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ABSTRACT

Large Language Models (LLMs), while demonstrating remarkable capabilities
across various applications, present significant challenges during inference due to
their substantial model size, especially when deployed on edge devices. Activation
sparsity offers a promising solution to reduce computation and memory movement,
enabling more efficient inference, particularly for small-batch on-device applica-
tions. However, current approaches face limitations with non-ReLU activation
function, which are foundational to most advanced LLMs, or require heavy contin-
ual training. Additionally, the difficulty in predicting active channels and limited
achievable sparsity ratios constrain the effectiveness of activation sparsity-based
methods. In this paper, we introduce R-Sparse, a training-free activation spar-
sity approach capable of achieving high sparsity levels in advanced LLMs. We
conducted two preliminary investigations into how different components contribute
to the output within a single linear layer and found two key observations: (i) the
non-sparse components of the input function can be regarded as a few bias terms,
and (ii) The full computation can be effectively approximated by an appropriate
combination of input channels and weight singular values. Building on this, we
replace the linear layers in LLMs with a rank-aware sparse inference method that
leverages the sparsity of input channels and singular value components, eliminating
the need for active channel prediction like the output sparsity based approaches.
Experiments on Llama-2/3 and Mistral models across ten diverse tasks demonstrate
that R-Sparse achieves comparable performance at 50% model-level sparsity,
resulting in a significant 43% end-to-end efficient improvements with customized
kernels. Code will be made publicly available upon acceptance.

1 INTRODUCTION

Large Language Models (LLMs) have become ubiquitous due to their remarkable capabilities, pow-
ering applications from virtual assistants to automated content creation. However, their impressive
performance comes with significant computational and memory costs due to their enormous pa-
rameter counts. This poses significant challenges for latency-sensitive applications, particularly for
deployments on edge devices. To address this, network pruning or sparsity (Frantar & Alistarh, 2023;
Sun et al., 2023; Yin et al., 2023; Ma et al., 2023) is an effective solution. These strategies operate
in a data-independent manner with different levels of pruning granularity, e.g., unstructured, semi-
structured, or structured. While more structured pruning approaches leads to more limited sparsity
levels, unstructured sparsity introduces greater challenges for efficient hardware implementation.

Recently, activation sparsity (Liu et al., 2023; Mirzadeh et al., 2023; Dong et al., 2024; Lee et al.,
2024) has emerged as a promising solution that dynamically loads only the active channels and their
corresponding weight rows or columns from off-chip HBM (NVIDIA, 2020) to on-chip SRAM,
significantly alleviate the latency and memory cost when equipped with optimized system implemen-
tations (Song et al., 2023). Designing activation sparsity functions in a structured, data-dependent
way, can make the specified network more hardware-friendly while also achieving higher sparsity
levels compared to traditional pruning techniques.

Despite the promising progress, several challenges remain: (i) Feasibility for non-ReLU based LLMs:
ReLU eliminates the negative part of activations, enabling a lossless approximation when skipping
the computation of corresponding channels (Liu et al., 2023). However, most advanced LLMs now
use non-ReLU activations like SiLU (Elfwing et al., 2018) and GELU (Hendrycks & Gimpel, 2016),
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which retain small negative values, requiring extensive continual pre-training to obtain meaningful
activation sparsity (Song et al., 2024a; Zhang et al., 2024a; Mirzadeh et al., 2023; Song et al.,
2024b). Such training process can involve up to 150B tokens, taking approximately one month on
64 A100 GPUs. (ii) Difficulty in Predicting Active Channels: Previous approaches identify critical
channels within the hidden activations of MLP blocks, facing significant challenges in predicting
the active channels before performing the computation. Common strategies include exploiting the
similarity of activated channels across semantically similar tokens (Dong et al., 2024), leveraging
the activations after the gate projection (Lee et al., 2024), or using a learnable predictor (Liu et al.,
2023), while the accuracy of active channel prediction will highly affect their effectiveness. (iii)
Limited Sparsity Levels: For approaches that do not rely on extensive retraining (Lee et al., 2024;
Dong et al., 2024), only 50% sparsity within MLP blocks can be achieved, leading to a model-level
sparsity of one third. Achieving higher levels of overall sparsity remains a significant challenge.

