
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

R-SPARSE: RANK-AWARE ACTIVATION SPARSITY FOR
EFFICIENT LLM INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs), while demonstrating remarkable capabilities
across various applications, present significant challenges during inference due to
their substantial model size, especially when deployed on edge devices. Activation
sparsity offers a promising solution to reduce computation and memory movement,
enabling more efficient inference, particularly for small-batch on-device applica-
tions. However, current approaches face limitations with non-ReLU activation
function, which are foundational to most advanced LLMs, or require heavy contin-
ual training. Additionally, the difficulty in predicting active channels and limited
achievable sparsity ratios constrain the effectiveness of activation sparsity-based
methods. In this paper, we introduce R-Sparse, a training-free activation spar-
sity approach capable of achieving high sparsity levels in advanced LLMs. We
conducted two preliminary investigations into how different components contribute
to the output within a single linear layer and found two key observations: (i) the
non-sparse components of the input function can be regarded as a few bias terms,
and (ii) The full computation can be effectively approximated by an appropriate
combination of input channels and weight singular values. Building on this, we
replace the linear layers in LLMs with a rank-aware sparse inference method that
leverages the sparsity of input channels and singular value components, eliminating
the need for active channel prediction like the output sparsity based approaches.
Experiments on Llama-2/3 and Mistral models across ten diverse tasks demonstrate
that R-Sparse achieves comparable performance at 50% model-level sparsity,
resulting in a significant 43% end-to-end efficient improvements with customized
kernels. Code will be made publicly available upon acceptance.

1 INTRODUCTION

Large Language Models (LLMs) have become ubiquitous due to their remarkable capabilities, pow-
ering applications from virtual assistants to automated content creation. However, their impressive
performance comes with significant computational and memory costs due to their enormous pa-
rameter counts. This poses significant challenges for latency-sensitive applications, particularly for
deployments on edge devices. To address this, network pruning or sparsity (Frantar & Alistarh, 2023;
Sun et al., 2023; Yin et al., 2023; Ma et al., 2023) is an effective solution. These strategies operate
in a data-independent manner with different levels of pruning granularity, e.g., unstructured, semi-
structured, or structured. While more structured pruning approaches leads to more limited sparsity
levels, unstructured sparsity introduces greater challenges for efficient hardware implementation.

Recently, activation sparsity (Liu et al., 2023; Mirzadeh et al., 2023; Dong et al., 2024; Lee et al.,
2024) has emerged as a promising solution that dynamically loads only the active channels and their
corresponding weight rows or columns from off-chip HBM (NVIDIA, 2020) to on-chip SRAM,
significantly alleviate the latency and memory cost when equipped with optimized system implemen-
tations (Song et al., 2023). Designing activation sparsity functions in a structured, data-dependent
way, can make the specified network more hardware-friendly while also achieving higher sparsity
levels compared to traditional pruning techniques.

Despite the promising progress, several challenges remain: (i) Feasibility for non-ReLU based LLMs:
ReLU eliminates the negative part of activations, enabling a lossless approximation when skipping
the computation of corresponding channels (Liu et al., 2023). However, most advanced LLMs now
use non-ReLU activations like SiLU (Elfwing et al., 2018) and GELU (Hendrycks & Gimpel, 2016),

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

which retain small negative values, requiring extensive continual pre-training to obtain meaningful
activation sparsity (Song et al., 2024a; Zhang et al., 2024a; Mirzadeh et al., 2023; Song et al.,
2024b). Such training process can involve up to 150B tokens, taking approximately one month on
64 A100 GPUs. (ii) Difficulty in Predicting Active Channels: Previous approaches identify critical
channels within the hidden activations of MLP blocks, facing significant challenges in predicting
the active channels before performing the computation. Common strategies include exploiting the
similarity of activated channels across semantically similar tokens (Dong et al., 2024), leveraging
the activations after the gate projection (Lee et al., 2024), or using a learnable predictor (Liu et al.,
2023), while the accuracy of active channel prediction will highly affect their effectiveness. (iii)
Limited Sparsity Levels: For approaches that do not rely on extensive retraining (Lee et al., 2024;
Dong et al., 2024), only 50% sparsity within MLP blocks can be achieved, leading to a model-level
sparsity of one third. Achieving higher levels of overall sparsity remains a significant challenge.

This paper targets a training-free activation sparsity approach that is: (i) feasible for non-ReLU
based LLMs; (ii) unaffected by the difficulty of predicting active channels; and (iii) capable of
achieving higher sparsity levels. While previous methods focus on output activation sparsity (Liu
et al., 2023; Lee et al., 2024), requiring prior prediction of important channels, our approach leverages
input activation sparsity, identifying active channels directly from the input without the need of
prediction. Furthermore, recent studies (Mirzadeh et al., 2023; Song et al., 2024a;b) have shown that
directly removing the non-sparse components only achieves limited sparsity while with extensive
training, sparsity ratios can be pushed to as high as 90%. This sparsity gap raises an natural question:
Is the non-sparse portion of the activation truly necessary for maintaining model performance, or
can we employ a lightweight strategy to mitigate the non-sparse part without resorting to heavy
pre-training? Motivated by this, we apply a multi-phase ReLU function to the non-sparse channels,
the corresponding activations will then be rounded to a few discrete values. As the number of discrete
values increases from 1 to 2, performance can be significantly improved, even at a sparsity level of
90%. The output components associated with the non-sparse portion can then be approximated by a
few bias terms, indicating a low-rank structure for these components.

