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Abstract

Uncertainty quantification (UQ) is a perspec-001
tive approach to detecting Large Language002
Model (LLM) hallucinations and low quality003
output. In this work, we address one of the004
challenges of UQ in generation tasks that arises005
from the conditional dependency between the006
generation steps of an LLM. We propose to007
learn this dependency from data. We train a008
regression model, which target variable is the009
gap between the conditional and the uncondi-010
tional generation confidence. During LLM in-011
ference, we use this learned conditional depen-012
dency model to modulate the uncertainty of the013
current generation step based on the uncertainty014
of the previous step. Our experimental evalu-015
ation on nine datasets and three LLMs shows016
that the proposed method is highly effective for017
uncertainty quantification, achieving substan-018
tial improvements over rivaling approaches.019

1 Introduction020

Uncertainty quantification (UQ) (Gal and Ghahra-021

mani, 2016; Baan et al., 2023; Geng et al., 2023;022

Fadeeva et al., 2023) is of growing interest in the023

Natural Language Processing (NLP) community024

for dealing with Large Language Models (LLMs)025

hallucinations (Fadeeva et al., 2024) and low qual-026

ity generations (Malinin and Gales, 2021) in an027

efficient manner. For example, high uncertainty028

could serve as an indicator that the entire genera-029

tion should be discarded as potentially harmful to030

users (selective generation), or that a part of the031

generation should be flagged as untrustworthy.032

There are many approaches for detecting halluci-033

nations and low-quality outputs of LLMs (Manakul034

et al., 2023; Min et al., 2023; Chen et al., 2023).035

However, the majority of them leverage external036

knowledge sources or a second LLM. Knowledge037

sources are generally patchy in coverage while cen-038

soring the outputs of a small LLM using a bigger039

one has a high computational cost and is impracti-040

cal. We argue that models inherently contain infor- 041

mation about their own knowledge limitations, and 042

that there should be an efficient way to access this 043

information, which can enable LLM-based applica- 044

tions that are both safe and practical. 045

For general classification and regression tasks 046

and for text classification in particular, there is a 047

well-developed battery of UQ techniques (Zhang 048

et al., 2019; He et al., 2020; Xin et al., 2021; Wang 049

et al., 2022; Vazhentsev et al., 2023; He et al., 050

2024). For text generation tasks, UQ is much more 051

complicated. The complexity is multifold: (1) there 052

is an infinite number of possible generations, which 053

complicates the normalization of the uncertainty 054

scores; (2) in the general case, there are an infinite 055

number of correct answers; (3) decisions are gen- 056

erally based on imprecise sampling and inference 057

algorithms such as beam search; (4) there is not 058

one, but multiple tokens, and the uncertainty of 059

these predictions need to be aggregated; and (5) 060

finally, the predictions at each generation step are 061

not conditionally independent (Zhang et al., 2023). 062

This last problem is the focus of the present 063

work. During generation, LLMs condition on the 064

previously-generated tokens. Thus, if an LLM has 065

hallucinated and generated an incorrect claim at 066

the beginning or middle of the sequence, all subse- 067

quently generated claims might also be incorrect. 068

Even in the case when the first claim was generated 069

with high uncertainty, this is not taken into account 070

during the subsequent generation process. This 071

means that while the first error could be implicitly 072

recognized as such with high uncertainty, all sub- 073

sequent mistakes will be overlooked, because the 074

generation process conditioned on this error will 075

be very confident. 076

Below, we suggest a theoretically-motivated 077

data-driven solution to this problem. We note 078

that the attention between generated tokens pro- 079

vides information about the conditional depen- 080

dency between the generation steps. Previously, 081
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Spanish is the language with the highest number of total speakers in the world that is not an official language of the U.S.

Figure 1: An illustration of the proposed method TAD. The figure depicts generated tokens, uncertainty scores
for the generated sequence, and probabilities assigned by an LLM and TAD (represented with bars). The output
was generated by Gemma 7b for the question What is the language with the highest number of total speakers in
the world that is not an official language of the U.S.? The LLM starts with generating a token Spanish that leads
to the erroneous answer. The probabilities estimated by the LLM are high for all tokens except for the first one,
which makes the uncertainty scores based on raw probabilities misleadingly low. On the contrary, TAD takes into
account uncertainty from the previous step using a trainable model G(·) based on attention, resulting in a high
overall uncertainty for the generated answer.

there have been several attempts to suggest heuris-082

tic approaches to model this dependency (Zhang083

et al., 2023). We argue that the particular algo-084

rithmic function would be too difficult to engi-085

neer, and thus we propose to learn this depen-086

dency from data. For this purpose, we generate087

a training dataset with a target variable represent-088

ing the gap between the conditional generation089

confidence and the unconditional confidence. The090

latter refers to the probability that a statement is091

correct without considering any context or previ-092

ously generated statements, which may be inac-093

curate or erroneous. Using attention-based fea-094

tures, we trained an ML-based regression model095

to predict this gap that is further used for modify-096

ing the certainty of the current generation. We use097

attention-based features to ensure the generalizabil-098

ity of such an approach, supporting the training of099

a robust conditional dependency model. We call100

the proposed approach trainable attention-based101

dependency (TAD). Figure 1 illustrates the idea be-102

hind the proposed method on the real output of an103

LLM. Our extensive experiments demonstrate that104

TAD offers substantial improvements in UQ over105

the baselines in tasks where an LLM is required to106

generate long sequences.107

The contributions of this work are as follows:108

• A new data-driven approach to uncertainty109

quantification that models the conditional de-110

pendency between the individual token pre-111

dictions of an LLM.112

• A computationally-efficient implementation113

of the method that leverages simple linear re-114

gression, making it practical for real-world115

applications based on LLMs.116

• An empirical demonstration that the proposed 117

method outperforms previous approaches 118

across nine datasets and three LLMs. 119

2 Related Work 120

With the advent of LLMs, UQ has become an ur- 121

gent research problem in NLP. As previously men- 122

tioned, this area not only offers promising practical 123

benefits, but it also presents several intriguing re- 124

search challenges. The majority of methods for UQ 125

of LLM generations has been unsupervised, with 126

few recently-proposed supervised methods. 127

Unsupervised UQ methods. Several methods 128

adapt information-based UQ techniques by aggre- 129

gating logits of generated tokens in various ways. 130

Fomicheva et al. (2020) experimented with per- 131

plexity and mean token entropy for MT quality 132

estimation. Takayama and Arase (2019) adapted 133

point-wise mutual information (PMI), and van der 134

Poel et al. (2022) extended this approach to con- 135

ditional PMI. The advantages of these techniques 136

are their simplicity, usually minimal computational 137

overhead, and robust performance. A well-known 138

approach to UQ in general is ensembling (Laksh- 139

minarayanan et al., 2017) and Monte Carlo (MC) 140

dropout (Gal and Ghahramani, 2016). Malinin and 141

Gales (2021) and Fomicheva et al. (2020) adapted 142

it to sequence generation problems. In this cate- 143

gory, lexical similarity (Fomicheva et al., 2020) is 144

a very competitive baseline that can be applied to 145

black-box models (without any access to logits or 146

internal model representations). 147

The problem of multiple correct generations was 148

explicitly addressed in (Kuhn et al., 2023; Nikitin 149

et al., 2024; Cheng and Vlachos, 2024) and in a 150
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series of black-box generation methods (Lin et al.,151

2023). The main idea is to sample multiple genera-152

tions from an LLM, extract semantically equivalent153

clusters, and analyze the diversity of the generated154

meanings instead of the surface forms.155

Fadeeva et al. (2024) addressed the problem of156

multiple sources of uncertainty present in the LLM157

probability distribution that are irrelevant for hal-158

lucination detection and fact-checking. In addition159

to dealing with multiple correct generations, they160

also suggested mitigating the influence of the un-161

certainty related to the type of generated claims.162

Zhang et al. (2023) and Duan et al. (2023) em-163

phasized that not all generated tokens should con-164

tribute to the uncertainty score for the entire gen-165

erated text and proposed various heuristics to se-166

lect only relevant tokens. Zhang et al. (2023) also167

modeled the conditional dependency between the168

generation steps by adding a penalty to an uncer-169

tainty score that depends on the uncertainties of170

previously-generated tokens. The penalty depends171

on max-pooled attention to previous tokens from172

the current generation step.173

Overall, most previous work on UQ has not ad-174

dressed the conditional dependency between the175

predictions, or has addressed it using heuristics.176

We argue that the conditional dependency is an im-177

portant aspect of UQ for text generation tasks and178

we propose a data-driven approach to it. We also179

note that techniques based on sampling multiple180

answers from LLMs usually introduce prohibitive181

computational overhead. We argue that for UQ182

methods to be practical, they should also be com-183

putationally efficient.184

Supervised UQ methods. Supervised regression-185

based confidence estimators are well-known for186

classification problems, primarily from computer187

vision (Lahlou et al., 2022; Park and Blei, 2024).188

Their key benefit is computational efficiency.189

A handful of papers applied this approach to text190

generation tasks. Lu et al. (2022) proposed to train191

a regression head of a model to predict confidence.192

They noted that the probability distribution of a193

language model is poorly calibrated and cannot194

be used directly to spot low quality translations.195

They trained an additional head by modifying the196

loss function and adding a regularizer. However,197

their approach is only applicable when fine-tuning198

language models for Machine Translation (MT),199

and is not suitable for general-purpose instruction-200

tuned LLMs. In a similar vein, Azaria and Mitchell201
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Figure 2: The fraction of cases where Gemma 7b pays
the greatest attention on the corresponding previous to-
ken when generates a token ti. We use attention weight
matrices from all layers after max-pooling across atten-
tion heads. The test instances are from the TruthfulQA
dataset (Lin et al., 2022).

