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Abstract
We propose an approach to solving partial dif-
ferential equations (PDEs) using a set of neural
networks which we call Neural Basis Functions
(NBF). This NBF framework is a novel variation
of the POD DeepONet operator learning approach
where we regress a set of neural networks onto
a reduced order Proper Orthogonal Decomposi-
tion (POD) basis. These networks are then used
in combination with a branch network that in-
gests the parameters of the prescribed PDE to
compute a reduced order approximation to the
PDE. This approach is applied to the steady state
Euler equations for high speed flow conditions
(Mach 10-30) where we consider the 2D flow
around a cylinder which develops a shock condi-
tion. We then use the NBF predictions as initial
conditions to a high fidelity Computational Fluid
Dynamics (CFD) solver (CFD++) to show faster
convergence. Lessons learned for training and
implementing this algorithm will be presented as
well.

1. Introduction
The past five years have seen significant interest in the use
of neural networks to understand the behavior of systems
governed by differential equations (Han et al., 2018; Willard
et al., 2020; Karniadakis et al., 2021). For example, meth-
ods like physics-informed neural networks (Raissi et al.,
2019; Lu et al., 2019b) can solve a given instance of a dif-
ferential equation or infer its properties given some amount
of data and have been applied in domains like electromag-
netism (Khan & Lowther, 2022) and blood cell mechan-
ics (Yazdani et al., 2021).
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More recently still, the subfield of operator-learning has
attained prominence (Lu et al., 2019a; Li et al., 2020; Bhat-
tacharya et al., 2021; Mao et al., 2021). The objective of
operator learning is to learn a data-driven approximation
to an operator that defines a differential equation; a trained
operator can then produce a solution to this equation at a
greatly reduced computational cost. Despite the field’s nov-
elty, applications have already been considered in areas like
climate science (Kashinath et al., 2021).

Prior to some of these deep network architectures, efforts
to reduce the computational cost often attempted to solve
a reduced form of the equations of interest. Approaches
like the Proper Orthogonal Decomposition (POD) (Willcox
& Peraire, 2002; Gunzburger et al., 2007; Witman et al.,
2017; Quarteroni et al., 2015; Berkooz et al., 1993) use an
eigen-decomposition to extract the primary modes of a given
solution space. These modes could then be re-projected in
the reduced space to significantly reduce the degrees of
freedom required to solve the equations.

The approach being proposed here borrows concepts from
the more traditional Reduced Order Modeling (ROM) com-
munity and fuses it with the newer deep network architec-
tures to build a Neural Basis Function (NBF) framework for
solving differential equations.

One of the motivating interests of this work will be the
focus on how well this approach can resolve solutions
with complicated phenomena. The specific phenomenon
we will focus on will be solutions with large gradients or
discontinuities, as these problems have posed difficulties
for both traditional techniques and the more recent Neural
Network based approaches. Existing work that considers
similar classes of problems includes (Mao et al., 2020) for
physics-informed neural networks and (Mao et al., 2021)
for operator-learning. We first propose the network architec-
ture and training methodology that will be used to learn the
underlying basis functions and associated unknown vectors.

In this paper, we introduce the formalism of the neural basis
function (Section 2.1) and describe how to apply it to data
sampled from a given PDE (Section 2.2). In Section 2.3, we
demonstrate how to apply the NBF approach to the steady-
state Euler equations. We evaluate our model in Section 3.1
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with a comparison to vanilla DeepONet in Section 3.2 and
then show, in Section 3.3, that predicted solutions from
the NBF can be used to accelerate the process of obtaining
high-fidelity data from a CFD solver.

2. Methods
2.1. The Neural Basis Function Formulation

The neural basis function framework at its core takes a tra-
ditional reduced basis Finite Element Method (FEM) (Quar-
teroni et al., 2015) approach and uses a set of approximat-
ing neural networks to learn the underlying bases and ex-
plicit unknowns of the governing equations. Our basis-
approximation networks are similar to the trunk component
of a Deep Operator Net (DeepONet), and our unknowns-
approximation networks are similar to the branch compo-
nent (Lu et al., 2019a), specifically as found in the recent
POD DeepONet extension (Lu et al., 2022).

