
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ALIGNMENT UNLOCKS COMPLEMENTARITY:
A FRAMEWORK FOR MULTIVIEW CIRCUIT REPRESEN-
TATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Multiview learning on Boolean circuits holds immense promise, as different
graph-based representations offer complementary structural and semantic infor-
mation. However, the vast structural heterogeneity between views—such as
an And-Inverter Graph (AIG) versus an XOR-Majority Graph (XMG)—poses a
critical barrier to effective fusion, especially for self-supervised techniques like
masked modeling. Naively applying such methods fails, as the cross-view context
is perceived as noise. Our key insight is that functional alignment is a neces-
sary precondition to unlock the power of multiview self-supervision. We intro-
duce MixGate, a framework built on a principled training curriculum that first
teaches the model a shared, function-aware representation space via an Equiva-
lence Alignment Loss. Only then do we introduce a multiview masked modeling
objective, which can now leverage the aligned views as a rich, complementary
signal. Extensive experiments, including a crucial ablation study, demonstrate
that our alignment-first strategy transforms masked modeling from an ineffective
technique into a powerful performance driver.

1 INTRODUCTION

Multiview learning on Boolean circuits holds immense promise, as different graph-based represen-
tations offer complementary structural and semantic insights. While an And-Inverter Graph (AIG)
provides a detailed structural view, a format like an XOR-Majority Graph (XMG) offers a semanti-
cally richer, high-level abstraction. This multiview approach has shown remarkable empirical suc-
cess, surpassing earlier models that relied on single representations Li et al. (2022); Wang et al.
(2022); Wu et al. (2023); Shi et al. (2023); Deng et al. (2024); Wang et al. (2024). The key challenge,
however, arises from the vast structural heterogeneity between these views. This disparity poses a
critical barrier to advanced self-supervised techniques like Masked Circuit Modeling (MCM) Shi
et al. (2025b); Wu et al. (2025), which is inspired by the success of masked language modeling in
natural language processing (NLP) Devlin et al. (2019). When a model lacks a common frame of
reference, the cross-view context is perceived as noise rather than a useful signal, rendering such
techniques ineffective.

Our key insight is that fine-grained functional alignment is a necessary precondition to unlock the
power of multiview self-supervision. We argue that before a model can leverage complementary
views for complex reasoning, it must first be guided to learn a shared, function-aware representation
space. This alignment acts as a “Rosetta Stone”, teaching the model to recognize that structurally
alien subgraphs can be functionally equivalent, thereby bridging the gap between the different circuit
“languages”.

Building on this principle, we introduce MixGate, a framework designed around an alignment-
first training curriculum (see Figure 1). MixGate’s core is an Equivalence Alignment Loss that
explicitly enforces functional consistency for these equivalent nodes across various views, building
the shared representation space needed for effective fusion. Only after this foundation is established
does our framework leverage a multiview masked modeling objective, transforming the now-aligned
views into a rich, complementary signal for robust self-supervised learning. In our experiments,
we choose three easily obtainable complementary views, Majority-Inverter Graph (MIG), XOR-
AND Graph (XAG) and XOR-Majority Graph (XMG). Our results show significant performance

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

XAG Emb.

…
 …

A
IG

 C
irc

ui
t

AIG
Encoder

Transformer
Blocks

XMG Emb. MIG Emb. AIG Emb.

Refined AIG Emb.

… …

… …

Hierarchical Circuit Tokenizer

…
 …

X
M

G
 C

irc
ui

t

XMG
Encoder

M

…
 …

M
IG

 C
irc

ui
t

MIG
Encoder

M

M
M

…
 …

X
A

G
 C

irc
ui

t

XAG
Encoder

Reconstruction Loss

Mask Circuit Modeling

Pretraining Loss(es)🔥 🔥

Equivalence Alignment Loss🔥

Figure 1: The MixGate Framework. A target circuit (e.g., And-Inverter Graph, AIG) is converted into
multiple complementary views: Majority-Inverter Graph (MIG), XOR-AND Graph (XAG) and XOR-Majority
Graph (XMG). Dedicated graph encoders process each view, and a hierarchical circuit tokenizer efficiently
organizes the resulting embeddings into structured tokens. These multi-view tokens are fused by Transformer
blocks to produce a refined output embedding, which is enriched with complementary features and leads to
improved performance on downstream tasks

improvements, highlighting that establishing functional alignment is indeed the critical precondition
for unlocking the full potential of multiview self-supervision in circuit modeling.

The main contributions of this work are summarized as follows:

• Principled Solution to Multiview Heterogeneity: We identify structural heterogeneity as
a critical barrier for self-supervised learning on circuits and propose a novel alignment-first
curriculum as solution. Analysis of the resulting model validates our approach, revealing
an emergent attention behavior that naturally prioritizes the functionally aligned logic.

• The MixGate Framework: We present MixGate, a complete and effective framework
embodying our alignment-first principle. MixGate integrates a novel hierarchical tokenizer
for efficiency and is the first to successfully leverage multiview masked modeling by con-
ditioning it on a pre-aligned representation space.

• Comprehensive Empirical Validation: We demonstrate through extensive experiments
that our alignment-first strategy is critical for performance. Our ablation study proves that
alignment unlocks the potential of masked modeling, turning a previously ineffective
technique into a significant performance driver. Furthermore, we show that MixGate is a
generalizable enhancement for a wide range of existing models.

2 RELATED WORK

2.1 GRAPH REPRESENTATIONS OF BOOLEAN CIRCUITS

A Boolean function can be implemented in various representations that leverage different sets of
logic gates. Prominent formats include And-Inverter Graphs (AIGs) Mishchenko et al. (2006),
Majority-Inverter Graphs (MIGs) Amarú et al. (2014), XOR-And Graphs (XAGs) Háleček et al.
(2017), and XOR-Majority Graphs (XMGs) Haaswijk et al. (2017). For instance, in an AIG rep-
resentation, logic circuits are modeled as directed acyclic graphs where AND and NOT gates are
represented as nodes, and the wires connecting them are represented as directed edges.

All these representations preserve the functional equivalence of the Boolean circuit but vary in how
effectively they support downstream tasks. AIGs are widely adopted in industrial tools due to their
structural simplicity Barbareschi et al. (2022). MIGs generalize AIGs by replacing AND with ma-
jority logic, allowing delay-oriented optimization and more compact encoding of arithmetic and
control circuits Amaru et al. (2015). XAGs extend AIGs with explicit XOR gates. They provide

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

more efficient synthesis for parity and arithmetic logic where XOR operations are prevalent Háleček
et al. (2017). XMGs combine the strengths of MIGs and XAGs by including both XOR and majority
gates, offering improved area-delay trade-offs and a balanced representation of control and datapath
logic Chu et al. (2019).

Recent research emphasizes the complementary nature of circuit representations within unified logic
optimization frameworks Neto et al. (2019); Pu et al. (2025); Fu et al. (2025). For instance, LSO-
racle Neto et al. (2019) partitions circuits into clusters. Each cluster is converted into the most
suitable representation among AIG, MIG, XAG, or XMG, and processed by dedicated optimization
techniques. Experimental results show that this heterogeneous strategy leads to improved power,
performance, and area (PPA) metrics in the final synthesized circuits. Our work aims to leverage
this complementarity in circuit representation learning, and further enhance model performance by
learning multiview information across these diverse graph formats.

2.2 CIRCUIT REPRESENTATION LEARNING

Circuit representation learning Li et al. (2022); Shi et al. (2023); Wang et al. (2022) employs deep
learning models to extract informative and general-purpose embeddings of Boolean circuits. These
embeddings encode both structural and functional properties and have demonstrated good perfor-
mance across various EDA tasks, such as testability analysis Shi et al. (2022) and Boolean reason-
ing Wu et al. (2023).

Given the inherently multimodal nature of the EDA design flow, circuit designs can be represented
at various abstraction levels, such as hardware description language (HDL) code, gate-level netlists,
and physical layouts. Recent studies have explored fusing information across these modalities to
improve downstream task performance Chen et al. (2024); Zhong et al. (2024); Shi et al. (2025b);
Fang et al. (2025); Wu et al. (2025). Generally, mask modeling is a promising self-supervised
approach to fuse the cross-view information, which is inspired by BERT Devlin et al. (2019). How-
ever, while effective in NLP applications and single-view settings, the application of mask modeling
to the multiview circuit learning domain, with its inherent structural heterogeneity, remains an open
problem. For example, the vast structural differences between views like AIGs and XMGs mean that
cross-view context is often perceived as noise rather than a useful signal, rendering naive applica-
tions of masked modeling ineffective. Our work addresses this gap by proposing an alignment-first
curriculum as a necessary precondition for effective multiview self-supervision.