This paper targets a training-free activation sparsity approach that is: (i) feasible for non-ReLU
based LLMs; (ii) unaffected by the difficulty of predicting active channels; and (iii) capable of
achieving higher sparsity levels. While previous methods focus on output activation sparsity (Liu
et al., 2023; Lee et al., 2024), requiring prior prediction of important channels, our approach leverages
input activation sparsity, identifying active channels directly from the input without the need of
prediction. Furthermore, recent studies (Mirzadeh et al., 2023; Song et al., 2024a;b) have shown that
directly removing the non-sparse components only achieves limited sparsity while with extensive
training, sparsity ratios can be pushed to as high as 90%. This sparsity gap raises an natural question:
Is the non-sparse portion of the activation truly necessary for maintaining model performance, or
can we employ a lightweight strategy to mitigate the non-sparse part without resorting to heavy
pre-training? Motivated by this, we apply a multi-phase ReLU function to the non-sparse channels,
the corresponding activations will then be rounded to a few discrete values. As the number of discrete
values increases from 1 to 2, performance can be significantly improved, even at a sparsity level of
90%. The output components associated with the non-sparse portion can then be approximated by a
few bias terms, indicating a low-rank structure for these components.

To better understand the low-rank structure, we analyze the importance of each input channel
in the activations and each singular value component of the weights, to the output activations.

Figure 1: Contributions of each in-
put channel and singular value com-
ponents. The measurement metric
is detailed in Section 3.3. Results
are obtained from Llama-2-7B with
16 training samples from C4. Both
the input channel and SVD compo-
nents are sorted from small to large
for better visualization.

As shown in Figure 1, we observe a highly sparse structure where
an appropriate combination of input channels (green rectangle)
and singular value components (yellow rectangle) can effectively
approximate the full computation. Building on these, we propose
R-Sparse, a simple yet effective framework that decompose
the computation of each linear layer with a sparse and low-rank
components. For the sparse portion, our approach identifies sparse
channels by selecting those with large magnitude values and loads
only the corresponding rows of weights into SRAM for compu-
tation. For the low-rank components, we route the non-sparse
channels to a low-rank modules that obtained from an offline low-
rank decomposition of the original weights. R-Sparse can be
applied to both attention and MLP modules that achieves higher
sparsity levels. Additionally, we find the patterns of sparse and
low-rank combinations vary across different layers. With that,
we employ an evolutionary search algorithm to identify the opti-
mal ratios for the sparse components in each layer within LLMs,
resulting in enhanced performance.

We conduct extensive experiments on three representative LLM
families: Llama-2 (Touvron et al., 2023), Llama-3 (Dubey et al.,
2024), and Mistral (Jiang et al., 2023), across ten tasks, including common-sense reasoning, language
modeling, and text summarization. Our approach achieves 50% model-level sparsity while maintain-
ing performance comparable to the full model. Additionally, by utilizing a customized kernel, we
demonstrate up to 43% end-to-end improvements in generation speed. Furthermore, R-Sparse is
compatible with weight quantization for further efficiency gains.
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2 RELATED WORKS

2.1 EFFICIENT LLM INFERENCE

The inference process of LLMs is typically memory-intensive due to the large number of parameters
and the huge KV cache required to store intermediate key and value embeddings. To reduce memory
overhead, various strategies have been investigated, including removing redundant components
through pruning or sparsification (Frantar & Alistarh, 2023; Sun et al., 2023; Yin et al., 2023; Ma
et al., 2023; Zhang et al., 2024b; Xiao et al., 2023b; Jiang et al., 2024); quantizing data into lower bit
formats (Frantar et al., 2022; Lin et al., 2024; Xiao et al., 2023a; Chee et al., 2024; Kim et al., 2023;
Egiazarian et al., 2024; Liu et al., 2024b); and distilling large models into smaller or more efficient
architectures (Bick et al., 2024; Hinton, 2015; Sreenivas et al., 2024). Additionally, some approaches
focus on developing efficient architectures (Gu & Dao, 2023; Peng et al., 2023; Yang et al., 2023)
or optimizing hardware (Dao et al., 2022; Kwon et al., 2023; Alizadeh et al., 2023), enhancing the
efficiency of LLM inference and making them more accessible on edge devices. This work focuses
on mitigating the overhead from the large model sizes while compression techniques for KV cache
are orthogonal to weight reduction and can be naturally combined that we will explore in the future.

