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ABSTRACT

Conditional generation models for longitudinal sequences can produce new or
modified trajectories given a conditioning input. However, they often lack control
over when the condition should take effect (timing) and which variables it should
influence (scope). Most methods either operate only on univariate sequences or
assume that the condition alters all variables and time steps. In scientific and clini-
cal settings, interventions instead begin at a specific moment, such as the time of
drug administration or surgery, and influence only a subset of measurements while
the rest of the trajectory remains unchanged. CLEF learns temporal concepts that
encode how and when a condition alters future sequence evolution. These concepts
allow CLEF to apply targeted edits to the affected time steps and variables while
preserving the rest of the sequence. We evaluate CLEF on 8 datasets spanning cel-
lular reprogramming, patient health, and sales, comparing against 9 state-of-the-art
baselines. CLEF improves immediate sequence editing accuracy by up to 36.74%
(MAE). Unlike prior models, CLEF enables one-step conditional generation at
arbitrary future times, outperforming them in delayed sequence editing by up to
65.71% (MAE). We test CLEF under counterfactual inference assumptions and
show up to 63.19% (MAE) improvement on zero-shot conditional generation of
counterfactual trajectories. In a case study of patients with type 1 diabetes mel-
litus, CLEF identifies clinical interventions that generate realistic counterfactual
trajectories shifted toward healthier outcomes.

1 INTRODUCTION

Conditional generation of longitudinal se- | oo b Sequencecing
quences is a growing challenge in machine learn- £

ing, where the goal is to produce new or modi- "™ . \/\/\
fied trajectories based on a conditioning input, £ aa T

such as an intervention applied to a system. A " b ‘

central task is controlling when in the trajectory
the condition should take effect (¢#iming) and
which subset of variables it should influence
(scope). In many domains, interventions begin  Figure 1: Illustrative comparison of (a) controllable se-
at a specific moment and alter only part of the quence editing and (b) existing sequence editing. Unlike
system while the rest of the trajectory remains existing methods, controllable sequence editing gener-
unchanged. A motivating example comes from ~ates sequences (dgtted lines) guided by a condition.while
virtual cell models, which simulate how molec- Preserving _hlstorlcal data to model the ?ffects of imme-
ular or cellular states evolve under perturbations diate (e.g., in 2 hours) or delayed (e.g., in 1 week) edits.
and enable large-scale in silico experimentation (Bunne et al.| 2024; Li et al., [2025)). To successfully
build such virtual cells and patients, the models must consider both the type of intervention (e.g., drug,
surgery) and its timing (e.g., when and how frequent). For instance, prescribing a medication should
alter a patient’s trajectory only after the intervention time while preserving the medical history
prior to treatment, and only those clinical variables relevant to the intervention should change while
unaffected measurements remain stable (Fig. [I).

xx

Generative language and vision models enable precise editing guided by a description, such as textual
prompts or condition tokens (Zhang et al., 2023b; |Gao et al.| 2023} [Ravi et al.| 2024} |Gong et al.,
2024; Niu et al.| 2024; Gu et al., 2024} [Zhou et al.| [2024). They are designed to gain more global
context-preserving and local precise control over the generation of text (Chatzi et al., 2025 Niu
et al., [2024;|Gu et al., [2024} |Zhou et al., 2024)), images (Zhang et al.,|2023b; (Gao et al., [2023}; |Ravi
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et al.;,|2024), and even molecular structures (Gong et al.,|2024; Dauparas et al.,2022; [Zhang et al.|
2024b)). Their outputs preserve the input’s global integrity yet contain precise local edits to satisfy the
desired condition. Analogous to these models’ consideration of spatial context to edit images (Zhang
et al.} 2023bj |Gao et al.||2023)) and protein pockets (Dauparas et al.,|2022} [Zhang et al.| |2024b) via
in-painting, our work leverages temporal context to edit sequences based on a given condition.

Controllable text generation (CTG), designed specifically to edit natural language sequences, has
been extensively studied (Zhang et al.,2023a). They excel in immediate sequence editing: predicting
the next token or readout in the sequence under a given condition (N1u et al.| 2024; |Gu et al.|, 2024;
Zhou et al.| 2024; |Chatzi et al.l 2025} Zhang et al., [2023aj |Bhattacharjee et al., [2024). For example,
if asked to predict the next word in the sentence “Once upon a time, there lived a boy" under the
condition that the genre is horror, a CTG model may respond with “alone" to convey vulnerability
and loneliness. However, CTG models are unable to perform delayed sequence editing: modifying
a trajectory in the far-future. The distinction is important: the focus is on when the edit occurs, not
necessarily when its effects manifest. Whereas immediate sequence editing applies a condition now
(e.g., administering insulin foday), delayed sequence editing schedules a condition for the future
(e.g., starting a chemotherapy regimen in six weeks). Existing CTG models cannot effectively utilize
the given context to skip ahead to the future; instead, they would need to be run repeatedly to fill in the
temporal gap without any guarantee of satisfying the desired condition. As a result, CTG models are
insufficient for other sequence types (i.e., not natural language) for which both immediate and
delayed sequence editing are necessary, such as cell development and patient health trajectories.

Controllable time series generation (CTsG) (Jing et al., 2024; Bao et al., [2024) utilizes diffusion
modeling to generate time series under a given condition. However, these models are limited to
univariate sequences and assume that the entire input sequence is affected (Jing et al.,|2024; Bao
et al.| 2024)). These methods are thus insufficient in settings where edits are only allowed after time
t (i.e., cannot change historical data) and affect only certain sequences (i.e., preserve unaffected
co-occurring sequences). In other words, CTsG methods are unable to make precise local edits
while preserving global integrity. Orthogonal to CTsG is the estimation of counterfactual outcomes
over time (ECT) (Melnychuk et al.,[2022; Bica et al., 2020; Huang et al.| 2024} [Wang et al., |2025]).
Although not generative, ECT autoregressively predicts the potential outcomes (i.e., next readout in the
sequence) as a result of different future treatments (i.e., fixed set of conditions) under counterfactual
inference assumptions. While ECT preserves historical and unaffected co-occurring sequences,
counterfactual inference assumptions may not always hold in real-world applications.

Present work. We develop CLEF, a novel ControLlable sequence Editing Framework for instance-
wise conditional generation. Specifically, CLEF learns temporal concepts that represent the trajectories
of the sequences to enable accurate generation guided by a given condition (Def. [3.2). We show that
the learned temporal concepts help preserve temporal constraints in the generated outputs. CLEF is
flexible and can be used with any sequential data encoder and condition tokenizer. We evaluate CLEF
on 8 datasets spanning cellular reprogramming, patient health trajectories, and sales, outperforming
9 state-of-the-art (SOTA) baselines on immediate and delayed sequence editing (Def. 3.1). We
also show that any pretrained sequence encoder can gain controllable sequence editing capabilities
when finetuned with CLEF. Additionally, we extend CLEF for multi-step ahead counterfactual
prediction under counterfactual inference assumptions (Assumption [3.4] Eq.[d), and demonstrate (on
3 benchmark datasets) performance gains against 5 SOTA methods in settings with high time-varying
confounding. Moreover, CLEF enables conditional generation models to outperform baselines in
zero-shot generation of counterfactual cellular trajectories on immediate and delayed sequence editing.
Further, precise edits via user interaction can be performed directly on CLEF’s learned concepts. We
show through real-world case studies that CLEF, given precise edits on specific temporal concepts,
can generate realistic “healthy" trajectories for patients originally with type 1 diabetes mellitus.

Our contributions are fourfold. (1) We develop CLEF: a flexible controllable sequence editing
model for conditional generation of longitudinal sequences. (2) CLEF can be integrated into the
(balanced) representation learning architectures of counterfactual prediction models to estimate
counterfactual outcomes over time. (3) Beyond achieving SOTA performance in conditional sequence
generation and counterfactual outcomes prediction, CLEF excels in zero-shot conditional generation
of counterfactual sequences. (4) We release four new benchmark datasets on cell reprogramming
and patient immune dynamics for immediate and delayed sequence editing, and evaluate on four
established benchmark datasets for conditional generation and counterfactual prediction.
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2 RELATED WORK (EXTENDED VERSION IN APPENDIX [A])

Sequence editing. The sequence editing task has been defined in language and time series modeling
via different terms, but share a core idea: Given a sequence and a condition (e.g., sentiment, attribute),
generate a sequence with the desired properties. Conditional sequence generation is an autoregressive
process in language (Chatzi et al.| [2025) but a diffusion process in time series (Jing et al., [2024;
Bao et al.[2024). Prompting is often used to guide the generation of a sequence, both textual and
temporal, with a desired condition (Zhang et al., 2023a; Bhattacharjee et al., 2024; |Jing et al.| 2024;
Bao et al.| 2024). However, existing approaches are unable to generate multivariate sequences,
preserve relevant historical data, and ensure time-sensitive edits. They assume that sequences are
univariate and conditions affect the entire sequence (Jing et al., [2024; Bao et al.,|2024). Structural
causal models can be incorporated to enable counterfactual text generation while preserving certain
attributes (Chatzi et al.| 2025} Ravfogel et al.l 2025)). Estimating counterfactual outcomes over time
is often formulated under the potential outcomes framework (Neyman) 1923 [Rubin, |1978]).

Estimating counterfactual outcomes over time. Predicting time-varying counterfactual outcomes
entails estimating counterfactual outcomes over possible sequences of interventions (e.g., timing and
ordering of sequential treatments (Melnychuk et al., 2022} Bica et al.,[2020; |[Huang et al.,2024; [Wang
et al.} 2025))). There are decades of research on temporal counterfactual outcomes estimation (Robins
et al., [2000; |Lim, [2018}; Bica et al.| 2020; Li et al., 2021; Melnychuk et al., 2022)). Recently, machine
learning models that predict time-varying counterfactual outcomes learn representations that are
predictive of outcomes while mitigating treatment bias via balancing techniques (Melnychuk et al.,
2022; Bica et al.| 2020; [Huang et al., [2024} [Wang et al., [2025). On images, conditional generation
models (i.e, guided diffusion, conditional variational autoencoder) have been shown to predict
counterfactual outcomes without an explicit density estimation (Wu et al., |2024). However, there
may be a trade-off between prediction accuracy and balanced representations (Huang et al., 2024).

Concept-based learning. Concepts are abstract atomic ideas or concrete tokens of text and im-
ages (LCM et al.|[2024; [Lai et al., | 2024). Concept-based learning can explain (e.g., predict concepts
in the sample) or transform black-box models into more explainable models (e.g., allow user inter-
vention) (Koh et al.,[2020; Shin et al.| 2023} |Ismail et al.| 2024; |Lai1 et al.l 2024; |Laguna et al., 2024}
van Sprang et al.,[2024), and mitigate distribution shifts (Zarlenga et al., [2025)). While concepts are
used in sequence generation (LCM et al.| 2024]), they have not been used for conditional generation.
Concept-based learning for counterfactual prediction is limited to improving the interpretability of
image classification (Dominici et al., [2025a; |De Felice et al.|[2025; [Dominici et al., [2025b).

