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Abstract

This paper presents our submission to Track 2 of
the Multimodal Perception and Comprehension of Cor-
ner Cases in Autonomous Driving. While the field
of autonomous driving has garnered significant inter-
est, the collection and annotation of street scenes re-
main prohibitively expensive. In this work, we explore
previous methods of street scene generation using dif-
fusion models and propose our approach. By combin-
ing pre-trained image and motion layers, we achieve
high-quality results with minimal training. To gener-
ate videos of arbitrary length with smooth transitions,
we employ a sliding window technique to mitigate dis-
crepancies between segments. The source code is avail-
able at https://github.com/ZhiyingDu/ECCV-
2024-Workshop-on-Multimodal-Perception-
and-Comprehension-of-Corner-Cases-in-
Autonomous-Driving

1. Introduction
In the field of autonomous driving, the demand for high-
quality, annotated multi-view image and video datasets
is paramount for advancing perception tasks like 3D de-
tection [7, 13], map segmentation [6, 8], and lane de-
tection [1, 5]. However, the significant challenges and
costs associated with collecting and annotating such diverse
datasets have become a bottleneck in training robust mod-
els. Recent advances in generative models[2, 9, 17], par-
ticularly diffusion models [12, 15, 16, 18], offer a promis-
ing solution by enabling the synthesis of multi-view images
and videos, which can supplement or even replace real data,
potentially accelerating the development of more effective
autonomous driving systems.

Several methods have been proposed for generating
street scenes under specific conditions, each aiming to en-
hance realism and consistency across views. For exam-
ple, BEVGen [11] utilizes a novel cross-view conversion
and spatial attention mechanism to learn relationships be-
tween camera and map views, synthesizing spatially con-

sistent surround images that align with the BEV layout of
traffic scenes. However, this approach relies on 2D bound-
ing boxes, leading to a potential loss of height informa-
tion. MagicDrive [3] addresses this limitation by incorpo-
rating a range of 3D geometric controls, such as camera
poses, roadmaps, and 3D bounding boxes, alongside text
descriptions via advanced encoding strategies. It also fea-
tures a cross-view attention module to ensure consistency
across multiple camera views, resulting in high-fidelity
street scene synthesis. Similarly, Panacea [14], a more
recent approach, introduces a UNet architecture with 4D
attention and integrates various control signals—including
images, text prompts, and the ControlNet [20] module to
inject BEV sequences, enabling precise control of elements
like bounding boxes, object depth, roadmaps, and camera
poses for high-quality, multi-view, and panoramic video
generation.

While both methods support video generation and mod-
eling temporal information by training a new temporal mod-
ule in a second stage, they encounter challenges due to mis-
matches in data distribution (mean and standard deviation)
between the newly initialized parameters of the temporal
module and the pre-trained ones. This mismatch hinders
the learning process, as the model struggles to receive accu-
rate, instance-specific gradients, negatively impacting con-
vergence and training efficiency [10].

To address these challenges, the most straightforward ap-
proach is to introduce a pre-trained model to handle tempo-
ral information. AnimateDiff [4], for instance, facilitates
the generation of animated images across various personal-
ized T2I models, reducing the need for model-specific tun-
ing while maintaining strong content consistency over time.
Consequently, in this paper, we adopt MagicDrive [3] as our
baseline and incorporate AnimateDiff to effectively model
temporal information.

2. Method

This section outlines the method we ultimately employed in
the competition.
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Figure 1. Overview of our method for street-view video generation. This method leverages pre-trained motion layer to model the frame
consistency.

2.1. Temporal Consistency Modeling

To ensure temporal consistency across video frames, we ex-
tend the image diffusion model to the video domain by in-
tegrating pre-trained motion layer. As illustrated in

Figure 1, we integrated the motion module of Ani-
mateDiff into the image model of MagicDrive to effec-
tively model temporal information. We input z1:K

t to
this video diffusion model by reshaping the input fea-
tures from RB×F×N×C×H×W into R(BFN)×C×H×W .
Within temporal modules, we reshape the features
into R(BNHW )×F×C to compute cross-frame information
along the temporal dimension.

2.2. Long video generation

By leveraging temporal consistency modeling and pre-
trained image model, we can generate temporally consistent
videos of arbitrary length through segment-by-segment
processing. However, due to the limitations of the tem-
poral attention block in capturing long-range consistency
between segments, unnatural transitions and inconsistent
details may still occur. To address this challenge, we
applied the sliding window technique from MagicAn-
imate [19] during the inference stage. We divide the
long condition sequence into multiple segments with
temporal overlap, where each segment has a length of K.
First, we sample noise z1:F for the entire video with F
frames and partition it into overlapping noise segments
{z1:K , zK−s+1:2K−s, ...,zn(K−s)+1:n(K−s)+K}, where
n = ⌈(F − K)/(K − s)⌉ and s is the overlap stride, with
s < K. If (F −K) mod (K − s) ̸= 0, meaning the
last segment is shorter than K, we pad it with the first
few frames to form a full K frame segment. Additionally,
sharing the same initial noise z1:K across all segments

improves video quality. At each denoising timestep t, we
predict noise and obtain ϵ1:Kθ for each segment, then merge
them into ϵ1:Fθ by averaging the overlapping frames. When
t = 0, we generate the final video I1:F .

3. Experiments
In this section, we mainly introduce the implementation de-
tails and experimental results.

3.1. Implementation Details

Apart from adjusting the learning rate, we used the default
configuration in MagicDrive. We observed that a lower
learning rate facilitated easier model convergence. We fi-
nalized the learning rate at 1e-5.

3.2. Experimental Results

Preliminary experiments were made to explore the validity
of the method. A subset of the results are shown by figure 2
and table 1. As you can see, table 1 reveals an interesting

Table 1. Quantitative comparison of our method and MagicDrive.
The top results are highlighted in black

Metrics FVD ↓ mAP ↑ mIoU ↑
MagicDrive 218.1200 11.8617 18.3429

Ours 232.5072 12.7845 19.4639

observation: our pre-trained motion layer performs worse
on FVD compared to fine-tuning a new temporal module.
Upon closer investigation, we found that our model is still
in the process of converging, with the FVD values of the lat-
est checkpoints gradually decreasing. We believe that with
sufficient training steps, our method will eventually outper-
form the fine-tuned a new temporal module.



Figure 2. Visual results of out method.

4. Conclusions
Our primary contribution is the introduction of a pre-trained
motion layer into the model, enabling the generation of
videos with strong temporal consistency by training only
this layer. Additionally, our experiments revealed that us-
ing a smaller learning rate can improve convergence in
street scene generation tasks. However, our method faces
some challenges, such as the separation of perspective
consistency and frame consistency due to the two-stage
training process. Future work could focus on integrating
these two aspects to achieve more cohesive video genera-
tion.
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