2.2 ACTIVATION SPARSITY

Several studies have demonstrated that activations within the MLP blocks of transformers are highly
sparse (Geva et al., 2020; Li et al., 2022; Dettmers et al., 2022). This sparsity primarily arises from
ReLU activations, where negative values are zeroed out, providing a natural, lossless opportunity
for accelerating inference in LLMs like OPT (Zhang et al., 2022). However, most modern LLMs
use activation functions like SiLU or GeLU, which retain small negative values. Directly replacing
with the ReLU activation would impair model functionality. To address this challenge, a common
strategy is ”ReLUfication” where the original activations are replaced with ReLU, followed by
extensive continual training to recover performance (Zhang et al., 2024a; Mirzadeh et al., 2023; Song
et al., 2024b;a). However, this approach introduces significant computational overhead, limiting its
accessibility. Recent training-free methods (Lee et al., 2024; Dong et al., 2024) have made progress
in applying sparsity to non-ReLU models, achieving modest sparsity ratios (e.g., 50% in MLP
blocks and up to 33% model-wide). Additionally, most previous works focus on the sparse structure
of output activations, requiring extra effort to identify active channels before computation (Dong
et al., 2024; Liu et al., 2023; Lee et al., 2024), with the accuracy of channel prediction significantly
affecting performance. In our work, we shift the focus to the sparse structure of input channels and
singular value components, eliminating the need for active channel prediction while feasible for both
attention and MLP blocks, leading to higher sparse ratios without additional training. One concurrent
work (Liu et al., 2024a) shares a similar intuition but focuses solely on input channels that can be
viewed as a special case of our framework.

3 METHODOLOGY

This section starts from a brief overview of LLM inference and the notations used throughout the
paper. Following this, we present two interesting observations: (I) the contribution of non-sparse
(i.e., small-magnitude) input channels can be converted into biases, and (II) the full computation can
be effectively approximated with an appropriate combination of input channels and singular value
components. Motivated by these, we detail our proposed inference framework R-Sparse, along
with the evolutionary search algorithm for determining the optimal sparsity recipe.

3.1 PRELIMINARY

LLM inference typically consists of two stages: ❶ the pre-filling stage, where a batch of prompts
containing multiple tokens is processed by the model, and ❷ the decoding stage, where new tokens are
generated incrementally. The decoding phase is often memory-bounded, and its iterative mechanism
amplifies the overhead associated with loading parameters into on-chip memory, becoming the main
bottleneck during inference. However, activation sparsity mitigates this by enabling the selective
loading of only active rows or columns of the weights into SRAM at each decoding stage. In the
following, we focus primarily on the decoding phase.

Consider a typical LLM architecture, where each block contains seven linear layers. The attention part
comprises four matrices: Wq,Wk,Wv,Wo ∈ Rn×n, while the widely used MLP block Touvron
et al. (2023); Dubey et al. (2024) includes three matrices: Wup,Wgate ∈ Rm×n and Wdown ∈
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Rn×m (n and m stands for the dimension of model embedding and hidden activations within
MLP blocks, respectively). The computational process of the MLP block can be formulated as
Y = HWT

down, where H = XWT
up ⊙ σ(XWT

gate).

3.2 MOTIVATION CASE I: NON-SPARSE COMPONENTS ARE BIASES

We first carry out a preliminary investigation into how sparsification of input activations influences
the final performance. We use a soft multi-phase ReLU function σT (·) to approximate the non-ReLU
activation functions σ(·), which is defined as:

σT (x) =

{
x if x ≥ T0
Ti+Ti+1

2 if Ti+1 ≤ x < Ti

Figure 2: Accuracy of Llama-2-7B on Open-
BookQA (Mihaylov et al., 2018a) (OBQA) and ARC
Challenge (Clark et al., 2018a) (ARC-C) tasks.

where T = {T0, T1, .., Tl−1} and l determines
the softness of the sparsification operation. When
T0 = 0 and l = 1, this is equivalent to standard
activation sparsity achieved by ReLU where all
non-sparse part (x < 0) are masking out as zero.
Additionally, we set Tl−1 as the minimum value
of input and the sparsity is defined as the ratios
of x < T0. As shown in Figure 2. By simply
increasing l from 1 to 2, the degraded performance
can be easily recovered, even at a sparsity ratio
of 90%. Additionally, we use Ui to represent the
subset of channels in H that satisfy Ti+1 ≤ Hk <
Ti (k ∈ Ui). The corresponding output Y can then
be decomposed into the sparse part Ys, where Hk ≥ T0, and the residual part Yr, as:

Yr =

l−2∑
j=0

Tj + Tj+1

2

∑
k∈Uj

WT
down[:, k]


The subset of channels Uj is input-dependent and each term

∑
k∈Uj

WT
down[:, k] can be viewed as a

data-dependent bias Bj . This allows the non-sparse components to be effectively approximated with
a few biases. We will show later how these data-dependent biases can be converted into static biases
and being pre-computed. With only two biases, the sparsity ratio is significantly increased to 90%.