To better understand the low-rank structure, we analyze the importance of each input channel
in the activations and each singular value component of the weights, to the output activations.

Figure 1: Contributions of each in-
put channel and singular value com-
ponents. The measurement metric
is detailed in Section 3.3. Results
are obtained from Llama-2-7B with
16 training samples from C4. Both
the input channel and SVD compo-
nents are sorted from small to large
for better visualization.

As shown in Figure 1, we observe a highly sparse structure where
an appropriate combination of input channels (green rectangle)
and singular value components (yellow rectangle) can effectively
approximate the full computation. Building on these, we propose
R-Sparse, a simple yet effective framework that decompose
the computation of each linear layer with a sparse and low-rank
components. For the sparse portion, our approach identifies sparse
channels by selecting those with large magnitude values and loads
only the corresponding rows of weights into SRAM for compu-
tation. For the low-rank components, we route the non-sparse
channels to a low-rank modules that obtained from an offline low-
rank decomposition of the original weights. R-Sparse can be
applied to both attention and MLP modules that achieves higher
sparsity levels. Additionally, we find the patterns of sparse and
low-rank combinations vary across different layers. With that,
we employ an evolutionary search algorithm to identify the opti-
mal ratios for the sparse components in each layer within LLMs,
resulting in enhanced performance.

We conduct extensive experiments on three representative LLM
families: Llama-2 (Touvron et al., 2023), Llama-3 (Dubey et al.,
2024), and Mistral (Jiang et al., 2023), across ten tasks, including common-sense reasoning, language
modeling, and text summarization. Our approach achieves 50% model-level sparsity while maintain-
ing performance comparable to the full model. Additionally, by utilizing a customized kernel, we
demonstrate up to 43% end-to-end improvements in generation speed. Furthermore, R-Sparse is
compatible with weight quantization for further efficiency gains.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORKS

2.1 EFFICIENT LLM INFERENCE

The inference process of LLMs is typically memory-intensive due to the large number of parameters
and the huge KV cache required to store intermediate key and value embeddings. To reduce memory
overhead, various strategies have been investigated, including removing redundant components
through pruning or sparsification (Frantar & Alistarh, 2023; Sun et al., 2023; Yin et al., 2023; Ma
et al., 2023; Zhang et al., 2024b; Xiao et al., 2023b; Jiang et al., 2024); quantizing data into lower bit
formats (Frantar et al., 2022; Lin et al., 2024; Xiao et al., 2023a; Chee et al., 2024; Kim et al., 2023;
Egiazarian et al., 2024; Liu et al., 2024b); and distilling large models into smaller or more efficient
architectures (Bick et al., 2024; Hinton, 2015; Sreenivas et al., 2024). Additionally, some approaches
focus on developing efficient architectures (Gu & Dao, 2023; Peng et al., 2023; Yang et al., 2023)
or optimizing hardware (Dao et al., 2022; Kwon et al., 2023; Alizadeh et al., 2023), enhancing the
efficiency of LLM inference and making them more accessible on edge devices. This work focuses
on mitigating the overhead from the large model sizes while compression techniques for KV cache
are orthogonal to weight reduction and can be naturally combined that we will explore in the future.

2.2 ACTIVATION SPARSITY

Several studies have demonstrated that activations within the MLP blocks of transformers are highly
sparse (Geva et al., 2020; Li et al., 2022; Dettmers et al., 2022). This sparsity primarily arises from
ReLU activations, where negative values are zeroed out, providing a natural, lossless opportunity
for accelerating inference in LLMs like OPT (Zhang et al., 2022). However, most modern LLMs
use activation functions like SiLU or GeLU, which retain small negative values. Directly replacing
with the ReLU activation would impair model functionality. To address this challenge, a common
strategy is ”ReLUfication” where the original activations are replaced with ReLU, followed by
extensive continual training to recover performance (Zhang et al., 2024a; Mirzadeh et al., 2023; Song
et al., 2024b;a). However, this approach introduces significant computational overhead, limiting its
accessibility. Recent training-free methods (Lee et al., 2024; Dong et al., 2024) have made progress
in applying sparsity to non-ReLU models, achieving modest sparsity ratios (e.g., 50% in MLP
blocks and up to 33% model-wide). Additionally, most previous works focus on the sparse structure
of output activations, requiring extra effort to identify active channels before computation (Dong
et al., 2024; Liu et al., 2023; Lee et al., 2024), with the accuracy of channel prediction significantly
affecting performance. In our work, we shift the focus to the sparse structure of input channels and
singular value components, eliminating the need for active channel prediction while feasible for both
attention and MLP blocks, leading to higher sparse ratios without additional training. One concurrent
work (Liu et al., 2024a) shares a similar intuition but focuses solely on input channels that can be
viewed as a special case of our framework.

3 METHODOLOGY

This section starts from a brief overview of LLM inference and the notations used throughout the
paper. Following this, we present two interesting observations: (I) the contribution of non-sparse
(i.e., small-magnitude) input channels can be converted into biases, and (II) the full computation can
be effectively approximated with an appropriate combination of input channels and singular value
components. Motivated by these, we detail our proposed inference framework R-Sparse, along
with the evolutionary search algorithm for determining the optimal sparsity recipe.