(2023) approached the task of UQ by training a 202

multi-layer perceptron (MLP) on the activations of 203

the internal layers of LLMs. For this purpose, they 204

annotated a dataset of true and false statements, and 205

used forced LM decoding to obtain model outputs. 206

They evaluated the ability of the trained MLP to 207

classify the statements as true or false and demon- 208

strated that it outperforms other supervised base- 209

lines and few-shot prompting of the LLM itself. 210

However, due to the reliance on forced decoding, 211

their experimental setup is far from real-world hal- 212

lucination detection, where an LLM can perform 213

unrestricted generation. Another limitation is that 214

their method can provide veracity scores only for 215

the entire generated text. 216

Unlike these methods, besides learning uncer- 217

tainty scores directly from data, we also learn the 218

conditional dependency between the generation 219

steps. Our method is also flexible as it can be 220

used on various levels: for the entire text, at the 221

sub-sentence level, or for individual tokens. 222

3 Trainable Attention-Based Conditional 223

Dependency 224

In this section, we present our approach to learn 225

the conditional dependency between the generation 226

steps and our UQ method based on it. 227

3.1 Theoretical Background and Motivation 228

When an LLM generates a sequence of tokens ti, 229

it provides us a conditional probability distribution 230

p(ti | t<i). This essentially means the LLM con- 231

siders that everything generated so far is correct, 232

which might not be the case. In practice, we would 233

like to somehow propagate its uncertainty from 234

previous generation steps. 235

In general, the probability distribution p(ti | t<i) 236

is conditioned on all previously generated tokens 237

t<i. Nevertheless, empirical evidence shows that 238
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in the majority of cases, LLMs pay the most atten-239

tion to the last preceding token. Figure 2 illustrates240

that for 76% of cases, the greatest attention is paid241

towards the previous token, while for other tokens,242

the attention is significantly lower. For the sake243

of simplicity, we assume that only the uncertainty244

from the previous tokens is propagated to the cur-245

rent generation step. This assumption leads us to246

the first-order Markov process, in which the prob-247

ability for the token ti is conditioned only on the248

token ti−1. This assumption can be expressed as249

follows: p(ti | t<i) ≃ p(ti | ti−1).250

For simplicity, consider that we have trained an251

LLM that generates only tokens true (‘T’) or false252

(‘F’). The probability of the token ti being ‘T’ is253

given by the conditional probability p(ti | ti−1) =254

p(ti = T | ti−1 = T). Assume we already have255

some tokens t1, t2, . . . , tn and a prompt x. At each256

step, based on Markov process assumptions, the257

LLM provides us p(t1 = T | x), p(t2 = T | t1 =258

T), . . . , p(tn = T | tn−1 = T).259

These probability distributions are conditionally260

dependent on the previous ones. However, to es-261

timate the correctness of some token ti, we need262

to obtain an unconditional probability p(ti = T).263

The LLM does not provide such probability during264

the standard generation process. Some heuristic265

techniques such as P(true) (Kadavath et al., 2022)266

can estimate the unconditional probability through267

rerunning an LLM on the generated text. However,268

it introduces expensive overhead, which approxi-269

mately doubles the generation time and is not ap-270

propriate for token-level estimation. We would like271

to have a computationally efficient approach that272

does not need rerunning the LLM. Let us expand273

p(ti = T) according to the formula of full proba-274

bility and express it using conditional probability:275

p(ti = T)276

= p(ti = T, ti−1 = T) + p(ti = T, ti−1 = F)277

= p(ti = T | ti−1 = T) p(ti−1 = T)+278

+ p(ti = T | ti−1 = F) p(ti−1 = F)279

= p(ti = T | ti−1 = T) p(ti−1 = T)+280

+ p(ti = T | ti−1 = F)
(
1− p(ti−1 = T)

)
. (1)281

In the obtained formula, p(ti = T | ti−1 =282

T) is what the LLM provides during the current283

generation step in accordance with the specified284

assumptions. Consider that we know p(ti−1 = T)285

as it is calculated on the previous generation step.286

We still do not know the remaining term: p(ti =287

T | ti−1 = F). Let us express it from the equation: 288

p(ti = T | ti−1 = F) (2) 289

=
p(ti = T)− p(ti = T | ti−1 = T) p(ti−1 = T)

1− p(ti−1 = T)
. 290

This expression still requires p(ti = T), which is 291

not known during the inference. However, we can 292

replace it with some surrogate and use this expres- 293

sion to approximate p(ti = T | ti−1 = F) with 294

a trainable model G(Atteni, p(ti−1 = T), p(ti = 295

T | si−1 = T)). This function in fact measures the 296

conditional dependency of the current generation 297

step i on the previous one i−1. For model features, 298

we suggest using attention from the step i to i− 1: 299

Atteni, which is a vector of values taken from the 300

attention matrices. We use the attention weight af- 301

ter the softmax from the previous token ti−1 to the 302

current token ti from all the layers and attention 303

heads. The training data for this model could be 304

obtained using equation (2) in the “offline” mode, 305

where we do not care about efficiency of obtaining 306

p(ti = T). We also note that if the implementa- 307

tion of G is a linear regression or a small neural 308

network, it will not introduce much overhead to 309

compute during the inference of the main LLM. 310

Finally, to obtain the confidence estimate, we re- 311

place p(ti = T | ti−1 = F) with G in equation (1): 312

p(ti = T) = p(ti = T | ti−1 = T) p(ti−1 = T) 313

+G
(
Atteni, p(ti−1 = T), p(ti = T | ti−1 = T)

)
314

·
(
1− p(ti−1 = T)

)
. (3) 315

3.2 Implementation 316

We implement the proposed method for token-level 317

UQ and aggregate token-level scores into a score 318

for the whole sequence. 319

Obtaining unconditional probability. To obtain 320

the surrogate for the unconditional probability p̂(ti) 321

for a generated token ti during the training phase, 322

we use two strategies. The first one relies solely 323

on the strict criterion of the presence of an existing 324

token ti in the ground truth text y: 325

p̂(ti) =

{
1, ti ∈ y,

0, otherwise.
(4) 326

The second strategy additionally leverages Align- 327

Score (Zha et al., 2023) sim(ỹ, y) between the 328

generated text ỹ and the ground-truth y: 329

p̂(ti) =

{
1+sim(ỹ,y)

2 , ti ∈ y,

sim(ỹ, y), otherwise.
(5) 330
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This strategy aims to correct the target when a gen-331

erated token is not present in the expected text, but332

the AlignScore is high, indicating that the gener-333

ated text has the similar meaning as the training334

sentence. In the inverse situation, when the token335

is present, but the whole generation according to336

AlignScore is wrong, it penalizes the target.337

Generating training data for TAD. We generate338

the training data for TAD using the original textual339

training dataset in the following way:340

1. For the input prompt xk and the target text341

yk, using an LLM, we generate a text ỹk =342

t1t2 . . . tnk
of some length nk and token prob-343

abilities p(ti | t<i).344

2. For the first generated token t1 in each text,345

we define its unconditional probability as a346

ground truth surrogate p(t1) = p̂(t1) accord-347

ing to formulas (4) or (5).348

3. For each generated token ti, i = 2, . . . , nk:349

(a) We obtain p(ti−1) from the previous gen-350

eration step.351

(b) We define its unconditional probability352

as a ground truth surrogate p(ti) = p̂(ti)353

according to equations (4) or (5).354

(c) We compute the target variable for the355

function G using equation (2):356

G̃i =
p(ti)−p(ti|t<i)p(ti−1)