3.3 MOTIVATION CASE II: RANK-AWARE ACTIVATION SPARSITY

Figure 3: Importance of each input channel and singular value. Zoom in for better visualization. Results
are obtained with the pretrained Llama-2-7B model and 16 samples from the C4 training dataset, each with a
sequence length of 4096. Each subfigure corresponds to the results of different layers, with the horizontal axis
representing the input channel index and the vertical axis representing the singular value index. The top, middle,
and bottom subfigures represent the results of the first, middle, and last layers, respectively.

Although it’s costly to obtain the input-dependent biases on the fly. we observe that the space
spanned by the biases across thousands of tokens exhibits a low-rank structure, e.g., for each token

4
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i, we use two biases to approximate the residual part Y i
r = Bi

0 + Bi
1. By concatenating 4000

biases from 2000 tokens, we obtain a bias matrix M, where M[:, 2i] = Bi
0 and M[:, 2i+ 1] = Bi

1
(i ∈ {1, 2, ..., 2000}). We find the stable rank of M is approximately 400. Inspired by this, we
further explore the relationship between weight SVD components and sparse activations. Given a
pre-trained linear layer Y = XWT ,W ∈ Rn×m(n ≤ m), we perform singular value decomposition
(SVD) on the weight matrix, that W = UΣVT =

∑n
i=1 σiU[:, i]VT [:, i]. The output Y can then

be expressed as Y =
∑n

i=1

∑m
j=1 σiXjV[j, i]UT [:, i] where Si,j := σiXjV[j, i] measures the

contribution of the j-th input channel and the i-th SVD components. We collected the distribution
of S for Llama-2-7B (Touvron et al., 2023) using 16 training samples from the C4 dataset (Dodge
et al., 2021), each containing 4096 tokens. For better visualization, both the rows and columns of
S were sorted independently. Across different linear layers in either Attention or MLP blocks, the
primary contributions are concentrated in the lower-right corner. Additionally, almost all layers
exhibit significant sparse property, although some variation exists across layer types and blocks.
For instance, the o.proj layer exhibits a greater reliance on smaller singular values compared to the
q.proj and k.proj layers. This observation also aligns with with recent studies (Jaiswal et al., 2024),
which demonstrate that q.proj and k.proj can be more easily compressed via low-rank approximation.
Moreover, middle layers tend to display higher sparsity, while initial and final layers are more difficult
to be sparsified, aligning with the general experience that the beginning and final layers of LLMs are
harder to be compressed (Yin et al., 2023).

3.4 R-SPARSE

Input Channel

Input Channel

SV
D

 In
de

x

X W Y Input Channel

SV
D

 In
de

x

X

SV
D

 In
de

x

W

Input
Sparsification Sparse

Loading

X

Offline SVD

Y

R-Sparse

Activation Sparsity Low Rank Decomposition

Figure 4: Illustration of various compression techniques with corresponding impact on different input channels
and singular values. The horizontal axis of the heatmap represents the input channels, while the vertical axis
corresponds to the singular value index.

Building on the observation of rank-aware activation sparsity, we propose the R-Sparse inference
framework. An overview of R-Sparse and its comparison with other techniques is presented in
Figure 4. For a given score matrix S, previous methods that based on activation sparsity typically
remove the left portion of S, while low-rank compression techniques eliminate the upper portion.
However, since the most significant components concentrate in the bottom-right area, an ideal
approach would be to remove the top-left part. To efficiently implement this strategy, we decompose
the computation of Y = XWT into two components: the sparse Ys and low-rank Yr.

Sparsifying Input Activation: Firstly, we estimate the threshold for identifying the sparse compo-
nents of the input X . Given a pre-defined sparsity budget s, the threshold t(s) is estimated as the sth
percentile of X , i.e., P(|X| < t(s)) = s. Next, we apply the threshold to mask out the low-magnitude
channels. The corresponding sparsification function σt(s)(·), is defined as:

σt(s)(X)j :=

{
Xj if |Xj | ≥ t(s)

0 if |Xj | < t(s)

5
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Note that CATS Lee et al. (2024) employs a similar thresholding strategy to identify sparse compo-
nents. However, while their approach targets sparsity in the output activation of the gate projection,
our method focuses on input sparsity, which can be applied across all linear layers of LLMs.