3 MIXGATE FRAMEWORK

As motivated in the introduction, the core challenge is that multiview circuit graphs (e.g., AIG,
XMG, MIG, XAG) exhibit vast structural heterogeneity. A successful framework must therefore
unify these views into a common embedding space while preserving their complementary functional
and structural information. To this end, MixGate integrates three essential components: (1) system-
atic preparation of multiview data with fine-grained correspondences, (2) a hierarchical tokenizer
and Transformer backbone for fusion, and (3) a progressive alignment-first training strategy.

3.1 DATA PREPARATION

Dataset Source We construct our dataset for MixGate training based on the open-source
ForgeEDA dataset Shi et al. (2025a), which provides 1,189 large-scale and high-quality circuits
across 20 divisions. The description of raw data is summarized in Appendix A.1.

Multiview Data Construction The MIG, XMG, and XAG are generated by converting AIG using
ALSO 1, an open-source logic synthesis tool. For each input AIG, the command lut mapping
is first utilized to transform the AIG into a Look-up Table (LUT) network consisting of 4-input
LUTs (4-LUTs). Subsequently, the 4-LUT network is converted to the corresponding MIG, XMG,
and XAG through the command lut resyn. The entire transformation process is computationally
efficient, with approximately linear time complexity in relation to circuit size. Despite the different
views, these graphs of the same Boolean circuit have the same function. Detailed flows are provided
in Appendix A.2.

1 ALSO: Advanced Logic Synthesis and Optimization tool. https://github.com/nbulsi/also

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Logic “1”

New Circuits

CNF 𝐶𝑁𝐹!!"#

… …

AIG Netlist

A … …

XMG Netlist

M

B

∧ ¬A ∨ ¬B
∧ A ∨ B ∧ 𝐶𝑁𝐹!$%#

SAT sweeping

… …

XMG

… …

AIG

① Simulation

Nodes with same hash value

PI1 PI2 PI3 PI1 PI2 PI3

PO1 PO2 PO1 PO2

N2
N4

N1 0010 1011 0110 0011

N2 0100 1101 0000 1101

N3 0010 1011 0110 0011

N4 0101 0011 1011 1010

N1
M

N3

② SAT Solving Satisfiable
à N1 != N3

Unsatisfiable
à N1 == N3

Figure 2: Example of equivalence gates identification

Equivalence Gates Identification We identify functionally equivalent nodes across different
views to establish the ground truth for equivalence alignment. The label preparation process is
inspired by SAT sweeping Kuehlmann et al. (2002), a well-established technique to merge equiva-
lence pairs for area minimization in logic synthesis. As shown in Figure 2, we first perform random
simulation on the different circuit graphs of the same design and figure out these nodes with the same
response. This step serves as a fast and efficient filter, drastically reducing the number of candidate
pairs by eliminating obviously non-equivalent nodes. Second, for each candidate pair, we construct
a miter circuit by feeding their outputs into an XOR gate and formally check equivalence using a
SAT solver. If the solver returns an UNSAT (unsatisfiable) result, it formally proves that no input
vector exists for which the nodes’ functions differ, confirming their functional equivalence. Other-
wise, these two nodes are not equivalent. If node N1 from AIG and node N3 from XMG always
share the same Boolean function, we annotate these two nodes as equivalent nodes and enforce the
proposed model produces the same embeddings for these two nodes.

Finally, we construct multiple graph-based representations (AIG, MIG, XAG, and XMG) for each
circuit design and enriched them with fine-grained annotations of functionally equivalent nodes. We
will release both our dataset and code to contribute to the open-source EDA and AI community.

3.2 MODEL ARCHITECTURE

Figure 1 illustrates the modular architecture of the proposed MixGate framework, which exempli-
fies how to refine the embeddings of an AIG netlist by integrating multiview circuit information.
The framework consists of four graph encoders, a novel hierarchical circuit tokenzier, and plain
Transformer blocks.

Graph Encoder We design four specialized graph encoders tailored to AIG, MIG, XAG, and
XMG, respectively. These encoders operate on their respective netlists and are crafted to obtain the
structural embeddings hs and functional embeddings hf in each view. The encoders are defined as
below:

HS
v , H

F
v = Ev(Gv), HS

v = [hsv1, hs
v
2, . . . , hs

v
n], HF

v = [hfv
1 , hf

v
2 , . . . , hf

v
n]. (1)

where Ev represents the encoder for view v ∈ {AIG,MIG,XAG,XMG}, and Gv represents the
input circuit graph. The four view-specific encoders are first pretrained separately and then jointly
fine-tuned within MixGate to remain fully trainable during end-to-end optimization.

Within the graph encoder, we extend the directed acyclic graph-aware aggregator proposed in Deep-
Gate2 Shi et al. (2023), which is elaborated in Appendix B. Briefly, for a node k with gate type
type(k), let P(k) denote its set of predecessor nodes. We adopt the aggregator to obtain the func-
tional embedding hf and structural embedding hs of node k. As shown in Eq. 2, the trainable
aggregator in graph encoders is defined as Φ = {ϕs

type(k) ϕ
f
type(k)}. All the node embeddings are

updated from Primary Inputs (PIs) to Primary Outputs (POs) level by level, which mimics the be-
havior of Boolean logic computation.

hsk = ϕs
type(k)(hsi|i ∈ P(k)), hfk = ϕf

type(k)([hfi, hsi]|i ∈ P(k)). (2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

…
 …

…

 …

…
 …

…

 …

PI PO

hop

subgraph

Graph
Partition

…
 …

Complementary Graphs

Blocks
Blocks

Blocks

Blocks

Blocks
Hop tokens Subgraph tokens Graph tokens

Output tokens

Hop-level
Pooling TF. Subgraph-level

Pooling TF. Graph-level
Pooling TF.

Figure 3: Overview of hierarchical circuit tokenizer

Then, we distinguish the aggregator according to the gate type type(k). For AIG encoding, the
encoder EAIG contains two aggregators: EAIG = {ΦAND,ΦNOT}.

An MAJ gate can be degraded into a simpler gate when one of its inputs is a constant (0/1). For
example, if one of the inputs is a constant 0, the gate behaves like an AND gate. If the input is a
constant 1, the gate acts as an OR gate. This degradation can be formally described as:

MAJ(A,B,C) =


AND(A,B), if C = 0,

OR(A,B), if C = 1,

MAJ(A,B,C), otherwise.
(3)

Such behavior implicitly alters gate functionality during simulation, which may mislead the aggrega-
tion process in GNNs. To address this, we explicitly differentiate between native and degraded forms
of the MAJ gate. Specifically, we extend the set of gate-specific aggregators to include degraded
forms, introducing AND and OR gates for the graph views with MAJ gate. Accordingly, we define
the encoder sets E for the other three views as: EMIG = {ΦMAJ,ΦAND,ΦOR,ΦNOT}, EXAG =
{ΦAND,ΦXOR,ΦNOT}, EXMG = {ΦXOR,ΦMAJ,ΦAND,ΦOR,ΦNOT}.

Circuit Tokenizer Circuit tokenizer θ transforms the embeddings into sequences of tokens, the
input to the Transformer blocks for further processing. For the refined view, such as AIG in Figure 1,
we use a flat tokenization strategy, directly treating its node-level embeddings as the input sequence
without hierarchical grouping: [t1, t2, · · · , tn]v = θ(HS

v , H
F
v), Tv = [t1, t2, · · · , tn]v .

Hierarchical Circuit Tokenizer For the complementary graphs (MIG, XAG and XMG), directly
passing them to a Transformer risks flattening important structural cues and leads heavy computa-
tional complexity. To address this, we introduce a hierarchical tokenizer that aggregates node em-
beddings into hop-level, subgraph-level, and graph-level tokens, thereby extracting multiple level
information and significantly reducing the number of tokens. The proposed tokenizer operates in
a three-level hierarchy: hop-level, subgraph-level, and graph-level to orchestrate the final output
tokens.

First, as shown in Figure 3, given an input graph G = (V, E), where V is the set of nodes and E is the
set of edges, graph partitioning begins from the Primary Outputs (POs) and proceeds backward into
the Primary Inputs (PIs) in discrete steps. Each logic hop Hi consists of nodes and edges reachable
within a fixed fan-in depth of l levels. For example, the first hop H1 contains one of the POs and
the logic gates in their fan-in up to l levels deep. The subsequent hops begin at the gates in d − l
level and extend a further l levels back toward the PIs, where d is the total depth of the given graph.
This creates a series of sequential and non-overlapping Nh hops that segment the entire graph from
output to input.

