithm A : D → O with domain D and range O is
(ϵ, δ)-differentially private if for all neighboring federated datasets D,D′ ∈ D and for all events S ⊂ O in
the output space of A, we have

Pr(A(D) ∈ S) ≤ eϵ · Pr(A(D′) ∈ S) + δ.

DP-FedAvg. DP-FedAvg McMahan et al. (2017) is the DP version of popular FedAvg for solving equation 1
with formal privacy guarantees. In each communication round t = 0, . . . , T − 1, all the N clients in parallel
update the global model parameters xt based on their local progress with the DP mask ∆(i)

t . Here, all ∆(i)
t

are communicated by the all-to-all communication primitive and are defined by:

∆(i)
t = clip(x(i)

t,τ − xt) + N (0, σ2I),

where x(i)
t,τ is the local model parameter of client i from running τ stochastic gradient descent steps based on

their local data and the current global model parameters xt. This DP-masked local progress ∆(i)
t guarantees

local DP by two following steps Abadi et al. (2016); Dwork et al. (2014): (1) all clients clip their local progress
x

(i)
t,τ − xt with the clipping threshold C > 0 which bounds the influence of each client on the global update,

and (2) each clipped progress is perturbed by independent Gaussian noise with zero mean and variance
σ2 that depends on the DP parameters ϵ, δ and the number of communication rounds T . We provide the
visualization of this DP-masking procedure in Fig. 1, and the full description of DP-FedAvg in Algorithm 1.
However, since FedAvg reaches incorrect stationary points Pathak & Wainwright (2020), we rather consider
the DP version of ScaffNew Mishchenko et al. (2022) that eliminates this issue by adding an extra drift/shift
to the local gradient.

DP-ScaffNew. To this end, we consider DP-ScaffNew to prove that its optimal choices for local steps
and communication rounds exist. DP-ScaffNew is the DP version of ScaffNew algorithms Mishchenko et al.
(2022), and its pseudocode is in Algorithm 2. Notice that DP-ScaffNew differs from DP-FedAvg in two
places. First, each client in DP-ScaffNew adds the extra correction term h

(i)
t (line 5, 8 and 13, Alg. 2) to

remove the client drift caused by local stochastic gradient descent steps. Second, the number of local steps
for DP-ScaffNew is stochastic (line 6, Alg. 2).

To facilitate our analysis, we consider DP-ScaffNew for strongly convex optimization in equation 1. We
assume (A) that each local step is based on the full local gradient, i.e., gi(x(i)

t ) = ∇fi(x(i)
t ), and (B) that

the clipping operator is never active, i.e., the norm of the update is always less than the clipping value
C. Assumption (A) is not essential in learning overparameterized models such as deep neural networks,

4



Under review as submission to TMLR

Algorithm 2 DP-ScaffNew
1: Input: Initial points x0 = x

(1)
0 = . . . = x

(N)
0 ∈ Rd, initial control variates h(1)

0 , . . . , h
(N)
0 ∈ Rd such that∑N

i=1 h
(i)
0 = 0, number of iterations T ≥ 1, probability p ∈ (0, 1], step-size η > 0, clipping threshold

C > 0, DP noise variance σ2

2: for t = 0, 1, . . . , T − 1 do
3: Flip a coin θt ∈ {0, 1} where Prob(θt = 1) = p
4: for each client i ∈ {1, 2, . . . , N} in parallel do
5: Compute stochastic gradient gi(x(i)

t )
6: Update x̂(i)

t+1 = x
(i)
t − η[gi(x(i)

t ) − h
(i)
t ]