3.1 PRELIMINARY

LLM inference typically consists of two stages: ❶ the pre-filling stage, where a batch of prompts
containing multiple tokens is processed by the model, and ❷ the decoding stage, where new tokens are
generated incrementally. The decoding phase is often memory-bounded, and its iterative mechanism
amplifies the overhead associated with loading parameters into on-chip memory, becoming the main
bottleneck during inference. However, activation sparsity mitigates this by enabling the selective
loading of only active rows or columns of the weights into SRAM at each decoding stage. In the
following, we focus primarily on the decoding phase.

Consider a typical LLM architecture, where each block contains seven linear layers. The attention part
comprises four matrices: Wq,Wk,Wv,Wo ∈ Rn×n, while the widely used MLP block Touvron
et al. (2023); Dubey et al. (2024) includes three matrices: Wup,Wgate ∈ Rm×n and Wdown ∈

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Rn×m (n and m stands for the dimension of model embedding and hidden activations within
MLP blocks, respectively). The computational process of the MLP block can be formulated as
Y = HWT

down, where H = XWT
up ⊙ σ(XWT

gate).

3.2 MOTIVATION CASE I: NON-SPARSE COMPONENTS ARE BIASES

We first carry out a preliminary investigation into how sparsification of input activations influences
the final performance. We use a soft multi-phase ReLU function σT (·) to approximate the non-ReLU
activation functions σ(·), which is defined as:

σT (x) =

{
x if x ≥ T0
Ti+Ti+1

2 if Ti+1 ≤ x < Ti

Figure 2: Accuracy of Llama-2-7B on Open-
BookQA (Mihaylov et al., 2018a) (OBQA) and ARC
Challenge (Clark et al., 2018a) (ARC-C) tasks.

where T = {T0, T1, .., Tl−1} and l determines
the softness of the sparsification operation. When
T0 = 0 and l = 1, this is equivalent to standard
activation sparsity achieved by ReLU where all
non-sparse part (x < 0) are masking out as zero.
Additionally, we set Tl−1 as the minimum value
of input and the sparsity is defined as the ratios
of x < T0. As shown in Figure 2. By simply
increasing l from 1 to 2, the degraded performance
can be easily recovered, even at a sparsity ratio
of 90%. Additionally, we use Ui to represent the
subset of channels in H that satisfy Ti+1 ≤ Hk <
Ti (k ∈ Ui). The corresponding output Y can then
be decomposed into the sparse part Ys, where Hk ≥ T0, and the residual part Yr, as:

Yr =

l−2∑
j=0

Tj + Tj+1

2

∑
k∈Uj

WT
down[:, k]


The subset of channels Uj is input-dependent and each term

∑
k∈Uj

WT
down[:, k] can be viewed as a

data-dependent bias Bj . This allows the non-sparse components to be effectively approximated with
a few biases. We will show later how these data-dependent biases can be converted into static biases
and being pre-computed. With only two biases, the sparsity ratio is significantly increased to 90%.

3.3 MOTIVATION CASE II: RANK-AWARE ACTIVATION SPARSITY

Figure 3: Importance of each input channel and singular value. Zoom in for better visualization. Results
are obtained with the pretrained Llama-2-7B model and 16 samples from the C4 training dataset, each with a
sequence length of 4096. Each subfigure corresponds to the results of different layers, with the horizontal axis
representing the input channel index and the vertical axis representing the singular value index. The top, middle,
and bottom subfigures represent the results of the first, middle, and last layers, respectively.

Although it’s costly to obtain the input-dependent biases on the fly. we observe that the space
spanned by the biases across thousands of tokens exhibits a low-rank structure, e.g., for each token

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

i, we use two biases to approximate the residual part Y i
r = Bi

0 + Bi
1. By concatenating 4000

biases from 2000 tokens, we obtain a bias matrix M, where M[:, 2i] = Bi
0 and M[:, 2i+ 1] = Bi

1
(i ∈ {1, 2, ..., 2000}). We find the stable rank of M is approximately 400. Inspired by this, we
further explore the relationship between weight SVD components and sparse activations. Given a
pre-trained linear layer Y = XWT ,W ∈ Rn×m(n ≤ m), we perform singular value decomposition
(SVD) on the weight matrix, that W = UΣVT =

∑n
i=1 σiU[:, i]VT [:, i]. The output Y can then

be expressed as Y =
∑n

i=1

∑m
j=1 σiXjV[j, i]UT [:, i] where Si,j := σiXjV[j, i] measures the

contribution of the j-th input channel and the i-th SVD components. We collected the distribution
of S for Llama-2-7B (Touvron et al., 2023) using 16 training samples from the C4 dataset (Dodge
et al., 2021), each containing 4096 tokens. For better visualization, both the rows and columns of
S were sorted independently. Across different linear layers in either Attention or MLP blocks, the
primary contributions are concentrated in the lower-right corner. Additionally, almost all layers
exhibit significant sparse property, although some variation exists across layer types and blocks.
For instance, the o.proj layer exhibits a greater reliance on smaller singular values compared to the
q.proj and k.proj layers. This observation also aligns with with recent studies (Jaiswal et al., 2024),
which demonstrate that q.proj and k.proj can be more easily compressed via low-rank approximation.
Moreover, middle layers tend to display higher sparsity, while initial and final layers are more difficult
to be sparsified, aligning with the general experience that the beginning and final layers of LLMs are
harder to be compressed (Yin et al., 2023).

3.4 R-SPARSE

Input Channel

Input Channel

SV
D

 In
de

x

X W Y Input Channel

SV
D

 In
de

x

X

SV
D

 In
de

x

W

Input
Sparsification Sparse

Loading

X

Offline SVD

Y

R-Sparse

Activation Sparsity Low Rank Decomposition

Figure 4: Illustration of various compression techniques with corresponding impact on different input channels
and singular values. The horizontal axis of the heatmap represents the input channels, while the vertical axis
corresponds to the singular value index.

