

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CONTROLLABLE SEQUENCE EDITING FOR BIOLOGICAL AND CLINICAL TRAJECTORIES

Anonymous authors

Paper under double-blind review

ABSTRACT

Conditional generation models for longitudinal sequences can produce new or modified trajectories given a conditioning input. However, they often lack control over when the condition should take effect (*timing*) and which variables it should influence (*scope*). Most methods either operate only on univariate sequences or assume that the condition alters all variables and time steps. In scientific and clinical settings, interventions instead begin at a specific moment, such as the time of drug administration or surgery, and influence only a subset of measurements while the rest of the trajectory remains unchanged. CLEF learns temporal concepts that encode how and when a condition alters future sequence evolution. These concepts allow CLEF to apply targeted edits to the affected time steps and variables while preserving the rest of the sequence. We evaluate CLEF on 8 datasets spanning cellular reprogramming, patient health, and sales, comparing against 9 state-of-the-art baselines. CLEF improves immediate sequence editing accuracy by **16.28% (MAE) on average against their non-CLEF counterparts**. Unlike prior models, CLEF enables one-step conditional generation at arbitrary future times, outperforming **their non-CLEF counterparts** in delayed sequence editing by **26.73% (MAE) on average**. We test CLEF under counterfactual inference assumptions and show up to 63.19% (MAE) improvement on zero-shot conditional generation of counterfactual trajectories. In a case study of patients with type 1 diabetes mellitus, CLEF identifies clinical interventions that generate realistic counterfactual trajectories shifted toward healthier outcomes.

1 INTRODUCTION

Conditional generation of longitudinal sequences is a growing challenge in machine learning, where the goal is to produce new or modified trajectories based on a conditioning input, such as an intervention applied to a system. A central task is controlling when in the trajectory the condition should take effect (*timing*) and which subset of variables it should influence (*scope*). In many domains, interventions begin at a specific moment and alter only part of the system while the rest of the trajectory remains unchanged. A motivating example comes from virtual cell models, which simulate how molecular or cellular states evolve under perturbations and enable large-scale *in silico* experimentation (Bunne et al., 2024; Li et al., 2025). To successfully build such virtual cells and patients, the models must consider both the type of intervention (e.g., drug, surgery) and its timing (e.g., when and how frequent). For instance, prescribing a medication should alter a patient’s trajectory only after the intervention time while preserving the medical history prior to treatment, and only those clinical variables relevant to the intervention should change while unaffected measurements remain stable (Fig. 1).

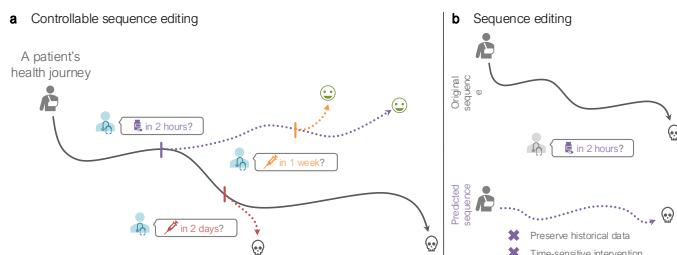


Figure 1: Illustrative comparison of (a) controllable sequence editing and (b) existing sequence editing. Unlike existing methods, controllable sequence editing generates sequences (dotted lines) guided by a condition while preserving historical data to model the effects of immediate (e.g., in 2 hours) or delayed (e.g., in 1 week) edits.

054 Generative language and vision models enable precise editing guided by a description, such as textual
 055 prompts or condition tokens (Zhang et al., 2023b; Gao et al., 2023; Ravi et al., 2024; Gong et al.,
 056 2024; Niu et al., 2024; Gu et al., 2024; Zhou et al., 2024). They are designed to gain more *global*
 057 context-preserving and *local* precise control over the generation of text (Chatzi et al., 2025; Niu
 058 et al., 2024; Gu et al., 2024; Zhou et al., 2024), images (Zhang et al., 2023b; Gao et al., 2023; Ravi
 059 et al., 2024), and even molecular structures (Gong et al., 2024; Dauparas et al., 2022; Zhang et al.,
 060 2024b). Their outputs preserve the input’s global integrity yet contain precise local edits to satisfy the
 061 desired condition. Analogous to these models’ consideration of spatial context to edit images (Zhang
 062 et al., 2023b; Gao et al., 2023) and protein pockets (Dauparas et al., 2022; Zhang et al., 2024b) via
 063 in-painting, **our work leverages temporal context to edit sequences based on a given condition.**

064 Controllable text generation (CTG), designed specifically to edit natural language sequences, has
 065 been extensively studied (Zhang et al., 2023a). **They excel in *immediate sequence editing*:** predicting
 066 the next token or readout in the sequence under a given condition (Niu et al., 2024; Gu et al., 2024;
 067 Zhou et al., 2024; Chatzi et al., 2025; Zhang et al., 2023a; Bhattacharjee et al., 2024). However, **CTG**
 068 **models are unable to perform *delayed sequence editing*:** modifying a trajectory in the far-future.
 069 The distinction is important: the focus is on when the edit occurs, not necessarily when its effects
 070 manifest. Whereas immediate sequence editing applies a condition *now* (e.g., administering insulin
 071 *today*), delayed sequence editing schedules a condition for the *future* (e.g., starting a chemotherapy
 072 regimen *in six weeks*). Existing CTG models cannot effectively utilize the given context to skip ahead
 073 to the future; instead, they would need to be run repeatedly to fill in the temporal gap without any
 074 guarantee of satisfying the desired condition. As a result, **CTG models are insufficient for other**
 075 **sequence types (i.e., not natural language) for which both immediate and delayed sequence**
 076 **editing are necessary**, such as cell development and patient health trajectories.

076 Controllable time series generation (CTsG) (Jing et al., 2024; Bao et al., 2024) utilizes diffusion
 077 modeling to generate time series under a given condition. However, these models are limited to
 078 univariate sequences and assume that the entire input sequence is affected (Jing et al., 2024; Bao
 079 et al., 2024). These methods are thus insufficient in settings where edits are only allowed after time
 080 t (i.e., cannot change historical data) and affect only certain sequences (i.e., preserve unaffected
 081 co-occurring sequences). In other words, **CTsG methods are unable to make precise local edits**
 082 **while preserving global integrity**. Orthogonal to CTsG is the estimation of counterfactual outcomes
 083 over time (ECT) (Melnychuk et al., 2022; Bica et al., 2020; Huang et al., 2024; Wang et al., 2025).
 084 Although not generative, ECT autoregressively predicts the potential outcomes (i.e., next readout in the
 085 sequence) as a result of different future treatments (i.e., fixed set of conditions) under counterfactual
 086 inference assumptions. **While ECT preserves historical and unaffected co-occurring sequences,**
 087 **counterfactual inference assumptions may not always hold in real-world applications.**

088 **Present work.** We develop CLEF, a novel ControLlable sequence Editing Framework for instance-
 089 wise conditional generation. Specifically, CLEF learns *temporal concepts* that represent the trajectories
 090 of the sequences to enable accurate generation guided by a given condition (Def. 3.2). We show that
 091 the learned temporal concepts help preserve temporal constraints in the generated outputs. CLEF is
 092 flexible and can be used with any sequential data encoder and condition tokenizer. We evaluate CLEF
 093 on 8 datasets spanning cellular reprogramming, patient health trajectories, and sales, outperforming
 094 9 state-of-the-art (SOTA) baselines on immediate and delayed sequence editing (Def. 3.1). We
 095 also show that any pretrained sequence encoder can gain controllable sequence editing capabilities
 096 when finetuned with CLEF. Additionally, we extend CLEF for multi-step ahead counterfactual
 097 prediction under counterfactual inference assumptions (Assumption 3.4, Eq. 4), and demonstrate (on
 098 3 benchmark datasets) performance gains against 5 SOTA methods in settings with high time-varying
 099 confounding. Moreover, CLEF enables conditional generation models to outperform baselines in
 100 zero-shot generation of counterfactual cellular trajectories on immediate and delayed sequence editing.
 101 Further, precise edits via user interaction can be performed directly on CLEF’s learned concepts. We
 102 show through real-world case studies that CLEF, given precise edits on specific temporal concepts,
 103 can generate realistic “healthy” trajectories for patients originally with type 1 diabetes mellitus.

103 **Our contributions are fourfold.** (1) We develop CLEF: a flexible controllable sequence editing
 104 model for conditional generation of longitudinal sequences. (2) CLEF can be integrated into the
 105 (balanced) representation learning architectures of counterfactual prediction models to estimate
 106 counterfactual outcomes over time. (3) Beyond achieving SOTA performance in conditional sequence
 107 generation and counterfactual outcomes prediction, CLEF excels in zero-shot conditional generation
 108 of counterfactual sequences. (4) We release four new benchmark datasets on cell reprogramming

108 and patient immune dynamics for immediate and delayed sequence editing, and evaluate on four
 109 established benchmark datasets for conditional generation and counterfactual prediction.
 110

111 2 RELATED WORK (EXTENDED VERSION IN APPENDIX A)

112 **Sequence editing.** The sequence editing task has been defined in language and time series modeling
 113 via different terms, but share a core idea: Given a sequence and a condition (e.g., sentiment, attribute),
 114 generate a sequence with the desired properties. Conditional sequence generation is an autoregressive
 115 process in language (Chatzi et al., 2025) but a diffusion process in time series (Jing et al., 2024;
 116 Bao et al., 2024). Prompting is often used to guide the generation of a sequence, both textual and
 117 temporal, with a desired condition (Zhang et al., 2023a; Bhattacharjee et al., 2024; Jing et al., 2024;
 118 Bao et al., 2024). However, existing approaches are unable to generate multivariate sequences,
 119 preserve relevant historical data, and ensure time-sensitive edits. They assume that sequences are
 120 univariate and conditions affect the entire sequence (Jing et al., 2024; Bao et al., 2024). Structural
 121 causal models can be incorporated to enable counterfactual text generation while preserving certain
 122 attributes (Chatzi et al., 2025; Ravfogel et al., 2025). Estimating counterfactual outcomes over time
 123 is often formulated under the potential outcomes framework (Neyman, 1923; Rubin, 1978).
 124

125 **Estimating counterfactual outcomes over time.** Predicting time-varying counterfactual outcomes
 126 entails estimating counterfactual outcomes over possible sequences of interventions (e.g., timing and
 127 ordering of sequential treatments (Melnychuk et al., 2022; Bica et al., 2020; Huang et al., 2024; Wang
 128 et al., 2025)). There are decades of research on temporal counterfactual outcomes estimation (Robins
 129 et al., 2000; Lim, 2018; Bica et al., 2020; Li et al., 2021; Melnychuk et al., 2022). Recently, machine
 130 learning models that predict time-varying counterfactual outcomes learn representations that are
 131 predictive of outcomes while mitigating treatment bias via balancing techniques (Melnychuk et al.,
 132 2022; Bica et al., 2020; Huang et al., 2024; Wang et al., 2025). On images, conditional generation
 133 models (i.e., guided diffusion, conditional variational autoencoder) have been shown to predict
 134 counterfactual outcomes without an explicit density estimation (Wu et al., 2024). However, there
 135 may be a trade-off between prediction accuracy and balanced representations (Huang et al., 2024).
 136

137 **Concept-based learning.** Concepts are abstract atomic ideas or concrete tokens of text and im-
 138 ages (LCM et al., 2024; Lai et al., 2024). Concept-based learning can explain (e.g., predict concepts
 139 in the sample) or transform black-box models into more explainable models (e.g., allow user inter-
 140 vention) (Koh et al., 2020; Shin et al., 2023; Ismail et al., 2024; Lai et al., 2024; Laguna et al., 2024;
 141 van Sprang et al., 2024), and mitigate distribution shifts (Zarlenga et al., 2025). While concepts are
 142 used in sequence generation (LCM et al., 2024), they have not been used for conditional generation.
 143 Concept-based learning for counterfactual prediction is limited to improving the interpretability of
 144 image classification (Dominici et al., 2025a; De Felice et al., 2025; Dominici et al., 2025b).
 145

146 3 CLEF

147 CLEF generates sequences based on user-specified conditions and temporal coordinates. Given a
 148 longitudinal sequence, forecast time step, and condition token, CLEF modifies only the relevant por-
 149 tions of the sequence while preserving unaffected elements, ensuring global integrity. Architecturally,
 150 CLEF has two **novel** components: **concept encoder** E that learns temporal concepts, representing tra-
 151 jectory patterns over time, and **concept decoder** G that applies these concepts to generate sequences
 152 (Sec. A.3). Following SOTA conditional sequence generation and time-varying counterfactual predic-
 153 tion models, CLEF has a sequence encoder F that extracts temporal features from historical sequence
 154 data, and a condition adapter H that maps condition tokens to latent representations (Sec. A.3).
 155

156 3.1 PROBLEM DEFINITION

157 Consider an observational dataset $\mathcal{D} = \{\mathbf{x}_t^{(i)}, \mathbf{s}_t^{(i)}\}_{i=1}^N$ for N independent entities (e.g., cells, patients)
 158 at discrete time step t . For each entity i at time t , we observe continuous time-varying covariates
 159 $\mathbf{x}_t^{(i)} \in \mathbb{R}^{d_x}$ (e.g., gene expression, laboratory test measurements) and categorical conditions $\mathbf{s}_t^{(i)}$
 160 (e.g., transcription factor activation, clinical intervention). The outcome of the condition is measured
 161 by the covariates (e.g., activating a transcription factor affects a cell’s gene expression, prescribing a
 162 medication affects a patient’s laboratory test profile). We omit entity index (i) unless needed.

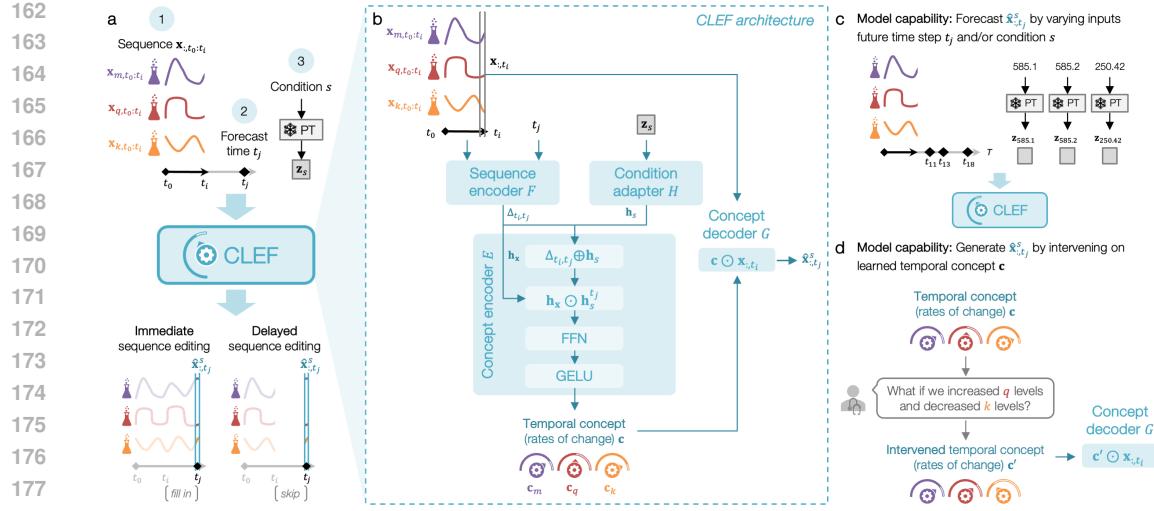


Figure 2: Overview of CLEF’s architecture and capabilities. **(a)** Given a sequence, forecast time, and condition embedding from a frozen pretrained (PT) embedding model, CLEF generates a sequence via immediate or delayed sequence editing. **(b)** CLEF is composed of a sequence encoder, condition adapter, concept encoder, and concept decoder. CLEF has two key capabilities: **(c)** forecast sequences at any future time and under any condition (e.g., medical codes), and **(d)** generate sequences by intervening on CLEF’s learned temporal concepts.

Definition 3.1 (Sequence editing). Sequence editing is the local sample-level modification of sequence \mathbf{x} to autoregressively generate $\hat{\mathbf{x}}_{:,t_j}$ under condition s given at time $t_j - \epsilon$. Time gap ϵ indicates that $\hat{\mathbf{x}}_{:,t_j}$ is measured a negligible amount of time after s is applied¹; for notation, we omit ϵ unless needed. There are two types of controllable sequence editing (Fig. 2a):

- **Immediate sequence editing:** Given $\mathbf{x}_{:,t_0:t_i}$ and s to occur at t_{i+1} , forecast $\hat{\mathbf{x}}_{:,t_{i+1}}$
- **Delayed sequence editing:** Given $\mathbf{x}_{:,t_0:t_i}$ and s to occur at $t_j \geq t_{i+1}$, forecast $\hat{\mathbf{x}}_{:,t_j}$

Examples of immediate sequence editing include generating trajectories after perturbing cells *now* or performing surgery on patients *today* (Sec. 5.1). In contrast, delayed sequence editing generates trajectories after perturbing cells *in ten days* or performing surgery on patients *next year* (Sec. 5.2).

Definition 3.2 (Temporal concept). Temporal concept \mathbf{c} approximates the trajectory (or rate of change of each variable in sequence \mathbf{x}) between a pair of time steps $t_j > t_i$ such that $\mathbf{x}_{:,t_j} = \mathbf{c} \odot \mathbf{x}_{:,t_i}$.

Definition 3.3 (Controllable sequence editing). Concept encoder E and decoder G can leverage temporal concepts \mathbf{c} to perform controllable sequence editing if the following are satisfied.

- Condition s on $\mathbf{x}_{:,t_0:t_i}$ at time step t_j learns \mathbf{c} that accurately forecasts $\hat{\mathbf{x}}_{:,t_j}^s$ such that $\hat{\mathbf{x}}_{:,t_j}^s \simeq \mathbf{x}_{:,t_j}^s$.
- For an alternative condition $a \neq s$ on $\mathbf{x}_{:,t_0:t_i}$ at t_j , the method learns a distinct $\mathbf{c}' \neq \mathbf{c}$ that forecasts $\hat{\mathbf{x}}_{:,t_j}^a$ such that $\hat{\mathbf{x}}_{:,t_j}^a \neq \hat{\mathbf{x}}_{:,t_j}^s$ and, if known, $\hat{\mathbf{x}}_{:,t_j}^a \simeq \mathbf{x}_{:,t_j}^a$.

Problem Statement 3.1 (CLEF). Given a sequence encoder F , condition adapter H , concept encoder E , and concept decoder G trained on a longitudinal dataset \mathcal{D} , CLEF learns temporal concept $\mathbf{c} = E(F(\mathbf{x}_{:,t_0:t_i}, t_j), H(s))$ to forecast $\hat{\mathbf{x}}_{:,t_j}^s = G(\mathbf{x}_{:,t_i}, \mathbf{c})$ for any $\mathbf{x}_{:,t_0:t_i} \in \mathcal{D}$, $t_j > t_i$, and s .

$$\hat{\mathbf{x}}_{:,t_j}^s = G(\mathbf{x}_{:,t_i}, E(F(\mathbf{x}_{:,t_0:t_i}, t_j), H(s))) \quad (1)$$

3.2 CLEF ARCHITECTURE

CLEF’s input are a continuous multivariate sequence $\mathbf{x}_{:,t_0:t_i} \in \mathbb{R}^V$ with V measured variables, a condition s , and time $t_j > t_i$ for which to forecast $\hat{\mathbf{x}}_{:,t_j}^s$. CLEF consists of 4 major components: sequence encoder F , condition adapter H , concept encoder E , and concept decoder G (Sec. A.3).

¹We assume that the condition s always occurs shortly before the measured covariates at time t_j . When s is an intervention and our problem becomes counterfactual prediction (refer to Sec. 3.3 for a more rigorous discussion about the formulation of sequence editing in this context), our assumption is consistent with existing practice in the literature of counterfactual prediction.

Sequence encoder F . The sequence encoder F extracts features $\mathbf{x}_{:,t_0:t_i}$ such that $\mathbf{h}_x = F(\mathbf{x}_{:,t_0:t_i})$. Any sequential data encoder, including a pretrained multivariate foundation model, can be used. The time encoder in F generates a time positional embedding \mathbf{h}_t for any time t via element-wise summation of the year (sinusoidal), month, date, and hour embeddings. It is also used to compute the time delta embedding $\Delta_{t_i,t_j} = \mathbf{h}_{t_j} - \mathbf{h}_{t_i}$ of time steps t_i and t_j for the concept encoder E .

Condition adapter H . The condition token, or embedding \mathbf{z}_s corresponding to the input condition s , is either retrieved from a frozen pretrained embedding model (denoted as PT in Fig. 2a) or features of a condition/intervention. The condition adapter H projects \mathbf{z}_s into a hidden representation $\mathbf{h}_s = H(s)$.

Concept encoder E . Given the hidden representations generated by F and H , concept encoder E learns temporal concepts $\mathbf{c} = E(\mathbf{h}_x, \Delta_{t_i,t_j}, \mathbf{h}_s)$. First, the time delta embedding Δ_{t_i,t_j} is combined via summation with \mathbf{h}_s to generate a time- and condition-specific embedding $\mathbf{h}_s^{t_j} = \Delta_{t_i,t_j} \oplus \mathbf{h}_s$. Then, \mathbf{c} is learned via an element-wise multiplication of \mathbf{h}_x and $\mathbf{h}_s^{t_j}$, an optional linear projection (FNN), and a GELU activation to approximate the trajectory between t_i and t_j .

$$\mathbf{c} = \text{GELU}(\text{FFN}(\mathbf{h}_x \odot \mathbf{h}_s^{t_j})) \quad (2)$$

Concept decoder G . The concept decoder G forecasts $\hat{\mathbf{x}}_{:,t_j}^s$ by performing element-wise multiplication of the latest time t_j of the input sequence $\mathbf{x}_{:,t_0:t_i}$ (denoted as $\mathbf{x}_{:,t_i}$) and the learned concept \mathbf{c}

$$\hat{\mathbf{x}}_{:,t_j}^s = \mathbf{c} \odot \mathbf{x}_{:,t_i} \quad (3)$$

because it is less sensitive to covariates with different units of measure (e.g., blood sodium in meq/L vs. white blood cell in $10^9/\text{L}$). Applying \mathbf{c} in a single step (via \odot) allows users to directly intervene on \mathbf{c} and simulate the effects of the intervention as a counterfactual trajectory (Sec. 5.6).

Objective function \mathcal{L} quantifies the reconstruction error of predicted $\hat{\mathbf{x}}_{:,t_j}^s$ from ground truth $\mathbf{x}_{:,t_j}^s$ (via Huber or MSE). It may include balancing loss functions for counterfactual prediction only (Sec. D.1).

3.3 CLEF'S CONNECTION TO COUNTERFACTUAL PREDICTION

Let $\mathbf{x}_{:,t_j}$ refer to the outcomes observed at t_j after treatment s is given. Our problem can be viewed as counterfactual prediction when there is no treatment assigned between t_i and t_j except s .