Next, we group the hops into larger subgraphs Sj by aggregating those that belong to the same
level according to a pre-defined index set Lj . Each subgraph is formed as Sj =

⋃
k∈Lj

Hk, ∀j ∈

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

{1, . . . , Ns}, where Lj denotes the hop indices included in Sj and Ns is the total number of sub-
graphs. After constructing all subgraphs, we combine them to obtain the full graph G, defined as
G =

⋃Ns

m=1 Sm.

The above bottom-up hierarchical decomposition reorganizes the circuit graph into three progres-
sively coarser levels: hop-level, subgraph-level, and graph-level, enabling multiscale structural
representation for downstream processing. Given the node-level embeddings within a hop area
tk, k ∈ Hi, we generate the hop-level token tHi

by pooling the corresponding node embeddings.
To be specific, we adopt a pooling Transformer (Pooling TF.), which prepends a learnable spe-
cial token [CLS] to the input sequence. This special token attends to all other tokens in the se-
quence, and its output representation serves as a summary. The pooling process is formalized as:
[CLS]

′
= δ([CLS], t1, t2, · · · , tn), where the output [CLS]

′
is the pooling result.

Therefore, the hop-level token is obtained by aggregating the contained nodes, i.e., tHi
= δ(tk), k ∈

Hi. Similarly, the subgraph-level token is computed by pooling over its hop tokens as tSj =
δ(tHi

), Hi ∈ Sj, and the single graph-level token is produced by pooling over all subgraph to-
kens, tG = δ(tSj

), Sj ∈ G.

The final output of our hierarchical tokenizer is the concatenation of all generated tokens across the
three levels: T = {tHi

}Nh
i=1 ∪ {tSj

}Ns
j=1 ∪ tG .

Transformer Blocks To effectively fuse multiview information of various Boolean circuit graphs,
we use the Transformer blocks in MixGate framework. Formally, the Transformer blocks π are de-
noted as: T

′

AIG,T
′

MIG,T
′

XAG,T
′

XMG = π(TAIG,TMIG,TXAG,TXMG). Inspired by the sparse Trans-
former architecture in Zheng et al. (2025), we implement the multi-head attention mechanism in the
traditional Transformer with a graph attention network (GAT) to improve the efficiency.

3.3 MODEL TRAINING

As outlined in Figure 1, our strategy rests on two pillars: (1) establishing functional alignment across
structurally diverse views, and (2) exploiting their complementary context via multiview fusion. To
operationalize these, MixGate employs three types of loss functions.

Equivalence Alignment Loss To harness the complementary information across different circuit
representations (AIG, XMG, XAG, MIG), we explicitly enforce functional consistency among them
during training. We introduce an Equivalence Alignment Loss (Lalign) to pull the embeddings of
these equivalent nodes closer together in the latent space. Formally, for a pair of nodes (i, j) from
two different views i ∈ Gv1 , j ∈ Gv2 with the same Boolean behavior, we minimize the L1 distance
between their functional embeddings hf produced by graph encoders.

Lalign =
1

|P|
∑

(i,j)∈P

||hfi − hfj ||1 (4)

where P is the set of all functionally equivalent node pairs identified across the multiview circuits.
In practice, P can be subsampled per batch to reduce computational overhead without degrading
alignment quality. We adopt the L1 distance for its simplicity and robustness. It provides a sta-
ble anchor for positive pairs in highly heterogeneous circuit graphs, while contrastive objectives
with negative sampling add substantial complexity without clear benefits. Further justification and
empirical analysis are provided in Appendix H.

Reconstruction Loss Once a unified embedding space is established, the model can now benefit
from self-supervised signals across views. We therefore extend masked modeling into a multiview
setting, where a masked cone in one graph must be reconstructed not only from intra-view cues but
also from complementary cross-view context.

For a target view (e.g., AIG, GA), we randomly select a node p and mask its entire k-hop input cone
M(p), as illustrated in Figure 4. The functional embeddings hf i of all nodes i ∈ M(p) are replaced
by a learnable mask token hm, while their structural embeddings hsi are preserved. The models are
then fed with the combined tokens from all views: the masked AIG tokens, the unmasked tokens
from the other source views (XMG, XAG, MIG, GS), and the unmasked tokens from the rest of the
AIG: T∗

AIG = Mask(TAIG).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

ℎ𝑓!"
…𝒉𝒎 ℎ𝑓#"𝒉𝒎

ℎ𝑠!" …ℎ𝑠$" ℎ𝑠#"ℎ𝑠%" ℎ𝑠&"

𝒉𝒎ℎ𝑓!'
… ℎ𝑓('

ℎ𝑠!' … ℎ𝑠('

AIG Tokens

AI
G

 N
et

lis
t

PM
 N

et
lis

tMasked PM Tokens

M
as

ke
d

PM
 N

et
lis

t

M
as

ke
d

H
op

𝒑 𝒑

ℎ𝑓! … ℎ𝑓!"

ℎ𝑠! …ℎ𝑠# ℎ𝑠!"ℎ𝑠$

ℎ𝑓# ℎ𝑓$ ℎ𝑓"

ℎ𝑠" ℎ𝑠% ℎ𝑠&

ℎ𝑓% ℎ𝑓&

1

2 3

4 5 6

7 8 9 10

11 12 13 14

1

2 3

4 5 6

7 8 9 10

11 12 13 14

1

2 3

4 5 6

7 8 9 10

11 12 13 14

ℎ𝑓! … ℎ𝑓!"

ℎ𝑠! …ℎ𝑠# ℎ𝑠!"ℎ𝑠$
ℎ𝑚 ℎ𝑓$

ℎ𝑠" ℎ𝑠% ℎ𝑠&
ℎ𝑓% ℎ𝑓&ℎ𝑚

Select
node 𝑝

Mask 𝑘-input
cone

O
rig

in
al

 G
ra

ph

M
as

ke
d

G
ra

ph

Figure 4: Example of mask circuit modeling

The combined sequence of tokens T∗
AIG,TMIG,TXAG,TXMG is processed by the Transformer en-

coder π to reconstruct contextualized embeddings. The training objective is to reconstruct the orig-
inal functional embeddings of the masked nodes using a linear decoder head and an L1 loss:

Lmcm =
1

|M(p)|
∑

i∈M(p)

||T
′

AIG −TAIG||1 (5)

Pretraining Losses As prior works Shi et al. (2023); Liu et al. (2024); Shi et al. (2024), we read
out the node-level tokens for the following pretraining tasks. These two loss metrics are used to
evaluate model performance in the next section. For both metrics, smaller values indicate better
performance. More detailed definition of these two loss functions can be found in Appendix C.

• Signal Probability Prediction (SPP) Loss (Lspp): Predict the probability that a logic gate
outputs a logical 1 under random input simulation. It is computed as the average absolute
difference between the predicted and ground-truth signal probabilities. SPP is particularly
relevant for testability analysis Williams & Angell (1973).

• Truth-Table Distance Prediction (TTDP) Loss (Lttdp): Measure the semantic distance
between pairs of logic gates by predicting the difference in their truth tables. It is calculated
as the average absolute difference between predicted and ground-truth distances based on
random simulation. TTDP is important in logic synthesis Kuehlmann et al. (2002), as a
distance of zero implies functional equivalence, enabling gate merging.

Training Pipeline Overview We consolidate the training into the MixGate Curriculum. Rather
than applying all training objectives simultaneously, we first align the latent spaces of graph encoders
and then fuse multiview information by mask modeling. A three-stage progression is adopted to
stabilize optimization (details in Appendix C).

4 EXPERIMENTAL RESULTS

In this section, we present experiments designed to validate the central claim of this paper: functional
alignment is the prerequisite that enables multiview self-supervision to succeed in circuit represen-
tation learning. We begin with a crucial ablation study that directly supports this claim (Sec. 4.1)
and then explore the optimal hyperparameters (Sec. 4.2). In the following ablation studies, we inves-
tigate the effects of multiview circuit learning in Sec. 4.3 and the novel hierarchical circuit tokenizer
in Sec. 4.4. Finally, we demonstrate that MixGate framework can be generalized to various circuit
encoders in App. D and large-scale circuits in App. E. We then inspect the contributions of each view
(see App. F) in the appendices. The model implementation details with default hyperparameters are
elaborated in App. G.