We consider a subclass of PDEs defined for a vector field
wψ : Ω→ RL, where Ω ⊆ RM , that satisfies the following
equations:

Sψwψ = 0, x ∈ Ω (1)

Bψwψ = 0, x ∈ ∂Ω, (2)

where SΨ is a (potentially nonlinear) operator involving
derivatives with respect to space, ∂Ω is the boundary of Ω,
Bψ is a boundary condition operator, and ψ ∈ Ψ is a set
of parameters that fully specifies the PDE and determines
its solution. Section 2.3 illustrates this formulation for a
specific problem. In this paper, we consider steady-state
problems with no time-dependence, but, similar to physics-
informed neural networks (Raissi et al., 2019), the NBF
approach can be extended to time-dependent problems.

In the operator-learning problem (Li et al., 2020; Lu et al.,
2019a; Bhattacharya et al., 2021), we learn an operator F
that, for a given novel parameter ψ, produces an approxi-
mate solution ŵ = F(ψ) satisfying ||ŵ−wψ|| under some
appropriate norm. This requires a set of training samples of
solutions wψ for varying values of ψ.

To define this vector solution ŵ we introduce a linear com-
bination of reduced basis functions (φj(x) : Ω → RM )
and a set of unknowns (Cj(ψ) : Ψ → RM ), where
j = 1, . . . , nBF indexes the set of bases used to define
ŵ. Specifically, Equation (3) shows how the ith compo-
nent of ŵ is calculated as a linear combination of the basis
functions φj(x) and the unknowns functions Cj(ψ). The
discrete form of this approach has been used successfully as
a way to approximate solutions, within the parameters space
ψ, of PDEs at a fraction of the computational cost (Willcox

& Peraire, 2002; Gunzburger et al., 2007; Witman et al.,
2017).

ŵi(x, ψ) =

nBF∑
j

Cij(ψ)φij(x) (3)

Basis functions are trained by solving the data-driven mini-
mization problem:

min
φi,j

∑
l

|φi,j(xl)− Ui,j(xl)|2, (4)

where the ground truth basis data points Ui,j(xl), with l =
1, ..., n representing the index of all the spatial data-points.
We obtain the truth basis data via a process described in
Section 2.2.

Unknowns functions are trained by solving the following
physics-informed minimization problem:

min
Ci,j

∑
ψ∼Pψ

∑
x∼Px

||Sψŵ(x, ψ)]||2 + ||Bψŵ(x, ψ)]||2, (5)

where Pψ and Px are probability distributions defined for
the PDE parameters ψ and the spatial inputs x, respectively.

Due to the presence of Sψ in Equation (5), evaluating the
loss function will require taking derivatives of ŵ with re-
spect to x. This can be done using modern automatic dif-
ferentiation techniques (Baydin et al., 2017). In practice,
we implement our networks in PyTorch (Paszke et al.,
2019) and use the functorch (He & Zou, 2021) library
to calculate loss function derivatives.

2.2. Data-driven basis construction

Training the basis functions Equation (4) requires data,
which we obtain by using a high-fidelity simulator like
CFD++ to solve instantiations of the PDE. We sweep a sub-
set of our parameter space Ψ and generate field values w
for each sampled ψ ∈ Ψ. These samples are divided into
training, validation, and test sets as normal in ML.

For training, we will refer to the total number of training
instances as D, and we let ψd refer to the parameters for the
dth training instance. We assume that all of our snapshots
{(wd, ψd) : d = 1, . . . , D} are evaluated at the same space
points. We index these points as {xl}nl=1. Thus, the training
set is specified by {({wd(xl)}nl=1, ψd)}Dd=1

Once the snapshot data is collected, we follow the Snapshot
Proper Orthogonal Decomposition method (Sirovich, 1987)
and perform singular value decompositions (SVDs) on the
data to extract their bases. For each component wi of w, we
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Figure 1. The NBF formulation ingests spatial points x and PDE
parameters ψ into separate sets of networks φ and C, and then the
predicted state ŵ is a linear combination of these terms.

construct a matrixWi containing the observed data points,
and then we decompose it asWi = UiΣiV

T
i .