1−p(ti−1)
.357

As a result, for each instance in the training358

dataset, we generate a sequence of target variables359

G̃k
i k = 1, . . . ,K, i = 1, . . . , nk. We further train360

the model G on these targets.361

Model for G and its training procedure. We362

experiment with several regression models for363

TAD: liner regression (LinReg), CatBoost regres-364

sion (Prokhorenkova et al., 2018), and a multi-layer365

perceptron (MLP). The hyperparameters of the re-366

gressors are obtained using cross-validation with367

five folds on the training dataset. We select the368

optimal values of the hyperparameters based on369

the best average PRR-AlignScore. Finally, we use370

these values to train the regression model on the371

full training set. The selected hyperparameters for372

the TAD modules are presented in Appendix C.1.373

Inference procedure. During inference, we ob-374

tain predictions from the LLM as always, but we375

also extract features from the attention outputs. The376

features are used to compute G and a confidence377

score based on Equation (3).378

4 Experiments 379

4.1 Experimental Setup 380

For experimental evaluation, we use the LM- 381

Polygraph framework (Fadeeva et al., 2023). We 382

focus on the task of selective generation (Ren et al., 383

2023) where we “reject” generated sequences due 384

to low quality based on uncertainty scores. Reject- 385

ing means that we do not use the model output, and 386

the corresponding queries are processed differently: 387

e.g., they could be further reprocessed manually. 388

Metrics. Following previous work on UQ in text 389

generation (Malinin and Gales, 2021; Fadeeva et al., 390

2023), we compare UQ methods using the Predic- 391

tion Rejection Ratio (PRR) metric. PRR quantifies 392

how well an uncertainty score can identify and 393

reject low-quality predictions according to some 394

quality metric. The PRR scores are normalized 395

to the range [0, 1] by linearly scaling the area un- 396

der the PR curve between the values obtained with 397

random selection (corresponding to 0) and oracle 398

selection (corresponding to 1). Higher PRR values 399

indicate better quality of selective generation. We 400

use ROUGE-L, Accuracy, and AlignScore (Zha 401

et al., 2023) as generation quality metrics. 402

Datasets. We consider three text generation tasks: 403

text summarization (TS), QA with long free-form 404

answers, and QA with free-form short answers, 405

and for each task, we consider three datasets. 406

Statistics about the datasets are provided in Ta- 407

ble 18 in Appendix D. For TS, we experiment with 408

CNN/DailyMail (See et al., 2017), XSum (Narayan 409

et al., 2018), and SamSum (Gliwa et al., 2019). For 410

the long answer QA task, we use PubMedQA (Jin 411

et al., 2019), a QA dataset in the biomedical 412

domain, with the task to answer biomedical re- 413

search questions using the corresponding abstracts. 414

We further use MedQUAD (Abacha and Demner- 415

Fushman, 2019), which consists of real medical 416

questions, and TruthfulQA (Lin et al., 2022), which 417

consists of questions that some people would an- 418

swer incorrectly due to a false belief or a miscon- 419

ception. For the QA task with short answers, we 420

follow previous work on UQ (Kuhn et al., 2023; 421

Duan et al., 2023; Lin et al., 2023) and we use three 422

datasets: SciQ (Welbl et al., 2017), CoQA (Reddy 423

et al., 2019), and TriviaQA (Joshi et al., 2017). 424

LLMs. We experiment with three LLMs: 425

Gemma 7b (Mesnard et al., 2024), LLaMA 8b v3, 426

and StableLM 12b v2 (Bellagente et al., 2024). The 427
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UQ Method XSUM SamSum CNN PubMedQA MedQUAD TruthfulQA CoQA SciQ TriviaQA Mean
RankROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore Acc. AlignScore Acc. AlignScore Acc. AlignScore Acc. AlignScore

MSP -.329 -.116 .234 .177 -.039 .043 -.455 -.154 -.454 .008 .520 .268 .699 .626 .806 .744 .828 .805 8.61
Perplexity -.358 -.179 .206 .291 .071 -.012 .527 .159 .801 .346 .381 .318 .458 .439 -.321 -.399 .820 .791 7.78
Mean Token Entropy -.350 -.181 .172 .281 .082 -.017 .524 .147 .776 .330 .228 .290 .327 .339 -.368 -.398 .806 .786 8.94
Focus -.324 -.161 .169 .232 .023 .008 -.357 -.146 -.408 -.100 .306 .298 .322 .250 -.098 .070 .651 .702 13.00

NumSemSets .054 .049 .176 .176 .029 .052 .041 .017 -.067 .047 .132 .231 .203 .349 .132 .275 .677 .714 10.72
DegMat .025 .060 .141 .161 .072 .088 .028 .008 -.063 .087 .211 .285 .345 .496 .401 .553 .740 .770 8.61
Eccentricity -.055 .010 .059 .052 .028 -.005 -.016 -.011 -.144 .027 .116 .213 .514 .559 .487 .570 .737 .739 11.11
EigValLaplacian .024 .063 .140 .156 .071 .087 .016 .004 -.155 .064 .200 .279 .479 .538 .507 .603 .727 .760 9.00
Lexical Similarity .076 -.024 .256 .233 .108 .066 .068 .023 .240 -.024 .145 .117 .504 .499 .488 .538 .730 .734 8.78
MC NSE -.005 -.023 .212 .195 .108 .102 .074 .012 -.000 .011 .076 .221 .440 .432 .357 .398 .727 .715 10.00
MC SE .035 -.001 .251 .195 .123 .086 -.014 -.007 -.099 .013 .160 .141 .553 .514 .542 .557 .723 .712 9.11
Semantic Entropy .034 .001 .250 .195 .110 .082 -.019 -.003 -.097 .019 .158 .159 .583 .566 .589 .605 .752 .745 8.28
SentenceSAR -.077 -.037 .168 .133 .061 .090 -.072 -.033 -.221 .013 .305 .199 .643 .605 .700 .692 .792 .786 9.06
SAR .042 -.006 .248 .245 .123 .103 .111 .014 .066 .035 .155 .263 .477 .503 .453 .515 .769 .770 7.11

TAD (LinReg) .502 .257 .329 .263 .177 .078 .576 .242 .787 .376 .563 .294 .671 .608 .820 .751 .782 .760 3.00
TAD (LinReg+AlignScore) .541 .380 .353 .349 .146 .092 .007 .064 .491 .472 .505 .368 .671 .600 .834 .777 .784 .766 2.89

Table 1: PRR↑ of UQ methods for the Gemma 7b model. Warmer colors indicate better results. The best method is
in bold, the second best is underlined.