4.1 ALIGNMENT AS THE PRECONDITION FOR MULTIVIEW SELF-SUPERVISION

To evaluate the effectiveness of the proposed fine-grained equivalence alignment mechanisms, we
conduct an ablation study with four variants: (1) Baseline, the baseline without mask or align-
ment, (2) +Mask, which incorporates only the masked circuit modeling objective, (3) +Align,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Ablation on equivalence alignment

Variants Loss Values
Lspp Red. (↓) Lttdp Red. (↓) Lmcm Lalign

Baseline 0.0242 0.0837 / /
+Mask 0.0247 -2.02% 0.0896 -6.58% 0.1770 /
+Align 0.0236 2.54% 0.0828 1.09% / 0.0710
+Mask +Align 0.0226 7.08% 0.0797 5.02% 0.1690 0.0637

which applies only the node-level functional alignment constraint across various views, and (4)
+Mask+Align combines both mechanisms, which is the proposed MixGate settings. All the vari-
ants share the model framework with the same number of trainable parameters.

The results are shown in Table 1. First, using mask alone (+Mask) is counterproductive, leading to
a noticeable performance degradation compared to the baseline. For instance, the Lspp loss worsens
from 0.0242 to 0.0247 (a 2.02% improvement) and Lttdp loss increases by 6.58%. Our results
indicate that without alignment, masked modeling in isolation fails, as the structurally diverse cross-
view context is treated as noise rather than a useful signal.

Second, using align alone (+Align) consistently improves performance by enforcing functional con-
sistency across the different circuit views. The alignment reduces the Lspp loss to 0.0236 (a 2.54%
reduction) and the Lttdp loss to 0.0828 (a 1.09% reduction).

Third, combining both mechanisms (+Mask +Align setting) yields the best results by a significant
margin, which achieves the lowest losses, reducing Lspp by 7.08% and Lttdp by 5.02% compared
to the baseline without incorporating any inference overhead. This ablation study highlights that
alignment is essential for realizing the benefits of multiview self-supervision. In the following ex-
periments, we choose the best setting (+Mask +Align) for further investigations.

4.2 EXPLORATION ON MASK RATIO

Table 2: Effect of different mask ratios

Mask Loss Values
Ratio Lspp Lttdp Lmcm Lalign

0.00 0.0236 0.0828 / 0.0710
0.01 0.0231 0.0812 0.1528 0.0996
0.03 0.0226 0.0797 0.1693 0.0654
0.05 0.0269 0.0984 0.1032 0.0594

We further analyze the impact of different mask
ratios in the self-supervised MCM training
strategy. The mask ratio is defined as the per-
centage of nodes in a circuit that are randomly
selected to have their input cones masked. It
should be denoted that since each selection
masks an entire input cone, the total portion of
the masked circuit is significantly larger than
the mask ratio. We vary the mask ratio from
0.00 to 0.05, where the 0.00 mask ratio is iden-
tical to the +Align setting without masking.

From Table 2, the results confirms that a small amount of masking is better than none. Starting
from the 0.00 ratio baseline, increasing the mask ratio to 0.01 and 0.03 progressively improves
performance. The model achieves its best results on SPP and TTDP at the 0.03 mask ratio, with
Lspp is 0.0226 and Lttdp is 0.0797. Besides, the experiment demonstrates that there is a tipping
point. When the mask ratio is increased to 0.05, performance sharply degrades, where the Lspp

rises to 0.0269 an Lttdp to 0.0984. Therefore, an excessively high mask ratio removes too much
contextual information, overwhelming the model and hindering its ability to learn effectively.

4.3 IMPACT OF MULTIVIEW INFORMATION

To prove that the proposed multiview learning approach is robust and truly beneficial, we compare its
performance against a traditional single-view setup. We create two distinct settings for refining each
circuit types (AIG, MIG, XMG and XAG), respectively. Refining AIG embeddings with multiview
information (w/ Multiview) is the default framework in this paper, which uses the corresponding
MIG, XMG and XAG as auxiliary views. The encoders for all four views process their respective
graphs, and the Transformer blocks fuse all this information to produce a refined AIG embedding.
Without multiview (w/o Multiview) settings only have a single input graph. The learned embeddings

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Model performance of without (w/o) and with (w/) multiview

Refined w/o Multiview w/ Multiview
Graph Lspp Lttdp Lspp Red. (↓) Lttdp Red. (↓)

AIG 0.0247 0.1156 0.0226 8.50% 0.0797 31.11%
MIG 0.0323 0.0717 0.0284 12.07% 0.0431 39.89%
XAG 0.0254 0.1206 0.0237 6.69% 0.0686 43.16%
XMG 0.0235 0.0308 0.0217 7.67% 0.0253 17.86%

Table 4: Model performance of without (w/o) and with (w/) hierarchical circuit tokenzier

Refined w/o Hierarchical Tokenzier w/ Hierarchical Tokenzier
Graph Lspp Lttdp Mem. (MB) Time (s) Lspp Lttdp Mem. (MB) Time (s)

AIG 0.0221 0.0764 12043.89 13.79 0.0226 0.0797 8674.12 (23.56%↓) 7.16 (48.08%↓)
MIG 0.0289 0.0436 10782.38 12.41 0.0284 0.0431 7913.19 (27.98%↓) 6.97 (43.84%↓)
XAG 0.0241 0.0701 9618.22 12.08 0.0237 0.0686 7132.96 (25.84%↓) 6.35 (47.43%↓)
XMG 0.0220 0.0259 9431.14 11.75 0.0217 0.0253 6984.33 (25.94%↓) 6.02 (48.77%↓)

from graph encoder are also fed into the same Transformer blocks to ensure the identical parameter
counts for fair comparison.

Column “Red.” in Table 3 shows consistent gains from multiview fusion. The performance improve-
ment is significant, where refining AIG embeddings using multiview information reduce TTDP loss
Lttdp by a remarkable 31.11%. Notably, refining XAG with multiview inputs reduces SPP loss by
6.69% and TTDP loss by 43.16%. This confirms that MixGate effectively leverages complementary
modalities to boost accuracy and adaptability—especially in tasks requiring cross-view integration.

4.4 IMPACT OF HIERARCHICAL CIRCUIT TOKENIZER

To evaluate the effectiveness of our proposed hierarchical circuit tokenizer, we compare its perfor-
mance against a flat tokenization baseline across multiple circuit graphs. In the baseline setting
(denoted as w/o Hierarchical Tokenizer), the input circuit embeddings are tokenized in a simple,
sequential manner without structural hierarchy. All node-level embeddings produced by four graph
encoders are considered as tokens and fed to the following Transformer blocks. In contrast, the w/
Hierarchical Tokenizer configuration employs our hierarchical tokenizer, which organizes embed-
ding sequences based on the topological structure of the Boolean circuits, enabling the model to
capture hop-to-graph patterns more effectively. We also record the average memory usage and infer-
ence time (including circuit transformation) on the validation set to assess computational efficiency.
All models are trained with the same hyperparameters.

We draw two key observations from the Table 4. First, despite compressing the token space, the
hierarchical tokenizer maintains comparable performance to the flat baseline. For instance, in the
MIG refinement task, it achieves a slight improvement of 1.73% in SPP and a 1.15% reduction in
TTDP, indicating that the hierarchical abstraction does not compromise functional accuracy. Second,
due to the reduced token count, the hierarchical tokenizer substantially improves computational
efficiency. For example, in the XMG case, it reduces memory usage by 25.94% and inference time
by 48.77% compared to the flat baseline.

5 CONCLUSION

In this work, we address the key challenge of structural heterogeneity in multiview learning for
Boolean circuits. We show that such heterogeneity renders powerful self-supervised techniques like
masked modeling ineffective when applied directly. Our core principle is that functional alignment
is a necessary prerequisite for unlocking the benefits of multiview self-supervision. Building on
this insight, we design the MixGate framework with an alignment-first curriculum: the model is
first guided to establish a shared semantic space through alignment, after which masked modeling
can effectively exploit complementary signals. Experimental results demonstrate that our proposed
strategy transforms masked circuit modeling from an ineffective objective into a strong performance
driver. By establishing the primacy of alignment, this work provides a principled path toward more
robust and effective self-supervised models for circuit representation learning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. Majority-inverter graph: A
novel data-structure and algorithms for efficient logic optimization. In Proceedings of the 51st
Annual Design Automation Conference, pp. 1–6, 2014.

Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. The epfl combinational
benchmark suite. In Proceedings of the 24th International Workshop on Logic & Synthesis
(IWLS), 2015.

Luca Amaru, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. Majority-inverter graph: A
new paradigm for logic optimization. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 35(5):806–819, 2015.

Mario Barbareschi, Salvatore Barone, Nicola Mazzocca, and Alberto Moriconi. A catalog-based aig-
rewriting approach to the design of approximate components. IEEE Transactions on Emerging
Topics in Computing, 11(1):70–81, 2022.

Lei Chen, Yiqi Chen, Zhufei Chu, Wenji Fang, Tsung-Yi Ho, Ru Huang, Yu Huang, Sadaf Khan,
Min Li, Xingquan Li, et al. Large circuit models: opportunities and challenges. Science China
Information Sciences, 67(10):200402, 2024.

Zhufei Chu, Mathias Soeken, Yinshui Xia, Lunyao Wang, and Giovanni De Micheli. Structural
rewriting in xor-majority graphs. In Proceedings of the 24th Asia and South Pacific Design Au-
tomation Conference, pp. 663–668, 2019.

Chenhui Deng, Zichao Yue, Cunxi Yu, Gokce Sarar, Ryan Carey, Rajeev Jain, and Zhiru Zhang.
Less is more: Hop-wise graph attention for scalable and generalizable learning on circuits. arXiv
preprint arXiv:2403.01317, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Wenji Fang, Shang Liu, Jing Wang, and Zhiyao Xie. Circuitfusion: multimodal circuit represen-
tation learning for agile chip design. In The Thirteenth International Conference on Learning
Representations, 2025.

Rongliang Fu, Ran Zhang, Ziyang Zheng, Zhengyuan Shi, Yuan Pu, Junying Huang, Qiang Xu, and
Tsung-Yi Ho. Late breaking results: Hybrid logic optimization with predictive self-supervision.
In Proceedings of the 62nd Design Automation Conference (DAC), 2025.

Winston Haaswijk, Mathias Soeken, Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni
De Micheli. A novel basis for logic rewriting. In 2017 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC), pp. 151–156. Ieee, 2017.

Ivo Háleček, Petr Fišer, and Jan Schmidt. Are xors in logic synthesis really necessary? In 2017
IEEE 20th International Symposium on Design and Diagnostics of Electronic Circuits & Systems
(DDECS), pp. 134–139. IEEE, 2017.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Andreas Kuehlmann, Viresh Paruthi, Florian Krohm, and Malay K Ganai. Robust boolean reasoning
for equivalence checking and functional property verification. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 21(12):1377–1394, 2002.

Min Li, Sadaf Khan, Zhengyuan Shi, Naixing Wang, Huang Yu, and Qiang Xu. Deepgate: Learning
neural representations of logic gates. In Proceedings of the 59th ACM/IEEE Design Automation
Conference, pp. 667–672, 2022.

Jiawei Liu, Jianwang Zhai, Mingyu Zhao, Zhe Lin, Bei Yu, and Chuan Shi. Polargate: Breaking the
functionality representation bottleneck of and-inverter graph neural network. In 2024 IEEE/ACM
International Conference on Computer Aided Design (ICCAD), pp. 1–9. IEEE, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Alan Mishchenko, Satrajit Chatterjee, and Robert Brayton. Dag-aware aig rewriting a fresh look at
combinational logic synthesis. In Proceedings of the 43rd annual Design Automation Conference,
pp. 532–535, 2006.

Walter Lau Neto, Max Austin, Scott Temple, Luca Amaru, Xifan Tang, and Pierre-Emmanuel
Gaillardon. Lsoracle: A logic synthesis framework driven by artificial intelligence. In 2019
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 1–6. IEEE, 2019.

Yuan Pu, Fangzhou Liu, Zhuolun He, Keren Zhu, Rongliang Fu, Ziyi Wang, Tsung-Yi Ho, and Bei
Yu. Helo: A he terogeneous l ogic o ptimization framework by hierarchical clustering and graph
learning. In Proceedings of the 2025 International Symposium on Physical Design, pp. 116–124,
2025.

Zhengyuan Shi, Min Li, Sadaf Khan, Liuzheng Wang, Naixing Wang, Yu Huang, and Qiang Xu.
Deeptpi: Test point insertion with deep reinforcement learning. In 2022 IEEE International Test
Conference (ITC), pp. 194–203. IEEE, 2022.

Zhengyuan Shi, Hongyang Pan, Sadaf Khan, Min Li, Yi Liu, Junhua Huang, Hui-Ling Zhen, Mingx-
uan Yuan, Zhufei Chu, and Qiang Xu. Deepgate2: Functionality-aware circuit representation
learning. In 2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD), pp.
1–9. IEEE, 2023.

Zhengyuan Shi, Ziyang Zheng, Sadaf Khan, Jianyuan Zhong, Min Li, and Qiang Xu. Deepgate3:
Towards scalable circuit representation learning. In Proceedings of the 43rd IEEE/ACM Interna-
tional Conference on Computer-Aided Design, pp. 1–9, 2024.

Zhengyuan Shi, Zeju Li, Chengyu Ma, Yunhao Zhou, Ziyang Zheng, Jiawei Liu, Hongyang Pan,
Lingfeng Zhou, Kezhi Li, Jiaying Zhu, Lingwei Yan, Zhiqiang He, Chenhao Xue, Wentao Jiang,
Fan Yang, Guangyu Sun, Xiaoyan Yang, Gang Chen, Chuan Shi, Zhufei Chu, Jun Yang, and
Qiang Xu. ForgeEDA: A comprehensive multimodal dataset for advancing EDA, 2025a. URL
https://arxiv.org/abs/2505.02016.

Zhengyuan Shi, Chengyu Ma, Ziyang Zheng, Lingfeng Zhou, Hongyang Pan, Wentao Jiang, Fan
Yang, Xiaoyan Yang, Zhufei Chu, and Qiang Xu. Deepcell: Multiview representation learning
for post-mapping netlists. arXiv preprint arXiv:2502.06816, 2025b.

Jingxin Wang, Renxiang Guan, Kainan Gao, Zihao Li, Hao Li, Xianju Li, and Chang Tang. Multi-
level graph subspace contrastive learning for hyperspectral image clustering. In 2024 Interna-
tional Joint Conference on Neural Networks (IJCNN), pp. 1–8, 2024. doi: 10.1109/IJCNN60899.
2024.10650148.

Ziyi Wang, Chen Bai, Zhuolun He, Guangliang Zhang, Qiang Xu, Tsung-Yi Ho, Bei Yu, and
Yu Huang. Functionality matters in netlist representation learning. In Proceedings of the 59th
ACM/IEEE Design Automation Conference, pp. 61–66, 2022.

Michael John Yates Williams and James B Angell. Enhancing testability of large-scale integrated
circuits via test points and additional logic. IEEE Transactions on Computers, 100(1):46–60,
1973.

Haoyuan Wu, Haisheng Zheng, Yuan Pu, and Bei Yu. Circuit representation learning with masked
gate modeling and verilog-aig alignment. arXiv preprint arXiv:2502.12732, 2025.

Nan Wu, Yingjie Li, Cong Hao, Steve Dai, Cunxi Yu, and Yuan Xie. Gamora: Graph learning
based symbolic reasoning for large-scale boolean networks. In 2023 60th ACM/IEEE Design
Automation Conference (DAC), pp. 1–6. IEEE, 2023.

Ziyang Zheng, Shan Huang, Jianyuan Zhong, Zhengyuan Shi, Guohao Dai, Ningyi Xu, and Qiang
Xu. Deepgate4: Efficient and effective representation learning for circuit design at scale. In The
Thirteenth International Conference on Learning Representations, 2025.

Ruizhe Zhong, Xingbo Du, Shixiong Kai, Zhentao Tang, Siyuan Xu, Jianye Hao, Mingxuan Yuan,
and Junchi Yan. Flexplanner: Flexible 3d floorplanning via deep reinforcement learning in hybrid
action space with multi-modality representation. Advances in Neural Information Processing
Systems, 37:49252–49278, 2024.

11

https://arxiv.org/abs/2505.02016

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

APPENDIX

A DATA PREPARATION

A.1 OVERVIEW OF FORGEEDA DATASET

ForgeEDA Shi et al. (2025a) 2 is a comprehensive circuit dataset that consists of 1,189 practical
circuit designs. The dataset is not generated by randomly crawling Verilog files from the Internet.
Specifically, the major categories of Integrated Circuit (IC) products are first enumerated, such as
arithmetic units, processors, encoders/decoders, and controllers. For each category, a curated set
of domain-specific keywords is prepared. Using these targeted keyword queries, circuit designs are
collected from various reliable sources across the Internet. As a result, ForgeEDA covers nearly all
major classes of real-world IC designs, providing broad diversity and strong relevance for research
in circuit learning and EDA.