Building on the observation of rank-aware activation sparsity, we propose the R-Sparse inference
framework. An overview of R-Sparse and its comparison with other techniques is presented in
Figure 4. For a given score matrix S, previous methods that based on activation sparsity typically
remove the left portion of S, while low-rank compression techniques eliminate the upper portion.
However, since the most significant components concentrate in the bottom-right area, an ideal
approach would be to remove the top-left part. To efficiently implement this strategy, we decompose
the computation of Y = XWT into two components: the sparse Ys and low-rank Yr.

Sparsifying Input Activation: Firstly, we estimate the threshold for identifying the sparse compo-
nents of the input X . Given a pre-defined sparsity budget s, the threshold t(s) is estimated as the sth
percentile of X , i.e., P(|X| < t(s)) = s. Next, we apply the threshold to mask out the low-magnitude
channels. The corresponding sparsification function σt(s)(·), is defined as:

σt(s)(X)j :=

{
Xj if |Xj | ≥ t(s)

0 if |Xj | < t(s)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Note that CATS Lee et al. (2024) employs a similar thresholding strategy to identify sparse compo-
nents. However, while their approach targets sparsity in the output activation of the gate projection,
our method focuses on input sparsity, which can be applied across all linear layers of LLMs.

R-Sparse Inference: The original linear layer Y = XWT can then be approximated as Y = Ys+Yr

where Ys = σt(s)(X)WT and Yr = (X − σt(s)(X))(ArBr)
T . For the sparse part, we omit

unnecessary columns corresponding to input channels with zero values. Additionally, the weights
should be stored in a column-major format to enhance memory bandwidth utilization, as GPUs
fetch consecutive memory entries during each access. For the low-rank part, we perform SVD
on the pretrained weight matrix W and use its low-rank approximation, where Ar = UrΣ

1
2
r and

Br = Σ
1
2
r VT , with r representing the selected rank. And we select the most important r components

based on the estimated scores in Figure 3. Since this low-rank approximation can be computed offline
through a single SVD operation, it won’t impact the latency during the inference. The memory I/O
overhead is determined by two hyperparameters, (r, s), and is equal to rm+n

mn + s relative to that of a
full linear layer. Additionally, we apply R-Sparse inference to all linear layers in both the attention
and MLP blocks, aiming to achieve higher sparsity ratios.

3.5 OPTIMAL RECIPE FOR SPARSIFICATION

As illustrated in Figure 3, different layers demonstrate varying characteristics of rank-aware sparsity.
To more accurately approximate the full computation, we develop an evolutionary strategy to search
for the optimal ratio between the sparse and low-rank components within each layer. We begin by
defining ρi, which represents the relative ratio of the sparse part in layer i. Given Ci as the sparse
budget of layer i, the sparse part equals to si = ρiCi and the rank is ri = (1−ρi)Ci

mn
m+n . We employ

the search algorithm (Algorithm 1) to obtain the optimal ρ∗ = {ρ∗1, ρ∗2, . . . , ρ∗L} = argminρ L(f, ρ),
where the loss L is the average perplexity over 16 randomly selected samples from the C4 training
set and f is the original LLMs. We retain the individuals with lower perplexity at each generation.
To expedite the convergence of the search process, we implement a group-wise strategy with a group
size of 28. In this approach, we optimize the variables of one group at a time, while holding the
variables of the other groups at the values from the most recent best-performing individual.

Algorithm 1 Search Algorithm for Sparsification Recipe
1: Initialize: A pre-trained LLM M that consists of L layers. A population size of P , mutation rate pm,

crossover rate pc, a total of T generations.
2: Randomly initialize population G = {ρ1, ρ2, ..., ρP} where ρi = {ρi1, ρi1, ..., ρiL}
3: S = Best(G); Ĝ = {} ▷ Select the best individual from the group
4: for generation t = 1, . . . , T do
5: for generation i = 1, . . . ,P do
6: mi = ρx1 + pm(ρx2 − ρx3) ▷ Mutation: x1, x2, x3 are randomly chosen from {1, 2, ...,P}.
7: ρ̂i = (α > pc)m

i + (α ≤ pc)ρ
i ▷ Crossover: α is random variables from (0, 1)L

8: Ĝ = Ĝ ∪ {ρ̂i}
9: end for

10: G = Top K(Ĝ ∪ G); S = Best(G); Ĝ = {} ▷ Select the next generation
11: end for
12: Return: Best recipe S.

The population size is set to 32, with both the mutation rate pm and crossover rate pc equals 0.5,
and the total number of generations is 5. The overhead of the search process is minimal, taking
approximately one hour on a single A6000 GPU for the Llama-2-7B model.