Formally, under the potential outcomes framework (Neyman, 1923; Rubin, 1978) and its extension to time-varying treatments and outcomes (Robins & Hernan, 2008), the potential counterfactual outcomes over time are identifiable from the observational data \mathcal{D} under three standard assumptions: consistency, positivity, and sequential ignorability (Sec. B). Thus, CLEF (via temporal concepts \mathbf{c}) predicts counterfactuals under the additional Assumption 3.4:

Assumption 3.4 (Conditional mean function estimation). For time steps $t_j > t_i$, temporal concepts \mathbf{c} learned based on the next treatment \mathbf{s}_{t_j} , historical treatments $\mathbf{s}_{t_0:t_i}$, and historical covariates $\mathbf{x}_{:,t_0:t_i}$ capture (balanced) representations such that the concept decoder $\mathbf{c}(\mathbf{s}_{t_j}, \mathbf{s}_{t_0:t_i}, \mathbf{x}_{:,t_0:t_i}) \odot \mathbf{x}_{:,t_i}$ approximates the conditional mean function $\mathbb{E}[\mathbf{x}_{:,t_j+\epsilon}(\mathbf{s}_{t_j}, \mathbf{s}_{t_0:t_i}) | \mathbf{s}_{t_0:t_i}, \mathbf{x}_{:,t_0:t_i}]$.

In the following, we elaborate on why it can be reasonable to view CLEF as an accurate counterfactual prediction model by satisfying Assumption 3.4.

Estimating counterfactuals. We estimate future counterfactual outcomes over time, formulated as

$$\mathbb{E}(\mathbf{x}_{:,t_j+\epsilon}(\mathbf{s}_{t_j}, \mathbf{s}_{t_0:t_i}) | \mathbf{s}_{t_0:t_i}, \mathbf{x}_{:,t_0:t_i}) \quad (4)$$

by learning a function $g(\tau, \mathbf{s}_{t_j}, \mathbf{s}_{t_0:t_i}, \mathbf{x}_{:,t_0:t_i}) = G(\mathbf{x}_{:,t_i}, E(F(\mathbf{x}_{:,t_0:t_i}, t_j), H(\mathbf{s}_{t_j})))$ with projection horizon $\tau = (t_j + \epsilon) - t_i \geq 1$ for τ -step ahead prediction (Eq. 1; Sec. 3.2). Indeed, the key to reliable counterfactual prediction is the accurate estimation of Eq. 4 to adjust for bias introduced by time-varying confounders (Robins & Hernan, 2008). In particular, our design of $g(\cdot)$ estimates Eq. 4 well (refer to Sec. 5.4 for empirical results) due to the effective learning of temporal concepts (Def. 3.2) and the strong representation power of the encoders (Sec. 3.2).

Balancing representations via CLEF (Sec. D.4). Since the historical covariates and next treatment are encoded independently by F and H , the learned representations are treatment-invariant (or balanced), following the discussions in existing balanced representation learning architectures

(e.g., CRN (Bica et al., 2020), CT (Melnychuk et al., 2022)). Further, by Assumption 3.4, our designed structure isolates the causal effect of the treatment from other spurious factors, enabling reliable counterfactual estimation (Zhang et al., 2024a).

4 EXPERIMENTAL SETUP

4.1 DATASETS

CLEF is evaluated on **8 biomedical and financial datasets on conditional and counterfactual generation** (Fig. 3; Sec. C; Tab. 1). We introduce benchmarking datasets, **WOT** (conditional generation) and **WOT-CF** (counterfactual generation), of single-cell transcriptomic profiles of developmental time courses of cells. We construct two new real-world patient datasets of irregularly-measured routine laboratory tests from **eICU** (Pollard et al., 2018) and **MIMIC-IV** (Johnson et al., 2024a; 2023; Goldberger et al., 2000). We evaluate counterfactual outcomes estimation on three established benchmarks related to **tumor growth** (Geng et al., 2017) and patient intensive care units (**ICU**) (Johnson et al., 2016) trajectories for τ -step ahead prediction. Trajectories with time-varying confounding γ are simulated (Yang et al., 2023). We evaluate conditional generation on real-world store sales trajectories: **M5** (Makridakis et al., 2022; Huang et al., 2024; Wang et al., 2025).

4.2 SETUP

CLEF is evaluated on 3 tasks: immediate and delayed sequence editing (Def. 3.1) and counterfactual prediction (Sec. 3.3). We use standard metrics (MAE, RMSE, R^2) to compare ground truth $\mathbf{x}_{:,t_j}^s$ and predicted $\hat{\mathbf{x}}_{:,t_j}^s$. **Experiments are designed to isolate temporal concepts' contribution to predictive performance** (e.g., CLEF and non-CLEF differ only in the components needed to learn temporal concepts; Sec. D.2). Refer to Sec. C-D for experimental setup and implementation details.

Baselines. We evaluate CLEF against SOTA conditional generation and counterfactual prediction models, which do not learn temporal concepts; **each baseline has a CLEF counterpart**. Conditional generation (4): We adopt the SOTA conditional sequence generation setup with 3 sequential encoders: Transformer (Waswani et al., 2017; Narasimhan et al., 2024; Jing et al., 2024; Zhang et al., 2023a); xLSTM (Beck et al., 2024); and time series foundation model, MOMENT (Goswami et al., 2024). We evaluate against traditional time series model, Vector Autoregression (VAR) (Lütkepohl, 2005). Counterfactual prediction (5): We adopt the SOTA counterfactual prediction setup using 2 architectures (i.e., Counterfactual Recurrent Network (CRN) (Bica et al., 2020) and Causal Transformer (CT) (Melnychuk et al., 2022)) with and without balancing loss functions (i.e., gradient reversal (GR) (Bica et al., 2020), counterfactual domain confusion (CDC) (Melnychuk et al., 2022)).

Ablations. SimpleLinear is an ablation in which temporal concepts are all ones (i.e., not learned nor meaningful), inspired by traditional linear models that excel when $\mathbf{x}_{t_j} \simeq \mathbf{x}_{t_i}$ (Toner & Darlow, 2024; Ahlmann-Eltze et al., 2024). We also evaluate CLEF with and without an FFN layer in E (Sec. E). **LowR** is an ablated decoder $(I + W)(c \odot x)$ where W is low-rank (with rank = 4, 8, 16). To demonstrate the benefit of single-step generation, we perform an experiment in which we arbitrarily add three intermediate steps between t_i and t_j before finally predicting the observed x_{t_j} (Tab. 9).

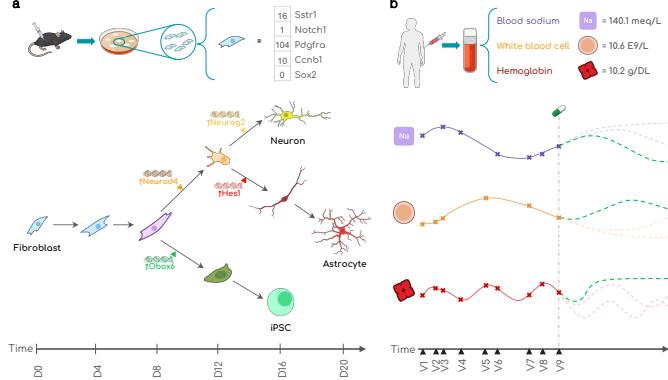


Figure 3: CLEF is evaluated on 7 datasets of (a) cellular development and (b) patient health trajectories. Illustrations from NIAID NIH BIOART.

Figure 3: CLEF is evaluated on 7 datasets of (a) cellular development and (b) patient health trajectories. Illustrations from NIAID NIH BIOART. (a) Cellular development: A timeline from Day 8 to Day 20 shows the differentiation of a fibroblast into a neuron, astrocyte, and iPSC. Key transcription factors like Neurog4, Tcf3, and Hes1 are shown. (b) Patient health trajectories: Three line graphs show blood sodium (Na) levels, white blood cell counts, and hemoglobin levels over time, with dashed lines representing simulated trajectories with time-varying confounding γ .

324 5 RESULTS

326 We extensively evaluate the impact of CLEF’s learned temporal concepts on controllable sequence
 327 editing. **R1-R3:** How well does CLEF perform in (R1) immediate and (R2) delayed sequence editing,
 328 and (R3) generalize to unseen/new sequences? **R4:** How does CLEF perform in counterfactual
 329 outcomes estimation? **R5:** Can CLEF perform zero-shot conditional generation of counterfactual
 330 sequences? **R6:** How can CLEF be leveraged for real-world patient trajectory simulations?

332 5.1 R1: IMMEDIATE SEQUENCE EDITING ON OBSERVED SEQUENCES

334 Immediate sequence editing involves forecasting the next time step of a trajectory after applying a
 335 condition. The defining feature is that the condition occurs in the present moment, and its effects
 336 are reflected in the next observation of the sequence. This setting is relevant when condition has an
 337 instantaneous impact (e.g., administering a drug to a cell *now*, performing surgery on a patient *today*).

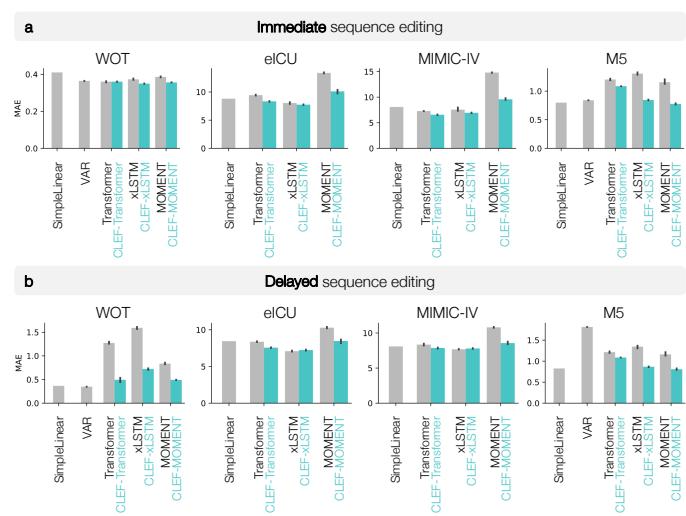
338 CLEF models consistently perform competitively against baseline models across all datasets
 339 (Fig. 4a, 8-9; Tab. 7, 15-16). SimpleLinear, which assumes no temporal changes, performs comparably
 340 in some cases, but CLEF outperforms it on datasets where short-term dynamics are more complex.
 341 On WOT, CLEF outperforms or performs comparably to the time series forecasting model, VAR.
 342 This is particularly exciting given recent findings that linear models can achieve competitive or better
 343 forecasting performance than neural network models (Toner & Darlow, 2024; Ahlmann-Eltze et al.,
 344 2024). Further, CLEF models tend to yield less error (MAE) on both preserved and edited variables
 345 of a sequence than non-CLEF models (Tab. 5). These results highlight CLEF’s ability to accurately
 346 edit sequences at the desired times while preserving unaffected portions of the sequence.

347 Regardless of the sequence encoder used with CLEF, these models tend to outperform or perform
 348 comparably to non-CLEF models (Fig. 4a). However, CLEF’s performance can be affected by
 349 the ability of the sequence encoder to capture the temporal dynamics of the input sequences. For
 350 instance, models with the MOMENT encoder generally yield the highest MAE in all three biomedical
 351 datasets (Fig. 4a). Still, CLEF-MOMENT models have lower MAE than their non-CLEF counterparts.

352 5.2 R2: DELAYED SEQUENCE EDITING ON OBSERVED SEQUENCES

354 Delayed sequence editing forecasts a trajectory at a specified future time step under a given condition while preserving sequence consistency. Unlike immediate editing, the condition takes effect at the designated future time, requiring models to project forward without introducing compounding errors. Examples include applying a drug to a cell in *ten days* or scheduling a patient’s surgery for *next year*.

356 CLEF performs competitively against SimpleLinear (ablation) and VAR on eICU, MIMIC-IV,
 357 and M5 (Fig. 4b, 8-9; Tab. 8). CLEF-transformer and CLEF-xLSTM achieve lower MAE
 358 than SimpleLinear, whereas non-CLEF transformer and MOMENT baselines perform
 359 comparably or worse. As in immediate sequence editing, models with MOMENT as the sequence
 360 encoder (i.e., using temporal con-



362 **Figure 4:** Benchmarking CLEF, baselines, and ablations on (a) immediate and (b) delayed sequence editing on observed sequences. Lower MAE
 363 is better. Models are trained on 3 seeds using a standard cell-, patient-, or store-centric random split; error bars show 95% CI. Not shown for
 364 visualization purposes are VAR’s performance on eICU and MIMIC-IV: on immediate sequence editing, MAE for eICU and MIMIC-IV are
 365 55982.74 and 886.05; on delayed sequence editing, MAE for eICU and MIMIC-IV are 5.02×10^{39} and 8.62×10^{23} .

378 cepts with MOMENT) yield the highest MAE on the biomedical sequences. However, incorporating
 379 CLEF with MOMENT reduces the MAE to levels comparable to the MAE of SimpleLinear and VAR.
 380

381 On WOT, SimpleLinear and VAR outperform neural network models in delayed sequence editing
 382 (Fig. 4b). This suggests that cellular trajectories exhibit small and possibly noisy changes at each
 383 time step, favoring linear models (Ahlmann-Eltze et al., 2024; Toner & Darlow, 2024). Also, given
 384 the relatively small number of training trajectories compared to the high-dimensional state space,
 385 nonlinear models may overfit to noise more readily than linear models. Still, CLEF significantly
 386 reduces the MAE of non-CLEF models, demonstrating its effectiveness as a regularizer that mitigates
 387 short-term noise while preserving long-term trends. Further, as in immediate sequence editing, CLEF
 388 better preserves unedited variables than non-CLEF models (Tab. 5).

389 **A benefit of delayed sequence editing is the ability to perform a single-step generation of any time t_j**
 390 **in the future.** To empirically demonstrate that single-step generation can help avoid compounding
 391 autoregressive error, we perform an experiment in which we arbitrarily add three intermediate steps
 392 between t_i and t_j before finally predicting the observed x_{t_j} (Tab. 9). On real-world patient datasets,
 393 we find that adding intermediate steps leads to compounding autoregressive error. There are a few
 394 possible explanations. The patient datasets have irregular and large time intervals (e.g., hours, days,
 395 weeks, months, years). Because MIMIC-IV and eICU capture patients in the intensive care unit, these
 396 patients’ lab test measurements (e.g., white blood cell count, glucose) can change rapidly. Arbitrarily
 397 adding intermediate steps may introduce noise that compounds and degrades predictions at t_j .

398 5.3 R3: GENERALIZATION TO NEW PATIENT TRAJECTORIES VIA CONDITIONAL GENERATION

400 We assess CLEF’s generalizability to new patient sequences. We create challenging data splits
 401 where the test sets have minimal similarity to the training data (Sec. C.2). CLEF models exhibit
 402 stronger generalization than non-CLEF models on both eICU and MIMIC-IV (Fig. 11-12; Tab. 6). For
 403 immediate and delayed sequence editing on eICU, CLEF-transformer and CLEF-xLSTM maintain
 404 stable and strong performance even as train/test divergence increases. In contrast, their non-CLEF
 405 counterparts degrade significantly. Although baseline MOMENT models show relatively stable
 406 performance across train/test splits in delayed sequence editing, they generalize poorly compared
 407 to CLEF-MOMENT models. Despite similar performance between xLSTM and CLEF-xLSTM in
 408 delayed sequence editing on both patient datasets (Fig. 4b), CLEF-xLSTM demonstrates superior
 409 generalizability, highlighting the effectiveness of CLEF in adapting to unseen data distributions.

410 5.4 R4: COUNTERFACTUAL OUTCOMES ESTIMATION

411 Following the setup of established benchmarks (Bica et al.,
 412 2020; Melnychuk et al., 2022)
 413 (Sec. D.4), we evaluate CLEF on
 414 counterfactual outcomes estimation of synthetic tumor growth
 415 and semi-synthetic ICU (Fig. 16)
 416 trajectories.

417 On the tumor growth and ICU
 418 trajectories, for which we have
 419 ground truth counterfactual se-
 420 quences, CLEF consistently per-
 421 forms better or competitively
 422 against non-CLEF models in τ -
 423 step ahead prediction (Fig. 5, 13-
 424 16). With relatively low time-
 425 varying confounding, CLEF-CT
 426 with CDC loss ($\gamma < 3$) and CLEF-
 427 CRN with GR loss ($\gamma < 2$) per-
 428 form comparably to their non-CLEF
 429 counterparts. When time-varying confounding is relatively high,
 430 CLEF-CT with CDC loss ($\gamma \geq 3$) and CLEF-CRN with GR loss ($\gamma \geq 2$) outperform their non-CLEF
 431 counterparts. For all levels of confounding bias, CLEF-CRN with CDC loss outperforms their non-

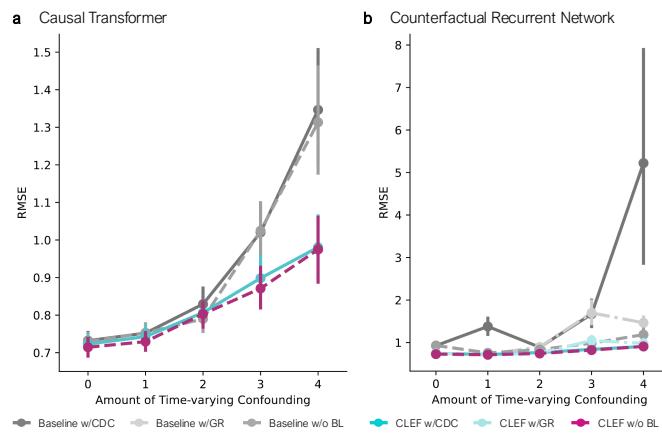


Figure 5: Counterfactual τ -step ahead prediction on tumor growth (single-sliding treatment) with different amounts of time-varying confounding. Models are trained on 5 seeds; error bars show 95% CI.

432 CLEF counterparts. Notably, CLEF-CT and CLEF-CRN without any balancing loss (i.e., neither
 433 GR nor CDC; violet-red) are the best performing CT/CRN models. While studies have shown a
 434 trade-off between prediction accuracy and balanced representations (Huang et al., 2024; Wang et al.,
 435 2025), this finding is consistent with improved balanced representations and empirically supports
 436 Assumption 3.4. In other words, CLEF’s strong performance without any balancing loss suggests that
 437 the *temporal concepts learn balanced representations* that are not predictive of the assigned treatment
 438 and approximate the conditional mean function (Eq. 4; Sec. 3.3).

439 Beyond predictive accuracy metrics, we additionally evaluate the treatment predictability of CLEF
 440 and non-CLEF’s learned representations (Tab. 10-12). Concretely, we compute the binary cross
 441 entropy (BCE) loss for predicting the treatment from the learned representations of CLEF and non-
 442 CLEF models. Because “balanced” representations should be treatment-invariant, higher BCE loss
 443 is better. For all three datasets of tumor growth and ICU trajectories, we find that CLEF models
 444 have comparable or higher (i.e., better) BCE loss in predicting the treatment compared to non-CLEF
 445 models. These results suggest that CLEF models learn representations that are treatment invariant.

447 5.5 R5: ZERO-SHOT CONDITIONAL GENERATION OF COUNTERFACTUAL TRAJECTORIES

449 We evaluate CLEF on zero-
 450 shot conditional generation of
 451 counterfactual cellular trajectories
 452 (Fig. 6, 17). With the WOT-
 453 CF dataset, models are trained
 454 on the “original” cellular trajectories
 455 and evaluated on the “counterfactual” cellular trajectories in
 456 a zero-shot setting.

457 By learning temporal concepts,
 458 CLEF consistently outperforms
 459 non-CLEF in immediate and
 460 delayed sequence editing (Fig. 17).
 461 We examine the predictions for

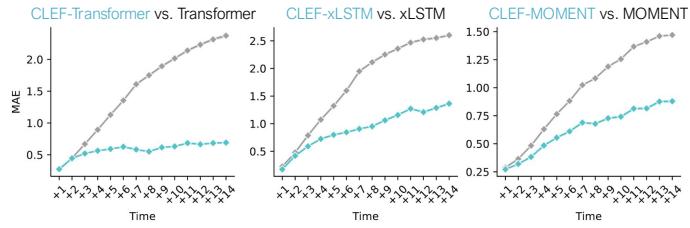
462 trajectories of length 23, the most common sequence length in WOT-CF (Fig. 6). Since $t_i = 10$ is the
 463 earliest divergence time step, we input the first nine time steps $\mathbf{x}_{:,0:9}$, the counterfactual condition, and
 464 $t_j \in [10, 23]$. Comparing the generated and ground truth counterfactual sequences, we find that CLEF
 465 outperforms non-CLEF models after time step 10, which is when the trajectories begin to diverge.

467 5.6 R6: CASE STUDIES USING REAL-WORLD PATIENT DATASETS

469 Unlike conditional generation methods that rely on condition tokens to guide generation (Narasimhan
 470 et al., 2024; Jing et al., 2024; Zhang et al., 2023a), CLEF allows *direct edits to the generated outputs*
 471 via temporal concept intervention to produce counterfactual sequences (Sec. C.2.4). Instead of relying
 472 on predefined conditions, CLEF can precisely modify the values of specific lab tests to explore their
 473 longitudinal effects. We conduct case studies on two independent cohorts of patients with type 1
 474 diabetes mellitus (T1D) (Quattrin et al., 2023) (Sec. C.2.3).

475 **Setup (Sec. C.2.4).** For each patient, we intervene on the temporal concepts corresponding to specific
 476 lab tests to simulate the “reversal” or “worsening” of symptoms, thereby generating “healthier”
 477 or “more severe” trajectories. CLEF-generated counterfactual patients are compared to observed
 478 sequences from matched healthy individuals, other healthy individuals, and other T1D patients. We
 479 hypothesize that clinically meaningful edits produce “healthier” (i.e., more similar to healthy patients)
 480 or “sicker” (i.e., more similar to other T1D patients) trajectories.

481 **Results.** First, we modify CLEF’s concepts to halve glucose levels, aligning them closer to normal
 482 physiological ranges. Such counterfactual trajectories exhibit higher R^2 similarity with healthy
 483 individuals compared to other T1D patients (Fig. 7a), suggesting that CLEF effectively generates
 484 trajectories indicative of a healthier state. Next, we simulate a worsening condition by doubling
 485 glucose levels. These CLEF-generated trajectories show higher R^2 similarity with other T1D patients
 than with healthy individuals (Fig. 7a), as expected based on clinical evidence. Further, unlike CLEF,



457 **Figure 6:** Zero-shot conditional generation of counterfactual cellular
 458 trajectories via delayed sequence editing. Shown are MAE of predictions
 459 per time step for counterfactual sequences of length 23 (the most common
 460 sequence length) starting at time step 10 (the earliest divergence time
 461 step of a counterfactual trajectory). Error bars show 95% CI.

486 SimpleLinear (ablation) cannot generate trajectories that resemble the trajectories of healthier or
 487 sicker patients, depending on the intervention (Tab. 13-14).