inference hyperparameters of the LLMs are given428

in Table 17 in Appendix C.2.429

UQ baselines. We compare TAD to Maximum430

Sequence Probability (MSP), Mean Token En-431

tropy, and Perplexity (Fomicheva et al., 2020),432

which are considered simple yet strong and robust433

baselines for selective generation across various434

tasks (Fadeeva et al., 2023). We also compare our435

method to more complex techniques, considered436

to be state-of-the-art UQ methods for LLMs: Lex-437

ical Similarity based on ROUGE-L (Fomicheva438

et al., 2020), Monte Carlo Sequence Entropy (MC439

SE), Monte Carlo Normalized Sequence Entropy440

(MC NSE; Kuhn et al. (2023)), black-box methods441

(NumSemSets, DegMat, Eccentricity, EigValLapla-442

cian; Lin et al. (2023)), Semantic Entropy (Kuhn443

et al., 2023), hallucination detection with stronger444

focus (Focus; Zhang et al. (2023)), and Shifting445

Attention to Relevance (SAR; Duan et al. (2023)).446

For these methods, we generate five samples.447

4.2 Main Results448

Fine-grained comparison with the baselines.449

Tables 1, 7 and 8 in Appendix A present the re-450

sults for Gemma 7b, Llama 8b v3, and StableLM451

12b v2 models respectively.452

We can see that for all summarization datasets,453

in the majority of cases, TAD outperforms the state-454

of-the-art methods by a large margin in terms of455

both considered metrics. The only exception is456

the case of PRR-AlignScore for StableLM on the457

XSum dataset, where SAR and Lexical Similar-458

ity are marginally better. At the same time, TAD459

confidently outperforms them in terms of PRR-460

ROUGE-L. In experiments with two other models461

on XSum, TAD also demonstrates large improve-462

ments in terms of both metrics over the baselines,463

which typically perform no better than a random464

choice. For example, TAD LinReg+AlignScore465

outperforms the second best baseline by .317 PRR-466

AlignScore and by .465 PRR-ROUGE-L absolute. 467

For QA with long answer datasets (PubMedQA, 468

MedQUAD, and TruthfulQA), we see that TAD 469

also confidently outperforms the baselines for all 470

considered settings except for the experiment on 471

TruthfulQA with LLaMA 8b v3 and for PRR- 472

ROUGE-L measured on MedQUAD for Gemma. 473

For example, in the experiment with LLaMA 8b v3 474

on PubMedQA, TAD outperforms the second best 475

baseline – Perplexity by .190 of PRR-ROUGE-L 476

and by .187 of PRR-AlignScore. For StableLM, the 477

improvement is .049 of PRR-ROUGE-L and .083 478

of PRR-AlignScore. Additionally, we can see that 479

on this task, the majority of sophisticated UQ base- 480

lines consistently fall behind simple techniques. 481

Finally, for QA with short answers (CoQA, SciQ, 482

and TriviaQA), we can see that TAD notably out- 483

performs baselines for all considered LLMs only 484

on the SciQ dataset. TAD also marginally out- 485

performs baselines in the experiments on CoQA 486

with StableLM and Llama 8b v3. The lower per- 487

formance on tasks with short answers is expected, 488

since TAD primarily aims at improving the perfor- 489

mance for tasks with long generations and complex 490

conditional dependencies. Moreover, we can see 491

that in the short-answer setting on TriviaQA and 492

CoQA, the simplest baseline MSP demonstrates 493

very strong performance, which is often the best. 494

When comparing the two strategies for obtaining 495

the unconditional probability during training, we 496

see that adding AlignScore usually helps for sum- 497

marization, but it has a negative impact for QA. 498

Overall results. Table 2 presents the mean rank 499

of each method aggregated over all datasets for 500

each model separately. The lower rank is better. 501

The column “Mean Rank” corresponds to the mean 502

rank of the ranks across all models. Figure 3 addi- 503

tionally summarizes all experimental setups. Each 504

cell presents a win rate for a method from a row 505

compared to a method from a column. The aggre- 506
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Figure 3: Summary of 54 experimental setups with
various models and datasets. Each cell in the diagram
presents the fraction of experiments where a method
from a row outperforms a method from a column.
Warmer colors indicate better results.

UQ Method Gemma 7b Llama-3 8b StableLM 12b Mean Rank

MSP 8.61 7.17 6.83 4.50
Perplexity 7.78 8.44 8.33 5.33
Mean Token Entropy 8.94 9.11 9.00 9.00
Focus 13.00 9.50 10.50 13.67
NumSemSets 10.72 10.78 12.83 15.00
DegMat 8.61 8.83 9.33 8.17
Eccentricity 11.11 11.33 11.61 15.33
EigValLaplacian 9.00 7.94 8.78 7.67
Lexical Similarity 8.78 9.22 8.56 8.33
MC NSE 10.00 10.72 10.22 13.00
MC SE 9.11 10.22 10.67 13.00
Semantic Entropy 8.28 9.06 9.06 7.67
SentenceSAR 9.06 9.39 8.22 9.00
SAR 7.11 7.78 6.33 3.33

TAD (LinReg) 3.00 3.72 3.50 2.00
TAD (LinReg+AlignSc.) 2.89 2.78 2.22 1.00

Table 2: Mean ranks of UQ methods aggregated over all
datasets for each LLM separately (the lower the better).
The column “Mean Rank” corresponds to the mean rank
of the ranks across all LLMs. The best method is in
bold, the second best is underlined.

gated results emphasize the significance of the per-507

formance improvements of the proposed method.508

Despite some baselines might show good results in509

individual cases, they usually are quite unstable re-510

sulting in poor overall ranking. TAD demonstrates511

more robust improvements across multiple tasks512

and LLMs, making it a better choice overall.513

Generalization of TAD on unseen datasets. Ta-514

bles 3, 9 and 10 in Appendix A.2 compare the515

results of TAD trained on a single in-domain train-516

ing dataset to the results of TAD trained on all517

training datasets except one that represents the in-518

domain dataset for testing (we designate it as Gen519

TAD). This setting evaluates the out-of-domain per-520

formance of TAD. TAD without the AlignScore tar-521

get demonstrates good generalization for QA with522

UQ Method XSUM PubMedQA CoQA Mean
RankROUGE-L AlignSc. ROUGE-L AlignSc. Acc. AlignSc.

MSP -.356 -.153 -.024 .033 .648 .557 5.33
Focus -.356 -.110 .045 -.063 .336 .261 6.50
SAR -.029 .038 .075 .012 .474 .489 5.17

TAD (LinReg) .358 .223 .429 .220 .639 .561 2.17
TAD (LinReg+AlignSc.) .579 .345 -.018 .083 .657 .567 2.67

Gen. TAD (LinReg) .006 -.032 .256 .208 .672 .541 3.33
Gen. TAD (LinReg+AlignSc.) .210 .108 .179 .096 .675 .547 2.83

Table 3: The comparison of TAD trained on in-domain
data with TAD trained on all out-of-domain datasets
(designated with “Gen.”) (PRR↑, Llama 8b v3). The
best method is in bold, the second best is underlined.

long answers. Despite the results degrade on the 523

unseen dataset, TAD confidently outperforms other 524

baselines. Adding AlignScore for QA worsens the 525

results probably due to overfitting. 526

For the TS task, on the contrary, adding Align- 527

Score helps to achieve some generalization. The 528

results substantially degrade, but are still better 529

than for other baselines. On the short-answer QA 530

task, training on out-of-domain data slightly im- 531

proves PRR-Accuracy. More details about these 532

experiments are presented in Appendix A.2. 533

4.3 Ablation Studies 534

Regression models and aggregation approaches. 535

Detailed results with various regression models and 536

aggregation approaches are presented in Table 4 537

and in Tables 11 and 12 in Appendix A. The op- 538

timal values of the hyper-parameters of TAD for 539

all experimental setups are presented in Tables 14 540

to 16 in Appendix C.1 for Gemma 7b, LLaMA 8b 541

v3, and StableLM 12b v2 models, respectively. 542

The results show that TAD based on regression 543

using MLP and LinReg consistently outperform 544

TAD based on CatBoost (Prokhorenkova et al., 545

2018). However, there is no big difference between 546

MLP and LinReg. Therefore, for simplicity, we 547

use LinReg as a regression method for TAD. 548

We investigate two strategies for aggregation of 549

token-level TAD scores: the mean of the scores and 550

the sum of the log scores inspired by perplexity. For 551

the majority of the considered settings, the mean of 552

the probabilities yields the best results. However, 553

for QA with short answers, the sum of the log 554

probabilities performs slightly better. 555

Comparison of features. Table 5 presents the 556

experiments with various features for the regres- 557

sion model. For “TAD Embeds.”, we utilize the 558

embeddings from the last hidden state from the de- 559

coder. For “TAD Probs.”, we use only generated 560

probabilities for current and previous tokens, and 561

p(si−1 = T). For “TAD Attn. Only”, we use at- 562
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UQ Method Aggregation XSUM SamSum CNN PubMedQA MedQUAD TruthfulQA CoQA SciQ TriviaQA Mean
RankROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore Acc. AlignScore Acc. AlignScore Acc. AlignScore Acc. AlignScore

TAD (CatBoost) 1
K

∑K
k=1 pk .496 .215 .201 .248 .064 -.011 .540 .181 .792 .382 .414 .283 .632 .578 .687 .634 .816 .800 5.89

TAD (CatBoost+AlignScore) 1
K

∑K
k=1 pk .332 .146 .211 .269 .052 -.012 .556 .215 .665 .357 .382 .310 .603 .550 .550 .529 .818 .801 6.67

TAD (CatBoost)
∑K

k=1 log pk .324 .284 .100 .075 -.078 .107 -.373 -.112 -.461 .011 .452 .163 .669 .609 .810 .736 .792 .776 7.33
TAD (CatBoost+AlignScore)

∑K
k=1 log pk .249 .297 .057 .039 -.169 .093 -.573 -.190 -.472 -.001 .310 .083 .717 .626 .830 .774 .789 .775 8.28

TAD (LinReg) 1
K

∑K
k=1 pk .502 .257 .329 .263 .177 .078 .576 .242 .787 .376 .563 .294 .510 .488 .619 .585 .811 .789 5.39

TAD (LinReg+AlignScore) 1
K

∑K
k=1 pk .541 .380 .353 .349 .146 .092 .007 .064 .491 .472 .505 .368 .471 .441 .484 .462 .805 .782 5.17

TAD (LinReg)
∑K

k=1 log pk .396 .319 .072 .090 -.029 .092 -.387 -.116 -.460 .012 .573 .224 .671 .608 .820 .751 .782 .760 7.22
TAD (LinReg+AlignScore)

∑K
k=1 log pk .373 .351 .176 .121 -.099 .101 -.569 -.198 -.473 .000 .430 .187 .671 .600 .834 .777 .784 .766 7.22

TAD (MLP) 1
K

∑K
k=1 pk .504 .249 .246 .210 .180 .080 .564 .217 .794 .369 .577 .298 .665 .605 .686 .641 .813 .794 4.50

TAD (MLP+AlignScore) 1
K

∑K
k=1 pk .536 .349 .321 .327 .118 .092 -.059 .021 .624 .418 .419 .298 .614 .559 .608 .590 .804 .781 5.56

TAD (MLP)
∑K

k=1 log pk .380 .301 .052 .042 -.020 .090 -.359 -.112 -.461 .010 .509 .183 .675 .613 .821 .754 .787 .764 7.28
TAD (MLP+AlignScore)

∑K
k=1 log pk .363 .340 .162 .105 -.100 .099 -.567 -.199 -.474 -.001 .220 .050 .713 .629 .836 .780 .789 .770 7.50

Table 4: Comparison of various considered regression models and aggregation strategies for TAD (PRR↑, Gemma
7b model). Warmer colors indicate better results. The best method is in bold, the second best is underlined.