4 EXPERIMENTS

4.1 GENERAL SETUP

Models and Datasets. To evaluate the effectiveness of R-Sparse, we consider three representative
large language model (LLM) families: Llama-2 (Touvron et al., 2023), Llama-3 (Dubey et al., 2024),
and Mistral (Jiang et al., 2023). We assess the models on several popular tasks, including eight
common-sense reasoning tasks: Winogrande (WG) (Sakaguchi et al., 2021), PIQA (Bisk et al., 2020),

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Comparison between R-Sparse and other baselines on common-sense reasoning tasks.
Models WG PIQA SciQ OBQA HS BoolQ Arc-E Arc-C Average

Llama-2-7B 69.14 78.07 93.80 31.40 57.13 77.71 76.35 43.43 65.88

ReLUfication 49.25 54.19 25.90 15.40 25.82 60.00 27.90 24.23 35.34

CATS22% 67.72 77.37 92.80 30.40 57.03 72.87 74.71 41.64 64.32
CATS40% 55.01 66.97 57.20 20.20 36.27 62.81 44.02 27.56 46.26

R-Sparse40% 68.03 77.31 93.90 30.80 55.62 75.99 75.67 42.66 65.00

GRIFFIN33% 62.04 71.27 89.00 22.00 47.20 60.98 60.94 32.00 55.68
GRIFFIN50% 53.59 64.74 77.70 17.40 35.64 56.42 40.74 21.08 45.91
R-Sparse50% 67.40 77.31 93.90 31.40 54.26 72.84 74.58 40.78 64.06

Llama-3-8B 72.69 79.71 96.20 34.80 60.18 81.35 80.09 50.51 69.44

ReLUfication 50.83 53.48 22.20 14.80 25.53 52.78 24.45 21.50 33.20

CATS22% 70.17 79.00 94.90 31.20 57.81 76.51 75.29 46.50 66.42
CATS40% 48.22 56.96 36.90 16.20 27.30 49.05 30.30 22.35 35.91

R-Sparse40% 71.11 78.24 95.90 34.60 58.33 79.85 79.67 49.23 68.37

GRIFFIN33% 63.54 71.87 89.40 24.00 48.08 54.34 62.33 34.73 56.04
GRIFFIN50% 52.80 64.74 73.90 19.20 35.62 47.61 43.64 23.38 45.11
R-Sparse50% 69.30 77.69 96.00 31.60 56.64 76.73 76.94 44.71 66.20

Mistral-7B 74.11 80.41 96.00 32.20 61.05 83.85 80.68 50.85 69.89

ReLUfication 48.62 51.52 23.51 14.40 25.81 42.02 27.82 24.06 32.22

CATS22% 72.22 79.82 94.30 32.20 60.79 80.46 77.78 50.51 68.51
CATS40% 50.83 58.05 28.60 19.20 28.06 60.21 30.22 25.43 37.58

R-Sparse40% 72.45 79.49 96.10 30.40 59.68 82.11 79.80 47.18 68.40

GRIFFIN33% 63.30 75.95 91.00 25.40 53.01 64.28 68.73 36.60 59.78
GRIFFIN50% 54.22 67.90 79.10 19.80 39.99 47.31 49.83 26.37 48.07
R-Sparse50% 72.69 79.92 96.10 30.60 58.94 82.81 78.91 47.18 68.39

SciQ (Welbl et al., 2017), OpenBookQA (OBQA) (Mihaylov et al., 2018b), HellaSwag (HS) (Zellers
et al., 2019), BoolQ (Clark et al., 2019), and ARC (ARC-Easy and ARC-Challenge) (Clark et al.,
2018b). Evaluations are conducted using the lm-evaluation-harness framework (Gao et al., 2021).
Additionally, we report results on text summarization tasks using XSUM (Narayan et al., 2018),
as well as language modeling tasks on the validation set of WikiText-2 (Merity et al., 2016). For
common-sense reasoning, we report accuracy, while summarization tasks are evaluated via Rouge-L
scores and language modeling is assessed by perplexity.

Baselines. Since R-Sparse does not require additional training, we compare it against several
competitive training-free methods. (i) ReLUfiction (Mirzadeh et al., 2023) where the non-ReLU
activation functions in the MLP block are replaced with ReLU, and accuracy is reported without
retraining. (ii) CATS(Lee et al., 2024) that sparsifies Wup and Wdown based on the magnitude of
output activations from Wgate. (iii) GRIFFIN (Dong et al., 2024): It sparsifies all layers in the
MLP block, selecting important channels based on statistics from the pre-filling stage. Different
from CATS and GRIFFIN, which focus only on the MLP blocks, R-Sparse sparsifies all linear
layers, including the attention blocks. For a fair comparison, we report performance with the original
reported sparsity ratios (50% for the sparsified modules, corresponding to 22% model-level sparsity
for CATS and 33% for GRIFFIN). We also compare the results with higher sparsity ratio by scaling
up the MLP block sparsity for both methods. All sparsity ratios reported in the following experiments
are measured at the model level. More details are included in Appendix A and B.1.

4.2 END-TO-END RESULTS

We begin by presenting the end-to-end performance of R-Sparse and baseline methods across
different models, tasks, and sparsity ratios. The results, shown in Table 1 and Figure 5, highlight
several key observations: (I) R-Sparse consistently outperforms CATS (Lee et al., 2024) and
GRIFFIN (Dong et al., 2024) across all common-sense reasoning, language modeling, and summa-
rization tasks. With the same model-level sparsity budget (i.e. CATS40% v.s. R-Sparse40% and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Sparsity (%) Sparsity (%) Sparsity (%) Sparsity (%) Sparsity (%)

Figure 5: Comparison results of Llama-2-7B across different model-level sparsity ratios on common-sense
reasoning, language modeling and summarization tasks.