To enable efficient training and ensure a fair comparison with existing methods, we adopt the same
circuit partitioning strategy as used in prior works Shi et al. (2023; 2024); Liu et al. (2024). Specif-
ically, we decompose the original designs into approximately 15,000 sub-circuits, which serve as
individual samples for learning. These sub-circuits retain topological characteristics representative
of their parent designs, making them suitable for evaluating representation learning models. The
statistics of dataset is shown in Table 5.

Table 5: The statistics of dataset

Nodes # Logic Levels
Range Avg. Std. Range Avg. Std.

AIG [50, 1,499] 931.69 290.17 [8, 314] 27.73 19.92
MIG [237, 1,786] 924.83 334.73 [6, 130] 24.86 10.93
XAG [188, 1,678] 929.56 306.53 [9, 253] 27.54 17.42
XMG [137, 1,590] 827.82 325.27 [6, 127] 19.69 9.65

A.2 PIPELINE OF DATASET PREPARATION

A.2.1 MULTIVIEW DATASETS CONSTRUCTION

To enable multiview learning across circuit representations, we construct datasets by converting
AIG netlists into alternative graph formats including MIG, XAG, and XMG. This transformation
is achieved using the ALSO logic synthesis tool, which preserves functional equivalence across
different views while allowing graph representation diversity.

Figure 5 shows an example flow generating multiview graphs for model training and the annotated
labels for attention analysis. Such process begins with an AIG, a directed acyclic graph where
internal nodes represent 2-input AND gates and edges may carry inversion function (NOT gate).
Using the lut mapping -k 4 command in ALSO, the AIG is first converted into a 4-input
Look-Up Table (4-LUT) network. This intermediate LUT netlist serves as a unified functional
representation, where each node computes a Boolean function defined by a truth table.

The second step applies the lut resyn command to resynthesize each LUT into a specific graph
format (e.g., AIG or XMG), using exact logic decomposition. Each LUT is processed in the topo-
logical order and replaced by an implementation of gates in the target representation (e.g., majority
and XOR logic for XMG, or AND and NOT gates for AIG). This procedure ensures that although
the resulting netlists have different internal structures, they remain functionally equivalent.

2 ForgeEDA Dataset. https://github.com/cure-lab/LCM-Dataset

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

ALSO

…
 …

A
IG

 N
et

lis
t

lut_mapping

lut_resyn

…
 …

LU
T

N
et

lis
t

Functional equivalent (!"#!)

…
 …

…
 …

M

!! = 1
!" = 2
!# = 1
!$ = 1,2
!% = 2

&'(&

&'('

M0

Functional equivalent (!"#")

Node 1

Node 2

Node 3
Node 4

Node 5

Annotated Labels

XMG AIG

ALSO

…
 …

A
IG

 N
et

lis
t

lut_mapping

lut_resyn

…
 …

LU
T

N
et

lis
t

Functional equivalent (!"#!)

…
 …

…
 …

M

!! = 1
!" = 2
!# = 1
!$ = 1,2
!% = 2

&'(&

&'('

M0

Functional equivalent (!"#")

Node 1

Node 2

Node 3
Node 4

Node 5

Annotated Labels

XMG AIG

ALSO

…
 …

A
IG

 N
et

lis
t

lut_mapping

lut_resyn

…
 …

LU
T

N
et

lis
t

Functional equivalent (!"#!)

…
 …

…
 …

M

!! = 1
!" = 2
!# = 1
!$ = 1,2
!% = 2

&'(&

&'('

M0

Functional equivalent (!"#")

Node 1

Node 2

Node 3
Node 4

Node 5

Annotated Labels

XMG AIG

ALSO

…
 …

A
IG

 N
et

lis
t

lut_mapping

lut_resyn

…
 …

LU
T

N
et

lis
t

Functional equivalent (!"#!)

…
 …

…
 …

M

!! = 1
!" = 2
!# = 1
!$ = 1,2
!% = 2

&'(&

&'('

M0

Functional equivalent (!"#")

Node 1

Node 2

Node 3
Node 4

Node 5

Annotated Labels

XMG AIG

Figure 5: An example of multiview graphs (XMG and AIG) generation

A.2.2 MULTIVIEW EQUIVALENT NODES CONSTRUCTION

To establish connections between circuits of different modalities and leverage their potential inter-
relationships for complementary information exchange, we label the functionally equivalent nodes
between the AIG and the other three circuit modalities (XMG, XAG, and MIG).

A technique for identifying functionally equivalent nodes is employed. We first transform the cir-
cuit from the AIG format into the another format (e.g. MIG, XAG and XMG). Figure 2 shows an
example to identify the equivalence nodes between AIG and XMG views. Then, random simulation
is performed on both circuits, hashing the resulting truth table for each node to generate a determin-
istic fingerprint for comparison. This methodology enables the swift elimination of nodes lacking
functional equivalence, leading to a considerable reduction in temporal computational costs.

The next step involves applying SAT sweeping to two candidate nodes sharing the same key in the
hash table. This technique is extensively employed in logic synthesis for equivalence checking,
enabling efficient verification of functional equivalence between circuit nodes. We construct a XOR
gate between these two nodes and set its output to logical 1. This forces the XOR to require the two
fanins to differ, which can be used in the following SAT sweeping procedure.

We then convert the new circuit into conjunctive normal form (CNF) and perform SAT sweeping. If
the SAT solver returns UNSAT, this indicates that no input assignment exists where the two nodes
produce different values — thereby proving their functional equivalence. Otherwise, the solver find
an assignment to differentiate these nodes. Such assignment is employed as another input pattern
for incremental simulation to further filter out candidate nodes.

By locating the corresponding embeddings of functionally equivalent circuit nodes through index-
ing, we establish connections across different circuit modalities and minimize embedding discrep-
ancies to achieve functional alignment.

B AGGREGATOR OF GRAPH ENCODERS

In this section, we describe the self-attention mechanism and aggregators to capture both functional
and structural information for each logic gate during one round of forward propagation.

Inspired by DeepGate2 Shi et al. (2023), our model separates functional embeddings hf and struc-
tural embeddings hs and initializes them differently. Functional embeddings are uniformly ini-
tialized for primary inputs (PIs) because they all share the same logic probability during random
simulation. For structural embeddings, we employ a specialized PI encoding strategy. Each PI is

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

assigned a unique identifier as its initial structural embedding. Specifically, the initial structural em-
beddings hsi, i ∈ PI , are one-hot encoding vectors, which ensures that the dot product between any
two PI embeddings is zero, meaning that they are independent of each other.

Each aggregator uses the self-attention mechanism. For a logic gate, its controlling input is an
input value that determines the output of the gate regardless of the other inputs. For example, an
AND gate outputs a logic 0 if any of its fan-in is a logic 0. The self-attention mechanism allows the
model to give more weight to controlling inputs, enabling more accurate processing.

The attention coefficients, denoted as αj , are computed using the softmax function. These coeffi-
cients measure the importance of each predecessor node. The final aggregation function combines
messages from all predecessor nodes, weighted by these attention coefficients. The aggregation
process is formalized as

αj = softmax

(
w⊤

q hi · (w⊤
k hj)

⊤
√
d

)
, (6)

where wq, wk, wv are weight matrices, and d is the dimension of the embedding vectors. The soft-
max function is applied to the dot product between the query vector w⊤

q hi and the key vector w⊤
k hj ,

scaled by
√
d, to calculate the attention coefficients. The final step in the aggregation is as follows:

hi = ϕ(hj |j ∈ P (i)) =
∑

j∈P (i)

(αj ·mj) , (7)

where P (i) represents the set of predecessor nodes for node i, and mj = w⊤
v hj is the message

passed from each predecessor. The embeddings are updated by aggregating these messages, with
each message weighted by the attention coefficient αj .