UiΣiV
T
i =Wi =


wi(x1|ψ1) . . . wi(x1|ψD)
wi(x2|ψ1) . . . wi(x2|ψD)

...
. . .

...
wi(xn|ψ1) . . . wi(xn|ψD)

 (6)

TheUi matrix captures the row-space of the snapshot set and
represents the primary space modes of the set of solutions.

Once we have generated the set of decomposed spatial
modes describing the parametric solution space, we can
generate a bound on the expected reconstructed error levels.
A well known POD error bound (Witman et al., 2017) can
be derived from the singular values in the decomposition via
the equation

∑D
d=nBF+1 σ

2
d where D here represents the

total number of parameter snapshots available. This error
bound allows use to a-priori choose a suitable error toler-
ance before initiating the full training process. For any of
the results presented here, we consider the total number of
basis functions as equal to the number of training scenarios.

2.3. Euler Equations

We consider the steady-state compressible Euler equa-
tions (Certik, 2017), defined for a state vector wψ =
[ρ, u, v, E]T on a domain Ω ⊆ R2:

Sψwψ := ∂xF1(wψ) + ∂yF2(wψ) = 0 (7)

where

F1 =


ρu

ρu2 + p
ρvu

(E + p)u

 , F2 =


ρv
ρuv

ρv2 + p
(E + p)v

 . (8)

The components of the state vector wψ include the fluid
density w0 = ρ, the x and y velocities w1 = u and w2 = v,
and the total energy w3 = E.

The Euler equations Equation (7) also include the system
pressure P , which is determined by a closure relation in
terms of the other state variables:

P = (γ − 1)[E − 1

2
ρ(u2 + v2)]

= (γ − 1)[w3 −
1

2
w0(w2

1 + w2
2)]

where γ is the gas constant and is set to 1.4, using the perfect
gas assumption.

Ultimately, we are interested in using solutions to these equa-
tions as initial conditions for a high fidelity CFD solvers to
accelerate convergence. In additional term the state variable
terms we will also need a relation for the temperature, T ,
which can be expressed as:

T =
P

Rρ
=

P

Rw0
(9)

where R represents the ratio of specific heats and for this
problem we set it to a constant 287.058, also under the
perfect gas assumption. The final term that will be refer-
enced in this example is the speed of the flow and accounts
for the magnitude of the x and y components of velocity
(|u| =

√
u2 + v2). With these variables we can write the

equation for the Mach number:

M =
|u|√
γRT

(10)

which will be used in the inlet boundary condition described
in Section 3.1. For further expansion of the Euler equations
in terms of our state variables please see Appendix A.

2.4. Related work

The operator-learning problem is frequently viewed as learn-
ing mappings between function-spaces (Lu et al., 2019a;
Li et al., 2020; Bhattacharya et al., 2021), where the input
function might be an initial condition or forcing function.
We consider a more restricted setting, in that we require
our operators Sφ Equation (1) and Bψ Equation (2) to be
parametric functions of a finite-dimensional vector ψ. In
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both cases, however, the output is a function Equation (3)
defined over an entire domain.

Of operator-learning approaches, the NBF is most similar to
the DeepONet (Lu et al., 2019a). Both use multiple types of
networks that ingest different types of data (called “branch”
and “trunk” networks in (Lu et al., 2019a)). In particular, the
NBF can be viewed as a extension of the recently-proposed
POD DeepONet (Lu et al., 2022). The POD DeepONet
retains the full discrete set of bases Equation (6), but the
NBF regresses these bases onto a set of neural networks
φi,j . This has a few benefits: It 1) can interpolate the modes
to new regions of space when data are only available on
sparse or unstructured grids; 2) is useful for lower memory
applications where storing the potentially large full reduced
basis is not feasible; and 3) allows for the ability to compute
spatial and/or temporal derivatives of modeled quantities
like fluid velocity in a batch process via GPU or another
distributed architecture.