GRIFFIN50% v.s. R-Sparse50%), R-Sparse achieves an average performance gain of 18.74%
over CATS and 18.15% over GRIFFIN on Llama-2-7B. This improvement primarily stems from
three factors: ❶ while CATS and GRIFFIN only sparsify the MLP block, R-Sparse can be applied
to both the attention and MLP blocks; ❷ we extends standard activation sparsity with rank-aware
sparsity, providing a better approximation of the full computation; ❸ and we further leverages the
adaptive rank properties of different layers by searching the optimal sparse-rank ratio ρ. Detailed
ablation studies on these factors are discussed in Section 4.4. (ii) R-Sparse achieves performance
comparable to the full model with minimal degradation at a sparsity ratio around 50% while in some
tasks, e.g., SciQ, a matching performance can be achieved even at a sparsity ratio of 70%. (iii) For
some tasks, a moderate sparse treatment slightly enhances the accuracy, such as 1.60% improvements
at 30% sparsity ratio on the OpenBookQA task.

4.3 EFFICIENCY

128 256 512 1024 2048
Generation Length

10
12
14
16
18
20
22

G
en

er
at

io
n

Sp
ee

d
(T

ok
en

/s
) Llama-2-7B

Dense
Ours

128 256 512 1024 2048
Generation Length

10
12
14
16
18
20
22

G
en

er
at

io
n

Sp
ee

d
(T

ok
en

/s
) Llama-3-8B

Dense
Ours

Figure 6: Generation speeds of Llama-2-7B and Llama-3-8B using a uniform 50% sparsity in our method. The
prompts consist of 2048 tokens, with generation lengths ranging from 128 to 2048. The generation speed is
calculated as the number of generated tokens divided by the total generation time.

We demonstrate the end-to-end efficiency improvements of R-Sparse. For this, we collected
five samples that consists of 2048 tokens and generate new content ranging in length from 128 to
2048 tokens to evaluate performance across different generation lengths. Without losing generality,
our implementation is based on the Hugging Face library with FP32 precision data format. All
experiments are conducted on a single NVIDIA A6000 GPU without offloading. We applied a
uniform 50% sparsity to R-Sparse, achieving comparable performance as shown in Section 4.2
and utilized a customized Triton kernel to reduce data transfer between on-chip SRAM and HBM. As
illustrated in Figure 6, R-Sparse achieved up to 42% and 40% improvements in generation speed
for Llama-2-7B and Llama-3-8B, respectively, highlighting the effectiveness of our approach.

4.4 ABLATION STUDY AND FURTHER INVESTIGATION

We conduct extensive ablation studies of R-Sparse, summarized by the following research ques-
tions: Q1: Is R-Sparse compatible with weight quantization? Q2: How does R-Sparse compare
with vanilla activation sparsity? Q3: What’s the benefit of optimal sparsification recipe?

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Compatibility with weight quantization.
Methods WG PIQA SciQ OBQA Average

FP16 69.14 78.07 93.80 31.40 68.10
INT4 68.19 77.48 93.80 29.80 67.32

R-Sparse40% 68.03 77.31 93.90 30.80 67.51
R-Sparse50% 67.40 77.31 93.90 31.40 67.50

INT4 R-Sparse40% 66.93 76.71 92.80 29.20 66.41
INT4 R-Sparse50% 66.38 75.95 92.10 28.60 65.76

Table 3: Results of sparse and low-rank baselines.
Methods WG PIQA SciQ OBQA Average

Full 69.14 78.07 93.80 31.40 68.10

Sparse 65.11 77.37 93.30 29.20 66.25
Low-Rank 49.88 53.32 14.80 14.20 33.05

R-Sparse 67.40 77.31 93.90 31.40 67.50

A1: Compatible with quantization. We demonstrate that R-Sparse is highly compatible with
weight quantization. As shown in Table 2, when combined with 4-bit quantization, R-Sparse
achieves an average accuracy of 66.41% at 40% sparsity and 65.76% at 50% sparsity on common-
sense reasoning tasks, closely comparable to the full model’s performance of 68.10% and the
quantization-only result of 67.32%. Note that we use GPTQ (Frantar et al., 2022) for weight
quantization with a group size of 128, that provides matching performance as the full baseline. The
compatibility of R-Sparse with weight quantization offers further potential efficiency gains through
optimized CUDA kernels that fuse the sparse and quantization operations.

A2: R-Sparse outperforms both vanilla activation sparsity and low-rank decomposition.
Table 3 compares R-Sparse with vanilla activation sparsity (Sparse) and low-rank decomposition
(Low-Rank). For the sparse and low-rank baselines, we apply the sparsification operation on all
linear layers, maintaining the same model-level sparsity ratios for each method. Experiments
conducted with 50% sparsity on Llama-2-7B show that R-Sparse consistently outperforms the
Sparse baseline, with an average improvement of 0.98%, while the Low Rank method fails to
maintain performance. This is expected, as the low-rank properties vary across layers: layers with
intrinsic low-rank characteristics can be well-approximated with a small ρ, while higher-rank layers
benefit from higher sparse components, leading to a higher ρ. With that, R-Sparse combines both
scenarios and provides a more effective approximation.