C MODEL TRAINING

Signal Probability Prediction (SPP) SPP is a classic and crucial task in the field of Boolean cir-
cuits representation learning Li et al. (2022); Shi et al. (2023; 2024); Liu et al. (2024), which is
particularly important for tasks such as testability analysis, signal observability, and power estima-
tion. We first compute probability that a logic gate outputs a logic 1 under random input simulation.
To compute this, we perform a readout on the refined node-level embeddings and regress the pre-
dicted signal probability, as shown below

ŷi = MLP(ti), (8)

where ti represents the embedding vector of node i, and an MLP is used to predict the signal proba-
bility. Then, we compute the average absolute difference between the predicted signal probabilities
ŷi, and the ground-truth probabilities yi, which are measured using logic simulation with 15,000
random input patterns. Let V denote the set of nodes in a training batch, where N = |V | represents
the total node count. The loss value is computed as:

Lspp =
1

N

∑
i∈V

|yi − ŷi| . (9)

Truth-Table Distance Prediction (TTDP) TTDP is a task for a more fine-grained evaluation of
the functional representation capability of models. In the TTDP task, the embedding vectors of two
nodes are considered similar if their corresponding node functions are similar. For nodes i and j,
we define their truth table vectors as Zi and Zj , respectively, and the corresponding node tokens as
ti and tj , respectively. The functionality measurement can be expressed as

Dtoken(ti, tj) ∝ Dtable(Zi, Zj), (10)

where the similarity between the functions for nodes i and j is measured based on the Hamming dis-
tance of their corresponding truth tables. Specifically, we compute the distance of the truth table by
randomly sampling a sufficient number of truth table entries and calculating the Hamming distance
for each node pair as follows

Dtable(Zi, Zj) =
HammingDistance (Zi, Zj)

length (Zi)
, (11)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 6: Loss comparison between w/ multi-stage and w/o multi-stage.

w/o multi-stage w/ multi-stage Red. (↓)

Lspp 0.0231 0.0226 2.16%
Lttdp 0.0809 0.0797 1.48%

Then, the distance between the embedding vectors of node tokens Dtoken(ti, tj), is expected to be
proportional to the Hamming distance between their corresponding truth tables. To quantify this, we
compute the distance between the embeddings using the cosine similarity as follows

Dtoken(ti, tj) = 1− t⊤i · tj
∥ti∥ · ∥tj∥

. (12)

Finally, as the distance between the embedding vectors should be positively correlated with the
actual truth table distance, the TTDP is calculated as follows, where M is the number of sampled
node pairs.

Lttdp =
1

M

∑
(i,j)∈V′

∣∣ZeroNorm(Dtoken(ti, tj))− ZeroNorm(Dtable(Zi, Zj))
∣∣ . (13)

Loss Functions We incorporate multiple objectives into a three-stage curriculum learning proce-
dure. In Stage 1, the model is trained with the probability prediction loss (Lspp) and the equivalence
alignment loss (Lalign), which encourages the model to capture signal distributions while aligning
functionally equivalent nodes across views. In Stage 2, we introduce the functional prediction loss
(Lttdp), guiding the model to refine node embeddings toward accurate Boolean functionality while
preserving alignment consistency. In Stage 3, we further add the multiview masked modeling loss
(Lmcm), which requires the model to reconstruct masked cones using both intra-view and cross-view
information.

This three-stage curriculum allows the model to gradually progress from learning low-level signal
behavior, to capturing functional semantics, and finally to leveraging complementary multiview
information for robust representation learning. The corresponding loss functions for each stage are
defined in Eq. equation 14. In our experiments, we train for 60 epochs in Stage 1, 60 epochs in
Stage 2, and 60 epochs in Stage 3.

Lstage1 = Lspp · wspp + Lalign · walign,

Lstage2 = Lspp · wspp + Lalign · walign + Lttdp · wttdp,

Lstage3 = Lspp · wspp + Lalign · walign + Lttdp · wttdp + Lmcm · wmcm.

(14)

where wspp,walign,wttdp,wmcm are the weighting coefficients for their respective loss terms.

To further validate the effectiveness of the multi-stage design, we compare the model trained with
and without curriculum scheduling. As shown in Table 6, introducing multi-stage training consis-
tently reduces both Lspp and Lttdp, with Lttdp achieving a relative reduction of 1.48%. Although the
absolute gains are modest, the results indicate that progressive incorporation of objectives stabilizes
optimization and leads to more refined functional representations.

D GENERALIZATION ANALYSIS ON OTHER ENCODERS

To assess MixGate’s generalizability, we integrate its multiview fusion with several circuit encoders,
evaluating each in two settings: (1) baseline setting (w/o MixGate), where the model operates using
only a single-view circuit embedding, and (2) w/ MixGate, where additional circuit views are fused
via the proposed framework.

Focusing on AIG refinement, results in Table 7 show consistent improvements across SPP and TTDP
tasks. The largest and second-largest gains are highlighted. For instance, DeepGate3 Shi et al.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: Effect of MixGate with the other circuit encoders

w/o MixGate w/ MixGate
Encoder Lspp Lttdp Lspp Red. (↓) Lttdp Red. (↓)

GCN Kipf & Welling (2016) 0.0419 0.1287 0.0298 28.88% 0.0784 39.08%
DeepGate2 Shi et al. (2023) 0.0247 0.1156 0.0226 8.50% 0.0797 31.11%
DeepGate3 Shi et al. (2024) 0.0236 0.1054 0.0215 8.89% 0.0722 31.50%
HOGA Deng et al. (2024) 0.0641 0.2687 0.0440 31.36% 0.1685 37.29%
PolarGate Liu et al. (2024) 0.074 0.1125 0.0623 15.81% 0.0756 32.80%

Table 8: MixGate performance on large-scale circuits

Circuit PI/PO # AIG nodes # AIG levels Lspp Lttdp Mem. (MB) Time (s)

adder 256/129 1,310 97 0.0215 0.0738 223 0.40
arbiter 256/129 4,589 14 0.0241 0.0722 760 1.20
bar 135/128 3,600 11 0.0242 0.0630 607 0.95
cavlc 10/11 600 10 0.0255 0.0740 105 0.20
ctrl 7/26 85 6 0.0259 0.0747 17 0.10
dec 8/256 304 3 0.0257 0.0745 53 0.10
div 128/128 58,798 1,621 0.0205 0.0640 9,596 14.72
i2c 147/142 1,013 8 0.0248 0.0730 170 0.30
int2float 11/7 208 9 0.0256 0.0743 39 0.07
log2 32/32 38,817 202 0.0225 0.0670 6,403 10.06
max 512/130 4,378 29 0.0240 0.0720 721 1.10
mem ctrl 1,204/1,231 33,661 34 0.0228 0.0680 5,503 8.50
multiplier 128/128 31,817 125 0.0232 0.0690 5,217 8.00
priority 128/8 457 11 0.0252 0.0735 84 0.12
router 60/30 159 12 0.0256 0.0742 32 0.06
sin 24/25 6,896 100 0.0259 0.0718 1,137 1.80
sqrt 128/64 30,670 1,637 0.0222 0.0675 5,054 8.00
square 64/128 17,405 112 0.0235 0.0705 2,851 4.50
voter 1,001/1 9,375 48 0.0231 0.0695 1,553 2.50

(2024) sees SPP loss drop by 8.89% and TTDP by 31.50%. GCN Kipf & Welling (2016) and
HOGA Deng et al. (2024) benefit most, where GCN reduces losses by 28.88% (Lspp) and 39.08%
(Lttdp), HOGA by 31.36% and 37.29%. As both models focus on local structures, MixGate’s mul-
tiview signals provide crucial complementary global context.

E GENERALIZATION ANALYSIS ON LARGE-SCALE CIRCUITS

To validate the generalization ability of MixGate on large-scale circuits, we conduct experiments
with the circuits in EPFL benchmarks Amarú et al. (2015)3. As shown in Table 8, MixGate maintains
strong performance across key metrics even for circuits with over 30,000 original nodes and 1,600
logic levels (e.g., div, sqrt), demonstrating remarkable scalability.

Notably, the Lspp and Lttdp metrics remain in small ranges of 0.0205–0.0259 and 0.0630–0.0747,
respectively, which align with small circuits. For instance, the div circuit (58,798 nodes, 1,621 lev-
els) achieves an Lspp of 0.0205 and Lttdp of 0.0640 with only 9,596 MB memory usage, while
the sqrt circuit (30,670 nodes, 1,637 levels) attains Lspp=0.0222 and Lttdp=0.0675 using 5,054
MB memory. This linear growth in resource consumption relative to circuit size confirms the com-
putational efficiency of our model. Furthermore, the runtime scales sublinearly – for circuits like
multiplier (31,817 nodes) and mem ctrl (33,661 nodes), MixGate completes optimization in 8.00s
and 8.50s, respectively, showcasing its practical viability for industrial-scale applications. These
results systematically prove that MixGate preserves model performance while avoiding exponential
complexity growth.