R-Sparse Inference: The original linear layer Y = XWT can then be approximated as Y = Ys+Yr

where Ys = σt(s)(X)WT and Yr = (X − σt(s)(X))(ArBr)
T . For the sparse part, we omit

unnecessary columns corresponding to input channels with zero values. Additionally, the weights
should be stored in a column-major format to enhance memory bandwidth utilization, as GPUs
fetch consecutive memory entries during each access. For the low-rank part, we perform SVD
on the pretrained weight matrix W and use its low-rank approximation, where Ar = UrΣ

1
2
r and

Br = Σ
1
2
r VT , with r representing the selected rank. And we select the most important r components

based on the estimated scores in Figure 3. Since this low-rank approximation can be computed offline
through a single SVD operation, it won’t impact the latency during the inference. The memory I/O
overhead is determined by two hyperparameters, (r, s), and is equal to rm+n

mn + s relative to that of a
full linear layer. Additionally, we apply R-Sparse inference to all linear layers in both the attention
and MLP blocks, aiming to achieve higher sparsity ratios.

3.5 OPTIMAL RECIPE FOR SPARSIFICATION

As illustrated in Figure 3, different layers demonstrate varying characteristics of rank-aware sparsity.
To more accurately approximate the full computation, we develop an evolutionary strategy to search
for the optimal ratio between the sparse and low-rank components within each layer. We begin by
defining ρi, which represents the relative ratio of the sparse part in layer i. Given Ci as the sparse
budget of layer i, the sparse part equals to si = ρiCi and the rank is ri = (1−ρi)Ci

mn
m+n . We employ

the search algorithm (Algorithm 1) to obtain the optimal ρ∗ = {ρ∗1, ρ∗2, . . . , ρ∗L} = argminρ L(f, ρ),
where the loss L is the average perplexity over 16 randomly selected samples from the C4 training
set and f is the original LLMs. We retain the individuals with lower perplexity at each generation.
To expedite the convergence of the search process, we implement a group-wise strategy with a group
size of 28. In this approach, we optimize the variables of one group at a time, while holding the
variables of the other groups at the values from the most recent best-performing individual.

Algorithm 1 Search Algorithm for Sparsification Recipe
1: Initialize: A pre-trained LLM M that consists of L layers. A population size of P , mutation rate pm,

crossover rate pc, a total of T generations.
2: Randomly initialize population G = {ρ1, ρ2, ..., ρP} where ρi = {ρi1, ρi1, ..., ρiL}
3: S = Best(G); Ĝ = {} ▷ Select the best individual from the group
4: for generation t = 1, . . . , T do
5: for generation i = 1, . . . ,P do
6: mi = ρx1 + pm(ρx2 − ρx3) ▷ Mutation: x1, x2, x3 are randomly chosen from {1, 2, ...,P}.
7: ρ̂i = (α > pc)m

i + (α ≤ pc)ρ
i ▷ Crossover: α is random variables from (0, 1)L

8: Ĝ = Ĝ ∪ {ρ̂i}
9: end for

10: G = Top K(Ĝ ∪ G); S = Best(G); Ĝ = {} ▷ Select the next generation
11: end for
12: Return: Best recipe S.

The population size is set to 32, with both the mutation rate pm and crossover rate pc equals 0.5,
and the total number of generations is 5. The overhead of the search process is minimal, taking
approximately one hour on a single A6000 GPU for the Llama-2-7B model.

4 EXPERIMENTS

4.1 GENERAL SETUP

Models and Datasets. To evaluate the effectiveness of R-Sparse, we consider three representative
large language model (LLM) families: Llama-2 (Touvron et al., 2023), Llama-3 (Dubey et al., 2024),
and Mistral (Jiang et al., 2023). We assess the models on several popular tasks, including eight
common-sense reasoning tasks: Winogrande (WG) (Sakaguchi et al., 2021), PIQA (Bisk et al., 2020),

6
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Table 1: Comparison between R-Sparse and other baselines on common-sense reasoning tasks.
Models WG PIQA SciQ OBQA HS BoolQ Arc-E Arc-C Average

Llama-2-7B 69.14 78.07 93.80 31.40 57.13 77.71 76.35 43.43 65.88

ReLUfication 49.25 54.19 25.90 15.40 25.82 60.00 27.90 24.23 35.34

CATS22% 67.72 77.37 92.80 30.40 57.03 72.87 74.71 41.64 64.32
CATS40% 55.01 66.97 57.20 20.20 36.27 62.81 44.02 27.56 46.26

R-Sparse40% 68.03 77.31 93.90 30.80 55.62 75.99 75.67 42.66 65.00

GRIFFIN33% 62.04 71.27 89.00 22.00 47.20 60.98 60.94 32.00 55.68
GRIFFIN50% 53.59 64.74 77.70 17.40 35.64 56.42 40.74 21.08 45.91
R-Sparse50% 67.40 77.31 93.90 31.40 54.26 72.84 74.58 40.78 64.06