3 CLEF

CLEF generates sequences based on user-specified conditions and temporal coordinates. Given a
longitudinal sequence, forecast time step, and condition token, CLEF modifies only the relevant por-
tions of the sequence while preserving unaffected elements, ensuring global integrity. Architecturally,
CLEF has two novel components: concept encoder E that learns temporal concepts, representing tra-
jectory patterns over time, and concept decoder G that applies these concepts to generate sequences
(Sec.[A.3). Following SOTA conditional sequence generation and time-varying counterfactual predic-
tion models, CLEF has a sequence encoder F' that extracts temporal features from historical sequence
data, and a condition adapter H that maps condition tokens to latent representations (Sec. [A.3).

3.1 PROBLEM DEFINITION

Consider an observational dataset D = {xgi) , sgi) }, for N independent entities (e.g., cells, patients)
at discrete time step ¢. For each entity ¢ at time ¢, we observe continuous time-varying covariates
xgz) € R% (e.g., gene expression, laboratory test measurements) and categorical conditions s,E”
(e.g., transcription factor activation, clinical intervention). The outcome of the condition is measured
by the covariates (e.g., activating a transcription factor affects a cell’s gene expression, prescribing a

medication affects a patient’s laboratory test profile). We omit entity index (¢) unless needed.

Definition 3.1 (Sequence editing). Sequence editing is the local sample-level modification of se-
quence X to autoregressively generate X. ¢, under condition s given at time ¢; —e. Time gap € indicates
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Figure 2: Overview of CLEF’s architecture and capabilities. (a) Given a sequence, forecast time, and condition
embedding from a frozen pretrained (PT) embedding model, CLEF generates a sequence via immediate or
delayed sequence editing. (b) CLEF is composed of a sequence encoder, condition adapter, concept encoder,
and concept decoder. CLEF has two key capabilities: (c) forecast sequences at any future time and under any
condition (e.g., medical codes), and (d) generate sequences by intervening on CLEF’s learned temporal concepts.

that x. ;. is measured a negligible amount of time after s is applied | for notation, we omit ¢ unless
needed. There are two types of controllable sequence editing (Fig. [2p):

* Immediate sequence editing: Given x. ;,., and s to occur at ¢;,1, forecast X. ¢, .,
* Delayed sequence editing: Given x. 4,1, and s to occur at t; > #;,1, forecast X; ¢

Examples of immediate sequence editing include generating trajectories after perturbing cells now
or performing surgery on patients today (Sec.[5.1). In contrast, delayed sequence editing generates
trajectories after perturbing cells in ten days or performing surgery on patients next year (Sec.[5.2).

Definition 3.2 (Temporal concept). Temporal concept ¢ approximates the trajectory (or rate of
change of each variable in sequence x) between a pair of time steps ¢; > ; such that x. ;; = c @ x.4;.

Definition 3.3 (Controllable sequence editing). Concept encoder E and decoder GG can leverage
temporal concepts c to perform controllable sequence editing if the following are satisfied.

* Condition s on x. 4., at time step ¢; learns c that accurately forecasts f(ftj such that f(ftj ~ xftj.

* For an alternative condition a # s on X. 4, at t;, the method learns a distinct ¢’ # c that forecasts
%2, suchthat X2, #X’, and, if known, X7, ~x%, .
Sty Sty Hlj Sty Sty

Problem Statement 3.1 (CLEF). Given a sequence encoder F', condition adapter H, concept
encoder F, and concept decoder G trained on a longitudinal dataset D, CLEF learns temporal concept
¢ = E(F(X:t;,t5), H(s)) to forecast X, = G(x.4,, c) forany x. ¢, € D, t; > ¢;, and s.

X5, = G(Xt E(F (X5 1), H(9))) ey

3.2 CLEF ARCHITECTURE

CLEF’s input are a continuous multivariate sequence X. ;,.;, € RY with V measured variables, a
condition s, and time ¢; > ¢; for which to forecast )Eitj. CLEF consists of 4 major components:
sequence encoder ', condition adapter H, concept encoder E, and concept decoder G (Sec.[A3).

Sequence encoder F. The sequence encoder F' extracts features x. ;,.¢, such that hy = F'(x. 4.1, )-
Any sequential data encoder, including a pretrained multivariate foundation model, can be used.
The time encoder in F' generates a time positional embedding h; for any time ¢ via element-wise

'"We assume that the condition s always occurs shortly before the measured covariates at time t;. When s
is an intervention and our problem becomes counterfactual prediction (refer to Sec. @ for a more rigorous
discussion about the formulation of sequence editing in this context), our assumption is consistent with existing
practice in the literature of counterfactual prediction.
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summation of the year (sinusoidal), month, date, and hour embeddings. It is also used to compute the
time delta embedding Ay, ;. = hy; — hy, of time steps ¢; and ¢; for the concept encoder E.

Condition adapter H. The condition token, or embedding z, corresponding to the input condition s,
is either retrieved from a frozen pretrained embedding model (denoted as PT in Fig. [Zh) or features of a
condition/intervention. The condition adapter H projects z into a hidden representation hy = H (s).

Concept encoder E. Given the hidden representations generated by F' and H, concept encoder E
learns temporal concepts ¢ = F(hy, At it h,). First, the time delta embedding Ay, ¢, is combined
via summation with h to generate a time- and condition-specific embedding hij = Ati,tj ®h,. Then,

c is learned via an element-wise multiplication of h, and h¥, an optional linear projection (FNN),
and a GELU activation to approximate the trajectory between ¢; and ;.

¢ = GELU(FFN(h, ® h%)) )

Concept decoder G. The concept decoder G forecasts X’ ¢ by performing element-wise multiplica-
tion of the latest time ¢; of the input sequence x. ;,.;, (denoted as x. ;,) and the learned concept ¢

Xy, =COXy, 3)

because it is less sensitive to covariates with different units of measure (e.g., blood sodium in meq/L
vs. white blood cell in 10%/L). Applying c in a single step (via ®) allows users to directly intervene
on c and simulate the effects of the intervention as a counterfactual trajectory (Sec. [5.6).

Objective function £ quantifies the reconstruction error of predicted X ¢, from ground truth x?, (via
Huber or MSE). It may include balancing loss functions for counterfactual prediction only (Sec. [D.I).

3.3 CLEF’S CONNECTION TO COUNTERFACTUAL PREDICTION

Let x. ;, refer to the outcomes observed at ¢; after treatment s is given. Our problem can be viewed
as counterfactual prediction when there is no treatment assigned between ¢; and t; except s.

Formally, under the potential outcomes framework (Neyman) 1923} Rubin| |1978) and its extension
to time-varying treatments and outcomes (Robins & Hernan, [2008]), the potential counterfactual
outcomes over time are identifiable from the observational data D under three standard assumptions:
consistency, positivity, and sequential ignorability (Sec.[B). Thus, CLEF (via temporal concepts c)
predicts counterfactuals under the additional Assumption 3.4}

Assumption 3.4 (Conditional mean function estimation). For time steps ¢; > ¢;, temporal concepts
c learned based on the next treatment St; historical treatments s;,.;,, and historical covariates
X t,:t; capture (balanced) representations such that the concept decoder c(st]. yStoitss Xetoit; ) © Xat,
approximates the conditional mean function E[X;ﬁtﬁe(st]. ,Stoit;)

Sto:t; ) Xito:t; ]

In the following, we elaborate on why it can be reasonable to view CLEF as an accurate counterfactual
prediction model by satisfying Assumption

Estimating counterfactuals. We estimate future counterfactual outcomes over time, formulated as
E(Xl7tj+€(stj7St02ti)|st03ti7X:,tgltj,) (4)

by learning a function g(7,s¢,,S¢g:t,, X:t0:t,) = G(Xeyt,, E(F (X 10:,, t5), H(s¢,;))) with projection
horizon 7 = (¢; + €) —t; > 1 for 7-step ahead prediction (Eq. |1} Sec. . Indeed, the key to
reliable counterfactual prediction is the accurate estimation of Eq. 4] to adjust for bias introduced
by time-varying confounders (Robins & Hernan, [2008). In particular, our design of g(-) estimates
Eq.[@] well (refer to Sec.[5.4]for empirical results) due to the effective learning of temporal concepts
(Def. and the strong representation power of the encoders (Sec. [3.2).

Balancing representations via CLEF (Sec.[D.4). Since the historical covariates and next treat-
ment are encoded independently by F' and H, the learned representations are treatment-invariant
(or balanced), following the discussions in existing balanced representation learning architectures
(e.g., CRN (Bica et al 2020), CT (Melnychuk et al. [2022)). Further, by Assumption @], our
designed structure isolates the causal effect of the treatment from other spurious factors, enabling
reliable counterfactual estimation (Zhang et al., 2024a).
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4 EXPERIMENTAL SETUP

4.1 DATASETS

CLEF is evaluated on 8 biomedical and fi- .
nancial datasets on conditional and counter- ., _ /
factual generation (Fig. [3} Sec. [C} Tab. [I). | :
We introduce benchmarking datasets, WOT ‘
(conditional generation) and WOT-CF (coun- 7 eren o .
terfactual generation), of single-cell transcrip- /’ @ )

tomic profiles of developmental time courses N
of cells. We construct two new real-world pa- ™" N e

tient datasets of irregularly-measured routine e
laboratory tests from eICU (Pollard et al., | 2018))
and MIMIC-IV (Johnson et al., 2024a}; |[2023;
Goldberger et al.,2000). We evaluate counter-
factual outcomes estimation on three established
benchmarks related to tumor growth (Geng
et al.l 2017) and patient intensive care units
(ICU) (Johnson et al.l[2016) trajectories for 7-step ahead prediction. Trajectories with time-varying
confounding ~y are simulated (Yang et al.| 2023)). We evaluate conditional generation on real-world
store sales trajectories: MS (Makridakis et al., [2022; [Huang et al.| 2024} [Wang et al., |2025)).

Figure 3: CLEF is evaluated on 7 datasets of (a) cellular
development and (b) patient health trajectories. Illustra-
tions from NIAID NIH BIOART Source.

4.2 SETUP

CLEF is evaluated on 3 tasks: immediate and delayed sequence editing (Def. [3.1)) and counterfactual
prediction (Sec. . We use standard metrics (MAE, RMSE, R?) to compare ground truth x? 't

and predicted X x_7tJ Experiments are designed to isolate temporal concepts’ contribution to
predictive performance (e.g., CLEF and non-CLEF differ only in the components needed to learn
temporal concepts; Sec.[D.2)). Refer to Sec. for experimental setup and implementation details.