7: if θt = 1 then
8: Send ∆(i)

t = clip(x̂(i)
t+1 − xt) + N (0, σ2I), where clip(x) := min

(
1, C

∥x∥

)
x

9: Global averaging: xt+1 = x
(i)
t+1 = xt + 1

N

∑N
j=1 ∆(j)

t

10: else
11: Skip Communication: x(i)

t+1 = x̂
(i)
t+1, xt+1 = xt

12: end if
13: Compute h(i)

t+1 = h
(i)
t + p

η

(
1
N

∑N
j=1 ∆(j)

t − ∆(i)
t

)
14: end for
15: end for

consistent linear systems, or classification on linearly separable data. For these models, the local stochastic
gradient converges towards zero at the optimal solution Vaswani et al. (2019), i.e. gi(x⋆) = 0. Assumption (B)
is crucial as the clipping operator introduces non-linearity into the updates, thus complicating the analysis.
However, we show that as the algorithm converges, the norms of the updates decrease, and clipping is only
active for the first few rounds. Thus, running the algorithm with or without clipping has minimal effect
on the convergence which can refer to Observation 3 in our experimental evaluation section. Further note
that the results for DP-ScaffNew also apply for DP-FedAvg to learn the overparameterized model. For this
model, each h

(i)
t converges towards a zero vector, and thus DP-ScaffNew becomes DP-FedAvg.

Now, we present privacy and utility (convergence with respect to a given local (ϵ, δ) DP noise) guarantees for
DP-ScaffNew in Algorithm 2 for strongly convex problems. All the derivations are deferred to the appendix.
Lemma 1 (Local differential privacy for Algorithm 2, Theorem 1 Abadi et al. (2016)). There exist constants
u, v ∈ R+ so that given the expected number of communication rounds pT , Algorithm 2 is (ϵ, δ)-differentially
private for any δ > 0, ϵ ≤ upT if

σ2 ≥ v
C2pT ln(1/δ)

ϵ2
.

Using Lemma 1, we obtain the utility guarantee (convergence under the fixed local (ϵ, δ)-DP budget) for
Algorithm 2.
Theorem 1 (Utility for Algorithm 2). Consider the optimization problem in equation 1, where each fi(x)
is µ-strongly convex and L-smooth. Then, the output of Algorithm 2 with 0 < η ≤ 1/L, 0 < p ≤ 1,
gi(x) = ∇fi(x), and C > ∥x̂(i)

t+1 − xt∥ for i ∈ {1, . . . , N} and t ≥ 0 satisfies (ϵ, δ)-differentially private and
the following: for T ≥ 1,

E[ψT ] ≤ θTψ0 + p2Nd

1 − θ
· vC

2T ln(1/δ)
ϵ2

, (2)

where θ := max(1 − µη, 1 − p2), ψt := ∥xt − x⋆∥2 + η2

p2 ∥ht − h⋆∥2, xt :=
[
(x1
t )⊤, . . . , (xNt )⊤]⊤, x⋆ :=[

(x⋆)⊤, . . . , (x⋆)⊤]⊤, ht :=
[
(h1
t )⊤, . . . , (hNt )⊤]⊤, and h⋆ :=

[
(∇f1(x⋆))⊤, . . . , (∇fN (x⋆))⊤]⊤.

Theorem 1 establishes a linear convergence of Algorithm 2 under standard assumptions on objective functions
in equation 1, i.e., the µ-strong convexity and L-smoothness of fi(x). The utility bound in equation 2 consists
of two terms. The first term implies the convergence rate which depends on the learning rate η, the strong
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convexity parameter µ, and the algorithmic parameters p, T . The second term is the residual error due to
the local (ϵ, δ)−DP noise variance. This error can be decreased by lowering p, T at the price of worsening
the optimization term (the first term). To balance the first and second terms, Algorithm 2 requires careful
tuning of the learning rate η, the probability p, and the iterations T .

Optimal values of η, p, T for DP-ScaffNew. From equation 2, the fastest convergence rate in the first
term can be obtained by setting the largest step-size η⋆ = 1/L and p⋆ =

√
µ/L, Mishchenko et al. (2022).

Given η⋆ and p⋆, we can find T ⋆ by minimizing the convergence bound in equation 2 by solving:

d

dT
(θTψ0) + p2Nd

1 − θ
· vC

2 ln(1/δ)
ϵ2

= 0.