The NBF formulation, like the DeepONet formulation, does
not impose any structure to the domain Ω. This is in contrast
to some methods like the Fourier Neural Operator (Li et al.,
2020). Our use case for the Euler equations in Section 3.1
relies on this flexibility. See also (Lu et al., 2022) for a
discussion of how different operator-learning approaches
deal with non-uniform domains.

3. Results
3.1. Evaluation of NBF for Euler Equation

For this work, we will make use of a rectangular domain
with a quarter circle cutout located at x = [0, 0] with radius
1 (see Figure 3). There is an inflow condition on the left
side of the domain which is controlled by the Mach number,
which for this study is the sole parameter in ψ. The domain
extends to −4 in the x-direction and 7 in the y-direction.
This domain was chosen to allow sufficient room for the
shock condition based on our predefined parametric Mach
number range. This 2D cylinder in cross-flow problem is
often used as a benchmark in the CFD space for testing
different algorithms and their ability to capture shockwaves.

We then generated a steady-state dataset of high-fidelity
solutions ranging from Mach 10 to Mach 30 in increments
of 1. This data was generated using CFD++ in a time-
dependent configuration and allowed to evolve until the time
derivative portion of Euler equation sufficiently decreased.
CFD++ is an unstructured finite volume flow solver that
is maintained by Metacomp Technologies Inc. It has the
capability of solving the full Navier-Stokes equations with
high-order spatial and temporal accuracy. To resolve the
inviscid Euler equations, the solver uses a pseudo time-
marching approach where the initial condition is integrated
over time until convergence is reached. The convergence can

be accelerated by using spatially varying time steps. CFD++
version 20.1 was utilized to perform all the simulations.

Once we have the data generated, the next step is to extract
the basis from the set of snapshots. In general, we hope to
be able to approximate solutions within the parameter space,
so, for analysis of this approach, we hold out a set of Mach
cases as our test set. An ablation study of various number
of training data points considered will be presented at the
end of this section. But unless specifically noted, the results
presented will use a dataset of 20 Mach numbers with just a
single held-out solution. This is done to illustrate the best
case scenarios for how well this approach applies.

Given the training data considered, we extract the state
variables of interest and subtract the mean state from each
of the solutions. Empirically, we have found that this tends
to improve the speed of convergence when regressing the
basis networks. The basis networks we consider are general
fully-connected networks with five layers and 40 nodes per
layer. We use leaky rectifed linear units (Maas et al., 2013)
as activation functions (with a negative slope of 0.01) on the
hidden layers, which tends to help resolve the small-scale
features in the basis functions. For example in Figure 2, the
shock is very narrow in space and changes rather rapidly.
We use the Adam optimizer (Kingma & Ba, 2015) and 250
total training epochs with an initial learning rate of 10−3

while applying an exponential learning rate decay factor
(0.9) after 70 training epochs.

For PDEs with complicated phenomena (shockwaves), we
have found accurately representing the high-frequency basis
functions can be challenging. To resolve this, we use an im-
portance sampling technique during training that prioritizes
diverse data points in the training routine. We can describe
the probability pi,j,l of selecting a single training data point
when minimizing Equation (4), (xl, Ui,j(xl)), as:

pi,j,l =
p∗i,j,l∑
l′ p

∗
i,j,l′

, (11)

where p∗i,j,l = |Ui,j(xl) − Ūi,j(xl)|, and Ū is the mean
basis value for all spatial points in the domain x. In practice,
we have found that overusing this sampling approach leads
to poor generalization. However, applying this methodology
every so often (specifically every 4 epochs) improves the
resolution of nuanced features.