Llama-3-8B 72.69 79.71 96.20 34.80 60.18 81.35 80.09 50.51 69.44

ReLUfication 50.83 53.48 22.20 14.80 25.53 52.78 24.45 21.50 33.20

CATS22% 70.17 79.00 94.90 31.20 57.81 76.51 75.29 46.50 66.42
CATS40% 48.22 56.96 36.90 16.20 27.30 49.05 30.30 22.35 35.91

R-Sparse40% 71.11 78.24 95.90 34.60 58.33 79.85 79.67 49.23 68.37

GRIFFIN33% 63.54 71.87 89.40 24.00 48.08 54.34 62.33 34.73 56.04
GRIFFIN50% 52.80 64.74 73.90 19.20 35.62 47.61 43.64 23.38 45.11
R-Sparse50% 69.30 77.69 96.00 31.60 56.64 76.73 76.94 44.71 66.20

Mistral-7B 74.11 80.41 96.00 32.20 61.05 83.85 80.68 50.85 69.89

ReLUfication 48.62 51.52 23.51 14.40 25.81 42.02 27.82 24.06 32.22

CATS22% 72.22 79.82 94.30 32.20 60.79 80.46 77.78 50.51 68.51
CATS40% 50.83 58.05 28.60 19.20 28.06 60.21 30.22 25.43 37.58

R-Sparse40% 72.45 79.49 96.10 30.40 59.68 82.11 79.80 47.18 68.40

GRIFFIN33% 63.30 75.95 91.00 25.40 53.01 64.28 68.73 36.60 59.78
GRIFFIN50% 54.22 67.90 79.10 19.80 39.99 47.31 49.83 26.37 48.07
R-Sparse50% 72.69 79.92 96.10 30.60 58.94 82.81 78.91 47.18 68.39

SciQ (Welbl et al., 2017), OpenBookQA (OBQA) (Mihaylov et al., 2018b), HellaSwag (HS) (Zellers
et al., 2019), BoolQ (Clark et al., 2019), and ARC (ARC-Easy and ARC-Challenge) (Clark et al.,
2018b). Evaluations are conducted using the lm-evaluation-harness framework (Gao et al., 2021).
Additionally, we report results on text summarization tasks using XSUM (Narayan et al., 2018),
as well as language modeling tasks on the validation set of WikiText-2 (Merity et al., 2016). For
common-sense reasoning, we report accuracy, while summarization tasks are evaluated via Rouge-L
scores and language modeling is assessed by perplexity.

Baselines. Since R-Sparse does not require additional training, we compare it against several
competitive training-free methods. (i) ReLUfiction (Mirzadeh et al., 2023) where the non-ReLU
activation functions in the MLP block are replaced with ReLU, and accuracy is reported without
retraining. (ii) CATS(Lee et al., 2024) that sparsifies Wup and Wdown based on the magnitude of
output activations from Wgate. (iii) GRIFFIN (Dong et al., 2024): It sparsifies all layers in the
MLP block, selecting important channels based on statistics from the pre-filling stage. Different
from CATS and GRIFFIN, which focus only on the MLP blocks, R-Sparse sparsifies all linear
layers, including the attention blocks. For a fair comparison, we report performance with the original
reported sparsity ratios (50% for the sparsified modules, corresponding to 22% model-level sparsity
for CATS and 33% for GRIFFIN). We also compare the results with higher sparsity ratio by scaling
up the MLP block sparsity for both methods. All sparsity ratios reported in the following experiments
are measured at the model level. More details are included in Appendix A and B.1.

4.2 END-TO-END RESULTS

We begin by presenting the end-to-end performance of R-Sparse and baseline methods across
different models, tasks, and sparsity ratios. The results, shown in Table 1 and Figure 5, highlight
several key observations: (I) R-Sparse consistently outperforms CATS (Lee et al., 2024) and
GRIFFIN (Dong et al., 2024) across all common-sense reasoning, language modeling, and summa-
rization tasks. With the same model-level sparsity budget (i.e. CATS40% v.s. R-Sparse40% and
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Figure 5: Comparison results of Llama-2-7B across different model-level sparsity ratios on common-sense
reasoning, language modeling and summarization tasks.