We hence obtain η⋆, p⋆, and T ⋆ that minimize the upper-bound in equation 2 in the next corollary.
Corollary 1. Consider Algorithm 2 under the same setting as Theorem 1. Choosing η⋆ = 1/L, p⋆ =

√
µ/L,

and

T ⋆ =
ln

(
ψ0ϵ

2 ln([1−µ/L]−1)
vC2Nd ln(1/δ)

)
ln ([1 − µ/L]−1)

minimizes the upper-bound for E[ψT ] in equation 2.

To the best of our knowledge, the only result showing the optimal value of local steps and communication
rounds that balance privacy and convergence performance of DP federated algorithms is Wei et al. (2020).
However, our result is stronger than Wei et al. (2020) as we do not impose the data heterogeneity assumption,
the sufficiently large values of the client number N , and the privacy protection level ϵ. Our result also
provides the explicit expression for optimal hyper-parameters for DP-ScaffNew η⋆, p⋆, T ⋆. Furthermore,
from Corollary 1, we obtain the optimal expected number of local steps and of communication rounds, which
are 1/p⋆ and p⋆T ⋆, respectively.

3 Experimental Evaluation

Finally, we empirically demonstrate that the optimal local steps and communication rounds exist for DP
federated algorithms, which achieve the balance between privacy and convergence performance. We show
this by evaluating DP-FedAvg and DP-ScaffNew, including their non-private versions, for solving various
learning tasks over five publicly available federated datasets. In particular, we benchmark DP-FedAvg and
DP-ScaffNew for learning neural network models to solve (A) multiclass classification tasks over CIFAR-
10 Krizhevsky et al. (2009) and FEMNIST Caldas et al. (2018), (B) binary classification tasks over Fed-
IXI Terrail et al. (2022) and Messidor Decencière et al. (2014), and (C) next word prediction tasks over
Reddit Caldas et al. (2018). The summary of datasets with their associated learning tasks and hyper-
parameter settings is fully described in Table 1. Furthermore, we implemented DP federated algorithms for
solving learning tasks over these datasets in PyTorch 2.0.1Paszke et al. (2019) and CUDA 11.8, and ran all
the experiments on the computing server with an NVIDIA A100 Tensor Core GPU (40 GB). We shared all
source codes for running DP federated algorithms in our experiments as supplementary materials. These
source codes will be made available later upon the acceptance of this paper.

Clients Train S. Test S. B. Size Iters Clip Task
CIFAR10 5 10000 ± 0 2000 ± 0 64 10K 10,50,100 Classification (10)
FEMNIST 6 6129 ± 1915 684 ± 213 16 10K 10,50,100 Classification (63)
Reddit 3 28750 ± 0 11807 ± 0 64 10K 10,50,100 Language Model
Fed-IXI 3 151 ± 95 38 ± 24 1 400 10,20,50 Brain Mask Segmeation
Messidor 3 300 ± 0 100 ± 0 4 500 10,20,50 Classification (2)

Table 1: Summary of datasets used in the experiments with indication of client sample variability (± standard
deviation).
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Datasets. CIFAR-10, subset of FEMNIST, Fed-IXI, and Messidor consist of, respectively, 60000 32 × 32
images with 10 objects, 40263 128 × 128 images with 62 classes (10 digits, 26 lowercase, 26 uppercase),
566 T1-weighted brain MR images with binary classes (brain tissue or no), and 3220 224 × 224 eye fundus
images with binary labels (diabetic retinopathy or no). On the other hand, Reddit comprises 56,587,343
comments on Reddit in December 2017. While we directly used CIFAR-10 for training the NN model, the
rest of the datasets was pre-processed before the training. All pre-processing details for each data set are in
the appendix. Also, we split the CIFAR-10, FEMNIST, and Reddit datasets equally at random among 5, 6,
and 3 clients, respectively, while the raw Fed-IXI and Messidor datasets are split by 3 users (which represent
hospitals) by default.