UQ Method XSUM PubMedQA CoQA Mean
RankRouge-L AlignSc. Rouge-L AlignSc. Acc. AlignSc.

MSP -.329 -.116 -.455 -.154 .699 .626 3.83
TAD Embeds. (LinReg, +AlignScore) .191 .070 .025 .015 .606 .548 3.50
TAD Probs. (LinReg, +AlignScore) .265 .234 -.360 -.142 .712 .613 2.83
TAD Attn. Only (LinReg+AlignScore) .369 .252 -.345 -.112 .675 .608 2.67
TAD (LinReg+AlignScore) .541 .380 .007 .064 .671 .600 2.17

Table 5: The comparison of various features for TAD
(PRR↑, Gemma 7b model). The best method is in bold,
the second best is underlined.

UQ Method Runtime
per batch Overhead

MSP 10.26 ±2.78 —
Mean Token Entropy 10.29 ±2.79 0.26%
Focus 10.55 ±2.84 2.80%
EigValLaplacian 44.90 ±9.55 340%
MC SE 44.72 ±9.53 340%
Semantic Entropy 44.87 ±9.54 340%
SAR 57.63 ±12.57 460%

TAD (CatBoost) 10.34 ±2.80 0.80%
TAD (LinReg) 10.27 ±2.78 0.10%
TAD (MLP) 10.27 ±2.78 0.11%

Table 6: The evaluation of the runtime of UQ methods
measured on 900 instances from all datasets with pre-
dictions from Llama 8b v3. The best results are in bold.

tention, but without probabilities. TAD trained on563

attention weights with probabilities substantially564

outperforms all other options. We also note that565

TAD trained only on embeddings performs much566

worse than other versions, which emphasizes the567

importance of both attention and probabilities.568

Comparison to directly learning the uncondi-569

tional probability. Table 13 compares TAD to di-570

rectly learning the unconditional probability, where571

instead of using the target from Equation (2), we572

simply approximate p(si = T). These results573

demonstrate that the attention weights contain a574

lot of information about the unconditional proba-575

bility itself. Nevertheless, TAD’s superior results576

show that taking into account the conditional de-577

pendency on previous generation steps and their578

uncertainty is also important.579

4.4 Computational Efficiency580

To demonstrate the computational efficiency of581

TAD, we compare its runtime to other UQ meth-582

ods. We conducted experiments on 100 randomly 583

sampled texts from each of our nine evaluation 584

datasets using the LLaMA 8b v3 model on a single 585

80GB A100 GPU. The inference is implemented 586

as a single-batch model call for all tokens in the 587

output text. We use the LM-Polygraph (Fadeeva 588

et al., 2023) implementation for other UQ methods. 589

Table 6 presents the average runtime per text 590

sample for each UQ method, along with the per- 591

centage overhead over the standard LLM inference 592

with MSP. As we can see, many state-of-the-art 593

UQ methods such as (black-box, MC SE, Seman- 594

tic Entropy, SAR) introduce huge computational 595

overhead (340-460%) because they need to per- 596

form sampling from the LLM multiple times. On 597

the contrary, TAD introduces minimal overhead 598

(0.1-0.8%), which is much more practical. 599

5 Conclusion and Future Work 600

We have presented a new uncertainty quantifica- 601

tion method based on learning conditional depen- 602

dencies between the predictions made on multiple 603

generation steps. The method relies on attention 604

to construct features for learning this functional 605

dependency and leverages this dependency to al- 606

ter the uncertainty on subsequent generation steps. 607

This yields improved results in selective generation 608

tasks, especially when the LLM output is long. Our 609

experimental study shows that our proposed tech- 610

nique usually outperforms other state-of-the-art UQ 611

methods (such as SAR) resulting in the best overall 612

performance across three LLMs and nine datasets. 613

TAD does not introduce much computational over- 614

head due to the simplicity of the regression model 615

(linear regression), which makes it a potentially 616

practical choice for LLM-based applications. 617

In future work, we aim to apply the suggested 618

method to quantifying the uncertainty of retrieval- 619

augmented LLMs. TAD potentially could be used 620

to take into account the credibility of the retrieved 621

evidence. 622
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Limitations623

In the motivation of our approach, we assume a624

strict Markov chain property between the genera-625

tion steps. However, in reality, this property does626

not hold as the current generation step usually de-627

pends on multiple previous steps. This limitation628

of our method could be addressed by estimating the629

conditional dependency between multiple previous630

steps, e.g., by using a Transformer layer instead631

of the linear regressor. Nevertheless, our current632

implementation that makes the Markov assumption633

already yields strong results, and thus we leave634

investigation of more complex modifications for635

future work.636

We also did not test our method on extra large637

LLMs such as LLaMA 3 70b. We only used 7-12b638

models due to limitations in our available computa-639

tional resources.640

Ethical Considerations641

In our work, we considered open-source LLMs and642

datasets not aimed at harmful content. However,643

LLMs may generate potentially damaging texts for644

various groups of people. Uncertainty quantifica-645

tion techniques can help create more reliable use646

of neural networks. Moreover, they can be applied647

to detecting harmful generation, but this is not our648

intention.649

Moreover, despite that our proposed method650

demonstrates significant performance improve-651

ments, it can still mistakenly highlight correct and652

not dangerous generated text with high uncertainty653

in some cases. Thus, as with other uncertainty654

quantification methods, it has limited application655

for various tasks.656
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A Additional Experimental Results942

A.1 Comparison with other UQ Methods943

Here, we present the main results with Llama and StableLM.944

UQ Method XSUM SamSum CNN PubMedQA MedQUAD TruthfulQA CoQA SciQ TriviaQA Mean
RankROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore Acc. AlignScore Acc. AlignScore Acc. AlignScore Acc. AlignScore

MSP -.356 -.153 .358 .133 .002 .022 -.024 .033 .417 .493 .324 .174 .648 .557 .671 .590 .752 .706 7.17
Perplexity -.388 -.124 -.088 .231 .130 .196 .239 -.023 .489 .513 .166 .129 .439 .413 -.456 -.457 .749 .696 8.44
Mean Token Entropy -.385 -.124 -.114 .230 .132 .189 .233 -.035 .489 .509 .122 .119 .350 .353 -.498 -.481 .756 .708 9.11
Focus -.356 -.110 -.024 .253 .112 .201 .045 -.063 .554 .540 .262 .274 .336 .261 -.469 -.377 .586 .587 9.50

NumSemSets .011 .062 .154 .185 .070 .099 .005 .037 -.022 .098 .032 .168 .146 .288 .154 .232 .563 .657 10.78
DegMat .048 .085 .191 .215 .076 .100 .013 .027 .069 .174 .112 .145 .306 .440 .317 .405 .633 .697 8.83
Eccentricity -.009 .036 .034 .073 .042 .054 -.012 -.008 .048 .062 .086 .046 .484 .476 .386 .443 .643 .652 11.33
EigValLaplacian .050 .086 .183 .217 .081 .100 .004 .029 .063 .172 .137 .166 .436 .478 .388 .450 .638 .687 7.94
Lexical Similarity .011 .038 .302 .182 .105 .093 .099 .025 .272 .143 -.012 .012 .482 .473 .372 .414 .652 .647 9.22
MC NSE -.058 .006 .216 .167 .117 .083 .070 -.006 .304 .217 .013 .012 .441 .407 .038 .071 .656 .637 10.72
MC SE .029 .024 .253 .151 .071 .048 .029 .017 .101 .019 .134 .024 .511 .446 .425 .432 .633 .618 10.22
Semantic Entropy .029 .026 .256 .157 .066 .050 .031 .015 .102 .022 .121 .023 .521 .483 .444 .459 .686 .675 9.06
SentenceSAR -.095 -.005 .167 .125 .053 .033 -.028 .000 .033 .106 .203 .091 .584 .531 .547 .517 .729 .715 9.39
SAR -.029 .038 .288 .208 .115 .112 .075 .012 .328 .237 .012 .085 .474 .489 .149 .181 .718 .721 7.78

TAD (LinReg) .358 .223 .336 .219 .210 .111 .429 .220 .500 .501 .189 .130 .639 .561 .868 .758 .707 .671 3.72
TAD (LinReg, +AlignScore) .579 .345 .404 .369 .207 .150 -.018 .083 .613 .544 .251 .235 .657 .567 .914 .824 .715 .691 2.78

Table 7: PRR↑ of UQ methods for the Llama 8b v3 model. Warmer colors indicate better results. The best method
is in bold, the second best is underlined.