GRIFFIN50% v.s. R-Sparse50%), R-Sparse achieves an average performance gain of 18.74%
over CATS and 18.15% over GRIFFIN on Llama-2-7B. This improvement primarily stems from
three factors: ❶ while CATS and GRIFFIN only sparsify the MLP block, R-Sparse can be applied
to both the attention and MLP blocks; ❷ we extends standard activation sparsity with rank-aware
sparsity, providing a better approximation of the full computation; ❸ and we further leverages the
adaptive rank properties of different layers by searching the optimal sparse-rank ratio ρ. Detailed
ablation studies on these factors are discussed in Section 4.4. (ii) R-Sparse achieves performance
comparable to the full model with minimal degradation at a sparsity ratio around 50% while in some
tasks, e.g., SciQ, a matching performance can be achieved even at a sparsity ratio of 70%. (iii) For
some tasks, a moderate sparse treatment slightly enhances the accuracy, such as 1.60% improvements
at 30% sparsity ratio on the OpenBookQA task.

4.3 EFFICIENCY
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Figure 6: Generation speeds of Llama-2-7B and Llama-3-8B using a uniform 50% sparsity in our method. The
prompts consist of 2048 tokens, with generation lengths ranging from 128 to 2048. The generation speed is
calculated as the number of generated tokens divided by the total generation time.

We demonstrate the end-to-end efficiency improvements of R-Sparse. For this, we collected
five samples that consists of 2048 tokens and generate new content ranging in length from 128 to
2048 tokens to evaluate performance across different generation lengths. Without losing generality,
our implementation is based on the Hugging Face library with FP32 precision data format. All
experiments are conducted on a single NVIDIA A6000 GPU without offloading. We applied a
uniform 50% sparsity to R-Sparse, achieving comparable performance as shown in Section 4.2
and utilized a customized Triton kernel to reduce data transfer between on-chip SRAM and HBM. As
illustrated in Figure 6, R-Sparse achieved up to 42% and 40% improvements in generation speed
for Llama-2-7B and Llama-3-8B, respectively, highlighting the effectiveness of our approach.

4.4 ABLATION STUDY AND FURTHER INVESTIGATION

We conduct extensive ablation studies of R-Sparse, summarized by the following research ques-
tions: Q1: Is R-Sparse compatible with weight quantization? Q2: How does R-Sparse compare
with vanilla activation sparsity? Q3: What’s the benefit of optimal sparsification recipe?
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Table 2: Compatibility with weight quantization.
Methods WG PIQA SciQ OBQA Average

FP16 69.14 78.07 93.80 31.40 68.10
INT4 68.19 77.48 93.80 29.80 67.32

R-Sparse40% 68.03 77.31 93.90 30.80 67.51
R-Sparse50% 67.40 77.31 93.90 31.40 67.50

INT4 R-Sparse40% 66.93 76.71 92.80 29.20 66.41
INT4 R-Sparse50% 66.38 75.95 92.10 28.60 65.76

Table 3: Results of sparse and low-rank baselines.
Methods WG PIQA SciQ OBQA Average

Full 69.14 78.07 93.80 31.40 68.10

Sparse 65.11 77.37 93.30 29.20 66.25
Low-Rank 49.88 53.32 14.80 14.20 33.05

R-Sparse 67.40 77.31 93.90 31.40 67.50

A1: Compatible with quantization. We demonstrate that R-Sparse is highly compatible with
weight quantization. As shown in Table 2, when combined with 4-bit quantization, R-Sparse
achieves an average accuracy of 66.41% at 40% sparsity and 65.76% at 50% sparsity on common-
sense reasoning tasks, closely comparable to the full model’s performance of 68.10% and the
quantization-only result of 67.32%. Note that we use GPTQ (Frantar et al., 2022) for weight
quantization with a group size of 128, that provides matching performance as the full baseline. The
compatibility of R-Sparse with weight quantization offers further potential efficiency gains through
optimized CUDA kernels that fuse the sparse and quantization operations.

A2: R-Sparse outperforms both vanilla activation sparsity and low-rank decomposition.
Table 3 compares R-Sparse with vanilla activation sparsity (Sparse) and low-rank decomposition
(Low-Rank). For the sparse and low-rank baselines, we apply the sparsification operation on all
linear layers, maintaining the same model-level sparsity ratios for each method. Experiments
conducted with 50% sparsity on Llama-2-7B show that R-Sparse consistently outperforms the
Sparse baseline, with an average improvement of 0.98%, while the Low Rank method fails to
maintain performance. This is expected, as the low-rank properties vary across layers: layers with
intrinsic low-rank characteristics can be well-approximated with a small ρ, while higher-rank layers
benefit from higher sparse components, leading to a higher ρ. With that, R-Sparse combines both
scenarios and provides a more effective approximation.