Training. We used a two-layer convolutional neural network (CNN) for the multiclass classification over
CIFAR10 and FEMNIST. For the brain mask segmentation and binary classification, we employed a 3D-Unet
model over Fed-IXI and a VGG-11 model over Messidor. The 3D-Unet model has the same model parameter
tunings and baseline as that in Terrail et al. (2022), but we use group normalization instead of batch
normalization to prevent the leakage of data statistics. Finally, a 2-layer long short-term memory (LTSM)
network with an embedding and hidden size of 256 is employed to predict the next token in a sequence with
a maximum length of 10 tokens from the Reddit data, which is tokenized according to LEAF Caldas et al.
(2018). Moreover, the initial weights of these NN models were randomly generated by default in PyTorch.

Hyper-parameter tunings. We used SGD for every client in the local update steps for DP-FedAvg and
DP-ScaffNew. The learning rate for the local update is fixed at 0.05 for the Reddit dataset and at 0.01 for
the rest of datasets. The number of local steps is selected from the set of the all divisors of total iterations
for running the algorithms. Thus, the number of communication rounds is always equal to the quotients
of the iteration and local step. The total iterations for each dataset are detailed in Table. 1. For every
dataset, we test 4 distinct privacy levels represented by (ϵ, δ) values of (3.3, 2, 1, 0.5) paired with 10−5, along
with 3 different clip thresholds. These parameter settings are consistent with those used in DP-FedAvg and
DP-ScaffNew. Furthermore, Table. 1 provides the train and test sizes for each client, as well as the batch
size during training.

Evaluation and performance metrics. We collected the results from each experiment from 3 trials and
reported the average and standard deviation of metrics to evaluate the performance of algorithms.

We measure the following metrics for each experiment. While we collect accuracy as our evaluation metric
for classification and next-word prediction tasks, we use Dice coefficient to evaluate the performance for
segmentation tasks. Given that the value of these metrics falls within the range [0, 1] and a higher value
signifies better performance, we define the test error rate as

test error rate = 1 − metric,

where metric can be accuracy or dice coefficient.

Moreover, to analyze the correlation within our data, we resort to the R2 test. In essence, R2 is a statistical
measure representing the percentage of the data’s variance that our model accounts for. The R2 values at 0
and 1 imply, respectively, no and perfect explanatory power of the model.

3.1 Results

We now discuss the results of DP-FedAvg and DP-ScaffNew over benchmark datasets under different (ϵ, δ)-
DP noise and clipping thresholds. We provide the following observations.

Observation 1. The non-trivial optimal number of local steps exist for both DP-FedAvg and DP-ScaffNew.

We measure the test error rate of DP-FedAvg and DP-ScaffNew with respect to the number of local steps,
given the fixed total iteration number and other hyper-parameters. Figure 2 shows that there is an optimal
number of local steps that enabless DP federated algorithms to achieve the lowest test error rate. These
DP federated algorithms with optimally tuned local steps achieve performance almost comparable to their
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Figure 2: First line: DP-FedAvg, Second line: DP-ScaffNew. Clip threshold: 10.

non-private algorithms, especially for tasks over most benchmarked datasets (i.e., FEMNIST and Reddit).
Also, notice that the optimal local step exists even for DP-ScaffNew without the DP noise (when ϵ → +∞).
Our results align with theoretical findings for the non-DP version of DP-ScaffNew Mishchenko et al. (2022),
and also with Corollary 1 (which implies that 1/p⋆ represents the optimal number of expected local steps).
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Figure 3: First line: DP-FedAvg, Second line: DP-ScaffNew. Clip threshold: 10. All local step fix to the
optimal of its privacy budget.

Observation 2. There exists a non-trivial optimal number of iterations for DP-FedAvg and DP-ScaffNew.
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Figure 3 shows the optimal number of total iterations T ⋆ exists for DP federated algorithms to achieve
the lowest test error rate, thus validating our findings of Corollary 1. We note that as the total iteration
number T grows, DP-ScaffNew attains poor performance on both the test and train dataset even in the
absence of noise and the clipping operator (black in Figure 3). This phenomenon is not present in DP-
FedAvg. We hypothesize that the issue with DP-ScaffNew arises due to its variance reduction approach,
which employs SVRG-like control variates. Although this type of variance reduction has demonstrated
remarkable theoretical and practical success, it may falter when applied to the hard non-convex optimization
problems frequently encountered during the training of modern deep neural networks, as observed by Defazio
& Bottou (2019).