Baselines. We evaluate CLEF against SOTA conditional generation and counterfactual predic-
tion models, which do not learn temporal concepts; each baseline has a CLEF counterpart.
Conditional generation (4): We adopt the SOTA conditional sequence generation setup with 3 sequen-
tial encoders: Transformer (Waswani et al.,[2017; [Narasimhan et al.;, 2024} Jing et al.| 2024; Zhang
et al.,[2023a); xLSTM (Beck et al.l2024); and time series foundation model, MOMENT (Goswami
et al., [2024). We evaluate against traditional time series model, Vector Autoregression (VAR) (Liitke-
pohl, 2005). Counterfactual prediction (5): We adopt the SOTA counterfactual prediction setup
using 2 architectures (i.e., Counterfactual Recurrent Network (CRN) (Bica et al.,|2020) and Causal
Transformer (CT) (Melnychuk et al., |2022))) with and without balancing loss functions (i.e., gradient
reversal (GR) (Bica et al., |2020), counterfactual domain confusion (CDC) (Melnychuk et al.| [2022)).

Ablations. SimpleLinear is an ablation in which temporal concepts are all ones (i.e., not learned nor
meaningful), inspired by traditional linear models that excel when x;; ~ x;, (Toner & Darlow, 2024}
Ahlmann-Eltze et al.,[2024)). We also evaluate CLEF with and w1thout an FFN layer in £ (Sec. [E[)

5 RESULTS

We extensively evaluate the impact of CLEF’s learned temporal concepts on controllable sequence
editing. R1-R3: How well does CLEF perform in (R1) immediate and (R2) delayed sequence editing,
and (R3) generalize to unseen/new sequences? R4: How does CLEF perform in counterfactual
outcomes estimation? RS: Can CLEF perform zero-shot conditional generation of counterfactual
sequences? R6: How can CLEF be leveraged for real-world patient trajectory simulations?

5.1 R1: IMMEDIATE SEQUENCE EDITING ON OBSERVED SEQUENCES

Immediate sequence editing involves forecasting the next time step of a trajectory after applying a
condition. The defining feature is that the condition occurs in the present moment, and its effects
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are reflected in the next observation of the sequence. This setting is relevant when condition has an
instantaneous impact (e.g., administering a drug to a cell now, performing surgery on a patient roday).

CLEF models consistently perform competitively against baseline models across all datasets
(Fig. A, [SH9). Ablation SimpleLinear, which assumes no temporal changes, performs compara-
bly in some cases, but CLEF outperforms it on datasets where short-term dynamics are more complex.
On WOT, all CLEF models outperform or perform comparably to the time series forecasting model,
VAR. This is particularly exciting given recent findings that linear models can achieve competitive or
better forecasting performance than neural network models (Toner & Darlow, 2024; | Ahlmann-Eltze
et al.,2024). Further, CLEF models tend to yield less error (MAE) on both preserved and edited
variables of a sequence than non-CLEF models (Tab. [5)). These results highlight CLEF’s ability to
accurately edit sequences at the desired times while preserving unaffected portions of the sequence.

Regardless of the sequence encoder used with CLEF, these models tend to outperform or perform
comparably to non-CLEF models (Fig. @p). However, CLEF’s performance can be affected by
the ability of the sequence encoder to capture the temporal dynamics of the input sequences. For
instance, models with the MOMENT encoder generally yield the highest MAE in all three biomedical
datasets (Fig. Ap). Still, CLEF-MOMENT models have lower MAE than their non-CLEF counterparts.

a Immediate sequence editing b Delayed sequence editing
WOoT elCU MIMIC-IV M5 WOoT elCU MIMIC-IV M5

MOMENT
MOMENT
MOMENT
MOMENT

VAR

Transformer

XLSTM
MOMENT
Transformer
XLSTM
MOMENT
MOMENT

VA

XLSTM
MOMENT

Transformer

SimpleLinear
SimpleLinar
SimpleLinear

SimpleLinear

Figure 4: Benchmarking CLEF, baselines, and ablations on (a) immediate and (b) delayed sequence editing on
observed sequences. Lower MAE is better. Models are trained on 3 seeds using a standard cell-, patient-, or
store-centric random split; error bars show 95% CI. Not shown for visualization purposes are VAR’s performance
on eICU and MIMIC-IV: on immediate sequence editing, MAE for eICU and MIMIC-IV are 55982.74 and
886.05; on delayed sequence editing, MAE for eICU and MIMIC-IV are 3.02 x 10*° and 8.62 x 10?3,

5.2 R2: DELAYED SEQUENCE EDITING ON OBSERVED SEQUENCES

Delayed sequence editing forecasts a trajectory at a specified future time step under a given condition
while preserving sequence consistency. Unlike immediate editing, the condition takes effect at the
designated future time, requiring models to project forward without introducing compounding errors.
Examples include applying a drug to a cell in ten days or scheduling a patient’s surgery for next year.

CLEF performs competitively against SimpleLinear (ablation) and VAR on eICU, MIMIC-1V, and M5
(Fig. @b, [Bl9). CLEF-transformer and CLEF-XLSTM achieve lower MAE than SimpleLinear, whereas
non-CLEF transformer and MOMENT baselines perform comparably or worse. As in immediate
sequence editing, models with MOMENT as the sequence encoder (i.e., using temporal concepts
with MOMENT) yield the highest MAE on the biomedical sequences. However, incorporating CLEF
with MOMENT reduces the MAE to levels comparable to the MAE of SimpleLinear and VAR.

On WOT, SimpleLinear and VAR outperform neural network models in delayed sequence edit-
ing (Fig.[@p). This suggests that cellular trajectories exhibit small and possibly noisy changes at each
time step, favoring linear models (Ahlmann-Eltze et al., 2024; [Toner & Darlow, |2024)). Also, given
the relatively small number of training trajectories compared to the high-dimensional state space,
nonlinear models may overfit to noise more readily than linear models. Still, CLEF significantly
reduces the MAE of non-CLEF models, demonstrating its effectiveness as a regularizer that mitigates
short-term noise while preserving long-term trends. Further, as in immediate sequence editing, CLEF
better preserves unedited variables than non-CLEF models (Tab. [5).

5.3 R3: GENERALIZATION TO NEW PATIENT TRAJECTORIES VIA CONDITIONAL GENERATION

We assess CLEF’s generalizability to new patient sequences. We create challenging data splits
where the test sets have minimal similarity to the training data (Sec.[C.2). CLEF models exhibit
stronger generalization than non-CLEF models on both eICU and MIMIC-1V (Fig.[TTHIZ} Tab.[6). For
immediate and delayed sequence editing on eICU, CLEF-transformer and CLEF-XLSTM maintain
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stable and strong performance even as train/test divergence increases. In contrast, their non-CLEF
counterparts degrade significantly. Although baseline MOMENT models show relatively stable
performance across train/test splits in delayed sequence editing, they generalize poorly compared
to CLEF-MOMENT models. Despite similar performance between XLSTM and CLEF-xLSTM in
delayed sequence editing on both patient datasets (Fig. @p), CLEF-XLSTM demonstrates superior
generalizability, highlighting the effectiveness of CLEF in adapting to unseen data distributions.

5.4 R4: COUNTERFACTUAL OUTCOMES ESTIMATION

Following the setup of established bench-

a Causal Transformer b Counterfactual Recurrent Network

marks (Bica et al.,[2020; [Melnychuk et al.,[2022) s | .
(Sec.|D.4), we evaluate CLEF on counterfactual . ,
outcomes estimation of synthetic tumor growth " 4 \
and semi-synthetic ICU (Fig.[16) trajectories. . / .

On the tumor growth and ICU trajectories, for
which we have ground truth counterfactual se-
quences, CLEF consistently performs better or
competitively against non-CLEF models in 7-
step ahead prediction (Fig.[5} [[3{I6). With rela-
tively low time-varying confounding, CLEF-CT

with CDC loss (v < 3) and CLEF-CRN with

cd 3
09 +z’ +
z
2
08 = e
=+ :

0 1 2 3 a 0 1 2 3 4
Amount of Time-varying Confounding Amount of Time-varying Confounding

=g =—os——"0

“®= Baseline w/CDC Baseline wiGR Baseline w/o BL CLEFwiCDC CLEFW/GR =@= CLEFwio BL

GR loss (v < 2) perform comparably to their
non-CLEF counterparts. When time-varying
confounding is relatively high, CLEF-CT with
CDC loss (v = 3) and CLEF-CRN with GR loss

Figure 5: Counterfactual 7-step ahead prediction on
tumor growth (single-sliding treatment) with different
amounts of time-varying confounding. Models are
trained on 5 seeds; error bars show 95% CI.

(v > 2) outperform their non-CLEF counterparts.

For all levels of confounding bias, CLEF-CRN with CDC loss outperforms their non-CLEF coun-
terparts. Notably, CLEF-CT and CLEF-CRN without any balancing loss (i.e., neither GR nor CDC;
violet-red) are the best performing CT/CRN models. While studies have shown a trade-off between
prediction accuracy and balanced representations (Huang et al.| [2024; [Wang et al.l 2025)), this finding
empirically demonstrates Assumption [3.4] In other words, CLEF’s strong performance without
any balancing loss suggests that the temporal concepts learn balanced representations that are not
predictive of the assigned treatment and approximate the conditional mean function (Eq. [} Sec.[3.3).

5.5 RS5: ZERO-SHOT CONDITIONAL GENERATION OF COUNTERFACTUAL TRAJECTORIES

We evaluate CLEF on zero-shot conditional R ST
generation of counterfactual cellular trajecto- s 150
ries (Fig. [6] [[7). With the WOT-CF dataset, .. .
models are trained on the “original” cellular tra- =, 1 0rs
jectories and evaluated on the “counterfactual" o 0s

cellular trajectories in a zero-shot setting. PAPSOSDIIIIINT IOINIDIIIIGE DA IIII

Time Time Time

vs. MOMENT

MAE

By learning temporal concepts, CLEF consis-
tently outperforms non-CLEF in immediate and
delayed sequence editing (Fig.[I7). Further, we

Figure 6: Zero-shot conditional generation of counter-
factual cellular trajectories via delayed sequence editing.
Shown are MAE (lower is better) of predictions per time

examine the predictions for trajectories of length
23, the most common sequence length in WOT-
CF (Fig. @) Since ¢; = 10 is the earliest di-
vergence time step, we input the first nine time
steps X. (.9, the counterfactual condition, and

step for counterfactual sequences of length 23 (the most
common sequence length) starting at time step 10 (the
earliest divergence time step of a counterfactual trajec-
tory). Error bars show 95% CI.

t; € [10,23]. Comparing the generated and ground truth counterfactual sequences, we find that CLEF
outperforms non-CLEF models after time step 10, which is when the trajectories begin to diverge.

5.6 R6: CASE STUDIES USING REAL-WORLD PATIENT DATASETS

Unlike conditional generation methods that rely on condition tokens to guide generation (Narasimhan
et al., 2024; Jing et al.||2024; [Zhang et al.,[2023a), CLEF allows direct edits to the generated outputs
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via temporal concept intervention to produce counterfactual sequences (Sec.[C.2.4). Instead of relying
on predefined conditions, CLEF can precisely modify the values of specific lab tests to explore their
longitudinal effects. We conduct case studies on two independent cohorts of patients with type 1
diabetes mellitus (T1D) (Quattrin et al., [2023)) (Sec.[C.2.3).

