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ABSTRACT

Post-train pruning without fine-tuning has emerged as an efficient method for com-
pressing large language models for inference, offering a computationally cheaper
alternative to other approaches. However, recent studies have revealed that, un-
like quantization, pruning consistently degrades model performance as sparsity
increases. We demonstrate that this degradation results from pruning’s inability to
preserve a low-rank structure in the model’s weights, which is crucial for main-
taining attention sinks. Furthermore, we show that these attention sinks play a
key role in enabling the model to segment sequences—an essential mechanism
for effective few-shot learning.

1 INTRODUCTION

Post-train pruning has become a widely used, computationally inexpensive method for compressing
large foundation models, particularly those that do not require further fine-tuning (Benbaki et al.,
2023; Frantar & Alistarh, 2023; Sun et al., 2024b; Ashkboos et al., 2024). However, these ap-
proaches assume that trained model weights can be accurately approximated by sparse matrices.
Recent work by Yin et al. (2024) challenges this assumption, showing a consistent decline in perfor-
mance as pruning sparsity increases. This raises doubts about whether pure sparsity is the optimal
structure to impose on trained model weights. In this work, we demonstrate that:

• A low-rank structure exists within trained model weights and is responsible for generating
two key phenomena essential to model performance: attention sinks and outlier feature
dimensions.

• Pruned models that do not preserve a low-rank structure exhibit fewer attention sinks than
their dense counterparts and those that preserve a low-rank structure.

• Attention sinks coincide with sequence segmentation, which is crucial in scenarios like
few-shot learning (Brown et al., 2020), where separating prompts into distinct parts is ben-
eficial.

Based on these observations, we argue that decomposing model weights into a sparse plus low-
rank structure (Candès et al., 2011; Yu et al., 2017; Thangarasa et al., 2024; Zhang & Papyan,
2024) significantly improves post-train pruning, providing a more faithful approximation of the
dense model’s weight matrices.

1.1 BACKGROUND: ATTENTION SINKS AND OUTLIER FEATURES

Two key phenomena observed in large language models, both relevant to model compression, are:

Attention Sinks Coined by Xiao et al. (2024), the authors found that all tokens attend strongly to
the first token. Follow-up works demonstrated that sinks may also appear in later tokens (Yu et al.,
2024; Sun et al., 2024a; Cancedda, 2024).
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(a) Dense (b) Sparse + Low-Rank (c) 0 + Low-Rank (d) Sparse + 0

Figure 1: Comparison of attention weights and attention output for layer 2, head 5, across the dense
Phi-3 Medium and Phi-3 Medium compressed by the OATS algorithm.

Outlier Feature Dimensions Feature dimensions in the activations that are significantly larger
in magnitude (Kovaleva et al., 2021; Dettmers et al., 2022). Unlike attention sinks, outlier feature
dimensions are consistent across tokens.

In our work, we provide evidence that these phenomena are induced by a low-rank structure in the
model’s weights that needs to be preserved for model performance.

2 EXISTENCE OF A LOW-RANK STRUCTURE

We show that the emergence of attention sinks and outlier feature dimensions in large language
models can be attributed to a low-rank structure in the model’s weights. We utilize a recent pruning
method called OATS (Zhang & Papyan, 2024), which approximates each of the model’s weight
matrices as a sparse plus low-rank matrix:

W = S +UV ⊤.

Figure 1 above presents the attention weights, of a Phi-3 Medium model (Abdin et al., 2024) in four
configurations: a dense model, a model compressed by 50% using OATS, a model compressed by
50% using OATS where the low-rank matrices are set to 0, and a model compressed by 50% using
OATS where the sparse matrices are set to 0. Attention sinks and outlier feature dimensions exist in
all configurations except for the model without low-rank terms.

To explore this quantitatively, we leverage a thresholding technique by Gu et al. (2025) that counts
the number of attention sinks. Denote Aℓ,h as the attention weights of layer ℓ, head h. Given a
sequence prompt of length T , token t is deemed an attention sink if and only if:

1

T − t+ 1

T∑
k=1

Aℓ,h
k,t > ϵ (1)

where ϵ is a designated threshold that we set to 0.1. Table 1 below depicts the number of attention
sinks exhibited by compressed models in the configurations above averaged across 170 sequences.