Te
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)

Local steps (# log scale)

Clip threshold 10 Clip threshold 50 Clip threshold 100

Figure 4: The FEMNIST result. First line: DP-FedAvg, Second line: DP-ScaffNew.

Observation 3. The optimal number of local steps increases and the optimal total iterations number de-
creases as the privacy degree increases.

We observe that as the privacy degree increases (ϵ becomes small), the optimal number of local steps increases
and the optimal total iteration number decreases as shown in Figure 2 and 3, respectively. Regarding the
number of iterations T , in Corollary 1 we prove this corresponding change with ϵ. However, with respect
to the phenomenon of local steps, there exists a discrepancy with theory, as the theory shows that it only
relates to the µ and L. This might be attributed to inherent complexities in the model.

Observation 4. The optimal local steps depend on the clipping threshold, but it does not significantly
impact performance.

We evaluate the impact of clipping thresholds (at 10, 50, 100) on the local steps for DP federated algorithms
to train over FEMNIST in Figure 4. Additional results over other datasets can be found in the appendix.
As the clipping threshold increases, the optimal local step number tends to increase but does not impact the
test error rate substantially. This is because the increase in C leads to the utility bound equation 2 which
becomes dominated by the second term. To minimize this utility bound, p and T must become smaller. This
implies the larger expected number of local steps 1/p.

We further investigate the clipping effect for DP-FedAvg and DP-ScaffNew. We perform this by computing
the intra-group mean and variance that are evaluated for four different guarantees for each dataset (where
we collect the test error rate against varied local steps), as we show in Figure 5.
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Figure 5: Intra-group optimal local values for two dataset groups: CIFAR10, FEMNIST, and Reddit (Group
1) versus Fed-IXI and Messidor (Group 2).

After the R2 test, we find that the optimal local steps linearly depend on the clipping threshold for DP-
ScaffNew, and on the square root of the clipping threshold for DP-FedAvg. Therefore, the benefit of local
steps given the clipping threshold is more significant for DP-ScaffNew than DP-FedAvg. This may be
because DP-FedAvg, in contrast to DP-ScaffNew satisfying equation 2, has an additional error term due to
data heterogeneity. Also, this observation on the limited benefit of local steps for DP-FedAvg aligns with
that for FedAvg by Wang & Joshi (2019).

4 Conclusion

This paper shows that DP federated algorithms have the optimal number of local steps and communication
rounds to balance privacy and convergence performance. Our theory provides the explicit expression of these
hyper-parameters that balance the trade-off between privacy and utility for DP-ScaffNew algorithms. This
result holds for strongly convex optimization without requiring data heterogeneity assumptions, unlike exist-
ing literature. Extensive experiments on benchmark FL datasets corroborate our findings and demonstrate
strong performance for DP-FedAvg and DP-ScaffNew with optimal numbers of local steps and iterations,
which are nearly comparable to their non-private counterparts.
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A Benchmark Data Pre-processing

Throughout the experiments, we pre-process FEMNIST, Fed-IXI, Messidor and Reddit before training.

FEMNIST For the FEMNIST dataset, due to its huge size, we randomly sample only 5% out of all the
samples before they are split equally among the clients.

Fed-IXI For the Fed-IXI dataset, we follow the same pre-processing steps according to the FLamby soft-
ware suite Terrail et al. (2022). All scans are geometrically aligned to the MNI template by the NtiftyReg Mo-
dat et al. (2014) and re-oriented using ITK to a common space. Finally, based on the whole image histogram,
we normalized the intensities and resized them from 83 × 44 × 55 to 48 × 60 × 48.

Messidor For the Messidor dataset, the following pre-processing steps were employed. Initially, black
edges were cropped based on a pixel threshold value of 1. Subsequently, every image was resized to a
standard dimension of 224 × 224. Data augmentation techniques were also integrated, including random
horizontal and vertical flips, alongside a restricted random rotation of 10 degrees. We also pre-process its
class labels for the binary classification task, according to steps explained by Yan et al. (2023).