Setup (Sec' @. For eaCh patlent’ We_lnter_ a Decrease glucose levels by 0.5x b Differences between observed and CLEF
vene on the temporal concepts corresponding to w0 (evesesymplom) - patients due to decreased glucose levels

-
O

specific lab tests to simulate the “reversal" or " ey wocx1000
“worsening" of symptoms, thereby generating =,

“healthier" or “more severe" trajectories. CLEF- o

generated counterfactual patients are compared " | oase guoose s by 2

to observed sequences from matched healthy in-  ” rosensymen) B

dividuals, other healthy individuals, and other o o

T1D patients. We hypothesize that clinically =~ “o+| eooo__yo-""" g

meaningful edits produce “healthier" (i.e., more  ** L =
similar to healthy patients) or “sicker” (i.e., more il it omir (e

similar to other T1D patients) trajectories. ) ]
Figure 7: CLEF-generated counterfactual patients via

Results. First, we modify CLEF’s concepts to intervention on temporal concepts. We intervene on
halve glucose levels, aligning them closer to nor- CLEF to (a) halve or double a T1D patient’s glucose
mal physiological ranges. Such counterfactual levels to infer a “healthier" or “sicker" counterfactual
trajectories exhibit higher R2 similarity with p_ati;nt. Higher R? indicates that pgtient pairs are more
healthy individuals compared to other T1D pa- similar. (b) Observed and CLEF patlgnts from.the elCU-
tients (Fig.ma), suggesting that CLEF effectively T1D cohort are compared to quantify the differences

. e . between their lab test trajectories as a result of the in-
generates trajectories indicative of a healthier . L
. . . tervention to halve T1D patients’ glucose levels. Delta
state. Next, we simulate a worsening condi-

(x*ered fxce) = 1 indicates no difference between the

tion by doubling glucose leYels. Thes'e CL]“?F‘ observed and CLEF patients. Error bars show 95% CL
generated trajectories show higher R? similarity

with other T1D patients than with healthy individuals (Fig.[7h), as expected based on clinical evidence.

Beyond examining the direct effects of the interventions on CLEF’s concepts, we examine the indirect
changes in CLEF-generated patients’ lab values resulting from glucose modifications. In both eICU-
T1D and MIMIC-IV-T1D cohorts, lowering glucose also leads to a reduction in white blood cell
(WBC) count (Fig. , ). This aligns with clinical knowledge, as T1D is an autoimmune disorder
where immune activity, including WBC levels, plays a critical role (Quattrin et al.,2023)). When we
intervene on CLEF to reduce WBC levels instead of glucose, glucose levels also decrease across both
cohorts (Fig. [I8p,c), reinforcing the interdependence of these physiological markers. Finally, we
show that modifying multiple lab tests simultaneously can produce compounding effects. When we
intervene on CLEF to reduce both glucose and WBC levels, the resulting CLEF-generated patients
resemble healthy individuals even more closely than other T1D patients, suggesting that CLEF can
capture the joint impact of multiple simultaneous edits on a patient (Fig. [L81).

6 CONCLUSION

CLEF is a flexible approach that learns temporal concepts for conditional sequence generation and
potential outcomes prediction under specific conditions. Extensive experiments show that temporal
concepts introduced in CLEF contribute to overall model performance. Controlling for model, time,
and space complexity, temporal concepts generally yield faster convergence (Sec.[D.5)). Across 8
biological, medical, and financial datasets, CLEF excels in the conditional generation of longitudinal
sequences, making precise local edits while preserving global integrity. CLEF also has stronger
generalizability to new sequences than non-CLEF counterparts. Under counterfactual inference
assumptions, CLEF accurately estimates counterfactual outcomes over time, outperforming baselines
in settings with high time-varying confounding bias. CLEF even outperforms SOTA conditional
generation models in zero-shot counterfactual generation. Further, we show that interventions
directly on CLEF’s temporal concepts can generate counterfactual patients such that their trajectories
are shifted toward healthier outcomes. This capability has the potential to help discover clinical
interventions that could alleviate a patient’s symptoms. Limitations and future directions are discussed
in Sec.[F] We believe that CLEF’s controllable sequence editing can help realize the promise of virtual
cells and patients to facilitate large-scale in silico experimentation of molecules, cells, and tissues.



Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

By introducing a flexible and interpretable approach to conditional sequence generation, CLEF
bridges the gap between language model-style conditional generation and structured, time-sensitive
sequence editing, with implications for decision support in medical and scientific applications. Like
all generative Al models, CLEF (and its derivatives) should be used solely for the benefit of society. In
this study, we show that CLEF can generate alternative cellular trajectories and simulate the reversal
or progression of symptoms to model healthier or sicker patient outcomes. However, this work (and
any derivatives) should never be used to induce harmful cellular states (e.g., activating transcription
factors to drive a cell toward a pathological state) or negatively impact patient care (e.g., neglecting
necessary clinical interventions or recommending harmful treatments). Our goal is to help researchers
understand the underlying mechanisms of disease to improve public health. Any misuse of this work
poses risks to patient well-being. Therefore, the ability to intervene on CLEF’s generated outputs
should be leveraged to assess the model’s robustness and correctness for ethical and responsible use.

REPRODUCIBILITY STATEMENT

We provide code and instructions to implement CLEF, baselines, and ablations and to reproduce the
experiments in this paper: https://anonymous.4open.science/r/CLEF-B64B. In the
Appendix, Sec.[C|provides details about data construction, data preparation, and experimental setup;
and Sec. [D|describes the implementation and training of all models. We do not share data or model
weights that may contain sensitive patient information.
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APPENDIX

A EXTENDED RELATED WORK

A.1 LEVERAGING TRAJECTORIES AS INDUCTIVE BIASES

Understanding sequential data as trajectories (e.g., increasing, decreasing, constant) is more natural
for human interpretation than individual values (Kacprzyk et al., [2024). Many models on temporal
data extract dynamic motifs as inductive biases to improve their interpretability (Kacprzyk et al.|
2024} |Goswami et al., 20245 |Cao et al.,|2024). Such temporal patterns can be used for prompting large
pretrained models to perform time series forecasting (Cao et al.| 2024)), suggesting that trajectories
can capture more universal and transferrable insights about the temporal dynamics in time series data.
Trajectories have yet to be adopted for conditional or counterfactual sequence generation.

Relevance to CLEF. Temporal concepts ¢ (Def. represent trajectories (or rates of change).
The concept decoder G leverages temporal concepts c and covariates at the latest time step x. ;, to
generate the remainder of the sequence (Sec. [3.2). To understand how temporal concepts enable
CLEF models to preserve global consistency: One can think of the latest covariates x. ;, as a set of
reference values for each covariate, and these values are modified based on the desired forecast time
t; and condition token z,. Such modifications are captured by temporal concepts ¢, which represent
the rates of change (or trajectories) for each covariate from time steps ¢; to t;.

A.2 BUILDING DIGITAL TWINS

Building virtual representations of cells and patients (commonly referred to as virtual cells, virtual
patients, or digital twins) has the potential to facilitate preventative and personalized medicine (Li
et al., [2025} [Bunne et al.,[2024)). Medical digital twins (e.g., an artificial lung or pancreas, automated
insulin delivery systems, and cardiac twins) have demonstrated clinical utility (Li et al., 2025}
Kovatchev et al., 2025} [Qian et al., 2025). There is a wide range of methods for building digital
twins, such as mechanistic models (e.g., physics-informed self-supervised learning approach (Kuang
et al., [2024))), neural models (e.g., finetuned large language and vision models (Makarov et al.|
2024; |Awasthi et al., 2025))), and hybrid models (e.g., framework with mechanistic and neural
components (Holt et al.| 2024)).

Relevance to CLEF. CLEF is a machine learning-based neural model. It is a flexible architecture to
enable conditional sequence generation (Def. Problem Statement [3.1)) as well as counterfactual
prediction (Sec.[3.3] Sec.[D.4) of continuous multivariate sequences.

A.3 ADDITIONAL DETAILS

Delayed sequence editing vs. long-horizon forecasting. While long-horizon forecasting and delayed
sequence editing both predict the sequence or covariates at a future time ¢;, delayed sequence editing
does not require autoregressive predictions from ¢; to ¢;, which can lead to accumulation of error.
Instead, delayed sequence editing allows skipping directly to ¢; from ¢; in a single step.

Intuition for CLEF’s conditional sequence generation architecture. We leverage the state-of-the-
art conditional sequence generation setup (Waswani et al.; 2017} [Narasimhan et al.,|2024; Jing et al.,
2024; Zhang et al.,[2023a; Beck et al., 2024; [Valevski et al.l 2025)). The sequence encoder extracts
features from historical covariates to learn a hidden representation that captures relevant information
for the generation task. Any encoder (e.g., pretrained multivariate foundation model) can be used with
CLEF. The condition adapter projects the condition token to a shared latent space with the sequence
and time representations. Because condition tokens are generated by a pretrained foundation model
(e.g., ESM2, a protein language model that learns on protein sequences), they capture information that
allows CLEF to generalize to conditions that have not been observed in the training dataset (e.g., based
on shared evolutionary information between protein sequences). The concept encoder (CLEF only)
learns a representation (temporal concepts) that captures information about the condition at the next
time step, historical conditions, and historical covariates. The final GELU activation layer transforms
its input into values that are > 0, which are interpreted by the concept decoder as the trajectories
(or rates of change) of covariates between time steps t; and ¢;. The concept decoder (CLEF only)
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generates a sequence by applying the learned temporal concepts to the covariates at the last time step
t;. Element-wise multiplication between the learned temporal concepts and the covariates at ¢; is a
suitable operation because it is less sensitive to covariates with different units of measurements, which
are commonly observed in clinical sequences (Sec.|C.2] [C.4). Further, applying the temporal concepts
in a single step (via element-wise multiplication) allows users to directly intervene on the temporal
concepts and simulate the effects of the intervention as a counterfactual trajectory (Sec. [C.2.4).
With these components, CLEF can generate sequences based on high-dimensional sequences at
any future time point and condition. Without the sequence encoder, it would be computationally
challenging to operate directly on the input historical sequences. Without the condition adapter,
CLEF and state-of-the-art conditional generation models cannot generalize well to unseen conditions
in the training dataset. Without the concept encoder or decoder, the model may inaccurately generate
sequences (refer to Sections [5.1}5.3] and[5.5|for empirical results).

Other usage of counterfactuals. (1) There is extensive work on generating counterfactuals for static
data (e.g., single time-step perturbation measured via gene expression profiles or images) (Louizos
et al.[ 2017 Yoon et al., 2018 [Lotfollahi et al.,[2023; [Wu et al., 2024;[2025)). In this work, we focus
on longitudinal trajectories. (2) Counterfactual prediction has been used as an additional task to
improve the predictions’ interpretability and accuracy (Yan & Wangl 2023} |[Hao et al., 2023 |Wang
et al., [2023; |Liu et al., [2025)), such as leveraging causal alignment to produce reliable diagnoses (Liu
et al.| [2025). While CLEF’s temporal concepts can be intervened upon to interpret model outputs,
counterfactual prediction is not an auxiliary task to improve CLEF’s interpretability and performance.