488 Beyond examining the *direct effects* of the interventions on
 489 CLEF’s concepts, we examine the *indirect changes* in CLEF-
 490 generated patients’ lab values resulting from glucose modifi-
 491 cations. In both eICU-T1D and MIMIC-IV-T1D cohorts, lower-
 492 ing glucose also leads to a reduction in white blood cell (WBC)
 493 count (Fig. 7b, 18a). This aligns with clinical knowledge, as T1D
 494 is an autoimmune disorder where immune activity, including WBC
 495 levels, plays a critical role (Quat-
 496 trin et al., 2023). When we inter-
 497 vene on CLEF to reduce WBC
 498 levels instead of glucose, glu-
 499 cose levels also decrease across
 500 both cohorts (Fig. 18b,c), rein-
 501 forcing the interdependence of
 502 these physiological markers. Fi-
 503 nally, we show that modifying
 504 multiple lab tests simultane-
 505 ously can produce compounding effects. When we intervene on CLEF to reduce both glucose and WBC
 506 levels, the resulting CLEF-generated patients resemble healthy individuals even more closely than
 507 other T1D patients, suggesting that CLEF can *capture the joint impact of multiple simultaneous edits*
 508 on a patient (Fig. 18d). *Altogether, we demonstrate that direct temporal concept edits via CLEF*
 509 *enables actionable interpretability and tangible in silico hypothesis exploration.*

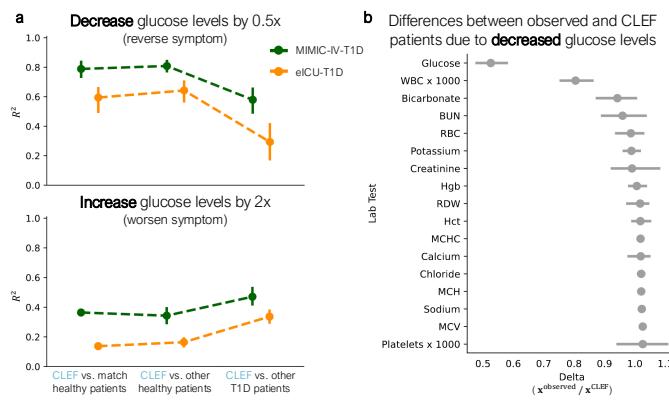


Figure 7: CLEF-generated counterfactual patients via intervention on temporal concepts. We intervene on CLEF to (a) halve or double a T1D patient’s glucose levels to infer a “healthier” or “sicker” counterfactual patient. Higher R^2 indicates that patient pairs are more similar. (b) Observed and CLEF patients from the eICU-T1D cohort are compared to quantify the differences between their lab test trajectories as a result of the intervention to halve T1D patients’ glucose levels. Delta ($x^{\text{observed}} / x^{\text{CLEF}}$) = 1 indicates no difference between the observed and CLEF patients. Error bars show 95% CI. Refer to Tables 13-14 for ablation analyses.

6 CONCLUSION

CLEF is a flexible approach that *learns temporal concepts* for conditional sequence generation and potential outcomes prediction under specific conditions. Extensive experiments show that temporal concepts introduced in CLEF contribute to overall model performance. Controlling for model, time, and space complexity, temporal concepts generally yield *faster convergence* (Sec. D.5). Across 8 biological, medical, and financial datasets, CLEF excels in the conditional generation of longitudinal sequences, making *precise local edits while preserving global integrity*. CLEF also has *stronger generalizability* to new sequences than non-CLEF counterparts. Under counterfactual inference assumptions, CLEF *accurately estimates counterfactual outcomes over time*, outperforming baselines in settings with high time-varying confounding bias. CLEF even outperforms SOTA conditional generation models in *zero-shot counterfactual generation*. Further, we show that *interventions directly* on CLEF’s temporal concepts can generate counterfactual patients such that their trajectories are shifted toward healthier outcomes. This capability has the potential to help discover clinical interventions that could alleviate a patient’s symptoms. Limitations and future directions are discussed in Sec. F. We believe that CLEF’s controllable sequence editing can help realize the promise of virtual cells and patients to facilitate large-scale *in silico* experimentation of molecules, cells, and tissues.

ETHICS STATEMENT

By introducing a flexible and interpretable approach to conditional sequence generation, CLEF bridges the gap between language model-style conditional generation and structured, time-sensitive sequence editing, with implications for decision support in medical and scientific applications. Like all generative AI models, CLEF (and its derivatives) should be used solely for the benefit of society. In this study, we show that CLEF can generate alternative cellular trajectories and simulate the reversal

540 or progression of symptoms to model healthier or sicker patient outcomes. However, this work (and
 541 any derivatives) should never be used to induce harmful cellular states (e.g., activating transcription
 542 factors to drive a cell toward a pathological state) or negatively impact patient care (e.g., neglecting
 543 necessary clinical interventions or recommending harmful treatments). Our goal is to help researchers
 544 understand the underlying mechanisms of disease to improve public health. Any misuse of this work
 545 poses risks to patient well-being. Therefore, the ability to intervene on CLEF’s generated outputs
 546 should be leveraged to assess the model’s robustness and correctness for ethical and responsible use.
 547

548 REPRODUCIBILITY STATEMENT

550 We provide code and instructions to implement CLEF, baselines, and ablations and to reproduce the
 551 experiments in this paper: <https://anonymous.4open.science/r/CLEF-B64B>. In the
 552 Appendix, Sec. C provides details about data construction, data preparation, and experimental setup;
 553 and Sec. D describes the implementation and training of all models. We do not share data or model
 554 weights that may contain sensitive patient information.
 555

556 REFERENCES

558 Constantin Ahlmann-Eltze, Wolfgang Huber, and Simon Anders. Deep learning-based predictions of
 559 gene perturbation effects do not yet outperform simple linear methods. *bioRxiv*, 2024.

560 Jong-Hoon Ahn and Akshay Vashist. Gaussian mixture counterfactual generator. *International
 561 Conference on Learning Representations*, 2025.

563 Akash Awasthi, Anh Mai Vu, Ngan Le, Zhigang Deng, Supratik Maulik, Rishi Agrawal, Carol C Wu,
 564 and Hien Van Nguyen. Modeling radiologists’ cognitive processes using a digital gaze twin to
 565 enhance radiology training. *Scientific reports*, 15(1):13685, 2025.

566 Yifan Bao, Yihao Ang, Qiang Huang, Anthony KH Tung, and Zhiyong Huang. Towards controllable
 567 time series generation. *arXiv:2403.03698*, 2024.

569 Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
 570 Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xLSTM: Extended
 571 long short-term memory. *Advances in Neural Information Processing Systems*, 2024.

572 Amrita Bhattacharjee, Raha Moraffah, Joshua Garland, and Huan Liu. Zero-shot LLM-guided coun-
 573 terfactual generation: A case study on NLP model evaluation. In *IEEE International Conference
 574 on Big Data*, pp. 1243–1248. IEEE, 2024.

576 Ioana Bica, Ahmed M Alaa, James Jordon, and Mihaela van der Schaar. Estimating counterfactual
 577 treatment outcomes over time through adversarially balanced representations. *International
 578 Conference on Learning Representations*, 2020.

579 Charlotte Bunne, Yusuf Roohani, Yanay Rosen, Ankit Gupta, Xikun Zhang, Marcel Roed, Theo
 580 Alexandrov, Mohammed AlQuraishi, Patricia Brennan, Daniel B Burkhardt, et al. How to build
 581 the virtual cell with artificial intelligence: Priorities and opportunities. *Cell*, 187(25):7045–7063,
 582 2024.

583 Defu Cao, Furong Jia, Sercan O Arik, Tomas Pfister, Yixiang Zheng, Wen Ye, and Yan Liu. TEMPO:
 584 Prompt-based generative pre-trained transformer for time series forecasting. *International Confer-
 585 ence on Learning Representations*, 2024.

587 Ivi Chatzi, Nina Corvelo Benz, Eleni Straitouri, Stratis Tsirtsis, and Manuel Gomez-Rodriguez.
 588 Counterfactual token generation in large language models. *CLeaR*, 2025.

589 Lenaic Chizat, Gabriel Peyré, Bernhard Schmitzer, and François-Xavier Vialard. Scaling algorithms
 590 for unbalanced transport problems, 2017. URL <https://arxiv.org/abs/1607.05816>.

592 Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F Milles,
 593 Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep learning-based
 protein sequence design using ProteinMPNN. *Science*, 378(6615):49–56, 2022.

594 Giovanni De Felice, Arianna Casanova Flores, Francesco De Santis, Silvia Santini, Johannes
 595 Schneider, Pietro Barbiero, and Alberto Termine. Causally reliable concept bottleneck mod-
 596 els. *arXiv:2503.04363*, 2025.

597 Gabriele Dominici, Pietro Barbiero, Francesco Giannini, Martin Gjoreski, Giuseppe Marra, and Marc
 598 Langheinrich. Counterfactual concept bottleneck models. *International Conference on Learning
 599 Representations*, 2025a.

600 Gabriele Dominici, Pietro Barbiero, Mateo Espinosa Zarlenga, Alberto Termine, Martin Gjoreski,
 601 Giuseppe Marra, and Marc Langheinrich. Causal concept graph models: Beyond causal opacity in
 602 deep learning. *International Conference on Learning Representations*, 2025b.

603 Yasha Ektefaie, Andrew Shen, Daria Bykova, Maximillian G Marin, Marinka Zitnik, and Maha
 604 Farhat. Evaluating generalizability of artificial intelligence models for molecular datasets. *Nature
 605 Machine Intelligence*, 6(12):1512–1524, 2024.

606 Mouad El Bouchattaoui, Myriam Tami, Benoit Lepetit, and Paul-Henry Cournède. Causal contrastive
 607 learning for counterfactual regression over time. *Advances in Neural Information Processing
 608 Systems*, 37:1333–1369, 2024.

609 Shanghua Gao, Zhijie Lin, Xingyu Xie, Pan Zhou, Ming-Ming Cheng, and Shuicheng Yan. EditAny-
 610 thing: Empowering unparalleled flexibility in image editing and generation. In *Proceedings of the
 611 31st ACM International Conference on Multimedia, Demo track*, 2023.

612 Changran Geng, Harald Paganetti, and Clemens Grassberger. Prediction of treatment response
 613 for combined chemo-and radiation therapy for non-small cell lung cancer patients using a bio-
 614 mathematical model. *Scientific Reports*, 7(1):13542, 2017.

615 Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov, Roger G
 616 Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and H Eugene Stanley. PhysioBank,
 617 PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic
 618 signals. *Circulation*, 101(23):e215–e220, 2000.

619 Haisong Gong, Qiang Liu, Shu Wu, and Liang Wang. Text-guided molecule generation with diffusion
 620 language model. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp.
 621 109–117, 2024.

622 Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski.
 623 MOMENT: A family of open time-series foundation models. *International Conference on Machine
 624 Learning*, 2024.

625 Jihao Gu, Yingyao Wang, Meng Cao, Pi Bu, Jun Song, Yancheng He, Shilong Li, and Bo Zheng.
 626 Token preference optimization with self-calibrated visual-anchored rewards for hallucination
 627 mitigation. *arXiv:2412.14487*, 2024.

628 Jianing Hao, Qing Shi, Yilin Ye, and Wei Zeng. Timetuner: Diagnosing time representations for
 629 time-series forecasting with counterfactual explanations. *IEEE Transactions on Visualization and
 630 Computer Graphics*, 30(1):1183–1193, 2023.

631 Konstantin Hess, Valentyn Melnychuk, Dennis Frauen, and Stefan Feuerriegel. Bayesian neural
 632 controlled differential equations for treatment effect estimation. *International Conference on
 633 Learning Representations*, 2024.

634 Samuel Holt, Tennison Liu, and Mihaela van der Schaar. Automatically learning hybrid digital twins
 635 of dynamical systems. *Advances in Neural Information Processing Systems*, 37:72170–72218,
 636 2024.

637 Qiang Huang, Chuizheng Meng, Defu Cao, Biwei Huang, Yi Chang, and Yan Liu. An empirical
 638 examination of balancing strategy for counterfactual estimation on time series. *International
 639 Conference on Machine Learning*, 2024.

640 Kosuke Imai and David A Van Dyk. Causal inference with general treatment regimes: Generalizing
 641 the propensity score. *Journal of the American Statistical Association*, 99(467):854–866, 2004.

648 Aya Abdelsalam Ismail, Julius Adebayo, Hector Corrada Bravo, Stephen Ra, and Kyunghyun Cho.
 649 Concept bottleneck generative models. *International Conference on Learning Representations*,
 650 2024.

651 Moksh Jain, Sharath Chandra Raparthy, Alex Hernández-Garcia, Jarrid Rector-Brooks, Yoshua
 652 Bengio, Santiago Miret, and Emmanuel Bengio. Multi-objective GFlowNets. In *International*
 653 *Conference on Machine Learning*, pp. 14631–14653. PMLR, 2023.

654 Song Jiang, Zijie Huang, Xiao Luo, and Yizhou Sun. Cf-gode: Continuous-time causal inference
 655 for multi-agent dynamical systems. In *Proceedings of the 29th ACM SIGKDD Conference on*
 656 *Knowledge Discovery and Data Mining*, pp. 997–1009, 2023.

657 Baoyu Jing, Shuqi Gu, Tianyu Chen, Zhiyu Yang, Dongsheng Li, Jingrui He, and Kan Ren. Towards
 658 editing time series. *Advances in Neural Information Processing Systems*, 2024.

659 Alistair Johnson, Lucas Bulgarelli, Tom Pollard, Brian Gow, Benjamin Moody, Steven Horng, Leo A
 660 Celi, and Roger Mark. MIMIC-IV (version 3.1). *PhysioNet*, 2024a.

661 Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad
 662 Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii, a
 663 freely accessible critical care database. *Scientific Data*, 3(1):1–9, 2016.

664 Alistair EW Johnson, Lucas Bulgarelli, Lu Shen, Alvin Gayles, Ayad Shammout, Steven Horng,
 665 Tom J Pollard, Sicheng Hao, Benjamin Moody, Brian Gow, et al. MIMIC-IV, a freely accessible
 666 electronic health record dataset. *Scientific Data*, 10(1):1, 2023.

667 Ruth Johnson, Uri Gottlieb, Galit Shaham, Lihi Eisen, Jacob Waxman, Stav Devons-Sberro, Curtis R
 668 Ginder, Peter Hong, Raheel Sayeed, Ben Y Reis, et al. Unified clinical vocabulary embeddings for
 669 advancing precision. *medRxiv*, pp. 2024–12, 2024b.

670 Krzysztof Kacprzyk, Tennison Liu, and Mihaela van der Schaar. Towards transparent time series
 671 forecasting. *International Conference on Learning Representations*, 2024.

672 Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and
 673 Percy Liang. Concept bottleneck models. In *International Conference on Machine Learning*, pp.
 674 5338–5348. PMLR, 2020.

675 Boris P Kovatchev, Patricio Colmegna, Jacopo Pavan, Jenny L Diaz Castañeda, Maria F Villa-Tamayo,
 676 Chaitanya LK Koravi, Giulio Santini, Carlene Alix, Meaghan Stumpf, and Sue A Brown. Human-
 677 machine co-adaptation to automated insulin delivery: a randomised clinical trial using digital twin
 678 technology. *npj Digital Medicine*, 8(1):1–7, 2025.

679 Keying Kuang, Frances Dean, Jack B Jedlicki, David Ouyang, Anthony Philippakis, David Sontag,
 680 and Ahmed M Alaa. Med-real2sim: Non-invasive medical digital twins using physics-informed
 681 self-supervised learning. *Advances in Neural Information Processing Systems*, 37:5757–5788,
 682 2024.

683 Sonia Laguna, Ričards Marcinkevičs, Moritz Vandenhirtz, and Julia E Vogt. Beyond concept
 684 bottleneck models: How to make black boxes intervenable? *Advances in Neural Information*
 685 *Processing Systems*, 2024.

686 Songning Lai, Lijie Hu, Junxiao Wang, Laure Berti-Equille, and Di Wang. Faithful vision-language in-
 687 terpretation via concept bottleneck models. *International Conference on Learning Representations*,
 688 2024.

689 LCM, Loïc Barrault, Paul-Ambroise Duquenne, Maha Elbayad, Artyom Kozhevnikov, Belen Alas-
 690 truey, Pierre Andrews, Mariano Coria, Guillaume Couairon, Marta R Costa-jussà, et al. Large
 691 concept models: Language modeling in a sentence representation space. *arXiv:2412.08821*, 2024.

692 Rui Li, Stephanie Hu, Mingyu Lu, Yuria Utsumi, Prithwish Chakraborty, Daby M Sow, Piyush
 693 Madan, Jun Li, Mohamed Ghalwash, Zach Shahn, et al. G-net: a recurrent network approach
 694 to g-computation for counterfactual prediction under a dynamic treatment regime. In *Machine*
 695 *Learning for Health*, pp. 282–299. PMLR, 2021.

702 Xinxiu Li, Joseph Loscalzo, AKM Firoj Mahmud, Dina Mansour Aly, Andrey Rzhetsky, Marinka
 703 Zitnik, and Mikael Benson. Digital twins as global learning health and disease models for
 704 preventive and personalized medicine. *Genome Medicine*, 17(1):11, 2025.

705

706 Bryan Lim. Forecasting treatment responses over time using recurrent marginal structural networks.
 707 *Advances in Neural Information Processing Systems*, 31, 2018.

708

709 Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin, Allan
 710 dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, et al. Language models of
 711 protein sequences at the scale of evolution enable accurate structure prediction. *bioRxiv*, 2022.

712

713 Mingzhou Liu, Ching-Wen Lee, Xinwei Sun, Xueqing Yu, Yu QIAO, and Yizhou Wang. Learning
 714 causal alignment for reliable disease diagnosis. 2025.

715

716 Mohammad Lotfollahi, Anna Klimovskaia Susmelj, Carlo De Donno, Leon Hetzel, Yuge Ji, Ignacio L
 717 Ibarra, Sanjay R Srivatsan, Mohsen Naghipourfar, Riza M Daza, Beth Martin, et al. Predicting
 718 cellular responses to complex perturbations in high-throughput screens. *Molecular Systems Biology*,
 19(6):e11517, 2023.

719

720 Christos Louizos, Uri Shalit, Joris M Mooij, David Sontag, Richard Zemel, and Max Welling. Causal
 721 effect inference with deep latent-variable models. *Advances in Neural Information Processing
 722 Systems*, 30, 2017.

723

724 Helmut Lütkepohl. New introduction to multiple time series analysis. *Springer Science & Business
 725 Media*, 2005.

726

727 Pouya M Ghari, Alex Tseng, Gokcen Eraslan, Romain Lopez, Tommaso Biancalani, Gabriele Scalia,
 728 and Ehsan Hajiramezanali. GFlownet assisted biological sequence editing. *Advances in Neural
 729 Information Processing Systems*, 37:106841–106869, 2024.

730

731 Nikita Makarov, Maria Bordukova, Raul Rodriguez-Esteban, Fabian Schmich, and Michael P Menden.
 732 Large language models forecast patient health trajectories enabling digital twins. *medRxiv*, pp.
 733 2024–07, 2024.

734

735 Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. M5 accuracy competition:
 736 Results, findings, and conclusions. *International Journal of Forecasting*, 38(4):1346–1364, 2022.

737

738 Valentyn Melnychuk, Dennis Frauen, and Stefan Feuerriegel. Causal transformer for estimating
 739 counterfactual outcomes. In *International Conference on Machine Learning*, pp. 15293–15329.
 740 PMLR, 2022.

741

742 Sai Shankar Narasimhan, Shubhankar Agarwal, Oguzhan Akcin, Sujay Sanghavi, and Sandeep
 743 Chinchali. Time Weaver: A conditional time series generation model. *International Conference
 744 on Machine Learning*, 2024.

745

746 Jerzy Neyman. On the application of probability theory to agricultural experiments. *Annals of
 747 Agricultural Sciences*, pp. 1–51, 1923.

748

749 Mengjia Niu, Hao Li, Jie Shi, Hamed Haddadi, and Fan Mo. Mitigating hallucinations in large
 750 language models via self-refinement-enhanced knowledge retrieval. In *The Second Workshop on
 751 Generative Information Retrieval*, 2024.

752

753 International Classification of Disease (ICD). [who.int/standards/classifications/
 754 classification-of-diseases](http://www.who.int/standards/classifications/classification-of-diseases).

755

756 Junhyuk Oh, Greg Farquhar, Iurii Kemaev, Dan A Calian, Matteo Hessel, Luisa Zintgraf, Satinder
 757 Singh, Hado van Hasselt, and David Silver. Discovering state-of-the-art reinforcement learning
 758 algorithms. *Nature*, pp. 1–2, 2025.

759

760 Judea Pearl. Causal inference in statistics: An overview. *Statistics surveys*, 3, 2009.

761

762 PhysioNet. PhysioNet credentialed health data license version 1.5.0. URL <https://physionet.org/content/mimiciv/view-license/0.4/>.

756 Tom J Pollard, Alistair EW Johnson, Jesse D Raffa, Leo A Celi, Roger G Mark, and Omar Badawi.
 757 The eICU collaborative research database, a freely available multi-center database for critical care
 758 research. *Scientific Data*, 5(1):1–13, 2018.

759

760 Shuang Qian, Devran Ugurlu, Elliot Fairweather, Laura Dal Toso, Yu Deng, Marina Strocchi,
 761 Ludovica Cicci, Richard E Jones, Hassan Zaidi, Sanjay Prasad, et al. Developing cardiac digital
 762 twin populations powered by machine learning provides electrophysiological insights in conduction
 763 and repolarization. *Nature Cardiovascular Research*, pp. 1–13, 2025.

764

765 Teresa Quattrin, Lucy D Mastrandrea, and Lucy SK Walker. Type 1 diabetes. *The Lancet*, 401
 766 (10394):2149–2162, 2023.

767

768 Shauli Ravfogel, Anej Svetec, Vésteinn Snæbjarnarson, and Ryan Cotterell. Gumbel counterfactual
 769 generation from language models. *International Conference on Learning Representations*, 2025.

770

771 Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
 772 Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Vasudev
 773 Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár, and Christoph Feichtenhofer.
 SAM 2: Segment anything in images and videos. *arXiv:2408.00714*, 2024.

774

775 James Robins and Miguel Hernan. Estimation of the causal effects of time-varying exposures.
 776 *Chapman & Hall/CRC Handbooks of Modern Statistical Methods*, pp. 553–599, 2008.

777

778 James M Robins, Miguel Angel Hernan, and Babette Brumback. Marginal structural models and
 779 causal inference in epidemiology. *Epidemiology*, 11(5):550–560, 2000.

780

781 Donald B Rubin. Bayesian inference for causal effects: The role of randomization. *The Annals of
 782 statistics*, pp. 34–58, 1978.

783

784 Geoffrey Schiebinger, Jian Shu, Marcin Tabaka, Brian Cleary, Vidya Subramanian, Aryeh Solomon,
 785 Joshua Gould, Siyan Liu, Stacie Lin, Peter Berube, Lia Lee, Jenny Chen, Justin Brumbaugh,
 786 Philippe Rigollet, Konrad Hochedlinger, Rudolf Jaenisch, Aviv Regev, and Eric S Lander. Optimal-
 transport analysis of single-cell gene expression identifies developmental trajectories in reprogram-
 ming. *Cell*, 176(4):928–943.e22, 2019.