Configuration Llama-3 8B Phi-3 Medium Qwen 2.5
7B 14B

Low-Rank Terms Only 986 3, 334 1, 495 2, 317
Sparse Terms Only 0 3 279 193

Table 1: Total number of attention sinks, computed using Equation (1), exhibited by models com-
pressed by 50% using OATS in two configurations. Models with low-rank components exhibit
attention sinks, whereas those with only sparse terms show none or few.
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Figure 2: Total number of attention sinks exhibited by compressed models with the percent reduction
from dense models shown above each bar. Compressed models exhibit fewer attention sinks than
their dense counterparts with OATS preserving the most sinks most frequently.

3 PRUNING HARMS LOW-RANK STRUCTURE

3.1 PRUNING LEADS TO MISSING SINKS

Given that a low-rank structure contributes to the emergence of these two phenomena, a natural
question arises: do standard pruning methods that rely solely on sparsity inadvertently disrupt the
low-rank structure responsible for generating them? To explore this, we again use Equation (1) to
count the number of sinks exhibited by models compressed using OATS, as well as models pruned
using SparseGPT (Frantar & Alistarh, 2023) and Wanda (Sun et al., 2024b) – both of which enforce
a purely sparse structure. Figure 2 above shows the results highlighting that pruned models relying
purely on sparsity exhibit fewer sinks.

3.2 SPARSE PLUS LOW-RANK: CLOSER APPROXIMATION

In addition to capturing all attention sinks, representing the model’s weight matrices as a sum of
sparse plus low-rank matrices leads to a closer approximation of the original model’s weights, as
measured by the Frobenius norm:

∆W = ∥Wdense −Wpruned∥2F .

We sum these values across all linear weight matrices in a decoder layer and normalize by the
total number of parameters in that layer. Although the Frobenius norm is not a reliable indicator
of pruning performance – as shown by the poor results of magnitude pruning on LLMs (Frantar
& Alistarh, 2023; Sun et al., 2024b) – Figure 3 below shows that OATS often achieves a closer
approximation than even magnitude pruning while outperforming sparse-only methods (Zhang &
Papyan, 2024). This suggests that combining sparse plus low-rank offers a closer approximation of
trained weights than sparse only.
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Figure 3: ∆W measured on Phi-3 Medium, Qwen 2.5 14B, and Llama-3 8b, compressed by 50%
with OATS, Wanda, SparseGPT, and magnitude pruning.
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4 SINKS AND OUTLIERS: FEW-SHOT LEARNING

4.1 SEQUENCE SEGMENTATION

We apply a similar technique to Oquab et al. (2024) to show that the model segments sequences
based on the location of the attention sinks. We compute the top two principal components of the
d × d covariance matrix of the attention head outputs, where d is the embedding dimension, and
project the embeddings onto this basis. The projected values are then normalized to [0, 255] and
mapped to RGB channels. Figure 4 below depicts the results and shows that clustering aligns with
the locations of the attention sinks.

(a) Attention Weights. Two distinct
attention sinks exhibited in layer 3,
head 6, of a dense model.

(b) PCA on the residual stream in a deeper layer. Tokens that
attended to the first sink are green, while those attending to the sec-
ond sink are brown and yellow.

Figure 4: Sequence Segmentation. Tokens in the residual stream at layer 17 in a dense Phi-3
Medium model are clustered based on the attention sink that they attend to.

4.2 IMPLICATIONS FOR FEW-SHOT LEARNING
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Figure 5: Impact of increasing the num-
ber of examples on model performance.
Accuracy is measured on the MMLU
dataset.

Since attention sinks are responsible for segmenting se-
quences, it is likely crucial for distinguishing between
examples in few-shot learning. To test this, we mea-
sure the gap in k-shot performance on the MMLU dataset
(Hendrycks et al., 2021) where k ranges from 0 to 5.
We compare the performance of OATS with Wanda and
SparseGPT in Figure 5 on a Phi-3 Medium model that has
been compressed by 50%.