Excluded baselines for estimating counterfactual outcomes over time. Causal CPC (El Bouchat-
taoui et al.| 2024), Mamba-CDSP (Wang et al.,2025)), and GMCG (Ahn & Vashist,2025) can estimate
counterfactual outcomes over time, but are excluded due to unavailable code. While BNCDE (Hess
et al.} |2024) can estimate counterfactual outcomes over time, it is designed to forecast outcomes
as well as uncertainty (rather than single-point estimates, which is the focus of Sec.[3.3). As such,
extending BNCDE (Hess et al., [2024)) with CLEF is not directly feasible. CF-GODE (Jiang et al.,
2023)) can estimate continuous-time counterfactual outcomes, but is excluded due to unavailable code.

B ASSUMPTIONS FOR CAUSAL IDENTIFICATION

Under the potential outcomes framework (Neyman, |1923; Rubin, |1978) and its extension to time-
varying treatments and outcomes (Robins & Hernanl 2008)), the potential counterfactual outcomes
over time (i.e., T-step ahead, where 7 = t; — ¢;, potential outcome conditioned on history from
Eq.[) are identifiable from factual observational data under three standard assumptions: consistency,
positivity, and sequential ignorability.

Assumption B.1 (Consistency). Let s be the given sequence of treatments for a patient, consisting
of historical treatments s;,¢, and next treatment s;,. The potential outcome is consistent with the
observed (factual) outcome X. ;,(8) = X. s, .

Assumption B.2 (Positivity). There is always a non-zero probability of receiving (or not) a treatment
for all the history space over time (Imai & Van Dykl 2004): If P(st,.;,X:t0:¢;) > 0, then 0 <
P(st;[Stg:t;5 X t:; ) < 1 forall sy, This assumption is also referred to as (sequential) overlap (Bica
et al ], [2020; Melnychuk et al [2022).

Assumption B.3 (Sequential ignorability). The current treatment is independent of the potential
outcome, conditioning on the observed history: s;; Il x; 1 (stj )Sto:t; s X: t0:t;- This implies that there
are no unobserved confounders that affect both treatment and outcome.

While Assumptions[B.2]and [B.3]are standard across all methods that estimate treatment effects, they
may not always be satisfied in real-world settings (Robins et al., 2000; |[Pearl, [2009; |Ying et al., |2025)).
Corollary B.4 (G-computation). Assumptions provide sufficient identifiability conditions
for Eq. 4| (i.e., with G-computation (Li et al., 2021)). However; it requires estimating conditional
distributions of time-varying covariates (Melnychuk et al.| |2022)). Since this could be challenging
given a finite dataset size and high dimensionality of covariates, we refrain from the explicit usage of
G-computation (Melnychuk et al.||2022)).

Note that the standard setup for counterfactual prediction assumes a fixed time grid and normalized
covariates (Bica et al., [2020; [Melnychuk et al.,[2022)). As such, the standardized data preprocessing
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pipeline entails forward and backward filling for missing values and standard normalization of
continuous time-varying features (Bica et al.| [2020; Melnychuk et al., 2022). With the model
architecture shown in Fig. [2] these preprocessing steps are not necessary, thereby better reflecting
real-world data. Still, Assumptions [B.T}B.3]hold for our models depicted in Fig. 2]

C DATA & EXPERIMENTAL SETUP

We provide further details about data construction, data preparation, and experimental setup. Sec-
tions [C.T}{C.2] and Tab. [T] describe the novel conditional sequence generation benchmark datasets.
Sections |C.3[[C.4] discuss the standard synthetic and semi-synthetic benchmark datasets for coun-
terfactual outcomes estimation. Each section also contains the corresponding experimental setup.
We share code and instructions in our GitHub repository to reproduce the experiments in this paper:
https://anonymous.4open.science/r/CLEF-B64B,

Overview of novel datasets. To study cellular development, fibroblast cells derived from mice
can be artificially reprogrammed into various other cell states in vitro. A cell’s state is defined by
its gene expression. Throughout reprogramming, a cell activates transcription factor (TF) genes at
different time points to change its gene expression, thereby influencing its developmental trajectory.
In Fig. Bh, a mouse fibroblast is being reprogrammed over the span of 20 days (D0-D20); color
and shape represent cell state. On day 8, if the cell activates the Obox6 TF, the cell is on the path
toward becoming an induced pluripotent stem cell (iPSC); whereas if it activates the Neurod4 TF,
it is on the path toward becoming a neuron or astrocyte. The health of a human patient is often
monitored through lab tests (e.g. blood sodium level, white blood cell count). As shown in Fig. [3p, the
history of lab results across multiple patient visits (V1-V9) as well as candidate clinical interventions
(e.g., medication) can be used to infer the most likely future trajectory of the patient’s health.

Table 1: Dataset statistics for conditional sequence generation benchmarks. We construct three core datasets
for benchmarking conditional sequence generation: WOT (cellular developmental trajectories), eICU (patient lab
tests), and MIMIC-IV (patient lab tests). We also construct a paired counterfactual cellular trajectories dataset,
WOT-CF. N is the number of sequences (i.e., cellular developmental trajectories, patient lab test trajectories), V'
is the number of measured variables (i.e., gene expression, lab test), and L is the length of the sequences.

Dataset N 1% Mean L Max L
WOT 3,000 1,480  27.03 +6.04 37
WOT-CF 2,546 1,480  27.01 +5.98 37
elCU 108, 346 17 20.27 + 25.23 858

MIMIC-IV 156,310 16 15.56 + 24.43 949

C.1 CELLULAR DEVELOPMENTAL TRAJECTORIES

Here, we describe the process of (1) simulating single-cell transcriptomic profiles of developmental
time courses for individual cells and (2) preparing these trajectories for modeling.

C.1.1 SIMULATING TRAJECTORIES

Cellular reprogramming experiments help elucidate cellular development (Schiebinger et al.,|2019).
In these wet-lab experiments, cells are manipulated and allowed to progress for a specific period of
time before they undergo RNA sequencing (RNA-seq), and we analyze the resulting RNA-seq data to
observe their new cellular profiles (Schiebinger et al.| [2019)). RNA-seq is a destructive process for the
cell, meaning that the same cell cannot be sequenced at two different time points. Computational
models are thus necessary to infer the trajectory of a cell.

Waddington-OT dataset and model. Waddington-OT (Schiebinger et al., |2019) is a popular
approach to reconstruct the landscape of cellular reprogramming using optimal transport (OT). There
are two components in Waddington-OT: (1) a single-cell RNA-seq (scRNA-seq) dataset of mouse
cells from a reprogramming experiment, and (2) an OT-based trajectory inference model fitted on the
scRNA-seq dataset. The scRNA-seq dataset consists of 251,203 mouse cells profiled from 37 time
points (0.5-day intervals) during an 18-day reprogramming experiment starting from mouse embryonic
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fibroblasts. The trajectory inference model consists of transport matrices 7y, ,,, With dimensions /N x

m

M that relate all cells x%k, ..., Xy profiled at time ¢, to all cells x%kﬂ, e Xpy proﬁled at time fj41.
An entry at row ¢ and column j of 7y, 4, ., corresponds to the probability that xgkﬂ is a descendant

cell of xik, as determined using optimal transport (Chizat et al.,|2017). Every cell in the scRNA-seq
dataset is either pre-labeled as one of the 13 provided cell sets (i.e., induced pluripotent stem, stromal,
epithelial, mesenchymal-epithelial transition, trophoblast, spongiotrophoblast, trophoblast progenitor,
oligodendrocyte progenitor, neuron, radial glial, spiral artery trophoblast giant, astrocyte, other neural)
or unlabeled. We cluster the unlabeled cells using Leiden clustering via scanpy (Wolf et al., 2018)
at a resolution of 1, and define the resulting 27 unlabeled clusters as unique cell sets. As a result, each
cell in the dataset belongs one and only one cell set.

Simulating cell state trajectories. We define “cell state" as the transcriptomic profile of a cell.
Here, a transcriptomic profile is the log-normalized RNA-seq counts of the top 1,479 most highly
variable genes. To create a simulated trajectory of cell states for an individual cell undergoing
reprogramming, we randomly and uniformly sample a cell profiled at time step ¢y (Day 0.0) from
the Waddington-OT scRNA-seq dataset, and generate via the transport matrix 7, ;, a probability
distribution P;, over possible descendant cells x%l ,-- -, Xy, attime step 1 (Day 0.5). We sample a
cell from this distribution, and repeat the process until we reach either Day 18.0 or a terminal state
(i.e., neural, stromal, or induced pluripotent stem cell). After generating a trajectory composed of
cells from the Waddington-OT scRNA-seq dataset through this process, we retrieve the transcriptomic
profile of each cell to compose X. 4,.,., where T' is the length of the trajectory.

Inferring conditions. A condition s;, is defined as the activation of a transcription factor (TF)
that leads a cell to transition from state x;, to descendant state x;, ,. To infer such conditions, we
perform differential expression analysis between cells from the same cell set as x;, (i.e., x* € A)
and cells from the same cell set as x¢, , (i.e., xb e B). Using the wot . tmap.diff_exp function
(via the Waddington-OT library), we identify the top TF that was significantly upregulated
in x* € A compared to x* € B. If no TFs are differentially expressed, then the condition is
“None." We retroactively perform this analysis on all pairs of consecutive cell states in a cell state
trajectory X. ;.;,, to obtain the full trajectory containing both cell states and TF conditions: 7 =
{Xto, Stgs Xty Stys s Sty s Xty 1+ In Other words, 7 represents a simulated trajectory of an individual
cell undergoing the reprogramming process. Condition embeddings z, € R%'2? are obtained from the
(frozen) pretrained ESM-2 embedding model (Lin et al.| 2022).

Generating matched counterfactual trajectories. We additionally create pairs of matched counter-
factual trajectories to evaluate a model’s performance in zero-shot counterfactual generation. Each
pair consists of an “original" trajectory 7,4 and a “counterfactual" trajectory 7. ;. First, we generate
Tog Using the Waddington-OT model. Then, given a divergence time step D, the first D time steps of
Tog are carried over to 7.y such that the first D cell states and conditions of 7,4 and 7. are exactly
the same. The remaining states and conditions of 7y are sampled independently from 7,4, resulting
in an alternative future trajectory based on an alternative condition at time step D.

Implementation note: Since CLEF learns time embeddings based on the year, month, date, and hour
of a timestamp, we convert the time steps of each cell into timestamps. We set the starting time ¢ as
timestamp 2000/01/01 00:00:00, and add 10 x ¢; hours to the converted timestamp of ¢;_;.