787

788 Sungbin Shin, Yohan Jo, Sungsoo Ahn, and Namhoon Lee. A closer look at the intervention procedure
 789 of concept bottleneck models. In *International Conference on Machine Learning*, pp. 31504–31520.
 790 PMLR, 2023.

791

792 Samuel Stanton, Wesley Maddox, Nate Gruver, Phillip Maffettone, Emily Delaney, Peyton Greenside,
 793 and Andrew Gordon Wilson. Accelerating bayesian optimization for biological sequence design
 794 with denoising autoencoders. In *International Conference on Machine Learning*, pp. 20459–20478.
 PMLR, 2022.

795

796 William Toner and Luke Darlow. An analysis of linear time series forecasting models. *International
 797 Conference on Machine Learning*, 2024.

798

799 Dani Valevski, Yaniv Leviathan, Moab Arar, and Shlomi Fruchter. Diffusion models are real-time
 800 game engines. *International Conference on Learning Representations*, 2025.

801

802 Angela van Sprang, Erman Acar, and Willem Zuidema. Enforcing interpretability in time series
 803 transformers: A concept bottleneck framework. *arXiv:2410.06070*, 2024.

804

805 Haotian Wang, Haoxuan Li, Hao Zou, Haoang Chi, Long Lan, Wanrong Huang, and Wenjing
 806 Yang. Effective and efficient time-varying counterfactual prediction with state-space models.
 807 *International Conference on Learning Representations*, 2025.

808

809 Shirly Wang, Matthew BA McDermott, Geeticka Chauhan, Marzyeh Ghassemi, Michael C Hughes,
 810 and Tristan Naumann. MIMIC-extract: A data extraction, preprocessing, and representation
 811 pipeline for MIMIC-III. In *Proceedings of the ACM conference on Health, Inference, and Learning*,
 812 pp. 222–235, 2020.

810 Zhendong Wang, Ioanna Miliou, Isak Samsten, and Panagiotis Papapetrou. Counterfactual explanations for time series forecasting. In *2023 IEEE International Conference on Data Mining (ICDM)*, pp. 1391–1396. IEEE, 2023.

811

812

813

814 A Waswani, N Shazeer, N Parmar, J Uszkoreit, L Jones, A Gomez, L Kaiser, and I Polosukhin. Attention is all you need. *Advances in Neural Information Processing Systems*, 2017.

815

816 F Alexander Wolf, Philipp Angerer, and Fabian J Theis. SCANPY: large-scale single-cell gene expression data analysis. *Genome Biology*, 19(1), 2018.

817

818

819 Shenghao Wu, Wenbin Zhou, Minshuo Chen, and Shixiang Zhu. Counterfactual generative models for time-varying treatments. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 3402–3413, 2024.

820

821

822 Yulun Wu, Louie McConnell, and Claudia Iriondo. Counterfactual generative modeling with variational causal inference. *International Conference on Learning Representations*, 2025.

823

824

825 Jingquan Yan and Hao Wang. Self-interpretable time series prediction with counterfactual explanations. In *International Conference on Machine Learning*, pp. 39110–39125. PMLR, 2023.

826

827 Zhichao Yang, Avijit Mitra, Weisong Liu, Dan Berlowitz, and Hong Yu. TransformEHR: transformer-based encoder-decoder generative model to enhance prediction of disease outcomes using electronic health records. *Nature Communications*, 14(1):7857, 2023.

828

829

830 Andrew Ying, Zhichen Zhao, and Ronghui Xu. Incremental causal effect for time to treatment initialization. *International Conference on Learning Representations*, 2025.

831

832

833 Jinsung Yoon, James Jordon, and Mihaela Van Der Schaar. Ganite: Estimation of individualized treatment effects using generative adversarial nets. *International Conference on Learning Representations*, 2018.

834

835

836 Mateo Espinosa Zarlenga, Gabriele Dominici, Pietro Barbiero, Zohreh Shams, and Mateja Jamnik. Avoiding leakage poisoning: Concept interventions under distribution shifts. *International Conference on Machine Learning*, 2025.

837

838

839

840 Hanqing Zhang, Haolin Song, Shaoyu Li, Ming Zhou, and Dawei Song. A survey of controllable text generation using transformer-based pre-trained language models. *ACM Computing Surveys*, 56(3):1–37, 2023a.

841

842

843 Jiaqi Zhang, Joel Jennings, Agrin Hilmkil, Nick Pawlowski, Cheng Zhang, and Chao Ma. Towards causal foundation model: on duality between optimal balancing and attention. *International Conference on Machine Learning*, 2024a.

844

845

846 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 3836–3847, 2023b.

847

848

849

850 Zaixi Zhang, Wan Xiang Shen, Qi Liu, and Marinka Zitnik. Efficient generation of protein pockets with PocketGen. *Nature Machine Intelligence*, pp. 1–14, 2024b.

851

852 Yuqi Zhou, Lin Lu, Ryan Sun, Pan Zhou, and Lichao Sun. Virtual context enhancing jailbreak attacks with special token injection. In *Findings of the Association for Computational Linguistics: EMNLP*, pp. 11843–11857, 2024.

853

854

855

856

857

858

859

860

861

862

863

APPENDIX

A EXTENDED RELATED WORK

A.1 LEVERAGING TRAJECTORIES AS INDUCTIVE BIASES

Understanding sequential data as trajectories (e.g., increasing, decreasing, constant) is more natural for human interpretation than individual values (Kacprzyk et al., 2024). Many models on temporal data extract dynamic motifs as inductive biases to improve their interpretability (Kacprzyk et al., 2024; Goswami et al., 2024; Cao et al., 2024). Such temporal patterns can be used for prompting large pretrained models to perform time series forecasting (Cao et al., 2024), suggesting that trajectories can capture more universal and transferrable insights about the temporal dynamics in time series data. Trajectories have yet to be adopted for conditional or counterfactual sequence generation.

Relevance to CLEF. Temporal concepts c (Def. 3.2) represent trajectories (or rates of change). The concept decoder G leverages temporal concepts c and covariates at the latest time step $\mathbf{x}_{:,t_i}$ to generate the remainder of the sequence (Sec. 3.2). To understand how temporal concepts enable CLEF models to preserve global consistency: One can think of the latest covariates $\mathbf{x}_{:,t_i}$ as a set of reference values for each covariate, and these values are modified based on the desired forecast time t_j and condition token \mathbf{z}_s . Such modifications are captured by temporal concepts c , which represent the rates of change (or trajectories) for each covariate from time steps t_i to t_j .

A.2 BUILDING DIGITAL TWINS

Building virtual representations of cells and patients (commonly referred to as virtual cells, virtual patients, or digital twins) has the potential to facilitate preventative and personalized medicine (Li et al., 2025; Bunne et al., 2024). Medical digital twins (e.g., an artificial lung or pancreas, automated insulin delivery systems, and cardiac twins) have demonstrated clinical utility (Li et al., 2025; Kovatchev et al., 2025; Qian et al., 2025). There is a wide range of methods for building digital twins, such as mechanistic models (e.g., physics-informed self-supervised learning approach (Kuang et al., 2024)), neural models (e.g., finetuned large language and vision models (Makarov et al., 2024; Awasthi et al., 2025)), and hybrid models (e.g., framework with mechanistic and neural components (Holt et al., 2024)).

Relevance to CLEF. CLEF is a machine learning-based neural model. It is a flexible architecture to enable conditional sequence generation (Def. 3.1, Problem Statement 3.1) as well as counterfactual prediction (Sec. 3.3, Sec. D.4) of continuous multivariate sequences.

A.3 ADDITIONAL DETAILS

Controllable text generation. Controllable text generation (CTG), designed specifically to edit natural language sequences, has been extensively studied (Zhang et al., 2023a). **They excel in immediate sequence editing:** predicting the next token or readout in the sequence under a given condition (Niu et al., 2024; Gu et al., 2024; Zhou et al., 2024; Chatzi et al., 2025; Zhang et al., 2023a; Bhattacharjee et al., 2024). For example, if asked to predict the next word in the sentence “Once upon a time, there lived a boy” under the condition that the genre is horror, a CTG model may respond with “alone” to convey vulnerability and loneliness. However, **CTG models are unable to perform delayed sequence editing:** modifying a trajectory in the far-future. The distinction is important: the focus is on when the edit occurs, not necessarily when its effects manifest. Whereas immediate sequence editing applies a condition *now* (e.g., administering insulin *today*), delayed sequence editing schedules a condition for the *future* (e.g., starting a chemotherapy regimen *in six weeks*). Existing CTG models cannot effectively utilize the given context to skip ahead to the future; instead, they would need to be run repeatedly to fill in the temporal gap without any guarantee of satisfying the desired condition. As a result, **CTG models are insufficient for other sequence types (i.e., not natural language) for which both immediate and delayed sequence editing are necessary**, such as cell development and patient health trajectories.

Delayed sequence editing vs. long-horizon forecasting. While long-horizon forecasting and delayed sequence editing both predict the sequence or covariates at a future time t_j , delayed sequence editing

918 does not require autoregressive predictions from t_i to t_j , which can lead to accumulation of error.
 919 Instead, delayed sequence editing allows skipping directly to t_j from t_i in a single step.
 920

921 **Intuition for CLEF’s conditional sequence generation architecture.** We leverage the state-of-the-
 922 art conditional sequence generation setup (Waswani et al., 2017; Narasimhan et al., 2024; Jing et al.,
 923 2024; Zhang et al., 2023a; Beck et al., 2024; Valevski et al., 2025). The *sequence encoder* extracts
 924 features from historical covariates to learn a hidden representation that captures relevant information
 925 for the generation task. Any encoder (e.g., pretrained multivariate foundation model) can be used with
 926 CLEF. The *condition adapter* projects the condition token to a shared latent space with the sequence
 927 and time representations. Because condition tokens are generated by a pretrained foundation model
 928 (e.g., ESM2, a protein language model that learns on protein sequences), they capture information that
 929 allows CLEF to generalize to conditions that have not been observed in the training dataset (e.g., based
 930 on shared evolutionary information between protein sequences). The *concept encoder (CLEF only)*
 931 learns a representation (temporal concepts) that captures information about the condition at the next
 932 time step, historical conditions, and historical covariates. The final GELU activation layer transforms
 933 its input into values that are ≥ 0 , which are interpreted by the concept decoder as the trajectories
 934 (or rates of change) of covariates between time steps t_i and t_j . The *concept decoder (CLEF only)*
 935 generates a sequence by applying the learned temporal concepts to the covariates at the last time step
 936 t_i . Element-wise multiplication between the learned temporal concepts and the covariates at t_i is a
 937 suitable operation because it is less sensitive to covariates with different units of measurements, which
 938 are commonly observed in clinical sequences (Sec. C.2, C.4). Further, applying the temporal concepts
 939 in a single step (via element-wise multiplication) allows users to directly intervene on the temporal
 940 concepts and simulate the effects of the intervention as a counterfactual trajectory (Sec. C.2.4).
 941 *With these components*, CLEF can generate sequences based on high-dimensional sequences at
 942 any future time point and condition. *Without the sequence encoder*, it would be computationally
 943 challenging to operate directly on the input historical sequences. *Without the condition adapter*,
 944 CLEF and state-of-the-art conditional generation models cannot generalize well to unseen conditions
 945 in the training dataset. *Without the concept encoder or decoder*, the model may inaccurately generate
 946 sequences (refer to Sections 5.1-5.3, and 5.5 for empirical results).
 947

948 **Other usage of counterfactuals.** (1) There is extensive work on generating counterfactuals for static
 949 data (e.g., single time-step perturbation measured via gene expression profiles or images) (Louizos
 950 et al., 2017; Yoon et al., 2018; Lotfollahi et al., 2023; Wu et al., 2024; 2025). In this work, we focus
 951 on longitudinal trajectories. (2) Counterfactual prediction has been used as an additional task to
 952 improve the predictions’ interpretability and accuracy (Yan & Wang, 2023; Hao et al., 2023; Wang
 953 et al., 2023; Liu et al., 2025), such as leveraging causal alignment to produce reliable diagnoses (Liu
 954 et al., 2025). While CLEF’s temporal concepts can be intervened upon to interpret model outputs,
 955 counterfactual prediction is not an auxiliary task to improve CLEF’s interpretability and performance.
 956

957 **Excluded baselines for estimating counterfactual outcomes over time.** Causal CPC (El Bouchat-
 958 taoui et al., 2024), Mamba-CDSP (Wang et al., 2025), and GMCG (Ahn & Vashist, 2025) can estimate
 959 counterfactual outcomes over time, but are excluded due to unavailable code. While BNCDE (Hess
 960 et al., 2024) can estimate counterfactual outcomes over time, it is designed to forecast outcomes
 961 as well as uncertainty (rather than single-point estimates, which is the focus of Sec. 3.3). As such,
 962 extending BNCDE (Hess et al., 2024) with CLEF is not directly feasible. CF-GODE (Jiang et al.,
 963 2023) can estimate continuous-time counterfactual outcomes, but is excluded due to unavailable code.
 964

965 **Distinction from biological sequence design.** Methods for biological sequence design Stanton et al.
 966 (2022); M Ghari et al. (2024); Jain et al. (2023) are not comparable to CLEF because there is no
 967 temporal aspect in the data. The “sequence editing” by these models focuses on positional changes,
 968 not temporal. These methods are more related to text generation, where time is not a requirement.
 969

970 **Distinction from reinforcement learning.** In contrast to reinforcement learning approaches Oh
 971 et al. (2025), CLEF is trained via a fundamentally different objective. The objective of reinforcement
 972 learning is to learn a policy (i.e., output the optimal next action given the current/history of states) Oh
 973 et al. (2025). On the other hand, CLEF is akin to a forward transition model (i.e., predict future state
 974 given history of states and actions/conditions). **CLEF is complementary to reinforcement learning.**
 975

972 **B ASSUMPTIONS FOR CAUSAL IDENTIFICATION**
973974 Under the potential outcomes framework (Neyman, 1923; Rubin, 1978) and its extension to time-
975 varying treatments and outcomes (Robins & Hernan, 2008), the potential counterfactual outcomes
976 over time (i.e., τ -step ahead, where $\tau = t_j - t_i$, potential outcome conditioned on history from
977 Eq. 4) are identifiable from factual observational data under three standard assumptions: consistency,
978 positivity, and sequential ignorability.979 **Assumption B.1** (Consistency). Let s be the given sequence of treatments for a patient, consisting
980 of historical treatments $s_{t_0:t_i}$ and next treatment s_{t_j} . The potential outcome is consistent with the
981 observed (factual) outcome $\mathbf{x}_{:,t_j}(s) = \mathbf{x}_{:,t_j}$.982 **Assumption B.2** (Positivity). There is always a non-zero probability of receiving (or not) a treatment
983 for all the history space over time (Imai & Van Dyk, 2004): If $P(s_{t_0:t_i}, \mathbf{x}_{:,t_0:t_i}) > 0$, then $0 <$
984 $P(s_{t_j} | s_{t_0:t_i}, \mathbf{x}_{:,t_0:t_i}) < 1$ for all $s_{t_0:t_j}$. This assumption is also referred to as (sequential) overlap (Bica
985 et al., 2020; Melnychuk et al., 2022).986 **Assumption B.3** (Sequential ignorability). The current treatment is independent of the potential
987 outcome, conditioning on the observed history: $s_{t_j} \perp\!\!\!\perp \mathbf{x}_{:,t_j} | s_{t_0:t_i}, \mathbf{x}_{:,t_0:t_i}$. This implies that there
988 are no unobserved confounders that affect both treatment and outcome.989 While Assumptions B.2 and B.3 are standard across all methods that estimate treatment effects, they
990 may not always be satisfied in real-world settings (Robins et al., 2000; Pearl, 2009; Ying et al., 2025).991 **Corollary B.4** (G-computation). *Assumptions B.1-B.3 provide sufficient identifiability conditions
992 for Eq. 4 (i.e., with G-computation (Li et al., 2021)). However, it requires estimating conditional
993 distributions of time-varying covariates (Melnychuk et al., 2022)). Since this could be challenging
994 given a finite dataset size and high dimensionality of covariates, we refrain from the explicit usage of
995 G-computation (Melnychuk et al., 2022).*996 Note that the standard setup for counterfactual prediction assumes a fixed time grid and normalized
997 covariates (Bica et al., 2020; Melnychuk et al., 2022). As such, the standardized data preprocessing
998 pipeline entails forward and backward filling for missing values and standard normalization of
999 continuous time-varying features (Bica et al., 2020; Melnychuk et al., 2022). With the model
1000 architecture shown in Fig. 2, these preprocessing steps are not necessary, thereby better reflecting
1001 real-world data. Still, Assumptions B.1-B.3 hold for our models depicted in Fig. 2.1003 **C DATA & EXPERIMENTAL SETUP**
10041005 We provide further details about data construction, data preparation, and experimental setup. Sections
1006 C.1-C.2 and Tab. 1 describe the novel conditional sequence generation benchmark datasets.
1007 Sections C.3-C.4 discuss the standard synthetic and semi-synthetic benchmark datasets for coun-
1008 terfactual outcomes estimation. Each section also contains the corresponding experimental setup.
1009 We share code and instructions in our GitHub repository to reproduce the experiments in this paper:
1010 <https://anonymous.4open.science/r/CLEF-B64B>.1011 **Overview of novel datasets.** To study cellular development, fibroblast cells derived from mice
1012 can be artificially reprogrammed into various other cell states *in vitro*. A cell’s state is defined by
1013 its gene expression. Throughout reprogramming, a cell activates transcription factor (TF) genes at
1014 different time points to change its gene expression, thereby influencing its developmental trajectory.
1015 In Fig. 3a, a mouse fibroblast is being reprogrammed over the span of 20 days (D0-D20); color
1016 and shape represent cell state. On day 8, if the cell activates the Obox6 TF, the cell is on the path
1017 toward becoming an induced pluripotent stem cell (iPSC); whereas if it activates the Neurod4 TF,
1018 it is on the path toward becoming a neuron or astrocyte. The health of a human patient is often
1019 monitored through lab tests (e.g. blood sodium level, white blood cell count). As shown in Fig. 3b, the
1020 history of lab results across multiple patient visits (V1-V9) as well as candidate clinical interventions
1021 (e.g., medication) can be used to infer the most likely future trajectory of the patient’s health.1022 **C.1 CELLULAR DEVELOPMENTAL TRAJECTORIES**
10231024 Here, we describe the process of (1) simulating single-cell transcriptomic profiles of developmental
1025 time courses for individual cells and (2) preparing these trajectories for modeling.

1026 **Table 1: Dataset statistics for conditional sequence generation benchmarks.** We construct three core datasets
 1027 for benchmarking conditional sequence generation: WOT (cellular developmental trajectories), eICU (patient lab
 1028 tests), and MIMIC-IV (patient lab tests). We also construct a paired counterfactual cellular trajectories dataset,
 1029 WOT-CF. N is the number of sequences (i.e., cellular developmental trajectories, patient lab test trajectories), V
 1030 is the number of measured variables (i.e., gene expression, lab test), and L is the length of the sequences.
 1031

Dataset	N	V	Mean L	Max L
WOT	3,000	1,480	27.03 ± 6.04	37
WOT-CF	2,546	1,480	27.01 ± 5.98	37
eICU	108,346	17	20.27 ± 25.23	858
MIMIC-IV	156,310	16	15.56 ± 24.43	949

1039 C.1.1 SIMULATING TRAJECTORIES

1040 Cellular reprogramming experiments help elucidate cellular development (Schiebinger et al., 2019).
 1041 In these wet-lab experiments, cells are manipulated and allowed to progress for a specific period of
 1042 time before they undergo RNA sequencing (RNA-seq), and we analyze the resulting RNA-seq data to
 1043 observe their new cellular profiles (Schiebinger et al., 2019). RNA-seq is a destructive process for the
 1044 cell, meaning that the same cell cannot be sequenced at two different time points. Computational
 1045 models are thus necessary to infer the trajectory of a cell.

1046 **Waddington-OT dataset and model.** Waddington-OT (Schiebinger et al., 2019) is a popular
 1047 approach to reconstruct the landscape of cellular reprogramming using optimal transport (OT). There
 1048 are two components in Waddington-OT: (1) *a single-cell RNA-seq (scRNA-seq) dataset* of mouse
 1049 cells from a reprogramming experiment, and (2) *an OT-based trajectory inference model* fitted on the
 1050 scRNA-seq dataset. The scRNA-seq dataset consists of 251,203 mouse cells profiled from 37 time
 1051 points (0.5-day intervals) during an 18-day reprogramming experiment starting from mouse embryonic
 1052 fibroblasts. The trajectory inference model consists of transport matrices $\pi_{t_k, t_{k+1}}$ with dimensions $N \times$
 1053 M that relate all cells $\mathbf{x}_{t_k}^1, \dots, \mathbf{x}_{t_k}^n$ profiled at time t_k to all cells $\mathbf{x}_{t_{k+1}}^1, \dots, \mathbf{x}_{t_{k+1}}^m$ profiled at time t_{k+1} .
 1054 An entry at row i and column j of $\pi_{t_k, t_{k+1}}$ corresponds to the probability that $\mathbf{x}_{t_{k+1}}^j$ is a descendant
 1055 cell of $\mathbf{x}_{t_k}^i$, as determined using optimal transport (Chizat et al., 2017). Every cell in the scRNA-seq
 1056 dataset is either pre-labeled as one of the 13 provided cell sets (i.e., induced pluripotent stem, stromal,
 1057 epithelial, mesenchymal-epithelial transition, trophoblast, spongiotrophoblast, trophoblast progenitor,
 1058 oligodendrocyte progenitor, neuron, radial glial, spiral artery trophoblast giant, astrocyte, other neural)
 1059 or unlabeled. We cluster the unlabeled cells using Leiden clustering via `scanpy` (Wolf et al., 2018)
 1060 at a resolution of 1, and define the resulting 27 unlabeled clusters as unique cell sets. As a result, each
 1061 cell in the dataset belongs one and only one cell set.

1062 **Simulating cell state trajectories.** We define “cell state” as the transcriptomic profile of a cell.
 1063 Here, a transcriptomic profile is the log-normalized RNA-seq counts of the top 1,479 most highly
 1064 variable genes. To create a simulated trajectory of cell states for an individual cell undergoing
 1065 reprogramming, we randomly and uniformly sample a cell profiled at time step t_0 (Day 0.0) from the
 1066 Waddington-OT scRNA-seq dataset, and generate via the transport matrix π_{t_0, t_1} a probability
 1067 distribution \mathbb{P}_{t_1} over possible descendant cells $\mathbf{x}_{t_1}^1, \dots, \mathbf{x}_{t_1}^m$ at time step t_1 (Day 0.5). We sample a
 1068 cell from this distribution, and repeat the process until we reach either Day 18.0 or a terminal state
 1069 (i.e., neural, stromal, or induced pluripotent stem cell). After generating a trajectory composed of
 1070 cells from the Waddington-OT scRNA-seq dataset through this process, we retrieve the transcriptomic
 1071 profile of each cell to compose $\mathbf{x}_{:, t_0: t_T}$, where T is the length of the trajectory.