UQ Method XSUM SamSum CNN PubMedQA MedQUAD TruthfulQA CoQA SciQ TriviaQA Mean
RankROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore Acc. AlignScore Acc. AlignScore Acc. AlignScore Acc. AlignScore

MSP -.144 -.060 .498 .341 -.027 .062 -.429 -.168 .478 .596 .450 .224 .680 .597 .717 .685 .738 .715 6.83
Perplexity -.257 -.034 .434 .351 .092 .044 .409 .099 .492 .592 .219 .179 .385 .373 -.340 -.385 .732 .700 8.33
Mean Token Entropy -.250 -.028 .409 .340 .108 .034 .410 .085 .503 .593 .139 .181 .312 .329 -.403 -.423 .747 .713 9.00
Focus -.173 .019 .300 .228 .040 .011 .214 .080 .559 .639 .217 .215 .147 .105 -.165 -.097 .643 .649 10.50

NumSemSets .001 .054 .179 .187 .005 .074 .081 .051 -.007 .055 .060 .167 .221 .303 .110 .200 .576 .636 12.83
DegMat -.000 .057 .309 .326 .017 .120 .052 .039 .136 .242 .214 .194 .342 .489 .452 .561 .653 .698 9.33
Eccentricity -.034 .004 .235 .250 .023 .049 -.025 .007 .146 .179 .165 .047 .527 .557 .496 .568 .643 .660 11.61
EigValLaplacian -.008 .063 .292 .311 .012 .115 .049 .038 .116 .226 .227 .215 .500 .557 .513 .581 .661 .697 8.78
Lexical Similarity .111 .079 .381 .285 .119 .098 .094 .026 .296 .271 .141 .090 .508 .524 .489 .545 .656 .670 8.56
MC NSE .068 .048 .371 .263 .073 .088 .161 .059 .370 .372 .123 .126 .437 .421 .273 .310 .623 .615 10.22
MC SE .066 -.006 .393 .291 .059 .068 .034 .026 .209 .234 .164 .051 .565 .527 .515 .537 .623 .616 10.67
Semantic Entropy .067 -.003 .412 .317 .066 .071 .033 .024 .215 .247 .152 .047 .578 .565 .545 .578 .674 .670 9.06
SentenceSAR .005 .001 .392 .330 .010 .044 -.052 .001 .255 .307 .280 .157 .642 .603 .630 .644 .713 .713 8.22
SAR .079 .079 .412 .341 .080 .119 .177 .059 .405 .401 .209 .196 .494 .531 .398 .460 .702 .714 6.33

TAD (LinReg) .375 .024 .459 .282 .163 .137 .493 .284 .511 .610 .368 .222 .707 .624 .850 .786 .688 .671 3.50
TAD (LinReg+AlignScore) .459 .068 .519 .419 .145 .127 .249 .219 .696 .674 .462 .367 .698 .614 .863 .803 .696 .691 2.22

Table 8: PRR↑ of UQ methods for the StableLM 12b v2 model. Warmer colors indicate better results. The best
method is in bold, the second best is underlined.

A.2 Generalization Experiments945

Tables 3, 9 and 10 present the comparison of the TAD trained on the in-domain training dataset with the946

TAD trained on all out-of-domain datasets for Gemma 7b, Llama 8b v3, and StableLM 12b v2 models947

respectively. In this experiment, we examine how our approach can be generalized on the unseen datasets.948

For each dataset, we create a general training dataset by using 300 samples from the training datasets from949

each of the eight other datasets used in the experiments. Thus, we evaluate TAD that is not trained on the950

target dataset. We conduct experiments on one dataset from each task: XSUM, PubMedQA, and CoQA.951

We compare the results with three strongest baseline methods: MSP, Focus, and SAR. Overall, we can see952

that the TAD method can be generalized on the unseen datasets and outperform all other baselines in most953

settings.954

UQ Method XSUM PubMedQA CoQA Mean
RankROUGE-L AlignSc. ROUGE-L AlignSc. Acc. AlignSc.

MSP -.329 -.116 -.455 -.154 .699 .626 5.00
Focus -.324 -.161 -.357 -.146 .322 .250 6.50
SAR .042 -.006 .111 .014 .477 .503 4.50

TAD (LinReg) .502 .257 .576 .242 .671 .608 2.17
TAD (LinReg+AlignSc.) .541 .380 .007 .064 .671 .600 2.67

Gen. TAD (LinReg) -.061 -.068 .288 .101 .703 .594 3.17
Gen. TAD (LinReg+AlignSc.) .132 .096 -.124 -.074 .696 .589 4.00

Table 9: The comparison of TAD trained on in-domain data with TAD trained on all out-of-domain datasets
(designated with “Gen.”) (PRR↑, Gemma 7b model). Warmer colors indicate better results. The best method is in
bold, the second best is underlined.
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UQ Method XSUM PubMedQA CoQA Mean
RankROUGE-L AlignScore ROUGE-L AlignScore Acc. AlignScore

MSP -.144 -.060 -.429 -.168 .680 .597 5.83
Focus -.173 .019 .214 .080 .147 .105 5.83
SAR .079 .079 .177 .059 .494 .531 4.67

TAD (LinReg) .375 .024 .493 .284 .707 .624 1.67
TAD (LinReg, +AlignScore) .459 .068 .249 .219 .698 .614 2.50

Gen. TAD (LinReg) -.032 -.015 .433 .217 .701 .584 4.00
Gen. TAD (LinReg, +AlignScore) .023 -.008 .288 .143 .709 .592 3.50

Table 10: The comparison of TAD trained on in-domain data with TAD trained on all out-of-domain datasets
(designated with “Gen.”) (PRR↑, StableLM 12b v2 model). Warmer colors indicate better results. The best method
is in bold, the second best is underlined.

A.3 Ablation Studies 955

Here, we present ablation studies for regression models and aggregation techniques with additional LLMs. 956

UQ Method Aggregation XSUM SamSum CNN PubMedQA MedQUAD TruthfulQA CoQA SciQ TriviaQA Mean
RankROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore Acc. AlignScore Acc. AlignScore Acc. AlignScore Acc. AlignScore

TAD (CatBoost) 1
K

∑K
k=1 pk .349 .183 -.064 .211 .180 .101 .366 .150 .448 .476 .208 .146 .605 .536 .741 .665 .743 .710 6.78

TAD (CatBoost, +AlignScore) 1
K

∑K
k=1 pk .250 .097 -.013 .258 .137 .192 .255 .002 .448 .492 .234 .179 .576 .509 .605 .558 .746 .714 6.94

TAD (CatBoost)
∑K

k=1 log pk .357 .244 .279 .026 -.068 -.036 -.429 -.056 .293 .411 .323 .191 .647 .557 .813 .708 .715 .680 7.89
TAD (CatBoost, +AlignScore)

∑K
k=1 log pk .272 .227 .269 .015 -.115 -.050 -.461 -.070 .099 .239 .305 .189 .672 .566 .875 .795 .712 .683 8.61

TAD (LinReg) 1
K

∑K
k=1 pk .358 .223 .336 .219 .210 .111 .429 .220 .500 .501 .189 .130 .535 .507 .742 .671 .739 .702 6.11

TAD (LinReg, +AlignScore) 1
K

∑K
k=1 pk .579 .345 .404 .369 .207 .150 -.018 .083 .613 .544 .251 .235 .509 .473 .637 .591 .738 .708 4.89

TAD (LinReg)
∑K

k=1 log pk .438 .291 .307 .082 .005 -.021 -.402 -.049 .310 .421 .396 .261 .639 .561 .868 .758 .707 .671 6.61
TAD (LinReg, +AlignScore)

∑K
k=1 log pk .466 .334 .367 .098 -.040 -.041 -.447 -.065 .175 .256 .273 .195 .657 .567 .914 .824 .715 .691 6.11

TAD (MLP) 1
K

∑K
k=1 pk .496 .256 .317 .221 .215 .119 .408 .166 .509 .488 .189 .132 .587 .525 .751 .664 .738 .701 5.72

TAD (MLP, +AlignScore) 1
K

∑K
k=1 pk .572 .326 .303 .346 .206 .145 .294 .251 .563 .487 .255 .276 .551 .494 .675 .635 .739 .712 4.89

TAD (MLP)
∑K

k=1 log pk .448 .303 .310 .069 .008 -.021 -.419 -.056 .301 .407 .355 .238 .646 .566 .879 .757 .718 .682 6.28
TAD (MLP, +AlignScore)

∑K
k=1 log pk .435 .326 .352 .088 -.052 -.046 -.453 -.063 .153 .220 .191 .146 .662 .575 .912 .822 .717 .693 7.17

Table 11: Comparison of various considered regression models and different aggregation strategies for TAD by
PRR↑ for the Llama 8b v3 model for various tasks. Warmer colors indicate better results. The best method is in
bold, the second best is underlined.