C.1.2 EXPERIMENTAL SETUP

Generating data splits. There are three cell sets (i.e., groups of cells with the same cell state label)
that consist of cells from Day 0.0 in our post-clustering version of the Waddington-OT dataset. We
refer to these cell sets as “start clusters" because all initial cell states are sampled from one of these
cell sets. Since the choice of start cluster can influence the likelihood of a cell’s trajectory reaching
certain terminal fates, we split our cellular trajectories into train, validation, and test sets based on
their start cluster. This cell-centric data split allows us to evaluate how well a model can generalize
to different distributions of trajectories. Start cluster #1 is in the train set, start cluster #3 is in the
validation set, and start cluster #2 is in the test set.

Zero-shot counterfactual generation. The data split for zero-shot counterfactual generation is con-
structed such that the original trajectories 7,4 are in the train or validation sets, and the counterfactual
trajectories 7.y are in the test set.

19



Under review as a conference paper at ICLR 2026

C.2 PATIENT LAB TESTS

Here, we describe the process of (1) preprocessing electronic health records to extract longitudinal
routine lab tests data and (2) preparing these trajectories for modeling.

C.2.1 CONSTRUCTING ROUTINE LAB TEST TRAJECTORIES

We leverage two publicly available medical datasets: eICU (Pollard et al.l |2018) and MIMIC-
IV (Johnson et al.l [2024a; [2023}; |Goldberger et al., 2000). Both datasets are under the PhysioNet
Credentialed Health Data License 1.5.0 (PhysioNet). The retrieval process includes registering as a
credentialed user on PhysioNet, completing the CITI “Data or Specimens Only Research" training,
and signing the necessary data use agreements.

We process each dataset (i.e., eICU, MIMIC-IV) separately with the following steps. First, we extract
the routine lab tests only (annotation available only in MIMIC-IV) and the most commonly ordered
lab tests (i.e., lab tests that appear in at least 80% of patients). Next, we keep patients for whom we
have at least one of each lab test. If there are multiple measurements of a lab test at the same time
step (i.e., year, month, date, hour, minute, and seconds), we take the mean of its values. We extract
patients with more than one visit (or time step).

We define patients’ conditions as medical codes, specifically International Classification of Dis-
eases (ICD), of their diagnosis. Both eICU and MIMIC-IV use ICD-9 and ICD-10 codes. We extract
the medical codes and their timestamps (multiple medical codes at a single time step is possible).
Since the timestamps of diagnostic codes and lab tests are not necessarily the same (and there are
fewer entries of diagnostic codes than lab orders), we merge them with a tolerance range of 12 hours
(eICU) or two days (MIMIC-1V). We obtain (frozen) condition embeddings z, € R128 (retrieved
on December 22, 2024) from an embedding model that has been pretrained on a clinical knowledge
graph (Johnson et al.,[2024b)). The clinical knowledge graph is constructed by integrating six existing
databases of clinical vocabularies used in electronic health records: International Classification of
Diseases (ICD), Anatomical Therapeutic Chemical (ATC) Classification, Systemized Nomenclature
of Medicine - Clinical Terms (SNOMED CT), Current Procedural Terminology (CPT), Logical
Observation Identifiers Names and Codes (LOINC), and phecodes (Johnson et al., [2024b).

C.2.2 GENERATING DATA SPLITS

We generate a standard patient-centric random split for benchmarking model performance (R1-R2),
and a series of increasingly challenging data splits via SPECTRA (Ektefaie et al., |2024) to evaluate
model generalizability (R3). We describe in detail the process of constructing SPECTRA data splits:

SPECTRA (Ektefaie et al.| [2024) creates a series of splits with decreasing cross-split overlap or
similarity between the train and test sets. By training and testing models on these splits, we can assess
model performance as a function of cross-split overlap (Fig.[I0). SPECTRA refers to this relationship
as the spectral performance curve, which provides insight into how well a model generalizes to less
similar data. When a new dataset split is encountered, it can be plotted as a point on this curve. The
area under the spectral performance curve (AUSPC) serves as a metric of model generalizability and
enables comparisons across models (Tab. [6)).

To generate a split with SPECTRA, a similarity definition and a SPECTRA parameter (SP) value
between 0 and 1 are required. SP controls the level of cross-split overlap (Fig.[I0): values closer to 0
create splits resembling classical random splits, while values closer to 1 produce stricter splits with
minimal or no overlap between train and test sets. For example, at an input of 1, no similar samples
are shared between the train and test sets.

For eICU and MIMIC-1V, we define two patients as similar if: (1) they are of the same gender,
(2) they are born in the same decade, and (3) they share at least one ICD-9 or ICD-10 category.
We exclude ICD-9 and ICD-10 codes that are present in more than 50% of patients to avoid overly
generic features. SPECTRA systematically prunes similar patients to produce splits. For this study,
we generate 20 splits with SP values that are evenly spaced between 0 and 1 (Fig.[I0). Given a train
and test set, cross-split overlap is defined as the proportion of samples in the train set that are similar
to at least one sample in the test set (Fig. [10).
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C.2.3 CONSTRUCTING COHORTS OF PATIENTS WITH TYPE 1 DIABETES MELLITUS

We conduct case studies on two independent cohorts of patients with type 1 diabetes mellitus (T1D),
a chronic autoimmune disease in which the immune system attacks insulin-producing cells in the
pancreas (Quattrin et al.,|2023)). From our processed eICU and MIMIC-1V datasets, we construct two
cohorts of T1D patients and matched healthy individuals.

Procedure. To define a type 1 diabetes mellitus (T1D) patient cohort in e[CU and MIMIC-1V,
we identify patients with T1D and matched healthy individuals. A patient has T1D if the ICD-10
code E10 (or the equivalent ICD-9 code 250) is present in the electronic health records. Matched
healthy patients are defined by three criteria. First, the patient must not contain any of the following
ICD-10 (and ICD-9 equivalent) codes: E11,E13,E12,E08,E09,R73, and 024. An initial healthy
patient cohort is constructed using these filtering codes. Next, we identify frequently co-occurring
ICD codes between the initial set of patients and patients with T1D to filter out generic ICD codes
(threshold = 20). Finally, healthy patients are matched with a T1D patient if: they are of the same
gender, they are born in the same decade, and they share at least 50% of ICD codes.

Data statistics. eICU-T1D contains 59 T1D patients and 579 matched healthy controls, while
MIMIC-IV-T1D includes 25 T1D patients and 226 matched healthy controls.

C.2.4 EXPERIMENTAL SETUP FOR TYPE 1 DIABETES MELLITUS CASE STUDY

We evaluate CLEF’s ability to simulate counterfactual patient trajectories through temporal concept
intervention. This is analogous to intervening on concept bottleneck models by editing concept values
and propagating the changes to the final prediction (Koh et al.,[2020). This capability is particularly
useful when condition tokens are insufficient (e.g., prescribing medication dosage). Editing concept
values allow users (e.g., clinicians) to simulate potential trajectories as a result of the precise edits.

We conduct case studies on two independent patient cohorts with type 1 diabetes mellitus (T1D). For
each patient, we intervene on the temporal concepts corresponding to specific lab tests to simulate the
“reversal" or “worsening" of symptoms, thereby generating “healthier” or “more severe" trajectories.
Formally, given temporal concept c learned from x. ;.;, and an optional condition s, we modify
¢! # ¢ such that at least one element satisfies Cp # cé. Then, CLEF simulates future trajectories of
length 7" = 10. We then compare these counterfactual trajectories (i.e., CLEF-generated patients)
against observed sequences from matched healthy individuals, other healthy individuals, and other
T1D patients. Our hypothesis is that clinically meaningful edits will produce “healthier" (i.e., more
similar to healthy patients) or “sicker" (i.e., more similar to other T1D patients) trajectories.

C.3 SYNTHETIC TUMOR GROWTH TRAJECTORIES

The tumor growth simulation model (Geng et al.l 2017) produces trajectories of tumor volume
(i.e., one-dimensional outcome) after cancer diagnosis. There are two binary treatments (i.e., radio-
therapy A} and chemotherapy Af) at time ¢, and the possible treatments are: {(A; = 0, A} = 0),
(Af=1,A7 =0), (Af =0,A] = 1), (Af =1,A] = 1)}. For 7-step ahead prediction, we simulate
synthetic tumor growth trajectories under single-sliding treatment (i.e., shift the treatment over a
window) (Bica et al.l 2020; [Melnychuk et al.| 2022)) and random trajectories (i.e., randomly assign
treatments) settings (Melnychuk et al.| [2022)). Importantly, the ground-truth counterfactual trajectories
are known. We limit the length of trajectories to a maximum of 60 time steps. For each setting, we
generate trajectories with different amounts of time-varying confounding v € [0, 1,2, 3, 4], each with
10,000 trajectories for training, 1,000 for validation, and 1,000 for testing.

We follow the data simulation process and experimental setup as described in Appendix J and |GitHub
repository|of the original Causal Transformer publication (Melnychuk et al., 2022).

C.4 SEMI-SYNTHETIC PATIENT TRAJECTORIES

MIMIC-III-CF is a semi-synthetic dataset based on patient data from real-world intensive care
units (Wang et al., 2020; Johnson et al.,|2016). The data are aggregated at hourly levels, with forward
and backward filling for missing values and standard normalization of the continuous time-varying
features (Wang et al., 2020; Johnson et al.| [2016} Bica et al.| 2020; [Melnychuk et al.l2022). Patients
have 25 different vital signs as time-varying covariates and 3 static covariates (gender, ethnicity,
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age). Untreated trajectories of outcomes are first simulated under endogenous and exogenous
dependencies, and then treatments are sequentially applied (Melnychuk et al.| [2022)). There are 3
synthetic binary treatments and 2 synthetic outcomes (Melnychuk et al.| |2022). Importantly, the
ground-truth counterfactual trajectories are known. We limit the length of trajectories to a maximum
of 60 time steps. We generate 1,000 patients into train, validation, and test subsets via a 60%, 20%,
and 20% split. For 7-step ahead prediction with 7.« = 10, we sample 10 random trajectories for each
patient per time step.

We follow the data simulation process and experimental setup as described in Appendix K and|GitHub
repository|of the original Causal Transformer publication (Melnychuk et al., 2022).

C.5 SALES TRAJECTORIES

Sales trajectories (M5 Forecasting) are obtained from daily transaction data of Walmart stores across
three US states (Makridakis et al., 2022). Following (Huang et al.,[2024) and (Wang et al., 2025), the
objective of the model is to predict the future unit sales, and the condition is defined by the product
price (Huang et al., 2024; |Wang et al.||2025). There are 1942 time points on 3049 products from 10
stores (4 in California, 3 in Texas, and 3 in Wisconsin). The dataset is split by state: Train, validate,
and test on California, Texas, and Wisconsin, respectively. As the dataset does not contain any ground
truth counterfactual trajectories, M5 is only used for conditional generation of observed sequences.