1072 **Inferring conditions.** A condition s_{t_i} is defined as the activation of a transcription factor (TF)
 1073 that leads a cell to transition from state \mathbf{x}_{t_i} to descendant state $\mathbf{x}_{t_{i+1}}$. To infer such conditions, we
 1074 perform differential expression analysis between cells from the same cell set as \mathbf{x}_{t_i} (i.e., $\mathbf{x}^a \in A$)
 1075 and cells from the same cell set as $\mathbf{x}_{t_{i+1}}$ (i.e., $\mathbf{x}^b \in B$). Using the `wot.tmap.diff_exp` function
 1076 (via the `Waddington-OT` library), we identify the top TF that was significantly upregulated
 1077 in $\mathbf{x}^a \in A$ compared to $\mathbf{x}^b \in B$. If no TFs are differentially expressed, then the condition is
 1078 “None.” We retroactively perform this analysis on all pairs of consecutive cell states in a cell state
 1079 trajectory $\mathbf{x}_{:, t_0: t_T}$ to obtain the full trajectory containing both cell states and TF conditions: $\tau = \{\mathbf{x}_{t_0}, s_{t_0}, \mathbf{x}_{t_1}, s_{t_1}, \dots, s_{t_{T-1}}, \mathbf{x}_{t_T}\}$. In other words, τ represents a simulated trajectory of an individual

1080 cell undergoing the reprogramming process. Condition embeddings $\mathbf{z}_s \in \mathbb{R}^{5120}$ are obtained from the
 1081 (frozen) pretrained ESM-2 embedding model (Lin et al., 2022).

1082 **Generating matched counterfactual trajectories.** We additionally create pairs of matched counter-
 1083 factual trajectories to evaluate a model’s performance in zero-shot counterfactual generation. Each
 1084 pair consists of an “original” trajectory τ_{og} and a “counterfactual” trajectory τ_{cf} . First, we generate
 1085 τ_{og} using the Waddington-OT model. Then, given a divergence time step D , the first D time steps of
 1086 τ_{og} are carried over to τ_{cf} such that the first D cell states and conditions of τ_{og} and τ_{cf} are exactly
 1087 the same. The remaining states and conditions of τ_{cf} are sampled independently from τ_{og} , resulting
 1088 in an alternative future trajectory based on an alternative condition at time step D .

1089 **Implementation note:** Since CLEF learns time embeddings based on the year, month, date, and hour
 1090 of a timestamp, we convert the time steps of each cell into timestamps. We set the starting time t_0 as
 1091 timestamp 2000/01/01 00:00:00, and add $10 \times t_i$ hours to the converted timestamp of t_{i-1} .

1092 **C.1.2 EXPERIMENTAL SETUP**

1093 **Generating data splits.** There are three cell sets (i.e., groups of cells with the same cell state label)
 1094 that consist of cells from Day 0.0 in our post-clustering version of the Waddington-OT dataset. We
 1095 refer to these cell sets as “start clusters” because all initial cell states are sampled from one of these
 1096 cell sets. Since the choice of start cluster can influence the likelihood of a cell’s trajectory reaching
 1097 certain terminal fates, we split our cellular trajectories into train, validation, and test sets based on
 1098 their start cluster. This cell-centric data split allows us to evaluate how well a model can generalize
 1099 to different distributions of trajectories. Start cluster #1 is in the train set, start cluster #3 is in the
 1100 validation set, and start cluster #2 is in the test set.

1101 **Zero-shot counterfactual generation.** The data split for zero-shot counterfactual generation is con-
 1102 structed such that the original trajectories τ_{og} are in the train or validation sets, and the counterfactual
 1103 trajectories τ_{cf} are in the test set.

1104 **C.2 PATIENT LAB TESTS**

1105 Here, we describe the process of (1) preprocessing electronic health records to extract longitudinal
 1106 routine lab tests data and (2) preparing these trajectories for modeling.

1107 **C.2.1 CONSTRUCTING ROUTINE LAB TEST TRAJECTORIES**

1108 We leverage two publicly available medical datasets: eICU (Pollard et al., 2018) and MIMIC-
 1109 IV (Johnson et al., 2024a; 2023; Goldberger et al., 2000). Both datasets are under the PhysioNet
 1110 Credentialed Health Data License 1.5.0 (PhysioNet). The retrieval process includes registering as a
 1111 credentialed user on PhysioNet, completing the CITI “Data or Specimens Only Research” training,
 1112 and signing the necessary data use agreements.

1113 We process each dataset (i.e., eICU, MIMIC-IV) separately with the following steps. First, we extract
 1114 the routine lab tests only (annotation available only in MIMIC-IV) and the most commonly ordered
 1115 lab tests (i.e., lab tests that appear in at least 80% of patients). Next, we keep patients for whom we
 1116 have at least one of each lab test. If there are multiple measurements of a lab test at the same time
 1117 step (i.e., year, month, date, hour, minute, and seconds), we take the mean of its values. We extract
 1118 patients with more than one visit (or time step).

1119 We define patients’ conditions as medical codes, specifically International Classification of Dis-
 1120 eases (ICD), of their diagnosis. Both eICU and MIMIC-IV use ICD-9 and ICD-10 codes. We extract
 1121 the medical codes and their timestamps (multiple medical codes at a single time step is possible).
 1122 Since the timestamps of diagnostic codes and lab tests are not necessarily the same (and there are
 1123 fewer entries of diagnostic codes than lab orders), we merge them with a tolerance range of 12 hours
 1124 (eICU) or two days (MIMIC-IV). We obtain (frozen) condition embeddings $\mathbf{z}_s \in \mathbb{R}^{128}$ (retrieved
 1125 on December 22, 2024) from an embedding model that has been pretrained on a clinical knowledge
 1126 graph (Johnson et al., 2024b). The clinical knowledge graph is constructed by integrating six existing
 1127 databases of clinical vocabularies used in electronic health records: International Classification of
 1128 Diseases (ICD), Anatomical Therapeutic Chemical (ATC) Classification, Systemized Nomenclature
 1129 of Diseases (SNOMED), Systematized Nomenclature of Medicine (SNOMED), Systematized Nomenclature
 1130 of Diseases (ICD-10), and Systematized Nomenclature of Medicine (SNOMED-CT).

1134 of Medicine - Clinical Terms (SNOMED CT), Current Procedural Terminology (CPT), Logical
 1135 Observation Identifiers Names and Codes (LOINC), and phecodes (Johnson et al., 2024b).
 1136

1137 **C.2.2 GENERATING DATA SPLITS**

1138 We generate a standard patient-centric random split for benchmarking model performance (**R1-R2**),
 1139 and a series of increasingly challenging data splits via SPECTRA (Ektefaie et al., 2024) to evaluate
 1140 model generalizability (**R3**). We describe in detail the process of constructing SPECTRA data splits:
 1141

1142 SPECTRA (Ektefaie et al., 2024) creates a series of splits with decreasing cross-split overlap or
 1143 similarity between the train and test sets. By training and testing models on these splits, we can assess
 1144 model performance as a function of cross-split overlap (Fig. 10). SPECTRA refers to this relationship
 1145 as the spectral performance curve, which provides insight into how well a model generalizes to less
 1146 similar data. When a new dataset split is encountered, it can be plotted as a point on this curve. The
 1147 area under the spectral performance curve (AUSPC) serves as a metric of model generalizability and
 1148 enables comparisons across models (Tab. 6).

1149 To generate a split with SPECTRA, a similarity definition and a SPECTRA parameter (SP) value
 1150 between 0 and 1 are required. SP controls the level of cross-split overlap (Fig. 10): values closer to 0
 1151 create splits resembling classical random splits, while values closer to 1 produce stricter splits with
 1152 minimal or no overlap between train and test sets. For example, at an input of 1, no similar samples
 1153 are shared between the train and test sets.

1154 For eICU and MIMIC-IV, we define two patients as similar if: (1) they are of the same gender,
 1155 (2) they are born in the same decade, and (3) they share at least one ICD-9 or ICD-10 category.
 1156 We exclude ICD-9 and ICD-10 codes that are present in more than 50% of patients to avoid overly
 1157 generic features. SPECTRA systematically prunes similar patients to produce splits. For this study,
 1158 we generate 20 splits with SP values that are evenly spaced between 0 and 1 (Fig. 10). Given a train
 1159 and test set, cross-split overlap is defined as the proportion of samples in the train set that are similar
 1160 to at least one sample in the test set (Fig. 10).

1161 **C.2.3 CONSTRUCTING COHORTS OF PATIENTS WITH TYPE 1 DIABETES MELLITUS**

1162 We conduct case studies on two independent cohorts of patients with type 1 diabetes mellitus (T1D),
 1163 a chronic autoimmune disease in which the immune system attacks insulin-producing cells in the
 1164 pancreas (Quattrin et al., 2023). From our processed eICU and MIMIC-IV datasets, we construct two
 1165 cohorts of T1D patients and matched healthy individuals.

1166 **Procedure.** To define a type 1 diabetes mellitus (T1D) patient cohort in eICU and MIMIC-IV,
 1167 we identify patients with T1D and matched healthy individuals. A patient has T1D if the ICD-10
 1168 code E10 (or the equivalent ICD-9 code 250) is present in the electronic health records. Matched
 1169 healthy patients are defined by three criteria. First, the patient must not contain any of the following
 1170 ICD-10 (and ICD-9 equivalent) codes: E11, E13, E12, E08, E09, R73, and O24. An initial healthy
 1171 patient cohort is constructed using these filtering codes. Next, we identify frequently co-occurring
 1172 ICD codes between the initial set of patients and patients with T1D to filter out generic ICD codes
 1173 (threshold = 20). Finally, healthy patients are matched with a T1D patient if: they are of the same
 1174 gender, they are born in the same decade, and they share at least 50% of ICD codes.

1175 **Data statistics.** eICU-T1D contains 59 T1D patients and 579 matched healthy controls, while
 1176 MIMIC-IV-T1D includes 25 T1D patients and 226 matched healthy controls.

1177 **C.2.4 EXPERIMENTAL SETUP FOR TYPE 1 DIABETES MELLITUS CASE STUDY**

1178 We evaluate CLEF’s ability to simulate counterfactual patient trajectories through temporal concept
 1179 intervention. This is analogous to intervening on concept bottleneck models by editing concept values
 1180 and propagating the changes to the final prediction (Koh et al., 2020). This capability is particularly
 1181 useful when condition tokens are insufficient (e.g., prescribing medication dosage). Editing concept
 1182 values allow users (e.g., clinicians) to simulate potential trajectories as a result of the precise edits.

1183 We conduct case studies on two independent patient cohorts with type 1 diabetes mellitus (T1D). For
 1184 each patient, we intervene on the temporal concepts corresponding to specific lab tests to simulate the
 1185 “reversal” or “worsening” of symptoms, thereby generating “healthier” or “more severe” trajectories.

1188 Formally, given temporal concept \mathbf{c} learned from $\mathbf{x}_{:,t_0:t_i}$ and an optional condition s , we modify
 1189 $\mathbf{c}^I \neq \mathbf{c}$ such that at least one element satisfies $\mathbf{c}_k \neq \mathbf{c}_k^I$. Then, CLEF simulates future trajectories of
 1190 length $T = 10$. We then compare these counterfactual trajectories (i.e., CLEF-generated patients)
 1191 against observed sequences from matched healthy individuals, other healthy individuals, and other
 1192 T1D patients. Our hypothesis is that clinically meaningful edits will produce “healthier” (i.e., more
 1193 similar to healthy patients) or “sicker” (i.e., more similar to other T1D patients) trajectories.
 1194

1195 C.3 SYNTHETIC TUMOR GROWTH TRAJECTORIES

1196
 1197 The tumor growth simulation model (Geng et al., 2017) produces trajectories of tumor volume
 1198 (i.e., one-dimensional outcome) after cancer diagnosis. There are two binary treatments (i.e., radio-
 1199 therapy \mathbf{A}_t^r and chemotherapy \mathbf{A}_t^c) at time t , and the possible treatments are: $\{(\mathbf{A}_t^c = 0, \mathbf{A}_t^r = 0),$
 1200 $(\mathbf{A}_t^c = 1, \mathbf{A}_t^r = 0), (\mathbf{A}_t^c = 0, \mathbf{A}_t^r = 1), (\mathbf{A}_t^c = 1, \mathbf{A}_t^r = 1)\}$. For τ -step ahead prediction, we simulate
 1201 synthetic tumor growth trajectories under single-sliding treatment (i.e., shift the treatment over a
 1202 window) (Bica et al., 2020; Melnychuk et al., 2022) and random trajectories (i.e., randomly assign
 1203 treatments) settings (Melnychuk et al., 2022). Importantly, the ground-truth counterfactual trajectories
 1204 are known. We limit the length of trajectories to a maximum of 60 time steps. For each setting, we
 1205 generate trajectories with different amounts of time-varying confounding $\gamma \in [0, 1, 2, 3, 4]$, each with
 1206 10,000 trajectories for training, 1,000 for validation, and 1,000 for testing.
 1207

1208 We follow the data simulation process and experimental setup as described in Appendix J and GitHub
 1209 repository of the original Causal Transformer publication (Melnychuk et al., 2022).
 1210

1211 C.4 SEMI-SYNTHETIC PATIENT TRAJECTORIES

1212 MIMIC-III-CF is a semi-synthetic dataset based on patient data from real-world intensive care
 1213 units (Wang et al., 2020; Johnson et al., 2016). The data are aggregated at hourly levels, with forward
 1214 and backward filling for missing values and standard normalization of the continuous time-varying
 1215 features (Wang et al., 2020; Johnson et al., 2016; Bica et al., 2020; Melnychuk et al., 2022). Patients
 1216 have 25 different vital signs as time-varying covariates and 3 static covariates (gender, ethnicity,
 1217 age). Untreated trajectories of outcomes are first simulated under endogenous and exogenous
 1218 dependencies, and then treatments are sequentially applied (Melnychuk et al., 2022). There are 3
 1219 synthetic binary treatments and 2 synthetic outcomes (Melnychuk et al., 2022). Importantly, the
 1220 ground-truth counterfactual trajectories are known. We limit the length of trajectories to a maximum
 1221 of 60 time steps. We generate 1,000 patients into train, validation, and test subsets via a 60%, 20%,
 1222 and 20% split. For τ -step ahead prediction with $\tau_{\max} = 10$, we sample 10 random trajectories for each
 1223 patient per time step.
 1224

1225 We follow the data simulation process and experimental setup as described in Appendix K and GitHub
 1226 repository of the original Causal Transformer publication (Melnychuk et al., 2022).
 1227

1228 C.5 SALES TRAJECTORIES

1229 Sales trajectories (M5 Forecasting) are obtained from daily transaction data of Walmart stores across
 1230 three US states (Makridakis et al., 2022). Following (Huang et al., 2024) and (Wang et al., 2025), the
 1231 objective of the model is to predict the future unit sales, and the condition is defined by the product
 1232 price (Huang et al., 2024; Wang et al., 2025). There are 1942 time points on 3049 products from 10
 1233 stores (4 in California, 3 in Texas, and 3 in Wisconsin). The dataset is split by state: Train, validate,
 1234 and test on California, Texas, and Wisconsin, respectively. As the dataset does not contain any ground
 1235 truth counterfactual trajectories, M5 is only used for conditional generation of observed sequences.
 1236

1237 D IMPLEMENTATION DETAILS

1238 We provide code and instructions to implement CLEF, baselines, and ablations: <https://anonymous.4open.science/r/CLEF-B64B>. To implement baselines, we follow the au-
 1239 thors’ recommendations on model design and hyperparameter selection from the original publications.
 1240 We do not share data or model weights that may contain sensitive patient information.
 1241

1242 D.1 OBJECTIVE FUNCTIONS
12431244 For conditional generation, we use Huber loss, where $\mathbf{a} = \mathbf{x}_{:,t_j}^s - \hat{\mathbf{x}}_{:,t_j}^s$ and $\delta = 1$,
1245

1246
$$\mathcal{L}(\mathbf{x}_{:,t_j}^s, \hat{\mathbf{x}}_{:,t_j}^s) = \begin{cases} 0.5\mathbf{a}^2, & \text{if } |\mathbf{a}| \leq \delta \\ \delta(|\mathbf{a}| - 0.5\delta), & \text{otherwise} \end{cases} \quad (5)$$

1247

1248 We use PyTorch’s implementation. To briefly explain each component of Huber loss:
12491250

- δ is used to switch between mean squared error (MSE) and mean absolute error (MAE).
- The $0.5\mathbf{a}^2$ term (MSE) is a quadratic component that penalizes outliers when errors are $\leq \delta$.
- The $\delta(|\mathbf{a}| - 0.5\delta)$ term (MAE) is a linear component that does not over-penalize large errors when errors are larger than δ .

12551256 We also train CLEF via another commonly used objective function for forecasting (i.e., MSE loss)
1257 and objective functions designed specifically for counterfactual prediction (i.e., gradient reversal,
1258 counterfactual domain confusion; Sec. D.4) (Bica et al., 2020; Melnychuk et al., 2022).
12591260 D.2 EXPERIMENTS TO EVALUATE TEMPORAL CONCEPTS
12611262 We intentionally design temporal concepts to isolate their contribution to predictive performance.
1263 In our formulation, temporal concepts are learned from an aggregation of historical data, the future
1264 time point, and the desired condition by concept encoder E (Eq. 2). We evaluate multiple ways
1265 of defining E : via the state-of-the-art setups for conditional sequence generation (Sec. D.3) and
1266 counterfactual outcomes estimation (Sec. D.4) with different sequential encoders. Also, temporal
1267 concepts are applied directly to the latest time step in the concept decoder F (Eq. 3) to generate the
1268 future state. Alternative model architectural designs for learning temporal concepts and applying
1269 conditions (or interventions) to the model may obfuscate the contribution of temporal concepts to
1270 predictive performance. For example, feeding the intervention directly to the decoder would bypass
1271 the temporal concept mechanism, meaning that the concepts would capture only the passage of time
1272 rather than the effect of the intervention. Similarly, feeding the future state directly to the decoder
1273 would introduce an additional function applied after the temporal concepts, making it difficult to
1274 directly control the edit by the specified concept (because of the add-on decoder).
12751276 To further isolate the contribution of temporal concepts to predictive performance, CLEF and non-
1277 CLEF models differ only in the components needed to learn temporal concepts (i.e., concept encoder
1278 and decoder). In other words, CLEF models share the same sequence encoder and condition adapter
1279 as their non-CLEF counterparts but replace the forecasting decoder in SOTA baselines (Sec. A.3, D.3-
1280 D.4) with a concept encoder and decoder to leverage temporal concepts.
12811282 Altogether, our formulation keeps the architecture minimal and interpretable, **ensuring that performance gains can be attributed directly to temporal concepts**.
12831284 D.3 BASELINES FOR CONDITIONAL SEQUENCE GENERATION
12851286 We benchmark CLEF against the state-of-the-art conditional sequence generation setup with 3
1287 sequential data encoders (Fig. 2): Transformer (Waswani et al., 2017; Narasimhan et al., 2024;
1288 Jing et al., 2024; Zhang et al., 2023a); xLSTM (Beck et al., 2024); and state-of-the-art time series
1289 foundation model, MOMENT (Goswami et al., 2024). For MOMENT, we finetune an adapter for the
1290 1024-dimensional embeddings from the frozen MOMENT-1-large embedding model.
12911292 D.4 CLEF EXTENSIONS AND BASELINES FOR COUNTERFACTUAL OUTCOMES ESTIMATION
12931294 Due to its versatility, CLEF can be leveraged by state-of-the-art machine learning models designed
1295 to estimate counterfactual outcomes (Bica et al., 2020; Melnychuk et al., 2022). Counterfactual
1296 Recurrent Network (CRN) (Bica et al., 2020) and Causal Transformer (CT) (Melnychuk et al.,
1297 2022) demonstrate state-of-the-art performance in the established benchmarks (Bica et al., 2020;
1298 Melnychuk et al., 2022). To implement CLEF-CRN and CLEF-CT, the GELU activation layer from
1299 the concept encoder E (Eq. 2) and the concept decoder G (Eq. 3) of CLEF are appended to outcome
1300

1296 predictor network (denoted as G_Y where Y is the outcome of the given treatment in the original
 1297 publications (Bica et al., 2020; Melnychuk et al., 2022)) of CRN and CT. Following the original CRN
 1298 and CT publications, we minimize the factual outcome loss (i.e., output of G_Y) via mean squared
 1299 error (MSE) (Bica et al., 2020; Melnychuk et al., 2022).

1300 We evaluate CLEF against their non-CLEF counterparts with and without balancing loss functions
 1301 (i.e., gradient reversal (GR) (Bica et al., 2020), counterfactual domain confusion (CDC) loss (Mel-
 1302 nyckuk et al., 2022)). This results in 5 distinct state-of-the-art baselines: CRN with GR loss
 1303 (i.e., original CRN implementation) (Bica et al., 2020); CRN with CDC loss (Melnychuk et al.,
 1304 2022); CRN without balancing loss (Melnychuk et al., 2022); CT with CDC loss (i.e., original CT
 1305 implementation) (Melnychuk et al., 2022); and CT without balancing loss (Melnychuk et al., 2022).

1307 D.5 MODEL TRAINING

1309 CLEF models do not require any additional resources than non-CLEF models. All CLEF models have
 1310 **comparable number of parameters** (Tab. 2) and **time complexity** (Tab. 3) as their CLEF-based
 1311 counterparts. In 67% of cases, the CLEF model’s best checkpoint occurs earlier than its non-CLEF
 1312 counterpart, indicating **faster convergence** (Tab. 4).

1313 Models are **trained on a single GPU** (i.e., NVIDIA A100 or H100). For the model with the largest
 1314 number of parameters (i.e. CLEF-MOMENT with FFN=1 on the M5 dataset; Tab. 2), 24GB of GPU
 1315 memory is allocated and the maximum utilization is 100%. For the model with the largest number of
 1316 trainable parameters (i.e., CLEF-xLSTM with FFN=1 on the M5 dataset; Tab. 2), 12GB of memory is
 1317 allocated and the maximum utilization is 86%.

1318 **Table 2: Model parameters.** The number of all (denoted as **A**) or trainable (denoted as **T**) parameters is
 1319 comparable between CLEF and non-CLEF counterparts. FFN refers to the optional FFN layer in the concept
 1320 encoder; the number of layers $l_{FFN} \in [0, 1]$ is a hyperparameter.