Table 4: Comparison of different sparsification recipes.
Tasks Methods 40% 50% 60% 70% Average

OBQA Uniform 29.80 30.40 24.60 21.40 26.55
Adaptive 30.80 31.40 27.80 24.00 28.50 (+1.95)

Arc-E Uniform 74.92 74.03 68.69 60.77 69.60
Adaptive 75.67 74.58 70.29 61.41 70.49 (+0.89)

Arc-C Uniform 41.30 39.08 35.49 28.16 36.01
Adaptive 42.66 40.78 36.01 29.10 37.14 (+1.13)

BoolQ Uniform 75.32 72.54 69.42 63.85 70.28
Adaptive 75.99 72.84 72.14 64.59 71.39 (+1.11)

A3: Further enhancement through
better sparsification recipes. We
compare the searched sparsification
recipes with uniform ones. For the
uniform approach, we set ρ = 0.95
uniformly across all layers, based on
a grid search using 16 training sam-
ples from the C4 dataset. In contrast,
the adaptive strategy is based on the
search algorithm. As shown in Ta-
ble 4, the evolutionary search algo-
rithm outperforms the uniform strat-
egy, achieving up to a 1.60% accu-
racy gain across sparsity ratios rang-
ing from 40% to 70%. Notably, at higher sparsity ratios, the adaptive strategy yields greater perfor-
mance improvements. For example, on the OpenBookQA task, at the 70% sparsity ratio, there is a
2.60% gain compared to a 0.80% improvement at the 50% sparsity ratio.

5 CONCLUSION

In this paper, we focus on the activation sparsity of the input side. By leveraging the intrinsic
sparse structure within input activations and singular value components, we introduce R-Sparse,
which eliminates the need for extensive pre-training and predicting active output channels, achieving
50% model-level sparsity without additional training. Experiments across different LLM families,
including Llama-2, Llama-3, and Mistral, demonstrate the effectiveness of R-Sparse—achieving
comparable performance at 50% sparsity across ten common-sense reasoning, language modeling, and
text summarization tasks. This high sparsity ratio also brings a significant 43% speed improvement
with a customized kernel. Our work demonstrates that high levels of sparsity can be achieved in both
the attention and MLP blocks of advanced LLMs without any performance loss, benefiting the further
deployment of LLMs on edge devices.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Keivan Alizadeh, Iman Mirzadeh, Dmitry Belenko, Karen Khatamifard, Minsik Cho, Carlo C
Del Mundo, Mohammad Rastegari, and Mehrdad Farajtabar. Llm in a flash: Efficient large
language model inference with limited memory. arXiv preprint arXiv:2312.11514, 2023.

Aviv Bick, Kevin Y Li, Eric P Xing, J Zico Kolter, and Albert Gu. Transformers to ssms: Distilling
quadratic knowledge to subquadratic models. arXiv preprint arXiv:2408.10189, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantization of
large language models with guarantees. Advances in Neural Information Processing Systems, 36,
2024.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018a.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018b.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
multiplication for transformers at scale. corr abs/2208.07339 (2022), 2022.

Jesse Dodge, Maarten Sap, Ana Marasović, William Agnew, Gabriel Ilharco, Dirk Groeneveld,
Margaret Mitchell, and Matt Gardner. Documenting large webtext corpora: A case study on the
colossal clean crawled corpus. arXiv preprint arXiv:2104.08758, 2021.

Harry Dong, Beidi Chen, and Yuejie Chi. Prompt-prompted mixture of experts for efficient llm
generation. arXiv preprint arXiv:2404.01365, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan
Alistarh. Extreme compression of large language models via additive quantization. arXiv preprint
arXiv:2401.06118, 2024.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural networks, 107:3–11, 2018.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, et al. A framework for few-shot
language model evaluation. Version v0. 0.1. Sept, 10:8–9, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. arXiv preprint arXiv:2012.14913, 2020.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

G Hinton. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531, 2015.

Ajay Jaiswal, Lu Yin, Zhenyu Zhang, Shiwei Liu, Jiawei Zhao, Yuandong Tian, and Zhangyang Wang.
From galore to welore: How low-rank weights non-uniformly emerge from low-rank gradients.
arXiv preprint arXiv:2407.11239, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating pre-filling
for long-context llms via dynamic sparse attention. arXiv preprint arXiv:2407.02490, 2024.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W
Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. arXiv preprint
arXiv:2306.07629, 2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pp. 611–626, 2023.

Je-Yong Lee, Donghyun Lee, Genghan Zhang, Mo Tiwari, and Azalia Mirhoseini. Cats: Contextually-
aware thresholding for sparsity in large language models. arXiv preprint arXiv:2404.08763, 2024.

Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang Li, Ankit Singh Rawat, Sashank J Reddi,
Ke Ye, Felix Chern, Felix Yu, Ruiqi Guo, et al. The lazy neuron phenomenon: On emergence of
activation sparsity in transformers. arXiv preprint arXiv:2210.06313, 2022.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024.

James Liu, Pragaash Ponnusamy, Tianle Cai, Han Guo, Yoon Kim, and Ben Athiwaratkun. Training-
free activation sparsity in large language models. arXiv preprint arXiv:2408.14690, 2024a.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient llms
at inference time. In International Conference on Machine Learning, pp. 22137–22176. PMLR,
2023.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024b.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018b.

Iman Mirzadeh, Keivan Alizadeh, Sachin Mehta, Carlo C Del Mundo, Oncel Tuzel, Golnoosh Samei,
Mohammad Rastegari, and Mehrdad Farajtabar. Relu strikes back: Exploiting activation sparsity
in large language models. arXiv preprint arXiv:2310.04564, 2023.

Shashi Narayan, Shay B Cohen, and Mirella Lapata. Don’t give me the details, just the sum-
mary! topic-aware convolutional neural networks for extreme summarization. arXiv preprint
arXiv:1808.08745, 2018.