D IMPLEMENTATION DETAILS

We provide code and instructions to implement CLEF, baselines, and ablations: https://
anonymous.4open.science/r/CLEF-B64B. To implement baselines, we follow the au-
thors’ recommendations on model design and hyperparameter selection from the original publications.
We do not share data or model weights that may contain sensitive patient information.

D.1 OBIECTIVE FUNCTIONS
For conditional generation, we use Huber loss, where a = x;ftj - iftj and 0 =1,

0.5a%, iflal <6

E(Xi,tj,xﬁ,tj) = {5(a| -0.50), otherwise ®

We use PyTorch’s implementation. To briefly explain each component of Huber loss:

* 0 is used to switch between mean squared error (MSE) and mean absolute error (MAE).
s The 0.5a term (MSE) is a quadratic component that penalizes outliers when errors are < 6.

* The §(|al - 0.56) term (MAE) is a linear component that does not over-penalize large errors
when errors are larger than J.

We also train CLEF via another commonly used objective function for forecasting (i.e., MSE loss)
and objective functions designed specifically for counterfactual prediction (i.e., gradient reversal,
counterfactual domain confusion; Sec. @]) (Bica et al.} 2020; Melnychuk et al.| 2022).

D.2 EXPERIMENTS TO EVALUATE TEMPORAL CONCEPTS

We intentionally design temporal concepts to isolate their contribution to predictive performance.
In our formulation, temporal concepts are learned from an aggregation of historical data, the future
time point, and the desired condition by concept encoder E (Eq.[2). We evaluate multiple ways
of defining E: via the state-of-the-art setups for conditional sequence generation (Sec. and
counterfactual outcomes estimation (Sec.|[D.4) with different sequential encoders. Also, temporal
concepts are applied directly to the latest time step in the concept decoder F' (Eq.[3) to generate the
future state. Alternative model architectural designs for learning temporal concepts and applying
conditions (or interventions) to the model may obfuscate contribution of temporal concepts to
predictive performance. For example, feeding the intervention directly to the decoder would bypass
the temporal concept mechanism, meaning that the concepts would capture only the passage of time
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rather than the effect of the intervention. Similarly, feeding the future state directly to the decoder
would introduce an additional function applied after the temporal concepts, making it difficult to
directly control the edit by the specified concept (because of the add-on decoder).

To further isolate the contribution of temporal concepts to predictive performance, CLEF and non-
CLEF models differ only in the components needed to learn temporal concepts (i.e., concept encoder
and decoder). In other words, CLEF models share the same sequence encoder and condition adapter
as their non-CLEF counterparts but replace the forecasting decoder in SOTA baselines (Sec.[A.3] [D.3}
with a concept encoder and decoder to leverage temporal concepts.

Altogether, our formulation keeps the architecture minimal and interpretable, ensuring that perfor-
mance gains can be attributed directly to temporal concepts.

D.3 BASELINES FOR CONDITIONAL SEQUENCE GENERATION

We benchmark CLEF against the state-of-the-art conditional sequence generation setup with 3
sequential data encoders (Fig. @: Transformer (Waswani et al., 2017; Narasimhan et al., [2024;
Jing et al.,[2024; Zhang et al.,[2023a); xXLSTM (Beck et al.,|2024); and state-of-the-art time series
foundation model, MOMENT (Goswami et al., [2024). For MOMENT, we finetune an adapter for the
1024-dimensional embeddings from the frozen MOMENT-1-1arge embedding model.

D.4 CLEF EXTENSIONS AND BASELINES FOR COUNTERFACTUAL OUTCOMES ESTIMATION

Due to its versatility, CLEF can be leveraged by state-of-the-art machine learning models designed
to estimate counterfactual outcomes (Bica et al., [2020; Melnychuk et al., [2022). Counterfactual
Recurrent Network (CRN) (Bica et al., |2020) and Causal Transformer (CT) (Melnychuk et al.|
2022)) demonstrate state-of-the-art performance in the established benchmarks (Bica et al., [2020;
Melnychuk et al.,|2022). To implement CLEF-CRN and CLEF-CT, the GELU activation layer from
the concept encoder £ (Eq.[2) and the concept decoder G (Eq. [3) of CLEF are appended to outcome
predictor network (denoted as Gy where Y is the outcome of the given treatment in the original
publications (Bica et al.,[2020; Melnychuk et al.,|2022)) of CRN and CT. Following the original CRN
and CT publications, we minimize the factual outcome loss (i.e., output of Gy') via mean squared
error (MSE) (Bica et al., 20205 Melnychuk et al., 2022).

We evaluate CLEF against their non-CLEF counterparts with and without balancing loss functions
(i.e., gradient reversal (GR) (Bica et al.| 2020), counterfactual domain confusion (CDC) loss (Mel+
nychuk et al.| [2022)). This results in 5 distinct state-of-the-art baselines: CRN with GR loss
(i.e., original CRN implementation) (Bica et al., [2020); CRN with CDC loss (Melnychuk et al.,
2022); CRN without balancing loss (Melnychuk et al.| 2022); CT with CDC loss (i.e., original CT
implementation) (Melnychuk et al.| 2022); and CT without balancing loss (Melnychuk et al., [2022]).

D.5 MODEL TRAINING

CLEF models do not require any additional resources than non-CLEF models. All CLEF models have
comparable number of parameters (Tab. [2) and time complexity (Tab. [3) as their CLEF-based
counterparts. In 67% of cases, the CLEF model’s best checkpoint occurs earlier than its non-CLEF
counterpart, indicating faster convergence (Tab. [4).

Models are trained on a single GPU (i.e., NVIDIA A100 or H100). For the model with the largest
number of parameters (i.e. CLEF-MOMENT with FFN=1 on the M5 dataset; Tab. , 24GB of GPU
memory is allocated and the maximum utilization is 100%. For the model with the largest number of
trainable parameters (i.e., CLEF-XLSTM with FFN=1 on the M5 dataset; Tab. EI), 12GB of memory is
allocated and the maximum utilization is 86%.
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Table 2: Model parameters. The number of all (denoted as A) or trainable (denoted as T) parameters is
comparable between CLEF and non-CLEF counterparts. FEN refers to the optional FEN layer in the concept
encoder; the number of layers [prn € [0, 1] is a hyperparameter.

Dataset Encoder Baseline (A) Baseline (T) CLEF (A) CLEF (T)

WOT Transformer 67002560 66947800 FFN=0: 67008480 FFN=0: 66953720
FFN=1: 69200360 FFN=1: 69145600
WOT xLSTM 66170384 66115624 FFN=0: 66176304 FFN=0: 66121544
FFN=1: 68368184 FFN=1: 68313424
WOT MOMENT 354933280 13638200 FFN=0: 354939200 FFN=0: 13644120
FFN=1: 357131080  FFN=1: 15836000

elCU Transformer 52560 37116 FFN=0: 52632 FFN=0: 37188
FFN=1: 52974 FFN=1: 37530
elCU xLSTM 78716 63272 FFN=0: 78788 FFN=0: 63344
FFN=1: 79130 FFN=1: 63686
elCU MOMENT 341293924 38160 FFN=0: 341293996 FFN=0: 38232
FFN=1: 341294338 FFN=1: 38574
MIMIC  Transformer 48000 32816 FFN=0: 48064 FFN=0: 32880
FFN=1: 48336 FFN=1: 33152
MIMIC xLSTM 79096 63912 FFN=0: 79160 FFN=0: 63976
FFN=1: 79432 FFN=1: 64248
MIMIC MOMENT 341290816 35312 FFN=0: 341290880 FFN=0: 35376
FFN=1: 341291152 FFN=1: 35648
M5 Transformer 260954950 260890900 FFN=0: 260967150 FFN=0: 260903100
FFN=1: 270272700 FFN=1: 270208650
M5 xLSTM 280615102 280551052 FFN=0: 280627302 FFN=0: 280563252
FFN=1: 289932852 FFN=1: 289868802
M5 MOMENT 372621770 31317400 FFN=0: 372633970 FFN=0: 31329600

FFN=1: 381939520 FFN=1: 40635150

Table 3: Time complexity. The training and evaluation times are comparable for the CLEF and non-CLEF
models. Reported times are rounded to the nearest half hour.

Dataset Encoder Baseline CLEF
WOT Transformer 1.0 hour 1.0 hour
WOT xLSTM 1.0 hour 1.0 hour

WOT MOMENT 4.0 hours 4.0 hours

elCU Transformer 5.0 hours 5.0 hours
eICU xLSTM 5.0 hours 5.0 hours
elCU MOMENT 5.5hours 5.5 hours

MIMIC  Transformer 7.0 hours 7.0 hours

MIMIC xLSTM 7.5hours 7.5 hours
MIMIC MOMENT 7.5 hours 7.5 hours
M5 Transformer 0.5 hour 0.5 hour
M5 xLSTM 0.5 hour 0.5 hour
M5 MOMENT 1 hour 1 hour
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Table 4: Model convergence. Shown are the epochs of the best model checkpoints (index starting at 1) for
each dataset. FFN refers to the optional FEN layer in the concept encoder; the number of layers [pry € [0,1]
is a hyperparameter. In 67% of cases, the CLEF model’s best checkpoint occurs earlier than its non-CLEF
counterpart, indicating faster convergence.

Dataset Encoder Baseline CLEF
WOT Transformer 49 FEN=0: 46
FFN=1: 38
xLSTM 44 FFN=0: 28
FFN=1: 20
MOMENT 5 FFN=0: 5
FFN=1: 5
elCU Transformer 47 FEN=0: 48
FFN=1: 45
xLSTM 45 FFN=0: 44
FFN=1: 44
MOMENT 4 FFN=0: 3
FFN=1: 2
MIMIC  Transformer 48 FFN=0: 42
FFN=1: 42
xLSTM 42 FFN=0: 42
FFN=1: 48
MOMENT 5 FFN=0: 3
FFN=1: 1
M5 Transformer 46 FFN=0: 46
FFN=1: 46
xLSTM 50 FFN=0: 35
FFN=1: 7
MOMENT 5 FFN=0: 4
FFN=1: 5
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D.6  HYPERPARAMETER SWEEP

The selection of hyperparameters for the (conditional sequence generation) models trained from
scratch are: dropout rate € [0.3,0.4,0.5,0.6], learning rate € [0.001,0.0001,0.00001], and number
of layers (or blocks in XLSTM) € [4,8]. Because the number of heads must be divisible by the
number of features, the number of heads for e[CU (18 lab tests) € [2,3,6,9] and for others € [4, 8].
For xLSTM, the additional hyperparameters are: 1D-convolution kernel size € [4,5,6] and QVK
projection layer block size € [4, 8].