Reddit For the Reddit dataset, each text sample is tokenized by using the table provided by LEAF Caldas
et al. (2018).

B Proofs

B.1 Proof of Theorem 1

Similarly to (Mishchenko et al., 2022), we first proceed by reformulating equation 1 to

min
x∈Rnd

1
N

N∑
i=1

fi(xi) + ϕ(x),

where x = [x1, x2, . . . , xN ]⊤ and

ϕ(x) =
{

0 if x1 = x2 = . . . = xN ,

∞ otherwise.

Note that this formulation is equivalent to our original problem equation 1 as it has to be the case ϕ(x) = 0 for
the optimal solution. Furthermore, note that the gradient step with respect to the first term corresponds to
the local step across all the clients, and the proximal step with respect to the second term is equivalent to the
averaging of local variables xi’s that corresponds to the communication step. Therefore, this reformulation
helps us to better facilitate the theoretical analysis in the federated setup. Furthermore, we would like to
highlight that we never use ϕ(x) in the analysis. Therefore, our analysis is not affected by this reformulation
and the possible functional value of infinity.

In order to solve this equivalent reformulation, we first define useful lifts to Rnd that help us to simplify the
analysis. To get better intuition why these lifts might be useful, note that if x⋆ is the optimal solution of
equation 1 then x⋆ :=

[
(x⋆)⊤, . . . , (x⋆)⊤]⊤ is the optimal solution of our reformulation.

First, we define
xt :=

[
(x(1)
t )⊤, . . . , (x(N)

t )⊤
]⊤

,

x̂t :=
[
(x̂(1)
t )⊤, . . . , (x̂(N)

t )⊤
]⊤

,

x̃t :=
[
(xt)⊤, . . . , (xt)⊤]⊤

,
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x⋆ :=
[
(x⋆)⊤, . . . , (x⋆)⊤]⊤

,

gt :=
[
(∇f1(x(1)

t ))⊤, . . . , (∇f(x(N)
t ))⊤

]⊤
,

∆t :=
[
(∆(1)

t )⊤, . . . , (∆(N)
t )⊤

]⊤
,

ht :=
[
(h(1)
t )⊤, . . . , (h(N)

t )⊤
]⊤

,

h⋆ :=
[
(∇f1(x⋆))⊤, . . . , (∇fN (x⋆))⊤]⊤

.

Also, let us define the linear operator A(yt) := ȳt, where ȳt :=
[
(ȳt)⊤, . . . , (ȳt)⊤]⊤ and ȳt := 1

N

∑N
i=1 y

(i)
t .

By setting gi(x) = ∇fi(x), and C > ∥x̂(i)
t+1 − xt∥ for i ∈ {1, . . . , N} and t ≥ 0, and by following similar proof

arguments as Mishchenko et al. (2022), Algorithm 2 can be expressed equivalently as:

xt+1 :=
{

A (x̂t+1 + et) with probability p
x̂t+1 otherwise

where x̂t+1 := xt − η(gt − ht), ht+1 := ht + p
η (A (∆t) − ∆t) and et ∼ N (0, σ2IN ·d) since by definition of

Algorithm 2, we have with probability p

xt+1 = x̃t + A (∆t) = x̃t + A (x̂t+1 − x̃t + et) = A (x̂t+1 + et)

as A (x̃t) = x̃t.

Furthermore, note that this can be also written as

xt+1 :=
{

A
(

x̂t+1 − η
pht + et

)
with probability p

x̂t+1 otherwise

since

A (ht+1) = A
(

ht + p

η
(A (∆t) − ∆t)

)
= A (ht) + p

η
(A (∆t) − A (∆t)) = A (ht)

and A (h0) = 0. Thus,

A (ht) = 0 for all t ≥ 0. (3)