1322 Dataset	1323 Encoder	1324 Baseline (A)	1325 Baseline (T)	1326 CLEF (A)	1327 CLEF (T)
1324 WOT	Transformer	67002560	66947800	FFN=0: 67008480 FFN=1: 69200360	FFN=0: 66953720 FFN=1: 69145600
		66170384	66115624	FFN=0: 66176304 FFN=1: 68368184	FFN=0: 66121544 FFN=1: 68313424
		354933280	13638200	FFN=0: 354939200 FFN=1: 357131080	FFN=0: 13644120 FFN=1: 15836000
1329 eICU	Transformer	52560	37116	FFN=0: 52632 FFN=1: 52974	FFN=0: 37188 FFN=1: 37530
		78716	63272	FFN=0: 78788 FFN=1: 79130	FFN=0: 63344 FFN=1: 63686
		341293924	38160	FFN=0: 341293996 FFN=1: 341294338	FFN=0: 38232 FFN=1: 38574
1334 MIMIC	Transformer	48000	32816	FFN=0: 48064 FFN=1: 48336	FFN=0: 32880 FFN=1: 33152
		79096	63912	FFN=0: 79160 FFN=1: 79432	FFN=0: 63976 FFN=1: 64248
		341290816	35312	FFN=0: 341290880 FFN=1: 341291152	FFN=0: 35376 FFN=1: 35648
1340 M5	Transformer	260954950	260890900	FFN=0: 260967150 FFN=1: 270272700	FFN=0: 260903100 FFN=1: 270208650
		280615102	280551052	FFN=0: 280627302 FFN=1: 289932852	FFN=0: 280563252 FFN=1: 289868802
		372621770	31317400	FFN=0: 372633970 FFN=1: 381939520	FFN=0: 31329600 FFN=1: 40635150

1350

1351

1352 **Table 3: Time complexity.** The training and evaluation times are comparable for the CLEF and non-CLEF
1353 models. Reported times are rounded to the nearest half hour.
1354

1355

1356

Dataset	Encoder	Baseline	CLEF
WOT	Transformer	1.0 hour	1.0 hour
WOT	xLSTM	1.0 hour	1.0 hour
WOT	MOMENT	4.0 hours	4.0 hours
eICU	Transformer	5.0 hours	5.0 hours
eICU	xLSTM	5.0 hours	5.0 hours
eICU	MOMENT	5.5 hours	5.5 hours
MIMIC	Transformer	7.0 hours	7.0 hours
MIMIC	xLSTM	7.5 hours	7.5 hours
MIMIC	MOMENT	7.5 hours	7.5 hours
M5	Transformer	0.5 hour	0.5 hour
M5	xLSTM	0.5 hour	0.5 hour
M5	MOMENT	1 hour	1 hour

1369

1370

1371

1372

1373

1374 **Table 4: Model convergence.** Shown are the epochs of the best model checkpoints (index starting at 1) for
1375 each dataset. FFN refers to the optional FFN layer in the concept encoder; the number of layers $l_{FFN} \in [0, 1]$
1376 is a hyperparameter. In 67% of cases, the CLEF model’s best checkpoint occurs earlier than its non-CLEF
1377 counterpart, indicating faster convergence.
1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

Dataset	Encoder	Baseline	CLEF
WOT	Transformer	49	FFN=0: 46 FFN=1: 38
	xLSTM	44	FFN=0: 28 FFN=1: 20
	MOMENT	5	FFN=0: 5 FFN=1: 5
eICU	Transformer	47	FFN=0: 48 FFN=1: 45
	xLSTM	45	FFN=0: 44 FFN=1: 44
	MOMENT	4	FFN=0: 3 FFN=1: 2
MIMIC	Transformer	48	FFN=0: 42 FFN=1: 42
	xLSTM	42	FFN=0: 42 FFN=1: 48
	MOMENT	5	FFN=0: 3 FFN=1: 1
M5	Transformer	46	FFN=0: 46 FFN=1: 46
	xLSTM	50	FFN=0: 35 FFN=1: 7
	MOMENT	5	FFN=0: 4 FFN=1: 5

1404
1405

D.6 HYPERPARAMETER SWEEP

1406
1407
1408
1409
1410
1411

The selection of hyperparameters for the (conditional sequence generation) models trained from scratch are: dropout rate $\in [0.3, 0.4, 0.5, 0.6]$, learning rate $\in [0.001, 0.0001, 0.00001]$, and number of layers (or blocks in xLSTM) $\in [4, 8]$. Because the number of heads must be divisible by the number of features, the number of heads for eICU (18 lab tests) $\in [2, 3, 6, 9]$ and for others $\in [4, 8]$. For xLSTM, the additional hyperparameters are: 1D-convolution kernel size $\in [4, 5, 6]$ and QVK projection layer block size $\in [4, 8]$.

1412
1413

D.7 BEST HYPERPARAMETERS

1414
1415
1416
1417
1418

MIMIC-IV (patient trajectories) dataset. The best hyperparameters for the (conditional sequence generation) models trained on the MIMIC-IV dataset are: dropout rate = 0.6, learning rate = 0.0001, number of layers (blocks in xLSTM) = 8, and number of heads = 4. For xLSTM models, 1D-convolution kernel size = 4 and QVK projection layer block size = 4. For CLEF models, the number of FNN in the concept encoder = 1 (Fig. 8-9).

1419
1420
1421
1422
1423

eICU (patient trajectories) dataset. The best hyperparameters for the (conditional sequence generation) models trained on the eICU dataset are: dropout rate = 0.6, learning rate = 0.0001, number of layers (blocks in xLSTM) = 8, and number of heads = 6. For xLSTM models, the number of heads = 2, 1D-convolution kernel size = 4, and QVK projection layer block size = 4. For CLEF models, the number of FNN in the concept encoder = 1 (Fig. 8-9).

1424
1425
1426
1427
1428

WOT (cellular trajectories) dataset. The best hyperparameters for the (conditional sequence generation) models trained on the WOT dataset are: dropout rate = 0.6, learning rate = 0.00001, number of layers (or blocks in xLSTM) = 4, and number of heads = 8. For xLSTM models, 1D-convolution kernel size = 4 and QVK projection layer block size = 8. For CLEF models, the number of FNN in the concept encoder = 0 (Fig. 8-9).

1429
1430
1431
1432

Synthetic tumor growth and semi-synthetic patient trajectories datasets. For the counterfactual prediction models (including CLEF and non-CLEF models), we follow the best hyperparameters as reported in the original publications of CT (Melnychuk et al., 2022) and CRN (Bica et al., 2020).

1433
1434
1435
1436
1437

M5 (store sales trajectories) dataset. The best hyperparameters for the (conditional sequence generation) models trained on the M5 dataset are: dropout rate = 0.6, learning rate = 0.00001, number of layers (or blocks in xLSTM) = 4, and number of heads = 5. For xLSTM models, number of heads = 2, 1D-convolution kernel size = 6, and QVK projection layer block size = 8. For CLEF models, the number of FNN in the concept encoder = 1 (Fig. 8-9).

1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

E ADDITIONAL FIGURES AND TABLES

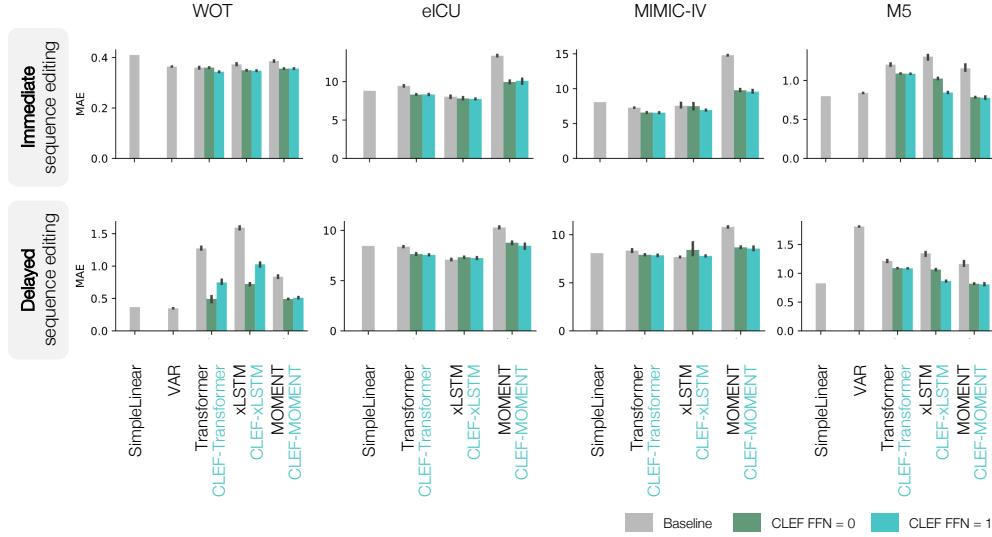


Figure 8: Benchmarking the performance of CLEF, baselines, and ablation models on (a) immediate and (b) delayed sequence editing of observed trajectories (Sec. C.1-C.2). Performance is measured by MAE (lower is better). Models are trained on 3 seeds using standard cell-, patient-, or store-centric random splits; error bars show 95% CI. Not shown for visualization purposes are VAR performance on eICU and MIMIC-IV datasets: on immediate sequence editing, MAE for eICU and MIMIC-IV are 55982.74 and 886.05, respectively; on delayed sequence editing, MAE for eICU and MIMIC-IV are 3.02×10^{39} and 8.62×10^{23} , respectively.

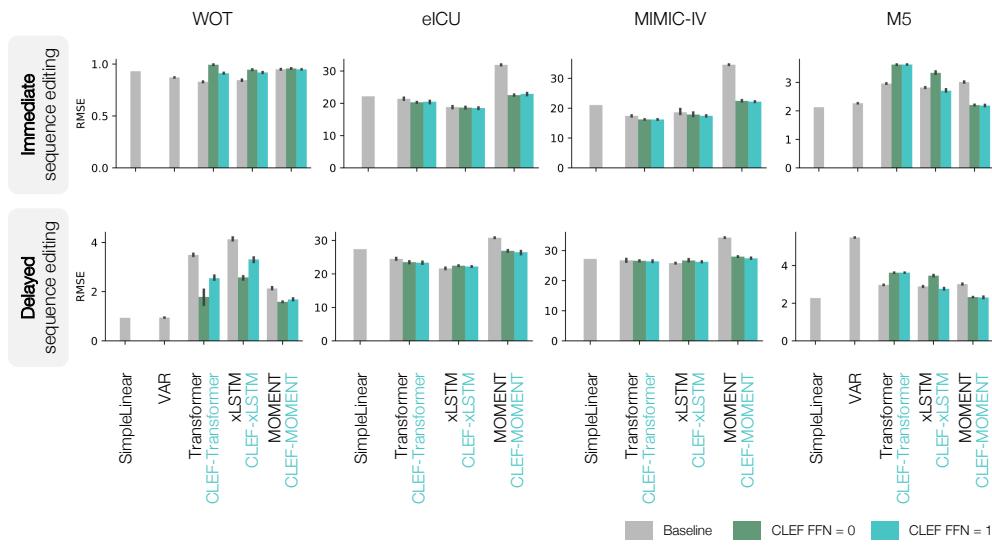


Figure 9: Benchmarking the performance of CLEF, baselines, and ablation models on (a) immediate and (b) delayed sequence editing of observed trajectories (Sec. C.1-C.2). Performance is measured by RMSE (lower is better). Models are trained on 3 seeds using standard cell-, patient-, or store-centric random splits; error bars show 95% CI. Not shown for visualization purposes are VAR performance on eICU and MIMIC-IV datasets: on immediate sequence editing, MAE for eICU and MIMIC-IV are 135003.67 and 1793.23, respectively; on delayed sequence editing, MAE for eICU and MIMIC-IV are 5.84×10^{39} and 1.59×10^{24} , respectively.

Table 5: Performance of CLEF and non-CLEF models on preserving unedited variables while editing sequences. Models are evaluated on the WOT (cellular) dataset. Generally, CLEF models have less error (MAE) than non-CLEF models. Notably, CLEF models typically have less error (MAE) on “Not Edited” (i.e., preserved) variables than “Edited” variables, whereas the opposite is true for non-CLEF models.

Model	Immediate		Delayed	
	Edited	Not Edited	Edited	Not Edited
Transformer	0.35860 ± 0.00308	0.36449 ± 0.00370	1.27342 ± 0.02205	1.32864 ± 0.03137
CLEF-Transformer	0.36150 ± 0.00083	0.34431 ± 0.00094	0.49511 ± 0.04567	0.48322 ± 0.04640
xLSTM	0.37160 ± 0.00386	0.37278 ± 0.00188	1.59413 ± 0.02165	1.65325 ± 0.02717
CLEF-xLSTM	0.35000 ± 0.00107	0.33820 ± 0.00114	0.72733 ± 0.01621	0.70962 ± 0.01898
MOMENT	0.38030 ± 0.00231	0.42576 ± 0.00080	0.83916 ± 0.01876	0.81810 ± 0.00788
CLEF-MOMENT	0.35099 ± 0.00076	0.38743 ± 0.00025	0.49849 ± 0.00224	0.42301 ± 0.00231

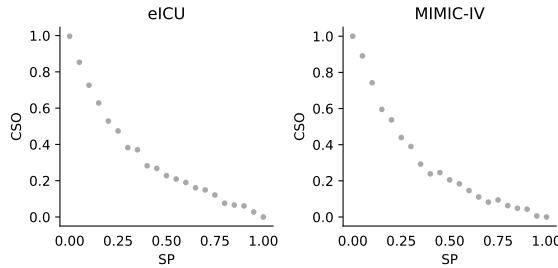
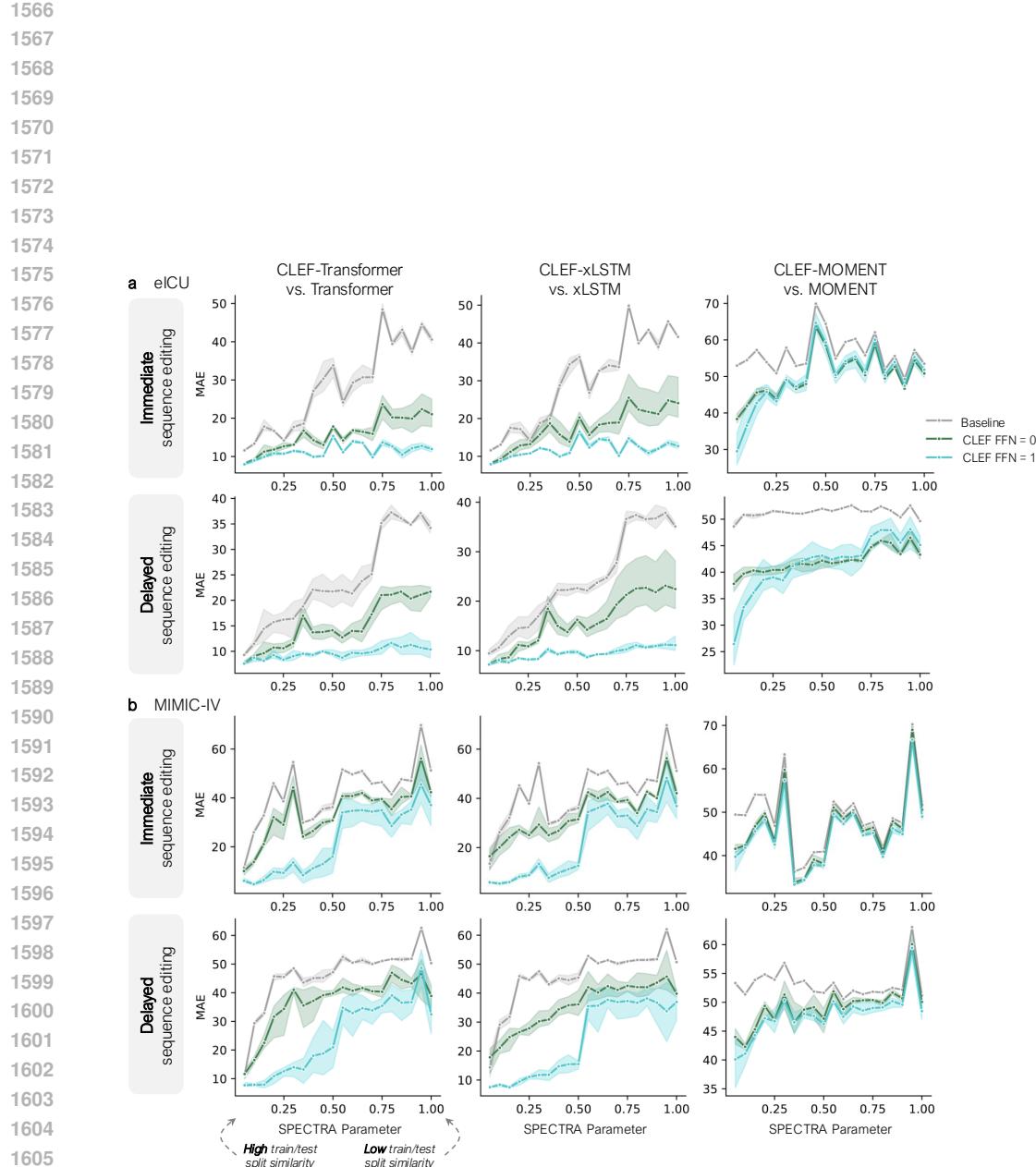


Figure 10: Cross-split overlap (CSO) as a function of SPECTRA parameter (SP) for eICU and MIMIC-IV datasets (Sec. C.2). CSO is defined as the number of samples in the test set that are similar to at least one sample in the train set. SP is an internal parameter used by SPECTRA to control the CSO of generated data splits. CSO decreases as SP increases. These data splits are used to evaluate conditional sequence generation models’ generalizability to unseen patient trajectories.

Table 6: Generalizability of CLEF, baselines, and ablations on eICU and MIMIC-IV datasets (Sec. C.2) in immediate and delayed sequencing. Performance is measured by the area under the spectral performance curve (AUSPC) for MAE (Fig. 11) or RMSE (Fig. 12). Smaller AUSPC values indicate better performance. Models are trained on 3 seeds; standard deviation is reported.

Model	eICU				MIMIC-IV			
	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE
Transformer	27.06 ± 0.98	59.83 ± 1.14	22.59 ± 1.21	50.29 ± 0.56	40.87 ± 0.15	71.77 ± 0.21	44.61 ± 0.19	80.38 ± 0.32
+ CLEF	15.16 ± 1.09	32.95 ± 2.47	14.36 ± 1.07	34.27 ± 2.12	32.79 ± 1.41	57.76 ± 3.39	35.65 ± 1.73	65.10 ± 4.43
+ CLEF + FFN	10.99 ± 0.31	27.57 ± 0.27	9.25 ± 0.60	27.69 ± 0.22	21.35 ± 3.16	36.92 ± 5.46	23.83 ± 3.26	44.11 ± 5.83
xLSTM	28.47 ± 0.63	62.28 ± 1.38	23.11 ± 0.91	52.53 ± 1.98	40.75 ± 0.30	71.90 ± 0.40	44.31 ± 0.24	80.38 ± 0.33
+ CLEF	16.73 ± 2.16	35.43 ± 6.01	15.32 ± 2.10	34.68 ± 7.09	32.06 ± 1.13	53.42 ± 2.18	33.88 ± 1.98	57.73 ± 3.63
+ CLEF + FFN	11.35 ± 0.11	28.09 ± 0.08	9.04 ± 0.18	26.21 ± 0.48	21.04 ± 2.32	37.50 ± 4.60	22.63 ± 2.61	42.12 ± 5.03
MOMENT	53.49 ± 0.03	90.54 ± 0.03	48.83 ± 0.02	82.50 ± 0.02	46.55 ± 0.01	77.22 ± 0.01	50.59 ± 0.02	85.72 ± 0.01
+ CLEF	47.69 ± 0.33	82.18 ± 0.34	40.10 ± 0.44	72.70 ± 0.46	44.01 ± 0.35	73.83 ± 0.63	46.88 ± 0.38	81.20 ± 1.27
+ CLEF + FFN	47.56 ± 1.60	82.81 ± 2.88	39.91 ± 1.65	72.54 ± 3.20	42.92 ± 0.52	70.72 ± 1.96	45.75 ± 0.65	77.35 ± 2.77



1607 **Figure 11:** Generalizability of CLEF, baselines, and ablation models on **(a)** eICU and **(b)** MIMIC-IV patient
 1608 datasets (Sec. C.2) in immediate and delayed sequence editing. Performance is measured by MAE (lower is
 1609 better). Models are trained on 3 seeds; error bars show 95% CI. As the SPECTRA parameter increases, the
 1610 train/test split similarity decreases (Fig. 10). The area under the spectral performance curve (AUSPC) evaluation
 1611 is in Tab. 6.

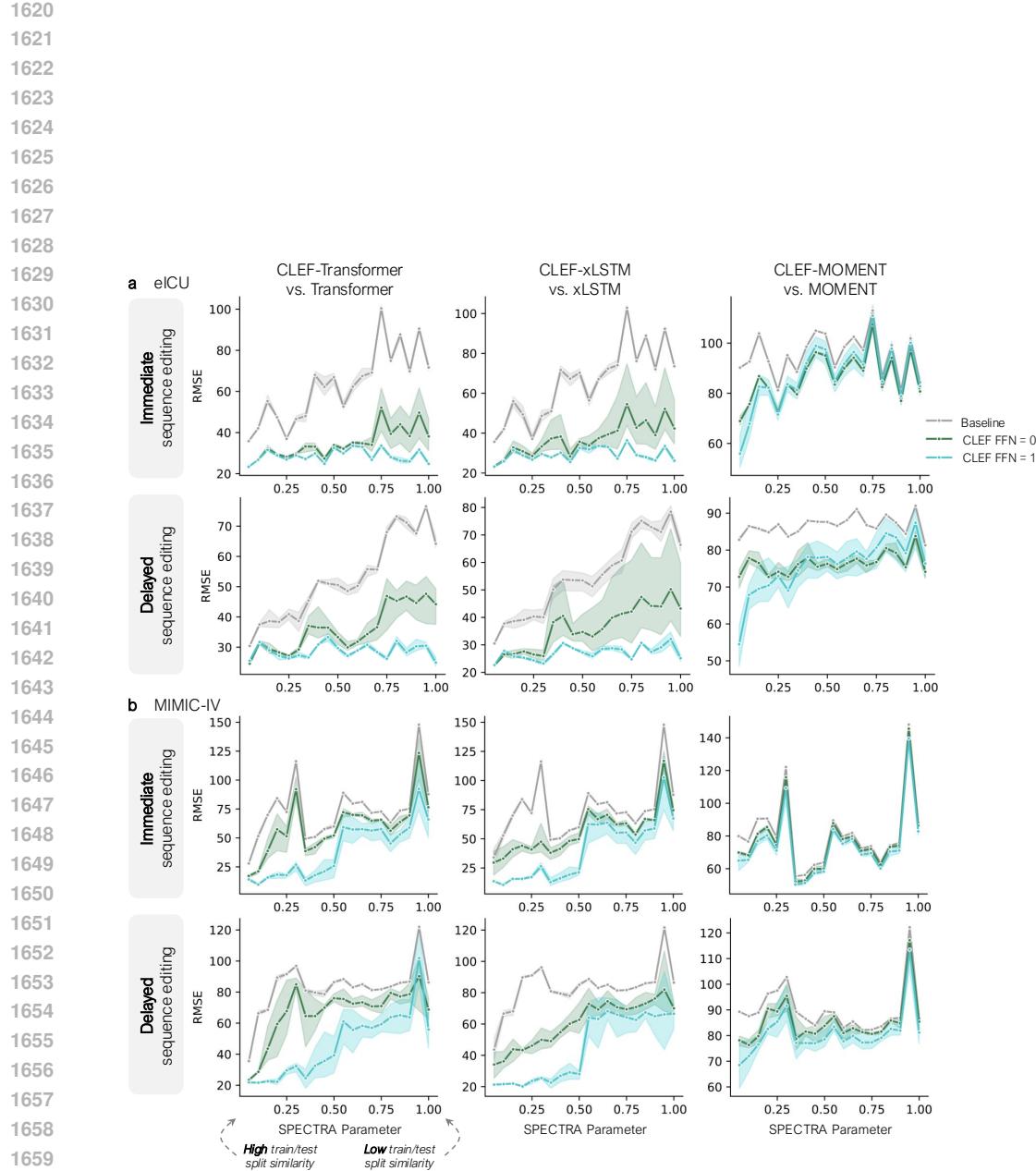


Figure 12: Generalizability of CLEF, baselines, and ablation models on **(a)** eICU and **(b)** MIMIC-IV patient datasets (Sec. C.2) in immediate and delayed sequence editing. Performance is measured by RMSE (lower is better). Models are trained on 3 seeds; error bars show 95% CI. As the SPECTRA parameter increases, the train/test split similarity decreases (Fig. 10). The area under the spectral performance curve (AUSPC) evaluation is in Tab. 6.