UQ Method Aggregation XSUM SamSum CNN PubMedQA MedQUAD TruthfulQA CoQA SciQ TriviaQA Mean
RankROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore ROUGE-L AlignScore Acc. AlignScore Acc. AlignScore Acc. AlignScore Acc. AlignScore

TAD (CatBoost) 1
K

∑K
k=1 pk .374 .019 .409 .296 .117 .071 .495 .278 .500 .586 .394 .242 .637 .574 .710 .678 .725 .701 6.67

TAD (CatBoost, +AlignScore) 1
K

∑K
k=1 pk .262 .036 .440 .311 .076 .060 .295 .107 .525 .589 .418 .297 .585 .529 .676 .650 .726 .703 6.94

TAD (CatBoost)
∑K

k=1 log pk .320 -.029 .442 .296 -.030 .151 -.565 -.188 .452 .586 .539 .236 .703 .619 .826 .763 .710 .675 7.39
TAD (CatBoost, +AlignScore)

∑K
k=1 log pk .248 -.021 .380 .255 -.105 .110 -.582 -.192 .316 .410 .451 .199 .715 .620 .862 .802 .702 .681 8.94

TAD (LinReg) 1
K

∑K
k=1 pk .375 .024 .459 .282 .163 .137 .493 .284 .511 .610 .368 .222 .594 .555 .734 .710 .712 .686 5.83

TAD (LinReg, +AlignScore) 1
K

∑K
k=1 pk .459 .068 .519 .419 .145 .127 .249 .219 .696 .674 .462 .367 .526 .488 .684 .661 .710 .693 5.06

TAD (LinReg)
∑K

k=1 log pk .368 .011 .450 .279 .013 .154 -.556 -.185 .463 .599 .500 .228 .707 .624 .850 .786 .688 .653 6.50
TAD (LinReg, +AlignScore)

∑K
k=1 log pk .358 .036 .442 .324 -.023 .135 -.567 -.186 .429 .436 .453 .243 .698 .614 .863 .803 .696 .674 6.89

TAD (MLP) 1
K

∑K
k=1 pk .401 .018 .473 .301 .166 .149 .488 .283 .516 .606 .397 .237 .605 .554 .728 .708 .711 .684 5.61

TAD (MLP, +AlignScore) 1
K

∑K
k=1 pk .460 .065 .500 .383 .135 .114 .249 .236 .722 .662 .525 .414 .528 .488 .733 .710 .705 .692 4.67

TAD (MLP)
∑K

k=1 log pk .363 .009 .458 .292 .024 .169 -.557 -.186 .475 .600 .507 .259 .701 .624 .843 .779 .695 .663 6.39
TAD (MLP, +AlignScore)

∑K
k=1 log pk .343 .032 .441 .325 -.014 .136 -.571 -.186 .404 .396 .450 .227 .706 .621 .848 .790 .703 .684 7.11

Table 12: Comparison of various considered regression models and different aggregation strategies for TAD by
PRR↑ for StableLM 12b v2 model for various tasks. Warmer colors indicate better results. The best method is in
bold, the second best is underlined.

UQ Method XSUM SamSum CNN PubMedQA MedQUAD TruthfulQA CoQA SciQ TriviaQA Median
Rel. Impr.ROUGE-L AlignSc. ROUGE-L AlignSc. ROUGE-L AlignSc. ROUGE-L AlignSc. ROUGE-L AlignSc. Acc. AlignSc. Acc. AlignSc. Acc. AlignSc. Acc. AlignSc.

Learning p(si = T ) .526 .345 .279 .314 .182 .079 -.014 .015 .577 .471 .460 .389 .657 .591 .809 .774 .743 .760 -
TAD (LinReg+AlignSc.) .541 .380 .353 .349 .146 .092 .007 .064 .491 .472 .505 .368 .671 .600 .834 .777 .784 .766 +3.1%

Table 13: The comparison of TAD with directly learning the unconditional probability p(si = T) (PRR↑, Gemma
7b model). The best method is in bold, the second best is underlined.

B Computational Resources 957

All experiments were conducted on a single NVIDIA A100 GPU. On average, training a single model 958

across all datasets took over 750 GPU hours, while inference on the test set took 260 GPU hours. 959

C Hyperparameters 960

C.1 Optimal Hyperparameters for TAD 961

The optimal hyperparameters for TAD for various considered regression models and different aggregation 962

strategies are presented in Tables 14 to 16 for Gemma 7b, Llama 8b v3, and StableLM 12b v2 models 963

respectively. These hyperparameters are obtained using cross-validation with five folds using the training 964
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dataset. We train a regression model on k − 1 folds of the training dataset and estimate uncertainty on965

the remaining fold. The optimal hyperparameters are selected according to the best average PRR for966

AlignScore. Finally, we use these hyperparameters to train the regression model on the entire training set.967

The hyperparameter grid for the CatBoost is the following:968

Num. of trees: [100, 200];969

Learning rate: [1e-1, 1e-2];970

Tree depth: [3, 5].971

The hyperparameter grid for the linear regression is the following:972

L2 regularization: [1e+1, 1, 1e-1, 1e-2, 1e-3, 1e-4].973

The hyperparameter grid for the MLP is the following:974

Num. of layers: [2, 4];975

Num. of epochs: [10, 20, 30];976

Learning rate: [1e-5, 3e-5, 5e-5];977

Batch size: [64, 128].978

UQ Method Aggregation XSUM SamSum CNN PubMedQA MedQUAD TruthfulQA CoQA SciQ TriviaQA

TAD (CatBoost) 1
K

∑K
k=1 pk 200, 0.1, 3 100, 0.01, 3 100, 0.01, 3 100, 0.01, 5 100, 0.1, 5 100, 0.01, 3 100, 0.01, 3 100, 0.01, 3 100, 0.01, 5

TAD (CatBoost, +AlignScore) 1
K

∑K
k=1 pk 200, 0.1, 5 200, 0.01, 3 100, 0.01, 3 100, 0.1, 5 100, 0.01, 3 100, 0.01, 5 100, 0.01, 5 200, 0.1, 5 100, 0.01, 5

TAD (CatBoost)
∑K

k=1 log pk 200, 0.1, 3 200, 0.1, 5 200, 0.1, 5 200, 0.01, 3 200, 0.1, 5 200, 0.1, 5 100, 0.1, 5 200, 0.1, 3 200, 0.1, 5
TAD (CatBoost, +AlignScore)

∑K
k=1 log pk 200, 0.1, 5 200, 0.1, 5 100, 0.01, 3 100, 0.1, 5 100, 0.01, 5 200, 0.1, 3 100, 0.01, 5 100, 0.01, 3 100, 0.01, 5

TAD (LinReg) 1
K

∑K
k=1 pk 1 10.0 0.01 1 10.0 0.0001 10.0 10.0 10.0

TAD (LinReg, +AlignScore) 1
K

∑K
k=1 pk 0.01 0.001 0.001 0.1 0.001 0.01 10.0 1 10.0

TAD (LinReg)
∑K

k=1 log pk 10.0 0.0001 0.0001 10.0 0.0001 0.01 10.0 1 1
TAD (LinReg, +AlignScore)

∑K
k=1 log pk 0.01 0.001 0.0001 0.0001 0.001 0.001 10.0 1 1

TAD (MLP) 1
K

∑K
k=1 pk 2, 30, 3e-05, 128 2, 10, 1e-05, 128 2, 30, 5e-05, 128 4, 10, 3e-05, 64 2, 10, 1e-05, 128 4, 30, 5e-05, 128 2, 10, 1e-05, 128 2, 10, 1e-05, 128 2, 10, 1e-05, 128

TAD (MLP, +AlignScore) 1
K

∑K
k=1 pk 2, 30, 3e-05, 64 2, 30, 3e-05, 128 2, 30, 5e-05, 128 4, 10, 5e-05, 128 2, 10, 1e-05, 128 2, 10, 3e-05, 64 2, 10, 1e-05, 128 4, 10, 5e-05, 64 4, 10, 5e-05, 64

TAD (MLP)
∑K

k=1 log pk 2, 20, 5e-05, 64 2, 10, 1e-05, 128 4, 30, 5e-05, 128 4, 10, 1e-05, 128 4, 30, 3e-05, 128 4, 20, 3e-05, 64 4, 10, 1e-05, 64 4, 30, 3e-05, 128 4, 30, 1e-05, 64
TAD (MLP, +AlignScore)

∑K
k=1 log pk 4, 20, 5e-05, 128 4, 30, 5e-05, 128 4, 20, 5e-05, 128 4, 30, 5e-05, 64 4, 30, 5e-05, 64 4, 30, 5e-05, 128 2, 20, 1e-05, 128 4, 20, 3e-05, 128 4, 30, 1e-05, 64

Table 14: Optimal hyperparameters for the TAD methods for the Gemma 7b model.