Define ψt := ∥xt − x⋆∥2 + (η2/p2)∥ht − h⋆∥2. Then,

E[ψt+1] = pE[T1 + T2] + (1 − p)E
[
∥x̂t+1 − x⋆∥2 + η2

p2 ∥ht − h⋆∥2
]
, (4)

where

T1 = ∥A(x̂t+1 − η

p
ht + et) − x⋆∥2

= ∥A(x̂t+1 − η

p
ht) + A(et) − A(x⋆ − η

p
h⋆)∥2

= ∥A(x̂t+1 − η

p
ht) − A(x⋆ − η

p
h⋆)∥2 + ∥A(et)∥2
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since x⋆ = A(x⋆) = A(x⋆ − η
ph⋆) and et is independent noise, and

T2 =
∥∥∥∥ηp (ht − h⋆) + (A (∆t) − ∆t)

∥∥∥∥2

=
∥∥∥∥ηp (ht − h⋆) + (A(x̂t+1 − x̃t + et) − (x̂t+1 − x̃t + et))

∥∥∥∥2

=
∥∥∥∥ηp (ht − h⋆) + (A(x̂t+1 + et) − (x̂t+1 + et))

∥∥∥∥2

= ∥A(x̂t+1 − η

p
ht) − (x̂t+1 − η

p
ht) − A(x⋆ − η

p
h⋆) + (x⋆ − η

p
h⋆)∥2 + ∥A(et) − et∥2

since x⋆ = A(x⋆) = A(x⋆ − η
ph⋆), A (ht) = 0, and et is independent noise.

Let us define x := x̂t+1 − η
pht and y := x⋆ − η

ph⋆. Since ⟨A(z), z⟩ = ∥A(z)∥2 for all z ∈ RNd, we have

E[T1 + T2] =E ∥A(x) − A(y)∥2 + E ∥[A(x) − x] − [A(y) − y]∥2 + E∥A(et) − et∥2 + E∥A(et)∥2

=E ∥A(x − y)∥2 + E ∥A(x − y) − (x − y)∥2 + E∥A(et) − et∥2 + E∥A(et)∥2

=E∥x − y∥2 + E∥et∥2.

Let us define yt := [x̂t+1 − x⋆] − η
p [ht − h⋆]. Therefore,

E[T1 + T2] ≤ E∥yt∥2 +Ndσ2.

Plugging the upper-bound for E[T1 + T2] into equation 4 thus yields

E[ψt+1] ≤ pE∥yt∥2 + (1 − p)E
[
∥x̂t+1 − x⋆∥2 + η2

p2 ∥ht − h⋆∥2
]

+ pNdσ2.

Next, by the fact that ∥x− y∥2 = ∥x∥2 − 2⟨x, y⟩ + ∥y∥2 with x := x̂t+1 − x⋆ and y := η
p [ht − h⋆], and that

x̂t+1 := xt+1 − η(gt − ht),

E[ψt+1] ≤E
[
∥x̂t+1 − x⋆∥2 + η2

p2 ∥ht − h⋆∥2
]

− 2ηE⟨x̂t+1 − x⋆,ht − h⋆⟩ + pNdσ2

=E∥x̂t+1 − x⋆ − η[ht − h⋆]∥2 + (1 − p2)η
2

p2 E∥ht − h⋆∥2 + pNdσ2

=E∥xt − x⋆ − η[gt − h⋆]∥2 + (1 − p2)η
2

p2 E∥ht − h⋆∥2 + pNdσ2.

If each fi(x) is µ-strongly convex and L-smooth, then for η ≤ 1/L

E[ψt+1] ≤(1 − µη)E∥xt − x⋆∥2 + (1 − p2)η
2

p2 E∥ht − h⋆∥2 + 2pσ2

≤ρE[ψt] + pNdσ2.

where ρ := max(1 − µη, 1 − p2).

If p ∈ (0, 1], then applying this inequality recursively over t = 0, 1, . . . , T − 1 yields

E[ψT ] ≤ ρTψ0 + pNd

1 − ρ
σ2.

Finally, by letting the privacy variance σ2 = pvC
2T ln(1/δ)

ϵ2 for ϵ ≤ uT and δ,B > 0 according to Lemma 1,
we complete the proof.
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B.2 Proof of Corollary 1

If η = 1/L, then max(1 − µη, 1 − p2) = 1 − min(µ/L, p2) := 1 − θ. From Theorem 1 we have

E[ψT ] ≤ (1 − θ)Tψ0 + p2Nd

θ
· vC

2T ln(1/δ)
ϵ2

.