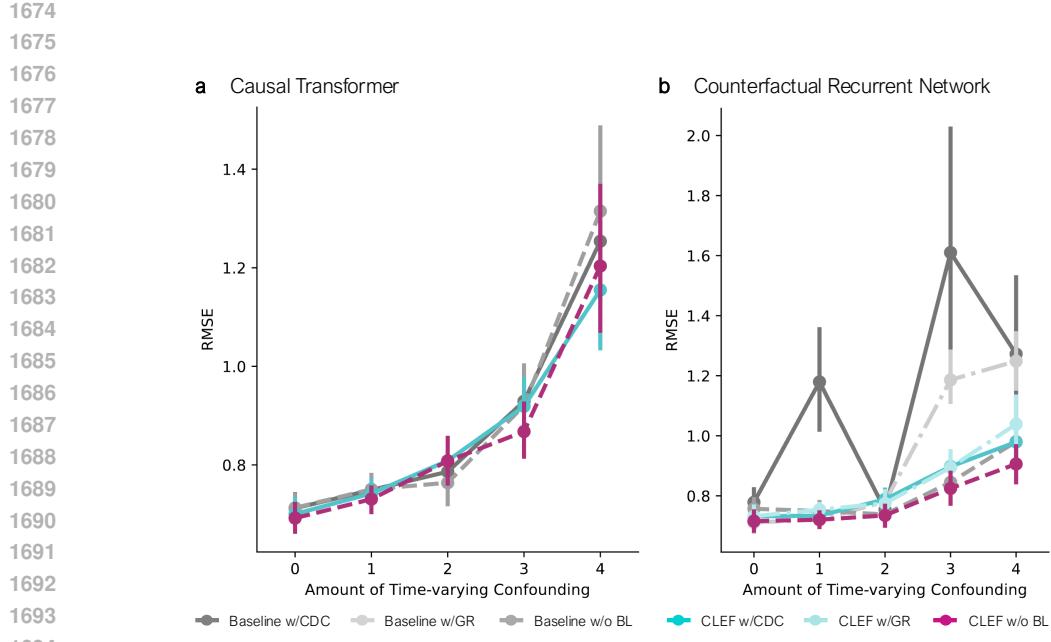


Figure 13: Counterfactual τ -step ahead prediction on tumor growth (random trajectories setting) with different amounts of time-varying confounding γ (Sec. C.3). GR refers to Gradient Reversal loss (Bica et al., 2020); CDC refers to Counterfactual Domain Confusion loss (Melnychuk et al., 2022); BL refers to Balancing Loss (i.e., GR or CDC). Models are trained on 5 seeds; error bars show 95% CI.

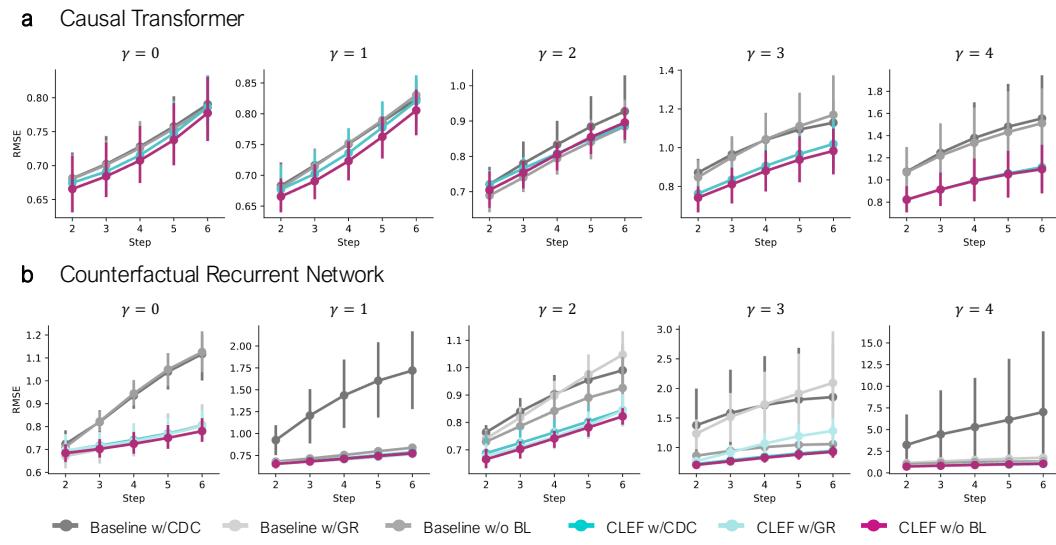
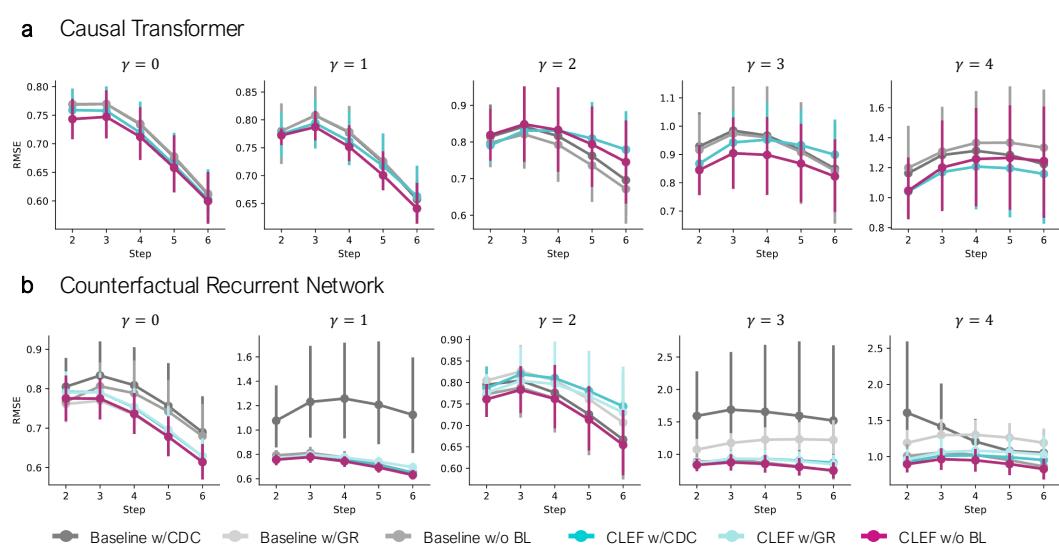
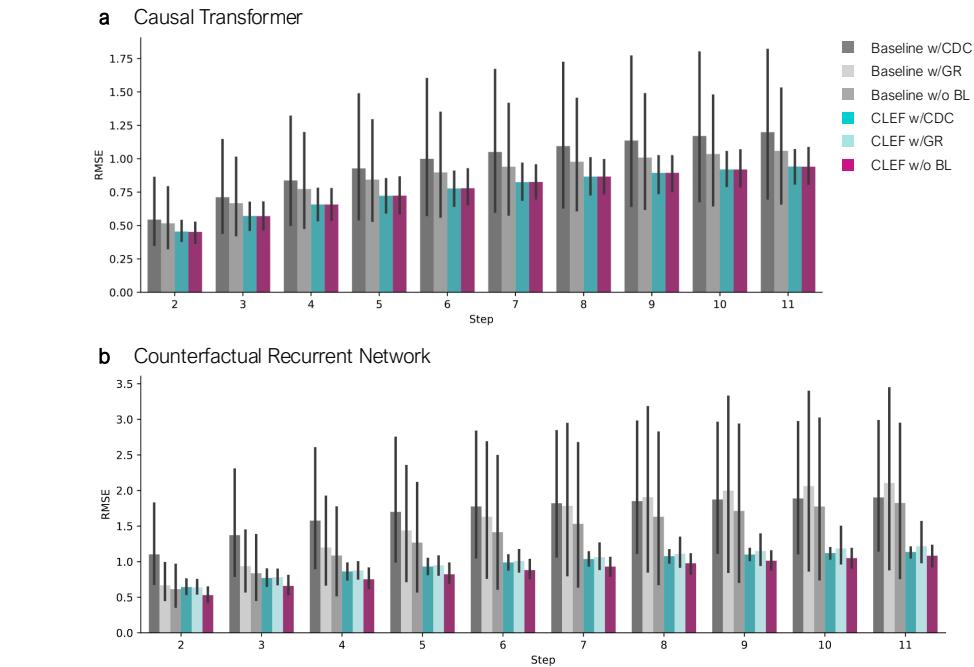


Figure 14: Counterfactual τ -step ahead prediction on tumor growth (single-sliding treatment) with different amounts of time-varying confounding γ (Sec. C.3). GR refers to Gradient Reversal loss (Bica et al., 2020); CDC refers to Counterfactual Domain Confusion loss (Melnychuk et al., 2022); BL refers to Balancing Loss (i.e., GR or CDC). Models are trained on 5 seeds; error bars show 95% CI.



1747 **Figure 15:** Counterfactual τ -step ahead prediction on tumor growth (random trajectories setting) with different
1748 amounts of time-varying confounding γ (Sec. C.3). GR refers to Gradient Reversal loss (Bica et al., 2020);
1749 CDC refers to Counterfactual Domain Confusion loss (Melnychuk et al., 2022); BL refers to Balancing Loss (i.e., GR
1750 or CDC). Models are trained on 5 seeds; error bars show 95% CI.



1777 **Figure 16:** Counterfactual τ -step ahead prediction on semi-synthetic patient ICU trajectories (Sec. C.4).
1778 GR refers to Gradient Reversal loss (Bica et al., 2020); CDC refers to Counterfactual Domain Confusion
1779 loss (Melnychuk et al., 2022); BL refers to Balancing Loss (i.e., GR or CDC). Models are trained on 5 seeds;
error bars show 95% CI.

1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835

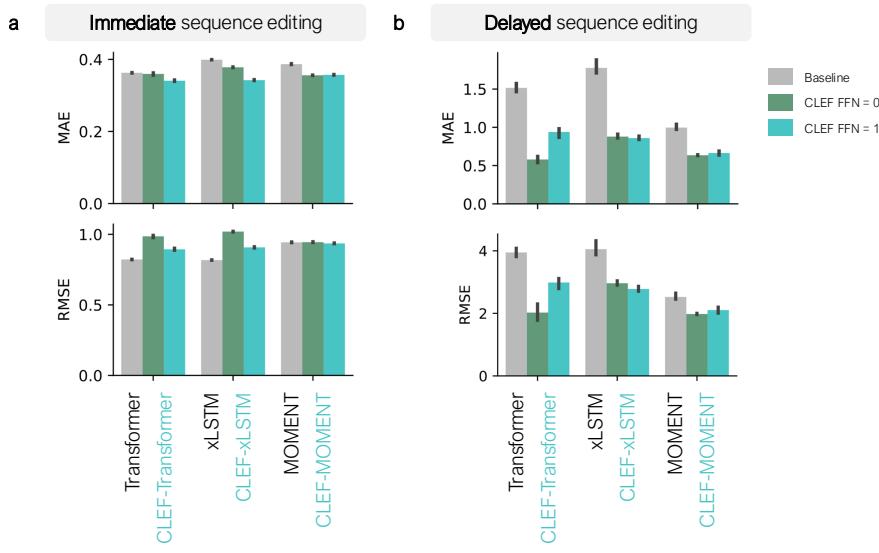


Figure 17: Benchmarking the performance of CLEF, baselines, and ablation models on zero-shot **(a)** immediate and **(b)** delayed counterfactual generation of cellular developmental trajectories (Sec. C.1). Performance is measured by MAE (top row) and RMSE (bottom row). Models are trained on 3 seeds; error bars show 95% CI.

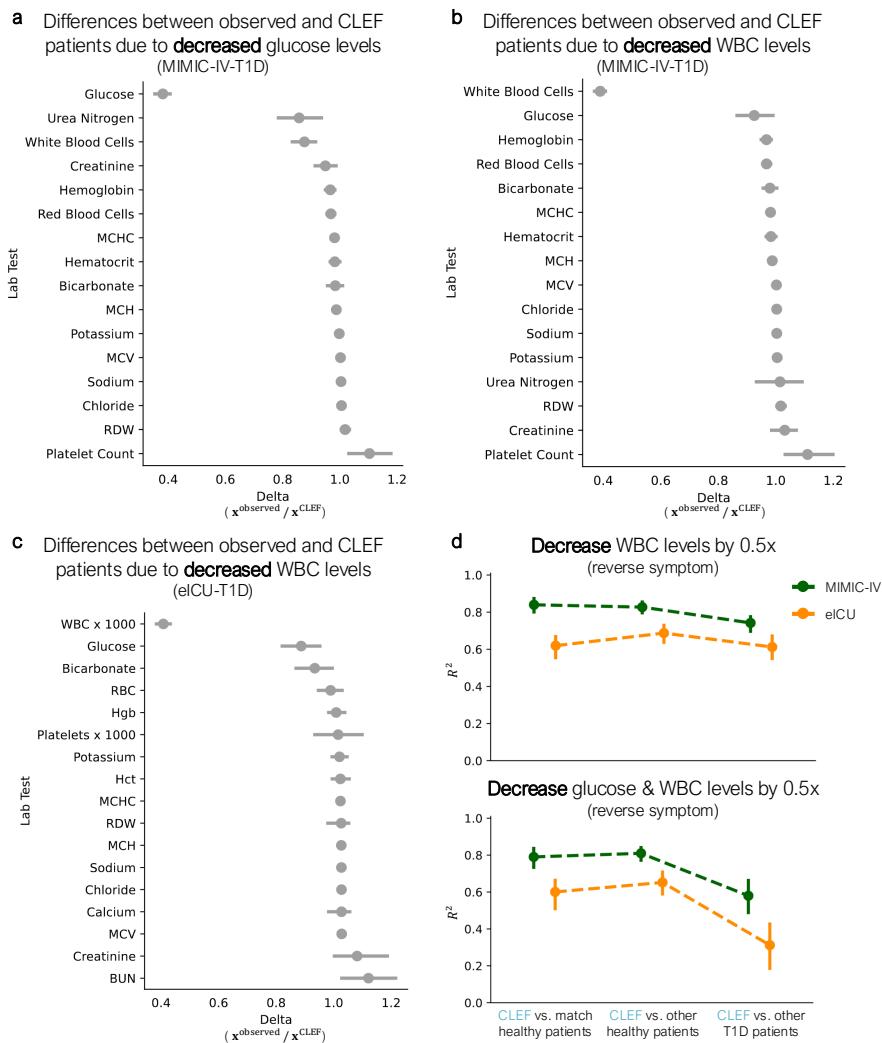


Figure 18: CLEF-generated patients via intervention on temporal concepts (Sec. C.2). Observed and CLEF patients are compared to quantify the differences between their lab test trajectories as a result of the intervention to halve the **(a)** glucose levels in T1D patients from the MIMIC-IV-T1D cohort, **(b)** white blood cell (WBC) levels in T1D patients from the MIMIC-IV-T1D cohort, and **(c)** WBC levels in T1D patients from the eICU-T1D cohort. **(d)** After intervening on CLEF to halve WBC levels, we observe whether the resulting CLEF patients' trajectories are “healthier” or “sicker” compared to other patients in the real-world cohort (top). Further, we investigate whether the intervention effects are compounded when simultaneously reducing glucose and WBC levels by half (bottom). Error bars show 95% CI.

1890

1891 **Table 7:** As an ablation on the concept decoder, we implement LowR, a decoder $(I + W)(c \odot x)$ where W is
 1892 low-rank (with rank = 4, 8, 16). We evaluate the models on **immediate** sequence editing of observed trajectories.
 1893 Models are trained on 3 seeds using standard cell-, patient-, or store-centric random splits.

1894

1895	Dataset	Model	MAE
1896	MIMIC-IV	Transformer	7.284 ± 0.005
1897		LowR-Transformer (Rank = 4)	6.673 ± 0.074
1898		LowR-Transformer (Rank = 8)	6.748 ± 0.067
1899		LowR-Transformer (Rank = 16)	6.724 ± 0.155
1900		CLEF-Transformer (FFN = 0)	6.577 ± 0.038
1901		CLEF-Transformer (FFN = 1)	6.562 ± 0.046
1902	MIMIC-IV	xLSTM	7.561 ± 0.354
1903		LowR-xLSTM (Rank = 4)	7.018 ± 0.162
1904		LowR-xLSTM (Rank = 8)	7.139 ± 0.402
1905		LowR-xLSTM (Rank = 16)	7.031 ± 0.058
1906		CLEF-xLSTM (FFN = 0)	7.493 ± 0.722
1907		CLEF-xLSTM (FFN = 1)	6.942 ± 0.052
1908	MIMIC-IV	MOMENT	14.804 ± 0.036
1909		LowR-MOMENT (Rank = 4)	10.671 ± 0.290
1910		LowR-MOMENT (Rank = 8)	10.603 ± 0.093
1911		LowR-MOMENT (Rank = 16)	10.685 ± 0.204
1912		CLEF-MOMENT (FFN = 0)	9.779 ± 0.148
1913		CLEF-MOMENT (FFN = 1)	9.579 ± 0.199
1914	eICU	Transformer	9.439 ± 0.082
1915		LowR-Transformer (Rank = 4)	8.135 ± 0.102
1916		LowR-Transformer (Rank = 8)	8.265 ± 0.109
1917		LowR-Transformer (Rank = 16)	8.426 ± 0.162
1918		CLEF-Transformer (FFN = 0)	8.319 ± 0.038
1919		CLEF-Transformer (FFN = 1)	8.338 ± 0.064
1920	eICU	xLSTM	8.041 ± 0.142
1921		LowR-xLSTM (Rank = 4)	7.731 ± 0.054
1922		LowR-xLSTM (Rank = 8)	8.018 ± 0.062
1923		LowR-xLSTM (Rank = 16)	8.001 ± 0.111
1924		CLEF-xLSTM (FFN = 0)	7.815 ± 0.139
1925		CLEF-xLSTM (FFN = 1)	7.751 ± 0.050
1926	eICU	MOMENT	13.376 ± 0.089
1927		LowR-MOMENT (Rank = 4)	10.405 ± 0.099
1928		LowR-MOMENT (Rank = 8)	10.256 ± 0.252
1929		LowR-MOMENT (Rank = 16)	11.729 ± 1.460
1930		CLEF-MOMENT (FFN = 0)	9.955 ± 0.164
1931		CLEF-MOMENT (FFN = 1)	10.111 ± 0.329
1932	WOT	Transformer	0.360 ± 0.003
1933		LowR-Transformer (Rank = 4)	0.365 ± 0.001
1934		LowR-Transformer (Rank = 8)	0.367 ± 0.001
1935		LowR-Transformer (Rank = 16)	0.366 ± 0.002
1936		CLEF-Transformer (FFN = 0)	0.360 ± 0.001
1937		CLEF-Transformer (FFN = 1)	0.344 ± 0.001
1938	WOT	xLSTM	0.373 ± 0.004
1939		LowR-xLSTM (Rank = 4)	0.362 ± 0.002
1940		LowR-xLSTM (Rank = 8)	0.363 ± 0.001
1941		LowR-xLSTM (Rank = 16)	0.365 ± 0.001
1942		CLEF-xLSTM (FFN = 0)	0.350 ± 0.001
1943		CLEF-xLSTM (FFN = 1)	0.348 ± 0.001
1944	WOT	MOMENT	0.386 ± 0.002
1945		LowR-MOMENT (Rank = 4)	0.370 ± 0.003
1946		LowR-MOMENT (Rank = 8)	0.372 ± 0.001
1947		LowR-MOMENT (Rank = 16)	0.381 ± 0.001
1948		CLEF-MOMENT (FFN = 0)	0.356 ± 0.001
1949		CLEF-MOMENT (FFN = 1)	0.356 ± 0.001
1950	M5	Transformer	1.203 ± 0.014
1951		LowR-Transformer (Rank = 4)	1.137 ± 0.036
1952		LowR-Transformer (Rank = 8)	1.136 ± 0.015
1953		LowR-Transformer (Rank = 16)	1.151 ± 0.011
1954		CLEF-Transformer (FFN = 0)	1.089 ± 0.001
1955		CLEF-Transformer (FFN = 1)	1.086 ± 0.000
1956	M5	xLSTM	1.306 ± 0.032
1957		LowR-xLSTM (Rank = 4)	1.029 ± 0.011
1958		LowR-xLSTM (Rank = 8)	1.039 ± 0.007
1959		LowR-xLSTM (Rank = 16)	1.077 ± 0.028
1960		CLEF-xLSTM (FFN = 0)	1.025 ± 0.008
1961		CLEF-xLSTM (FFN = 1)	0.845 ± 0.006
1962	M5	MOMENT	1.156 ± 0.043
1963		LowR-MOMENT (Rank = 4)	0.835 ± 0.019
1964		LowR-MOMENT (Rank = 8)	0.849 ± 0.006
1965		LowR-MOMENT (Rank = 16)	0.875 ± 0.023
1966		CLEF-MOMENT (FFN = 0)	0.786 ± 0.003
1967		CLEF-MOMENT (FFN = 1)	0.778 ± 0.015

1944

Table 8: As an ablation on the concept decoder, we implement LowR, a decoder $(I + W)(c \odot x)$ where W is low-rank (with rank = 4, 8, 16). We evaluate the models on **delayed** sequence editing of observed trajectories. Models are trained on 3 seeds using standard cell-, patient-, or store-centric random splits.