UQ Method Aggregation XSUM SamSum CNN PubMedQA MedQUAD TruthfulQA CoQA SciQ TriviaQA

TAD (CatBoost) 1
K

∑K
k=1 pk 200, 0.1, 5 100, 0.01, 3 200, 0.1, 5 100, 0.01, 3 100, 0.01, 3 200, 0.1, 5 100, 0.01, 5 100, 0.01, 3 100, 0.01, 3

TAD (CatBoost, +AlignScore) 1
K

∑K
k=1 pk 200, 0.1, 5 200, 0.01, 3 100, 0.01, 3 100, 0.01, 5 200, 0.01, 5 200, 0.1, 5 100, 0.01, 5 200, 0.1, 5 100, 0.01, 5

TAD (CatBoost)
∑K

k=1 log pk 200, 0.1, 5 100, 0.01, 3 200, 0.1, 5 200, 0.1, 5 200, 0.1, 5 200, 0.1, 5 200, 0.1, 3 200, 0.1, 3 200, 0.1, 3
TAD (CatBoost, +AlignScore)

∑K
k=1 log pk 200, 0.1, 5 100, 0.01, 3 100, 0.01, 5 100, 0.01, 5 100, 0.01, 5 200, 0.1, 5 100, 0.1, 3 200, 0.1, 5 100, 0.01, 5

TAD (LinReg) 1
K

∑K
k=1 pk 0.0001 10.0 0.01 0.1 0.0001 10.0 10.0 10.0 10.0

TAD (LinReg, +AlignScore) 1
K

∑K
k=1 pk 0.001 0.0001 0.01 0.01 0.0001 0.1 10.0 1 10.0

TAD (LinReg)
∑K

k=1 log pk 0.01 1 0.001 0.0001 0.0001 0.0001 10.0 1 10.0
TAD (LinReg, +AlignScore)

∑K
k=1 log pk 0.0001 0.0001 0.0001 0.1 0.0001 0.1 10.0 1 10.0

TAD (MLP) 1
K

∑K
k=1 pk 2, 10, 1e-05, 64 4, 30, 5e-05, 128 2, 30, 5e-05, 128 4, 10, 5e-05, 64 2, 20, 5e-05, 128 2, 30, 3e-05, 128 2, 10, 1e-05, 128 2, 30, 1e-05, 128 4, 30, 1e-05, 128

TAD (MLP, +AlignScore) 1
K

∑K
k=1 pk 4, 10, 3e-05, 128 4, 20, 1e-05, 128 2, 20, 5e-05, 128 4, 10, 5e-05, 64 4, 30, 1e-05, 128 4, 30, 5e-05, 128 2, 10, 1e-05, 128 2, 20, 5e-05, 64 4, 10, 5e-05, 64

TAD (MLP)
∑K

k=1 log pk 4, 10, 1e-05, 128 4, 10, 1e-05, 128 4, 30, 5e-05, 64 4, 20, 5e-05, 64 2, 30, 5e-05, 128 4, 30, 3e-05, 64 4, 10, 1e-05, 64 2, 10, 3e-05, 128 4, 20, 5e-05, 128
TAD (MLP, +AlignScore)

∑K
k=1 log pk 2, 30, 1e-05, 128 4, 30, 3e-05, 64 2, 30, 5e-05, 64 2, 20, 5e-05, 64 4, 30, 1e-05, 128 4, 30, 3e-05, 128 2, 10, 3e-05, 128 2, 30, 3e-05, 128 4, 10, 5e-05, 128

Table 15: Optimal hyperparameters for the TAD methods for the Llama 8b v3 model.

UQ Method Aggregation XSUM SamSum CNN PubMedQA MedQUAD TruthfulQA CoQA SciQ TriviaQA

TAD (CatBoost) 1
K

∑K
k=1 pk 200, 0.1, 5 100, 0.01, 3 100, 0.01, 3 200, 0.1, 5 200, 0.1, 5 200, 0.1, 3 100, 0.01, 3 100, 0.01, 3 200, 0.1, 3

TAD (CatBoost, +AlignScore) 1
K

∑K
k=1 pk 200, 0.1, 3 100, 0.01, 3 100, 0.01, 5 200, 0.01, 3 100, 0.1, 3 200, 0.1, 5 100, 0.01, 5 200, 0.1, 5 100, 0.01, 5

TAD (CatBoost)
∑K

k=1 log pk 200, 0.1, 5 100, 0.1, 3 200, 0.1, 5 200, 0.1, 3 200, 0.1, 5 200, 0.1, 5 100, 0.1, 5 100, 0.01, 5 200, 0.1, 3
TAD (CatBoost, +AlignScore)

∑K
k=1 log pk 200, 0.1, 3 100, 0.01, 3 100, 0.01, 5 200, 0.1, 5 100, 0.01, 5 200, 0.1, 5 100, 0.1, 3 100, 0.01, 5 200, 0.1, 3

TAD (LinReg) 1
K

∑K
k=1 pk 0.01 10.0 1 10.0 0.0001 0.0001 10.0 10.0 10.0

TAD (LinReg, +AlignScore) 1
K

∑K
k=1 pk 0.01 0.1 0.1 0.0001 0.001 0.1 10.0 10.0 10.0

TAD (LinReg)
∑K

k=1 log pk 1 10.0 1 1 0.01 0.001 10.0 10.0 10.0
TAD (LinReg, +AlignScore)

∑K
k=1 log pk 0.1 0.001 0.01 1 0.1 0.001 10.0 10.0 10.0

TAD (MLP) 1
K

∑K
k=1 pk 4, 10, 1e-05, 128 4, 10, 5e-05, 64 2, 30, 1e-05, 128 2, 30, 1e-05, 128 4, 30, 3e-05, 64 4, 30, 1e-05, 128 2, 10, 1e-05, 128 4, 10, 3e-05, 64 4, 30, 1e-05, 128

TAD (MLP, +AlignScore) 1
K

∑K
k=1 pk 2, 30, 3e-05, 128 4, 10, 1e-05, 128 4, 30, 5e-05, 64 4, 10, 1e-05, 128 4, 10, 5e-05, 128 4, 30, 1e-05, 64 2, 10, 3e-05, 128 4, 10, 3e-05, 64 4, 10, 3e-05, 64

TAD (MLP)
∑K

k=1 log pk 2, 20, 1e-05, 128 4, 10, 5e-05, 64 4, 30, 5e-05, 64 4, 20, 5e-05, 64 4, 20, 5e-05, 64 4, 20, 5e-05, 64 4, 10, 3e-05, 64 2, 10, 1e-05, 64 4, 10, 3e-05, 64
TAD (MLP, +AlignScore)

∑K
k=1 log pk 2, 30, 1e-05, 64 2, 30, 3e-05, 64 4, 30, 5e-05, 64 4, 20, 1e-05, 64 4, 30, 3e-05, 128 4, 30, 5e-05, 128 2, 10, 1e-05, 64 4, 10, 1e-05, 128 4, 10, 3e-05, 64

Table 16: Optimal hyperparameters for the TAD methods for the StableLM 12b v2 model.
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C.2 LLM Generation Hyperparameters 979

Dataset Task Max Input Length Generation Length Temperature Top-p Do Sample Beams Repetition Penalty

XSum
TS

-

56

1.0 1.0 False 1 1

SamSum 128
CNN 128
PubMedQA

QA
Long answer

128
MedQUAD 128
TruthfulQA 128
CoQA

QA
Short answer

20
SciQ 20
TriviQA 20

Table 17: Text generation hyperparameters for all LLMs used in the experiments.

D Dataset Statistics 980

Task Dataset N-shot Train texts
for TAD

Evaluation
texts

Text
Summarization

CNN/DailyMail 0 2,000 2,000
XSum 0 2,000 2,000
SamSum 0 2,000 819

QA
Long answer

PubMedQA 0 2,000 2,000
MedQUAD 5 1,000 2,000
TruthfulQA 5 408 409

QA
Short answer

SciQ 0 2,000 1,000

CoQA all preceding
questions 2,000 2,000

TriviaQA 5 2,000 2,000

Table 18: The statistics of the datasets used for evaluation.
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