Table 4: Comparison of different sparsification recipes.
Tasks Methods 40% 50% 60% 70% Average

OBQA Uniform 29.80 30.40 24.60 21.40 26.55
Adaptive 30.80 31.40 27.80 24.00 28.50 (+1.95)

Arc-E Uniform 74.92 74.03 68.69 60.77 69.60
Adaptive 75.67 74.58 70.29 61.41 70.49 (+0.89)

Arc-C Uniform 41.30 39.08 35.49 28.16 36.01
Adaptive 42.66 40.78 36.01 29.10 37.14 (+1.13)

BoolQ Uniform 75.32 72.54 69.42 63.85 70.28
Adaptive 75.99 72.84 72.14 64.59 71.39 (+1.11)

A3: Further enhancement through
better sparsification recipes. We
compare the searched sparsification
recipes with uniform ones. For the
uniform approach, we set ρ = 0.95
uniformly across all layers, based on
a grid search using 16 training sam-
ples from the C4 dataset. In contrast,
the adaptive strategy is based on the
search algorithm. As shown in Ta-
ble 4, the evolutionary search algo-
rithm outperforms the uniform strat-
egy, achieving up to a 1.60% accu-
racy gain across sparsity ratios rang-
ing from 40% to 70%. Notably, at higher sparsity ratios, the adaptive strategy yields greater perfor-
mance improvements. For example, on the OpenBookQA task, at the 70% sparsity ratio, there is a
2.60% gain compared to a 0.80% improvement at the 50% sparsity ratio.

5 CONCLUSION

In this paper, we focus on the activation sparsity of the input side. By leveraging the intrinsic
sparse structure within input activations and singular value components, we introduce R-Sparse,
which eliminates the need for extensive pre-training and predicting active output channels, achieving
50% model-level sparsity without additional training. Experiments across different LLM families,
including Llama-2, Llama-3, and Mistral, demonstrate the effectiveness of R-Sparse—achieving
comparable performance at 50% sparsity across ten common-sense reasoning, language modeling, and
text summarization tasks. This high sparsity ratio also brings a significant 43% speed improvement
with a customized kernel. Our work demonstrates that high levels of sparsity can be achieved in both
the attention and MLP blocks of advanced LLMs without any performance loss, benefiting the further
deployment of LLMs on edge devices.
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A MORE IMPLEMENTATION DETAILS

In the experiments, the sparsification techniques are applied exclusively during the decoding stage.
For the tasks involving only a single-step decoding phase, original GRIFFIN implementation only
apply the sparsification on the final token while in our experiments, we simulate the first half of the
prompt as the prefilling stage, applying sparsification to the second half to more effectively evaluate
the generation capabilities of LLMs.

B EXTENDED EXPERIMENTS

B.1 SCALING UP SPARSITY RATIOS OF GRIFFIN

For GRIFFIN, we explore two strategies for scaling up the model-level sparsity ratios: (i) MLP, where
we directly increase the sparsity ratios within the MLP blocks and report the resulting model-level
sparsity; and (ii) All, where we extend the strategy to include attention blocks. In this case, we use
the same metrics to identify important channels based on the activations during the prefilling stage
and determine the corresponding active channels during the decoding stage. Results are presented in
Figure 7 where the MLP strategy is significantly better than the All. Thus in the main context, we
report the results of MLP strategy for GRIFFIN.
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Figure 7: Results of GRIFFIN with Llama-2-7B.

B.2 RANK-AWARE ACTIVATION SPARSITY ACROSS VARIOUS DATASETS AND DIFFERENT
NUMBER OF SAMPLES

We extend the observations from Figure 3 to additional datasets and varying numbers of samples.
The results are presented in Figure 8 and Figure 9. Across different numbers of training samples,
the importance patterns consistently exhibit high sparsity. Additionally, to ensure data diversity, we
evaluated different domains from the RedPajama dataset1, including GitHub, ArXiv, StackExchange,
and Wikipedia. As shown in Figure 9, the importance patterns are remarkably similar across these
datasets, demonstrating the generalization capability of the R-Sparse approach.

1The training data is obtained from https://huggingface.co/datasets/
togethercomputer/RedPajama-Data-1T
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Figure 8: Importance of each input channel and singular value across varying samples. The number of samples
ranging from 1 to 1024. Results are collected from Llama-2-7B model from C4 training set. The sequence
length of each sample equals to 4096.
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Figure 9: Importance of each input channel and singular value components across different datasets.
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