D.7 BEST HYPERPARAMETERS

MIMIC-IV (patient trajectories) dataset. The best hyperparameters for the (conditional sequence
generation) models trained on the MIMIC-IV dataset are: dropout rate = 0.6, learning rate = 0.0001,
number of layers (blocks in XLSTM) = 8, and number of heads = 4. For xXLSTM models, 1D-
convolution kernel size = 4 and QVK projection layer block size = 4. For CLEF models, the number
of FNN in the concept encoder = 1 (Fig. [S}[9).

elCU (patient trajectories) dataset. The best hyperparameters for the (conditional sequence
generation) models trained on the eICU dataset are: dropout rate = 0.6, learning rate = 0.0001,
number of layers (blocks in xXLSTM) = 8, and number of heads = 6. For xXLSTM models, the number
of heads = 2, 1D-convolution kernel size = 4, and QVK projection layer block size = 4. For CLEF
models, the number of FNN in the concept encoder = 1 (Fig. [8}[9).

WOT (cellular trajectories) dataset. The best hyperparameters for the (conditional sequence
generation) models trained on the WOT dataset are: dropout rate = 0.6, learning rate = 0.00001,
number of layers (or blocks in xXLSTM) = 4, and number of heads = 8. For XLSTM models, 1D-
convolution kernel size = 4 and QVK projection layer block size = 8. For CLEF models, the number
of FNN in the concept encoder = 0 (Fig. [8}[9).

Synthetic tumor growth and semi-synthetic patient trajectories datasets. For the counterfactual
prediction models (including CLEF and non-CLEF models), we follow the best hyperparameters as
reported in the original publications of CT (Melnychuk et al.,[2022)) and CRN (Bica et al.,|2020).

MS (store sales trajectories) dataset. The best hyperparameters for the (conditional sequence
generation) models trained on the M5 dataset are: dropout rate = 0.6, learning rate = 0.00001, number
of layers (or blocks in XLSTM) = 4, and number of heads = 5. For xXLSTM models, number of
heads = 2, 1D-convolution kernel size = 6, and QVK projection layer block size = 8. For CLEF
models, the number of FNN in the concept encoder = 1 (Fig. [B}{9).
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Figure 8: Benchmarking the performance of CLEF, baselines, and ablation models on (a) immediate and
(b) delayed sequence editing of observed trajectories (Sec. [C-I}[C.2). Performance is measured by MAE (lower
is better). Models are trained on 3 seeds using standard cell-, patient-, or store-centric random splits; error bars
show 95% CI. Not shown for visualization purposes are VAR performance on eICU and MIMIC-IV datasets: on
immediate sequence editing, MAE for eICU and MIMIC-IV are 55982.74 and 886.05, respectively; on delayed
sequence editing, MAE for eICU and MIMIC-IV are 3.02 x 10* and 8.62 x 10?3, respectively.
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Figure 9: Benchmarking the performance of CLEF, baselines, and ablation models on (a) immediate and
(b) delayed sequence editing of observed trajectories (Sec.[C.I}{C.2). Performance is measured by RMSE (lower
is better). Models are trained on 3 seeds using standard cell-, patient-, or store-centric random splits; error bars
show 95% CI. Not shown for visualization purposes are VAR performance on eICU and MIMIC-1V datasets:
on immediate sequence editing, MAE for eICU and MIMIC-IV are 135003.67 and 1793.23, respectively; on
delayed sequence editing, MAE for eICU and MIMIC-IV are 5.84 x 10°° and 1.59 x 10%*, respectively.
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Table 5: Performance of CLEF and non-CLEF models on preserving unedited variables while editing sequences.
Models are evaluated on the WOT (cellular) dataset. Generally, CLEF models have less error (MAE) than
non-CLEF models. Notably, CLEF models typically have less error (MAE) on “Not Edited" (i.e., preserved)
variables than “Edited" variables, whereas the opposite is true for non-CLEF models.

Model Immediate Delayed
Edited Not Edited Edited Not Edited
Transformer 0.35860 + 0.00308  0.36449 +0.00370 | 1.27342 +0.02205 1.32864 + 0.03137
CLEF-Transformer | 0.36150 + 0.00083  0.34431 + 0.00094 | 0.49511 + 0.04567  0.48322 + 0.04640
xLSTM 0.37160 £ 0.00386  0.37278 £ 0.00188 | 1.59413 +0.02165 1.65325 + 0.02717
CLEF-xLSTM 0.35000 £ 0.00107  0.33820+0.00114 | 0.72733 +0.01621 0.70962 + 0.01898
MOMENT 0.38030 £ 0.00231  0.42576 + 0.00080 | 0.83916 +0.01876  0.81810 + 0.00788
CLEF-MOMENT 0.35099 + 0.00076  0.38743 + 0.00025 | 0.49849 + 0.00224  0.42301 + 0.00231
elcu MIMIC-IV
1.0 1.04
0.81 0.8
° 0.6 ° 0.6
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Figure 10: Cross-split overlap (CSO) as a function of SPECTRA parameter (SP) for eICU and MIMIC-1V
datasets (Sec.[C-2). CSO is defined as the number of samples in the test set that are similar to at least one sample
in the train set. SP is an internal parameter used by SPECTRA to control the CSO of generated data splits.
CSO decreases as SP increases. These data splits are used to evaluate conditional sequence generation models’
generalizability to unseen patient trajectories.

Table 6: Generalizability of CLEF, baselines, and ablations on eICU and MIMIC-IV datasets (Sec. in
immediate and delayed sequencing. Performance is measured by the area under the spectral performance curve
(AUSPC) for MAE (Fig. @) or RMSE (Fig. @) Smaller AUSPC values indicate better performance. Models
are trained on 3 seeds; standard deviation is reported.

Model eICU MIMIC-1IV
Immediate Delayed Immediate Delayed
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Transformer 27.06 +£0.98 59.83+1.14 22.59 +£1.21 50.29 £ 0.56 40.87+£0.15 71.77+0.21 44.61 £0.19 80.38 +0.32
+ CLEF 15.16 £ 1.09 32.95+2.47 14.36 £ 1.07 34.27+2.12 32.79+1.41 57.76 £ 3.39 35.65+1.73 65.10 +4.43
+ CLEF + FEN 10.99 £ 0.31 27.57 £0.27 9.25 +0.60 27.69 £ 0.22 21.35+3.16 36.92 £ 5.46 23.83+£3.26 44.11 £ 5.83
xLSTM 28.47+0.63 62.28 +£1.38 23.11+0.91 52.53+1.98 40.75 +0.30 71.90 £ 0.40 44.31+0.24 80.38 +0.33
+ CLEF 16.73+£2.16 35.43+6.01 15.32+2.10 34.68 +£7.09 32.06+1.13 53.42+2.18 33.88+1.98 57.73 £3.63
+ CLEF + FFN 11.35+0.11 28.09 +£0.08 9.04+0.18 26.21 £0.48 21.04 +£2.32 37.50 +£4.60 22.63 +2.61 42.12 +£5.03
MOMENT 53.49£0.03 90.54 £ 0.03 48.83 +0.02 82.50 +£ 0.02 46.55 +0.01 77.22+0.01 50.59 £ 0.02 85.72+0.01
+ CLEF 47.69 +£0.33 82.18 £ 0.34 40.10 £ 0.44 72.70 £ 0.46 44.01+0.35 73.83+0.63 46.88 +0.38 81.20+1.27
+ CLEF + FFN 47.56 +1.60 82.81 +£2.88 39.91+1.65 72.54 £ 3.20 42.92 +0.52 70.72 £ 1.96 45.75+0.65 77.35+£2.77

28



Under review as a conference paper at ICLR 2026

a elCU

Immediate

sequence editing

Delayed
sequence editing

b MM

Immediate

sequence editing

Delayed
sequence editing

Figure 11: Generalizability of CLEF, baselines, and ablation models on (a) eICU and (b) MIMIC-IV patient
datasets (Sec. in immediate and delayed sequence editing. Performance is measured by MAE (lower is
better). Models are trained on 3 seeds; error bars show 95% CI. As the SPECTRA parameter increases, the
train/test split similarity decreases (Fig.[I0). The area under the spectral performance curve (AUSPC) evaluation
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Figure 12: Generalizability of CLEF, baselines, and ablation models on (a) eICU and (b) MIMIC-IV patient
datasets (Sec.[C.2) in immediate and delayed sequence editing. Performance is measured by RMSE (lower is
better). Models are trained on 3 seeds; error bars show 95% CI. As the SPECTRA parameter increases, the

train/test split similarity decreases (Fig.. The area under the spectral performance curve (AUSPC) evaluation
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Figure 14: Counterfactual 7-step ahead prediction on tumor growth (single-sliding treatment) with different
amounts of time-varying confounding  (Sec. . GR refers to Gradient Reversal loss [2020); CDC
refers to Counterfactual Domain Confusion loss (Melnychuk et al.|[2022); BL refers to Balancing Loss (i.e., GR
or CDC). Models are trained on 5 seeds; error bars show 95% CI.
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Figure 15: Counterfactual 7-step ahead prediction on tumor growth (random trajectories setting) with different

amounts of time-varying confounding  (Sec.
refers to Counterfactual Domain Confusion loss
or CDC). Models are trained on 5 seeds; error bars show 95% CI.
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Figure 16: Counterfactual 7-step ahead prediction on semi-synthetic patient ICU trajectories (Sec. .
GR refers to Gradient Reversal loss [2020); CDC refers to Counterfactual Domain Confusion
loss (Melnychuk et all,[2022); BL refers to Balancing Loss (i.e., GR or CDC). Models are trained on 5 seeds;
error bars show 95% CI.
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Figure 17: Benchmarking the performance of CLEF, baselines, and ablation models on zero-shot (a) immediate
and (b) delayed counterfactual generation of cellular developmental trajectories (Sec. [C.I). Performance is
measured by MAE (top row) and RMSE (bottom row). Models are trained on 3 seeds; error bars show 95% CI.
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Figure 18: CLEF-generated patients via intervention on temporal concepts (Sec. . Observed and CLEF
patients are compared to quantify the differences between their lab test trajectories as a result of the intervention
to halve the (a) glucose levels in T1D patients from the MIMIC-IV-T1D cohort, (b) white blood cell (WBC)
levels in T1D patients from the MIMIC-IV-T1D cohort, and (¢) WBC levels in T1D patients from the eICU-T1D
cohort. (d) After intervening on CLEF to halve WBC levels, we observe whether the resulting CLEF patients’
trajectories are “healthier" or “sicker" compared to other patients in the real-world cohort (top). Further, we
investigate whether the intervention effects are compounded when simultaneously reducing glucose and WBC

levels by half (bottom). Error bars show 95% CI.
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F LIMITATIONS & FUTURE DIRECTIONS

There are two key limitations of CLEF. Firstly, we define temporal concepts such that each element
represents a unique measured variable in the sequence (e.g., gene expression, lab test). Instead, it
may be beneficial to learn higher-order relationships between the measured variables or across time
as abstract hierarchical concepts (LCM et al., 2024; |Kacprzyk et al.,|2024). Secondly, while CLEF is
able to generate counterfactual sequences for any condition, including those it may not have seen
during training, CLEF could potentially improve with additional guidance from a real-world causal
model for the system or domain of interest (Chatzi et al., [2025). Since defining such a real-world
causal graph is a major challenge, one promising future direction could be to enable user interventions,
such as those performed in our T1D case studies, to finetune CLEF.
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