Note that (1 − θ)T ≤ (1 − µ/L)T , while p2/θ = max
(
p2L/µ, 1

)
≥ 1. We hence minimize the convergence

bound by letting p⋆ = argminp
p2

θ =
√

µ
L , which yields

E[ψT ] ≤
(

1 − µ

L

)T
ψ0 + vC2NdT ln(1/δ)

ϵ2
.

Next, we find the optimal number of iterations T ⋆ such that

T ⋆ = argminT
(

1 − µ

L

)T
ψ0 + vC2NdT ln(1/δ)

ϵ2
.

Since x = exp (ln(x)),

T ⋆ =argminT B(T )

:= exp
(
T ln

(
1 − µ

L

))
ψ0 + vC2NdT ln(1/δ)

ϵ2
.

Therefore,

d

dT
B(T ) =

(
1 − µ

L

)T
ψ0 · ln

(
1 − µ

L

)
+ vC2Nd ln(1/δ)

ϵ2
, and

d2

dT 2B(T ) =
(

1 − µ

L

)T
ψ0 · ln

(
1 − µ

L

)2
.

Since d2

dT 2B(T ) > 0 for all T ≥ 1, T ⋆ = argminTB(T ) can be found by setting d
dT B(T ) = 0 which yields(

1 − µ

L

)T⋆

ψ0 · ln
(

1 − µ

L

)
+ vC2Nd ln(1/δ)

ϵ2
= 0.

Finally, by using the fact that ln(1 − µ/L) = − ln([1 − µ/L]−1) and by re-arranging the terms, we complete
the proof.

C Additional Results

We use the same problem and hyper-parameter settings as Table 1. We present different clip threshold
results and more dataset results in this section.

C.1 Local Client Update Norm

We find that the correct shifts ensure that not only does the global update converge to zero, but also the local
updates diminish. Consequently, the clipping becomes active only in the initial rounds. For overparametrized
models, where the optimal shifts are zeros, even FedAvg exhibits this property.

Specifically, we observed that for individual clients—not on average—it typically takes less than 5 com-
munication rounds for the norm of the updates to fall below the clipping threshold. This phenomenon is
concretely illustrated in Figure 11 for the first client in the Fed-IXI dataset, where we track the gradient
norms across individual clients.

Additionally, we compare loss curves with and without gradient clipping. These results suggest that par-
ticularly in the minimal clipping threshold settings (i.e., the most challenging) of our study, the impact of
clipping on the updates of individual clients is minimal.
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Figure 6: First line: DP-FedAvg, Second line: DP-ScaffNew. Clip threshold: 50.
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Figure 7: First line: DP-FedAvg, Second line: DP-ScaffNew. Clip threshold: 100.
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Figure 8: First line: DP-FedAvg, Second line: DP-ScaffNew. Fed-IXI result with fixed iteration times.
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Figure 9: First line: DP-FedAvg, Second line: DP-ScaffNew. Messidor result with fixed iteration times.
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Figure 10: First line: DP-FedAvg, Second line: DP-ScaffNew. Clip threshold: 10. All local step fix to the
optimal of its privacy budget.
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Figure 11: Left. Client 1’s update tensor norm. Right. Loss curve for Client 1 with and without clip
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Figure 12: Optimal number of local steps and iteration times of Mushroom dataset

D Logistic regression

We use strongly convex logistic regression with closed-formed formulas for strong convexity and smoothness
parameters to mimic our theoretical setup. We experiment with the mushroom dataset (Chang & Lin, 2011).

Firstly, we showcase that our theoretical predictions for the optimal number of local steps align with what
the theory suggests; see Figure 12. Furthermore, we can see that the optimal value of the local step is
independent of the ϵ as predicted by our theory. Finally, we compare the prediction of the optimal number
of steps T ⋆ with the experiments. As we display in Figure 12, our theory is able to predict this value with
high precision.
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