N NVIDIA. Nvidia a100 tensor core gpu architecture. Volume 1.0: Whitepaper, Part, 1(2020):82,
2020.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman, Huanqi
Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for the transformer
era. arXiv preprint arXiv:2305.13048, 2023.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Chenyang Song, Xu Han, Zhengyan Zhang, Shengding Hu, Xiyu Shi, Kuai Li, Chen Chen, Zhiyuan
Liu, Guangli Li, Tao Yang, et al. Prosparse: Introducing and enhancing intrinsic activation sparsity
within large language models. arXiv preprint arXiv:2402.13516, 2024a.

Yixin Song, Zeyu Mi, Haotong Xie, and Haibo Chen. Powerinfer: Fast large language model serving
with a consumer-grade gpu. arXiv preprint arXiv:2312.12456, 2023.

Yixin Song, Haotong Xie, Zhengyan Zhang, Bo Wen, Li Ma, Zeyu Mi, and Haibo Chen. Turbo
sparse: Achieving llm sota performance with minimal activated parameters. arXiv preprint
arXiv:2406.05955, 2024b.

Sharath Turuvekere Sreenivas, Saurav Muralidharan, Raviraj Joshi, Marcin Chochowski, Mostofa
Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. Llm pruning
and distillation in practice: The minitron approach. arXiv preprint arXiv:2408.11796, 2024.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
large language models. arXiv preprint arXiv:2306.11695, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
arXiv preprint arXiv:1707.06209, 2017.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023a.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023b.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. arXiv preprint arXiv:2312.06635, 2023.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Mykola Pechenizkiy,
Yi Liang, Zhangyang Wang, and Shiwei Liu. Outlier weighed layerwise sparsity (owl): A missing
secret sauce for pruning llms to high sparsity. arXiv preprint arXiv:2310.05175, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Zhengyan Zhang, Yixin Song, Guanghui Yu, Xu Han, Yankai Lin, Chaojun Xiao, Chenyang Song,
Zhiyuan Liu, Zeyu Mi, and Maosong Sun. Relu2 wins: Discovering efficient activation functions
for sparse llms. arXiv preprint arXiv:2402.03804, 2024a.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36, 2024b.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A MORE IMPLEMENTATION DETAILS

In the experiments, the sparsification techniques are applied exclusively during the decoding stage.
For the tasks involving only a single-step decoding phase, original GRIFFIN implementation only
apply the sparsification on the final token while in our experiments, we simulate the first half of the
prompt as the prefilling stage, applying sparsification to the second half to more effectively evaluate
the generation capabilities of LLMs.

B EXTENDED EXPERIMENTS

B.1 SCALING UP SPARSITY RATIOS OF GRIFFIN

For GRIFFIN, we explore two strategies for scaling up the model-level sparsity ratios: (i) MLP, where
we directly increase the sparsity ratios within the MLP blocks and report the resulting model-level
sparsity; and (ii) All, where we extend the strategy to include attention blocks. In this case, we use
the same metrics to identify important channels based on the activations during the prefilling stage
and determine the corresponding active channels during the decoding stage. Results are presented in
Figure 7 where the MLP strategy is significantly better than the All. Thus in the main context, we
report the results of MLP strategy for GRIFFIN.

30 35 40 45 50 55 60
Sparsity (%)

30

40

50

60

70

A
cc

ur
ac

y
(%

)

ARC-Easy

ALL
MLP

30 35 40 45 50 55 60
Sparsity (%)

40

50

60

70

80

90

A
cc

ur
ac

y
(%

)

SciQ

ALL
MLP

30 35 40 45 50 55 60
Sparsity (%)

55

60

65

70

75

A
cc

ur
ac

y
(%

)

PIQA

ALL
MLP

30 35 40 45 50 55 60
Sparsity (%)

16

18

20

22

24

26

28

A
cc

ur
ac

y
(%

)

OpenBookQA

ALL
MLP

Figure 7: Results of GRIFFIN with Llama-2-7B.

B.2 RANK-AWARE ACTIVATION SPARSITY ACROSS VARIOUS DATASETS AND DIFFERENT
NUMBER OF SAMPLES

We extend the observations from Figure 3 to additional datasets and varying numbers of samples.
The results are presented in Figure 8 and Figure 9. Across different numbers of training samples,
the importance patterns consistently exhibit high sparsity. Additionally, to ensure data diversity, we
evaluated different domains from the RedPajama dataset1, including GitHub, ArXiv, StackExchange,
and Wikipedia. As shown in Figure 9, the importance patterns are remarkably similar across these
datasets, demonstrating the generalization capability of the R-Sparse approach.

1The training data is obtained from https://huggingface.co/datasets/
togethercomputer/RedPajama-Data-1T

14

https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T
https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

N=1

N=16

N=128

N=512

N=1024

Figure 8: Importance of each input channel and singular value across varying samples. The number of samples
ranging from 1 to 1024. Results are collected from Llama-2-7B model from C4 training set. The sequence
length of each sample equals to 4096.

Arxiv

Github

Stackexchange

WikiPedia

C4

Figure 9: Importance of each input channel and singular value components across different datasets.

15

	Introduction
	Related Works
	Efficient LLM Inference
	Activation Sparsity

	Methodology
	Preliminary
	Motivation Case I: Non-Sparse Components are Biases
	Motivation Case II: Rank-Aware Activation Sparsity
	R-Sparse
	Optimal Recipe for Sparsification

	Experiments
	General Setup
	End-to-End Results
	Efficiency
	Ablation Study and Further Investigation

	Conclusion
	More Implementation Details
	Extended Experiments
	Scaling up sparsity ratios of GRIFFIN
	Rank-Aware activation sparsity across various datasets and different number of samples