3 The EPFL Combinational Benchmark Suite, https://github.com/lsils/benchmarks

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 9: Contribution of Each View

Experiment Modal Composition Lspp Inc.(↑) Lttdp Inc.(↑)

Exp-0 AIG, MIG, XAG, XMG 0.0220 - 0.0737 -

Exp-1 AIG, MIG, XAG 0.0232 5.45% 0.0881 19.54%
Exp-2 AIG, MIG, XMG 0.0229 4.09% 0.0847 14.93%
Exp-3 AIG, XAG, XMG 0.0226 2.73% 0.0796 8.01%

Exp-4 AIG 0.0240 9.09% 0.1134 53.87%

Table 10: Transformer Hyperparameters

Parameter Value

Hidden Dimension 128
Number of Heads 8
Number of Layers 2
FFN Hidden Dimension 128
Dropout Rate 0.1
Residual Connections yes
Layer Normalization yes
Transformer Encoder Layers 2

F CONTRIBUTION OF EACH VIEW

In this section, we analyze the contribution of each modality by conducting ablation experiments,
where each experiment removes one of the graph views from the multiview fusion process. We
evaluate the impact of each view using the SPP and TTDP on the AIGs, serving as the refinement
target. All experiments are conducted under the same settings as described in the previous sections
to ensure fair comparison.

We report the ablation results for each graph view by measuring SPP and TTDP in Table 9, along
with their increases (Inc.) compared to the full multiview setup in Exp-0. Removing the XMG view
in Exp-1 leads to a 5.45% increase in SPP and a 19.54% increase in TTDP, indicating that XMG
provides highly complementary information to AIG, especially in terms of capturing semantically
aligned logic. In Exp-2, when XAG is removed, the SPP and TTDP values rise by 4.09% and
14.93%, respectively, showing its moderate contribution. Exp-3, which excludes MIG, shows the
smallest degradation: 2.73% in SPP and 8.01% in TTDP. Finally, Exp-4, which uses only AIG,
suffers the most, with over 9% degradation in SPP and nearly 54% degradation in TTDP, confirming
the importance of multiview fusion.

These results suggest that XMG offers the most complementary view to AIG, likely due to its inclu-
sion of both XOR and MAJ gates, which enrich the semantic space. In contrast, MIG shares greater
structural similarity with AIG, and thus contributes less unique information, explaining its smaller
impact when removed.

G MODEL IMPLEMENTATION

Hyperparameters The Transformer model, detailed in Table 10, uses a hidden dimension of 128,
with 4 attention heads, 2 layers, and a dropout rate of 0.1. The GNN encoder, detailed in Table 11,
also utilizes a hidden dimension of 128, paired with an MLP for update with a hidden dimension
of 32, operating in 1 round with a batch size of 32 and a learning rate of 10−4. The hierarchical
tokenizer, as outlined in Table 12, is configured with 8 pooling transformer heads, 2 layers. It
incorporates a graph hierarchy with a maximum of 128 nodes per hop and 5 hops per subgraph,
while the graph partitioning process utilizes the parameters k (maximum level) and q (stride) to
manage subgraph size and overlap.

Training Environment We conduct all model training using 8 NVIDIA A800-SXM4-80GB
GPUs. The graph encoders for AIG, MIG, XAG, and XMG are trained independently for 120

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 11: GNN Encoder Hyperparameters

Category Parameter Value

Aggregator
Number of Rounds 1
Hidden Dimension 128
MLP Hidden Dimension 32

Readout

MLP Layers 3
Readout Dropout 0.2
Normalization Layer BatchNorm
Activation Function ReLU

Training
Learning Rate 10−4

Batch Size 256
Optimizer Adam

Table 12: Hierarchical Tokenizer Hyperparameters

Category Parameter Value

Token Generation CLS Token Init Method Random initialization

Hierarchical Pooling
Pooling Transformer Heads 8
Pooling Transformer Layers 2
FFN Hidden Multiplier 4

Graph Hierarchy Max Nodes per Hop 128
Max Hops per Subgraph 5

Graph Partitioning k (Maximum Level) 8
q (Stride) 8

epochs with a batch size of 256, ensuring sufficient convergence in loss. After pre-training, we pro-
ceed to refine the AIG embeddings using the multiview framework for an additional 120 epochs with
a batch size of 128. This procedure is applied symmetrically when refining other representations.

H COMPARISON ON EQUIVALENCE ALIGNMENT LOSS

Contrastive Formulation For completeness, we also experimented with a contrastive alignment
objective of the InfoNCE form:

Lcontrast = −
∑

(i,j)∈P

log
exp(sim(hfi, hfj)/τ)

exp(sim(hfi, hfj)/τ) +
∑

k∈N (i) exp(sim(hfi, hfk)/τ)
, (15)

where hfi, hfj , hfk denote the embeddings of nodes i, j, k from different circuit views, sim(·, ·) is
cosine similarity, τ is a temperature hyperparameter, P is the set of equivalent (positive) node pairs,
and N (i) is the set of negatives sampled for anchor i.

Discussion We chose the L1 distance as the alignment loss due to its simplicity, robustness, and
suitability to circuit data. Unlike images or text, circuit netlists exhibit strong structural heterogene-
ity: two functionally equivalent nodes may reside in drastically different local neighborhoods. The
critical challenge is thus to provide a stable anchor for positive pairs rather than to repel negatives. L1
loss directly optimizes this objective and avoids the large-scale negative sampling required by con-
trastive learning, which becomes prohibitively expensive on circuit graphs. Moreover, subsequent
masked modeling and downstream tasks already inject rich discriminative supervision, reducing the
necessity of additional contrastive terms.

Results As shown in Table 13, the contrastive variant offers no improvement in Lspp or Lttdp,
but incurs nearly 1.5× higher memory usage and runtime. This indicates that more complex objec-
tives bring significant computational overhead without clear accuracy benefits, while the L1 design
achieves better stability–efficiency trade-offs.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 13: L1 Loss vs Contrastive Loss

Method L1 Loss Contrastive Loss

Lspp Lttdp Mem. (MB) Time (s) Lspp Lttdp Mem. (MB) Time (s)

AIG 0.0226 0.0797 8,674.1 7.16 0.0229 0.0801 13,121.3 (+51.3%) 10.78 (+50.6%)

I CONTRIBUTION STATEMENT

We devoted approximately 336 hours to constructing a multiview circuit dataset and generating fine-
grained equivalence alignment labels based on the open-source ForgeEDA dataset. In the future, we
will release both our dataset and source code to the AI and EDA communities, aiming to foster open
research and collaboration. We firmly believe that MixGate will play a significant role in advancing
research on multiview circuit representation learning and unsupervised learning in chip design.

J LIMITATIONS AND FUTURE WORK

This study focuses on different graph-based representations derived from circuit netlists, where we
can obtain node-level equivalence labels via SAT-based checks. While the alignment-first princi-
ple and MixGate’s curriculum generalize in spirit, applying them across more heterogeneous EDA
artifacts will require new mechanisms for establishing fine-grained cross-modal correspondences.
A natural next step is to explore alignment methods that bridge semantic gaps between these ab-
straction levels, and to investigate scalable approximations for equivalence discovery in very large
designs.

K THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, large language model (LLM) is employed as an assistive technology to improve the
clarity and quality of the writing. The use of the LLM is strictly limited to polishing the language,
grammar, and formatting of the text. The model does not contribute to, generate, or interpret any of
the core scientific ideas, data analysis, or conclusions presented in this work.

19

	Introduction
	Related Work
	Graph Representations of Boolean Circuits
	Circuit Representation Learning

	MixGate Framework
	Data Preparation
	Model Architecture
	Model Training

	Experimental Results
	Alignment as the Precondition for Multiview Self-Supervision
	Exploration on Mask Ratio
	Impact of Multiview Information
	Impact of Hierarchical Circuit Tokenizer

	Conclusion
	Data Preparation
	Overview of ForgeEDA Dataset
	Pipeline of Dataset Preparation
	Multiview datasets construction
	Multiview equivalent nodes construction

	Aggregator of Graph Encoders
	Model Training
	Generalization Analysis on Other Encoders
	Generalization Analysis on Large-scale Circuits
	Contribution of Each View
	Model Implementation
	Comparison on Equivalence Alignment Loss
	Contribution Statement
	Limitations and Future Work
	The Use of Large Language Models (LLMs)