While all methods perform similarly at 0-shot, where seg-
mentation is less critical, the gap widens with k, high-
lighting the importance of OATS’ ability to retain the
low-rank structure. In contrast, the model pruned by
SparseGPT shows no improvement with more examples,
indicating severely compromised few-shot capabilities.

5 CONCLUSION

We present evidence that the assumption underlying pruning, which relies on a sparse representation
of the model weights, is flawed and overlooks the presence of a low-rank structure inherent in the
trained weights. We demonstrate that this low-rank structure is responsible for creating attention
sinks, which the model leverages for sequence segmentation. Consequently, pruning methods that
fail to preserve the low-rank structure not only result in a poorer approximation of the dense weights
but also hinder the model’s few-shot learning capabilities.
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Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khali-
dov, Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, Mido Assran,
Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra,
Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Jegou, Julien Mairal, Patrick
Labatut, Armand Joulin, and Piotr Bojanowski. DINOv2: Learning robust visual features with-
out supervision. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL
https://openreview.net/forum?id=a68SUt6zFt. Featured Certification.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv e-prints, 2019.

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language
models. In First Conference on Language Modeling, 2024a. URL https://openreview.
net/forum?id=F7aAhfitX6.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. In The Twelfth International Conference on Learning Representations,
2024b. URL https://openreview.net/forum?id=PxoFut3dWW.

Vithursan Thangarasa, Shreyas Saxena, Abhay Gupta, and Sean Lie. Sparse-IFT: Sparse iso-FLOP
transformations for maximizing training efficiency. In Proceedings of the 41st International Con-
ference on Machine Learning, volume 235 of Proceedings of Machine Learning Research. PMLR,
2024. URL https://proceedings.mlr.press/v235/thangarasa24a.html.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
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A EXPERIMENT DETAILS

We use the HuggingFace Transformers library (Wolf et al., 2019) to load the Phi-3 Medium (Abdin
et al., 2024), Qwen 2.5 models (Qwen et al., 2025), and Llama 3 8B model (Grattafiori et al., 2024)
utilized in our experiments. To evaluate the few-shot performance of MMLU, we use LM Harness
(Gao et al., 2024).

A.1 PRUNING HYPERPARAMETERS

We prune uniformly across all linear layers in the model and exclude the embedding and the lan-
guage modeling head layers from pruning. This remains consistent with (Frantar & Alistarh, 2023;
Sun et al., 2024b; Zhang & Papyan, 2024). As calibration data, we use 128 sequences of length 2048
from the first shard of the C4 dataset (Raffel et al., 2019). The algorithm-specific hyperparameters
are:

• SparseGPT
– Hessian Dampening: 0.1
– Block Size: 128

• OATS
– Iterations: 80
– Phi-3 Medium & Qwen 2.5 7B & Qwen 2.5 14B:

* Rank Ratio: 0.25
– Llama 3 8B:

* Rank Ratio: 0.3

A.2 PROMPT INFORMATION

The prompt used to generate Figure 1 and Figure 4 is:

I laughed with friends until my stomach hurt. I wiped
away tears of sadness and said nothing. I slammed my
fist in anger on the table.

To generate Table 1, we use 170 prompts that have been provided by (Gu et al., 2025) that can
be found here: https://github.com/sail-sg/Attention-Sink/blob/main/datasets/probe valid.jsonl. We
truncate each prompt to have only 150 tokens.

To generate Figure 2, we source questions and answers from the MMLU dataset to generate 110
prompts that follow the prompt template below.

You are a helpful assistant. Answer the following multiple-choice question.

Question: <Example question 1>
A) <Choice A> B) <Choice B> C) <Choice C> D) <Choice D>
Answer: A

Question: <Example question 2>
A) <Choice A> B) <Choice B> C) <Choice C> D) <Choice D>
Answer: C

Question: <Test question>
A) <Choice A> B) <Choice B> C) <Choice C> D) <Choice D>
Answer:
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