1948

	Dataset	Model	MAE
1950 1951 1952 1953	MIMIC-IV	Transformer	8.346 ± 0.129
		LowR-Transformer (Rank = 4)	7.818 ± 0.045
		LowR-Transformer (Rank = 8)	7.943 ± 0.041
		LowR-Transformer (Rank = 16)	7.928 ± 0.027
		CLEF-Transformer (FFN = 0)	7.915 ± 0.046
		CLEF-Transformer (FFN = 1)	7.863 ± 0.065
1954 1955 1956 1957	MIMIC-IV	xLSTM	7.678 ± 0.029
		LowR-xLSTM (Rank = 4)	7.742 ± 0.075
		LowR-xLSTM (Rank = 8)	7.853 ± 0.026
		LowR-xLSTM (Rank = 16)	7.823 ± 0.025
		CLEF-xLSTM (FFN = 0)	8.420 ± 0.692
		CLEF-xLSTM (FFN = 1)	7.794 ± 0.042
1958 1959 1960 1961	MIMIC-IV	MOMENT	10.807 ± 0.054
		LowR-MOMENT (Rank = 4)	8.928 ± 0.362
		LowR-MOMENT (Rank = 8)	8.926 ± 0.221
		LowR-MOMENT (Rank = 16)	9.001 ± 0.493
		CLEF-MOMENT (FFN = 0)	8.688 ± 0.074
		CLEF-MOMENT (FFN = 1)	8.563 ± 0.182
1962 1963 1964 1965	eICU	Transformer	8.377 ± 0.047
		LowR-Transformer (Rank = 4)	7.465 ± 0.201
		LowR-Transformer (Rank = 8)	7.567 ± 0.070
		LowR-Transformer (Rank = 16)	7.788 ± 0.128
		CLEF-Transformer (FFN = 0)	7.643 ± 0.083
		CLEF-Transformer (FFN = 1)	7.566 ± 0.040
1966 1967 1968 1969	eICU	xLSTM	7.086 ± 0.066
		LowR-xLSTM (Rank = 4)	7.253 ± 0.023
		LowR-xLSTM (Rank = 8)	7.375 ± 0.094
		LowR-xLSTM (Rank = 16)	7.414 ± 0.112
		CLEF-xLSTM (FFN = 0)	7.324 ± 0.048
		CLEF-xLSTM (FFN = 1)	7.241 ± 0.082
1970 1971 1972 1973	eICU	MOMENT	10.289 ± 0.086
		LowR-MOMENT (Rank = 4)	8.873 ± 0.157
		LowR-MOMENT (Rank = 8)	9.074 ± 0.352
		LowR-MOMENT (Rank = 16)	9.608 ± 1.133
		CLEF-MOMENT (FFN = 0)	8.773 ± 0.120
		CLEF-MOMENT (FFN = 1)	8.472 ± 0.259
1974 1975 1976 1977	WOT	Transformer	1.273 ± 0.022
		LowR-Transformer (Rank = 4)	0.552 ± 0.049
		LowR-Transformer (Rank = 8)	0.547 ± 0.003
		LowR-Transformer (Rank = 16)	0.525 ± 0.057
		CLEF-Transformer (FFN = 0)	0.494 ± 0.045
		CLEF-Transformer (FFN = 1)	0.748 ± 0.035
1978 1979 1980 1981	WOT	xLSTM	1.592 ± 0.022
		LowR-xLSTM (Rank = 4)	0.857 ± 0.086
		LowR-xLSTM (Rank = 8)	0.854 ± 0.047
		LowR-xLSTM (Rank = 16)	0.882 ± 0.048
		CLEF-xLSTM (FFN = 0)	0.724 ± 0.016
		CLEF-xLSTM (FFN = 1)	1.028 ± 0.030
1982 1983 1984 1985	WOT	MOMENT	0.836 ± 0.018
		LowR-MOMENT (Rank = 4)	0.534 ± 0.010
		LowR-MOMENT (Rank = 8)	0.542 ± 0.005
		LowR-MOMENT (Rank = 16)	0.576 ± 0.003
		CLEF-MOMENT (FFN = 0)	0.493 ± 0.002
		CLEF-MOMENT (FFN = 1)	0.512 ± 0.009
1986 1987 1988 1989	M5	Transformer	1.214 ± 0.016
		LowR-Transformer (Rank = 4)	1.133 ± 0.036
		LowR-Transformer (Rank = 8)	1.137 ± 0.010
		LowR-Transformer (Rank = 16)	1.149 ± 0.012
		CLEF-Transformer (FFN = 0)	1.090 ± 0.001
		CLEF-Transformer (FFN = 1)	1.086 ± 0.000
1990 1991 1992 1993	M5	xLSTM	1.345 ± 0.034
		LowR-xLSTM (Rank = 4)	1.067 ± 0.014
		LowR-xLSTM (Rank = 8)	1.075 ± 0.013
		LowR-xLSTM (Rank = 16)	1.117 ± 0.030
		CLEF-xLSTM (FFN = 0)	1.066 ± 0.009
		CLEF-xLSTM (FFN = 1)	0.867 ± 0.008
1994 1995 1996 1997	M5	MOMENT	1.162 ± 0.044
		LowR-MOMENT (Rank = 4)	0.858 ± 0.015
		LowR-MOMENT (Rank = 8)	0.876 ± 0.006
		LowR-MOMENT (Rank = 16)	0.907 ± 0.026
		CLEF-MOMENT (FFN = 0)	0.819 ± 0.004
		CLEF-MOMENT (FFN = 1)	0.807 ± 0.017

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

Table 9: To show the benefit of single-step generation, we arbitrarily add three intermediate steps between t_i and t_j before finally predicting the observed x_{t_j} . Because we only have the ground truth for x_{t_j} , we evaluate only on the predicted x_{t_j} . Models are trained on 3 seeds using standard cell-, patient-, or store-centric random splits.

Dataset	Model	MAE
MIMIC-IV	Transformer	8.346 ± 0.129
	Transformer(intermediate)	8.627 ± 0.365
	CLEF-Transformer	7.915 ± 0.046
	CLEF-Transformer(intermediate)	8.279 ± 0.135
MIMIC-IV	xLSTM	7.678 ± 0.029
	xLSTM(intermediate)	8.281 ± 0.414
	CLEF-xLSTM	8.420 ± 0.692
	CLEF-xLSTM(intermediate)	8.684 ± 0.767
MIMIC-IV	MOMENT	10.807 ± 0.054
	MOMENT(intermediate)	10.673 ± 0.059
	CLEF-MOMENT	8.688 ± 0.074
	CLEF-MOMENT(intermediate)	9.096 ± 0.137
eICU	Transformer	8.377 ± 0.047
	Transformer(intermediate)	9.707 ± 1.646
	CLEF-Transformer	7.643 ± 0.083
	CLEF-Transformer(intermediate)	8.144 ± 0.247
eICU	xLSTM	7.086 ± 0.066
	xLSTM(intermediate)	8.015 ± 0.566
	CLEF-xLSTM	7.324 ± 0.048
	CLEF-xLSTM(intermediate)	8.121 ± 0.371
eICU	MOMENT	10.289 ± 0.086
	MOMENT(intermediate)	10.233 ± 0.069
	CLEF-MOMENT	8.773 ± 0.120
	CLEF-MOMENT(intermediate)	9.591 ± 0.198
WOT	Transformer	1.273 ± 0.022
	Transformer(intermediate)	1.068 ± 0.053
	CLEF-Transformer	0.494 ± 0.045
	CLEF-Transformer(intermediate)	0.411 ± 0.026
WOT	xLSTM	1.592 ± 0.022
	xLSTM(intermediate)	1.444 ± 0.043
	CLEF-xLSTM	0.724 ± 0.016
	CLEF-xLSTM(intermediate)	0.395 ± 0.010
WOT	MOMENT	0.836 ± 0.018
	MOMENT(intermediate)	0.764 ± 0.015
	CLEF-MOMENT	0.493 ± 0.002
	CLEF-MOMENT(intermediate)	0.463 ± 0.003
M5	Transformer	1.214 ± 0.016
	Transformer(intermediate)	1.205 ± 0.016
	CLEF-Transformer	1.090 ± 0.001
	CLEF-Transformer(intermediate)	1.075 ± 0.001
M5	xLSTM	1.345 ± 0.034
	xLSTM(intermediate)	1.271 ± 0.030
	CLEF-xLSTM	1.066 ± 0.009
	CLEF-xLSTM(intermediate)	1.121 ± 0.011
M5	MOMENT	1.162 ± 0.044
	MOMENT(intermediate)	1.137 ± 0.043
	CLEF-MOMENT	0.819 ± 0.004
	CLEF-MOMENT(intermediate)	0.799 ± 0.005

2052

2053

2054

Table 10: Binary cross entropy (BCE) loss for predicting the treatment from the learned representations of CLEF and non-CLEF models on tumor growth (single-sliding treatment) with different amounts of time-varying confounding γ (Sec. C.3). GR refers to Gradient Reversal loss (Bica et al., 2020); CDC refers to Counterfactual Domain Confusion loss (Melnichuk et al., 2022); BL refers to Balancing Loss (i.e., GR or CDC). Models are trained on 5 seeds; error bars show 95% CI.

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

Model	BCE Loss
CT w/CDC	1.499 ± 0.099
CLEF-CT w/CDC	1.506 ± 0.096
CRN w/GR	1.193 ± 0.169
CLEF-CRN w/GR	1.196 ± 0.167
CRN w/CDC	1.695 ± 0.652
CLEF-CRN w/CDC	1.597 ± 0.187

Table 11: Binary cross entropy (BCE) loss for predicting the treatment from the learned representations of CLEF and non-CLEF models on tumor growth (random trajectories setting) with different amounts of time-varying confounding γ (Sec. C.3). GR refers to Gradient Reversal loss (Bica et al., 2020); CDC refers to Counterfactual Domain Confusion loss (Melnichuk et al., 2022); BL refers to Balancing Loss (i.e., GR or CDC). Models are trained on 5 seeds; error bars show 95% CI.

Model	BCE Loss
CT w/CDC	1.497 ± 0.089
CLEF-CT w/CDC	1.509 ± 0.098
CRN w/GR	1.194 ± 0.168
CLEF-CRN w/GR	1.196 ± 0.167
CRN w/CDC	1.583 ± 0.178
CLEF-CRN w/CDC	1.598 ± 0.188

Table 12: Binary cross entropy (BCE) loss for predicting the treatment from the learned representations of CLEF and non-CLEF models on semi-synthetic patient ICU trajectories (Sec. C.4). GR refers to Gradient Reversal loss (Bica et al., 2020); CDC refers to Counterfactual Domain Confusion loss (Melnichuk et al., 2022); BL refers to Balancing Loss (i.e., GR or CDC). Models are trained on 5 seeds; error bars show 95% CI.

Model	BCE Loss
CT w/CDC	1.656 ± 0.631
CLEF-CT w/CDC	1.300 ± 0.375
CRN w/GR	0.330 ± 0.149
CLEF-CRN w/GR	0.364 ± 0.151
CRN w/CDC	1.706 ± 0.662
CLEF-CRN w/CDC	1.650 ± 0.640

2106
2107
2108
2109
2110

Table 13: Generated counterfactual eICU-T1D patients via intervention (i.e., decrease glucose levels by 0.5x, increase glucose levels by 2x) on temporal concepts from CLEF and SimpleLinear (ablation). We compare the generated trajectories against observed trajectories of matched healthy, other healthy, and other type 1 diabetic (T1D) patients. Higher R^2 indicates that patient pairs are more similar. CLEF’s generated trajectories are more similar to those of the other T1D patients ($R^2 = 0.348 \pm 0.149$) than matched healthy ($R^2 = 0.147 \pm 0.111$) and other healthy ($R^2 = 0.175 \pm 0.106$) patients. On the other hand, SimpleLinear’s generated trajectories have consistent and low similarity to those of matched healthy ($R^2 = 0.287 \pm 0.141$), other healthy ($R^2 = 0.263 \pm 0.159$), and other T1D ($R^2 = 0.240 \pm 0.087$) patients. Also, the R^2 between SimpleLinear’s generated trajectories and the trajectories of the matched healthy, other healthy, and other T1D patients are comparable. On the other hand, the R^2 between CLEF’s generated trajectories and healthy trajectories are significantly lower than the R^2 between CLEF’s generated trajectories and other T1D patients’. Unlike CLEF, SimpleLinear cannot generate trajectories that resemble the trajectories of healthier or sicker patients, depending on the intervention.

2122
2123
2124
2125
2126
2127
2128

Model	Intervention	Matched Healthy	Other Healthy	Other T1D
CLEF	0.5x glucose	0.757 ± 0.227	0.737 ± 0.126	0.600 ± 0.122
SimpleLinear	0.5x glucose	0.403 ± 0.226	0.390 ± 0.233	0.288 ± 0.109
CLEF	2x glucose	0.147 ± 0.111	0.175 ± 0.106	0.348 ± 0.149
SimpleLinear	2x glucose	0.287 ± 0.141	0.263 ± 0.159	0.240 ± 0.087

2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139

Table 14: Generated counterfactual MIMIC-IV-T1D patients via intervention (i.e., decrease glucose levels by 0.5x, increase glucose levels by 2x) on temporal concepts from CLEF and SimpleLinear (ablation). We compare the generated trajectories against observed trajectories of matched healthy, other healthy, and other type 1 diabetic (T1D) patients. Higher R^2 indicates that patient pairs are more similar. CLEF’s generated trajectories are more similar to those of the other T1D patients ($R^2 = 0.472 \pm 0.134$) than matched healthy ($R^2 = 0.364 \pm 0.126$) and other healthy ($R^2 = 0.344 \pm 0.129$) patients, which is expected. On the other hand, SimpleLinear’s trajectories are more similar to those of the matched healthy ($R^2 = 0.790 \pm 0.110$) and other healthy ($R^2 = 0.709 \pm 0.051$) patients than other T1D patients ($R^2 = 0.541 \pm 0.056$), which is unexpected. Unlike CLEF, SimpleLinear cannot generate trajectories that resemble the trajectories of healthier or sicker patients, depending on the intervention.

2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Model	Intervention	Matched Healthy	Other Healthy	Other T1D
CLEF	0.5x glucose	0.838 ± 0.140	0.814 ± 0.076	0.692 ± 0.071
SimpleLinear	0.5x glucose	0.713 ± 0.166	0.689 ± 0.113	0.564 ± 0.082
CLEF	2x glucose	0.364 ± 0.126	0.344 ± 0.129	0.472 ± 0.134
SimpleLinear	2x glucose	0.790 ± 0.110	0.709 ± 0.051	0.541 ± 0.056

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174 **Table 15:** We provided qualitative trajectories for a patients. CLEF seems to generate lab test values that are
2175 closer to the observed lab test values than non-CLEF models.

2176

2177

Lab	Time	Observed	CLEF	Non-CLEF
Hct	1900-01-03 09:58:00	28.200	31.664	32.347
	1900-01-04 10:09:00	26.700	32.022	32.805
	1900-01-05 09:31:00	26.000	31.885	32.831
	1900-01-06 06:19:00	27.500	32.025	32.863
	1900-01-07 10:00:00	27.800	31.779	32.357
	1900-01-09 09:29:00	29.500	31.084	32.169
	1900-01-10 10:04:00	30.600	30.771	31.962
Hgb	1900-01-03 09:58:00	9.700	10.193	10.558
	1900-01-04 10:09:00	9.000	10.273	10.665
	1900-01-05 09:31:00	8.700	10.230	10.541
	1900-01-06 06:19:00	9.200	10.295	10.605
	1900-01-07 10:00:00	9.300	10.182	10.472
	1900-01-09 09:29:00	9.700	9.938	10.391
	1900-01-10 10:04:00	9.800	9.804	10.192
MCH	1900-01-03 09:58:00	31.700	29.848	27.969
	1900-01-04 10:09:00	31.400	29.904	27.874
	1900-01-05 09:31:00	31.000	29.626	27.617
	1900-01-06 06:19:00	30.700	29.649	27.596
	1900-01-07 10:00:00	31.200	29.467	27.667
	1900-01-09 09:29:00	30.700	29.874	28.041
	1900-01-10 10:04:00	30.100	29.315	27.816
MCV	1900-01-03 09:58:00	92.200	93.786	89.05
	1900-01-04 10:09:00	93.000	93.745	89.26
	1900-01-05 09:31:00	92.500	93.373	88.64
	1900-01-06 06:19:00	91.700	93.508	88.65
	1900-01-07 10:00:00	93.300	93.270	88.68
	1900-01-09 09:29:00	93.400	94.305	89.65
	1900-01-10 10:04:00	93.900	93.824	89.26
Sodium	1900-01-03 09:58:00	139.000	137.202	140.934
	1900-01-04 10:09:00	137.000	137.157	141.779
	1900-01-05 09:31:00	138.000	136.695	141.848
	1900-01-06 06:19:00	137.000	137.239	141.967
	1900-01-07 10:00:00	138.000	136.807	142.173
	1900-01-09 09:29:00	137.000	137.781	142.912
	1900-01-10 10:04:00	137.000	138.031	141.562

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216 **Table 16:** We provided qualitative trajectories for a patients. CLEF seems to generate lab test values that are
2217 closer to the observed lab test values than non-CLEF models.

2218

2219

Lab	Time	Observed	CLEF	Non-CLEF
Hct	1900-01-07 12:31:00	34.400	32.783	32.298
	1900-01-08 10:29:00	33.800	32.530	31.573
	1900-01-09 11:58:00	34.500	32.110	31.828
	1900-01-10 18:08:00	36.600	32.288	31.464
	1900-01-11 11:24:00	33.300	32.224	31.802
	1900-01-12 11:28:00	35.100	32.138	31.043
	1900-01-13 10:21:00	36.400	32.361	31.413
	1900-01-14 11:10:00	33.600	31.970	31.080
	1900-01-15 09:25:00	34.300	31.684	30.439
	1900-01-16 10:14:00	33.400	31.706	31.286
	1900-01-17 09:56:00	35.800	31.411	30.515
	1900-01-18 10:13:00	34.400	31.610	31.164
	1900-01-19 09:25:00	32.300	31.057	30.230
	1900-01-20 10:47:00	31.100	31.215	30.727
	1900-01-21 11:07:00	31.300	30.864	29.923
Hgb	1900-01-07 12:31:00	11.300	10.967	10.607
	1900-01-08 10:29:00	11.100	10.788	10.367
	1900-01-09 11:58:00	11.500	10.629	10.446
	1900-01-10 18:08:00	12.200	10.736	10.296
	1900-01-11 11:24:00	11.100	10.695	10.388
	1900-01-12 11:28:00	11.400	10.674	10.203
	1900-01-13 10:21:00	12.200	10.755	10.281
	1900-01-14 11:10:00	10.900	10.605	10.253
	1900-01-15 09:25:00	10.900	10.527	10.008
	1900-01-16 10:14:00	10.900	10.542	10.178
	1900-01-17 09:56:00	11.500	10.425	9.923
	1900-01-18 10:13:00	11.000	10.495	10.108
	1900-01-19 09:25:00	10.400	10.290	9.748
	1900-01-20 10:47:00	10.000	10.334	9.848
	1900-01-21 11:07:00	9.800	10.198	9.611
MCH	1900-01-07 12:31:00	30.100	29.502	27.910
	1900-01-08 10:29:00	30.000	29.252	27.722
	1900-01-09 11:58:00	30.700	29.300	27.923
	1900-01-10 18:08:00	30.600	29.222	27.676
	1900-01-11 11:24:00	30.200	29.299	27.440
	1900-01-12 11:28:00	29.800	29.160	27.412
	1900-01-13 10:21:00	30.300	29.183	27.374
	1900-01-14 11:10:00	30.100	29.106	26.954
	1900-01-15 09:25:00	29.600	29.062	27.089
	1900-01-16 10:14:00	30.200	29.197	27.007
	1900-01-17 09:56:00	29.900	29.024	26.864
	1900-01-18 10:13:00	29.900	29.153	26.852
	1900-01-19 09:25:00	30.100	29.044	26.847
	1900-01-20 10:47:00	29.900	29.046	26.571
	1900-01-21 11:07:00	29.900	28.978	26.824
MCV	1900-01-07 12:31:00	91.700	87.581	85.512
	1900-01-08 10:29:00	91.400	88.247	84.877
	1900-01-09 11:58:00	92.000	88.324	85.455
	1900-01-10 18:08:00	91.700	88.097	84.901
	1900-01-11 11:24:00	90.500	88.038	84.469
	1900-01-12 11:28:00	91.900	87.922	84.194
	1900-01-13 10:21:00	90.500	87.972	84.065
	1900-01-14 11:10:00	92.800	87.738	83.119
	1900-01-15 09:25:00	93.200	87.634	82.869
	1900-01-16 10:14:00	92.500	87.803	83.296
	1900-01-17 09:56:00	93.000	87.629	82.255
	1900-01-18 10:13:00	93.500	87.828	82.804
	1900-01-19 09:25:00	93.400	87.821	82.391
	1900-01-20 10:47:00	92.800	87.924	82.099
	1900-01-21 11:07:00	95.400	88.035	82.560
Sodium	1900-01-07 12:31:00	135.000	136.593	139.930
	1900-01-08 10:29:00	137.000	135.900	139.291
	1900-01-09 11:58:00	136.000	137.241	141.514
	1900-01-10 18:08:00	136.000	137.631	142.512
	1900-01-11 11:24:00	136.000	138.199	142.694
	1900-01-12 11:28:00	135.000	138.312	143.094
	1900-01-13 10:21:00	133.000	138.811	142.580
	1900-01-14 11:10:00	135.000	138.777	141.410
	1900-01-15 09:25:00	132.000	138.393	141.368
	1900-01-16 10:14:00	134.000	139.036	141.228
	1900-01-17 09:56:00	135.000	138.747	139.891
	1900-01-18 10:13:00	137.000	138.992	140.015
	1900-01-19 09:25:00	136.000	138.943	139.224
	1900-01-20 10:47:00	135.000	138.693	138.322
	1900-01-21 11:07:00	138.000	138.965	138.743

2266

2267

2268 F LIMITATIONS & FUTURE DIRECTIONS
2269

2270 There are a few key limitations of CLEF. Firstly, we define temporal concepts such that each element
 2271 represents a unique measured variable in the sequence (e.g., gene expression, lab test). Instead, it
 2272 may be beneficial to learn higher-order relationships between the measured variables or across time
 2273 as abstract hierarchical concepts (LCM et al., 2024; Kacprzyk et al., 2024). Secondly, while CLEF is
 2274 able to generate counterfactual sequences for any condition, including those it may not have seen
 2275 during training, CLEF could potentially improve with additional guidance from a real-world causal
 2276 model for the system or domain of interest (Chatzi et al., 2025). Since defining such a real-world
 2277 causal graph is a major challenge, one promising future direction could be to enable user interventions,
 2278 such as those performed in our T1D case studies, to finetune CLEF. There are many opportunities
 2279 to improve CLEF. While elegant, the multiplicative decoder may impose a linearity assumption.
 2280 Also, in the concept decoder, it can be a limitation to use the last time step x_{t_i} for decoding the next
 2281 time step if there are missing or zero values. Straightforward solutions are to take the mean of the
 2282 historical context or impute the missing values in the historical data before forecasting t_j . In addition
 2283 to temporal editing of trajectories, future work may extend CLEF for spatial and positional editing.
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321