Once the basis networks have been sufficiently trained, the
next step is to learn the set of unknown networks. For un-
known network configurations, we use a seven layer feed
forward network with 120 nodes per layer with leaky ReLU
activation functions, similar to the basis networks. In prac-
tice, we have found that Equation (5) is non-trivial to learn
with standard weight initialization techniques. To aid con-
vergence of this loss term, we use a pre-training approach
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Figure 2. To demonstrate the complex spatial features inherent in
higher-frequency basis functions, we visualize the predicted fourth
basis for the density ρ as a function of spatial coordinates x. This
is a zoomed in version around the shock region.

that attempts to regress the Ci,j terms to known solution
data to get the unknown network weights in a sufficient
neighborhood before applying the operator loss in Equa-
tion (5). This pre-training minimization loss can be written
as:

min
C̃i,j

∑
ψ

∑
l

|Ci,j(xl, ψ)− C̃i,j(xl, ψ)|2, (12)

where C̃i,j can be calculated through standard minimization
according to the loss function:

min
C̃i,j

∑
ψ

∑
l

∣∣∣∣∣∣
∑
j

C̃i,j(xl, ψ)φ(xl)−w(xl, ψ)

∣∣∣∣∣∣
2

(13)

this allows the unknown network to start off with a reason-
able estimate of the desired states. It is important to note
that, during this learning process, we place no dependencies
on the operator portion, Sψŵ(x, ψ), in the loss function.

After pre-training, the final step is to optimize the unknown
network with respect to the governing equations, bound-
ary conditions and any other constraints. Minimization
of the governing equations and boundary conditions fol-
lows the definition of the Euler equations and the loss func-
tion defined in Equation (5). For this problem we add two
additional constraints to minimize the mean square error
between predicted and CFD Pressures and Temperatures.
Unfortunately incorporating this constraint restricts our loss
function to only use ψ parameters that exist in our training
set. However, we have found that without incorporating this
constraint leads to negative values of pressure/temperature
which for this problem are non-physical.

Figure 3. The predicted NBF approximation of speed
√
u2 + v2

at the test point, Mach 25. The majority of the domain (solid color)
has high values of speed, then, at the shockwave (bottom right),
the speed distribution rapidly changes.

Figure 4. We evaluate our NBF prediction of speed for the Mach
25 test case with the log absolute error compared to the ground
truth. The errors are highest near the boundary of the shockwave.

Finally with the basis and unknown networks trained, we
are able to infer new solutions within the defined parameter
space. We seek to generalize performance across the param-
eter space Ψ of Mach numbers. Figure 3 shows the NBF
predicted solution for the speed within the domain while
considering a Mach 25 inflow condition. Figure 4 shows
the log absolute error of this predicted solution with respect
to the CFD++ data. It is worth noting that this particular
scenario is held out of our training data set and still shows
good predictive performance.

It is also useful to understand how well the NBF approxi-
mation works across the parameter space. Figure 5 shows
the relative L2 error as a function of the Mach number. The
errors appear to be relatively stable across the parameter
space with slightly better performance for the higher Mach
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Figure 5. Relative L2 error for variables of interest with respect
to Mach number, for the test data (Mach 25) and training data
(remainder).

numbers.

3.2. Comparison with Vanilla DeepONet

In order to understand how well the NBF approach com-
pares against existing approaches, we will benchmark our
solution against the Vanilla DeepONet operator approach.
The equation for the vanilla DeepONet is given by (Lu et al.,
2022):

G(v)(ξ) =

q∑
j=1

bj(v)tj(ξ) + b0 (14)

where v and ξ are the parameter (in our case ψ) and spatial
values (in our case x). (Lu et al., 2022) focuses on the
case where v is a function that parameterizes the PDE – for
example, an initial condition. For comparison purposes,
we will consider it a parameterization of Ψ. Additionally,
bj(v) and tj(ξ) represent the branch and trunk networks
respectively, with b0 acting as a bias imposed on the outputs.

Since we are interested in the two dimensional steady state
Euler equations, we require a DeepONet representation of
multiple state variables defined in Equation (8). Making use
of recommendations from (Lu et al., 2022), we implement
a set of feed-forward DeepONets for each state variable
considered. The network architectures that we found gen-
erated the best performance for our use case comprised of:
5 layers of 120 nodes with hyperbolic tangent activation
functions for the branch networks and 6 layers of 120 nodes
with rectified linear units for the trunk networks. These
networks were then connected in a shared layer of 64 nodes
combined with a bias (b0) to produce predictions for each
state variable. During training, we used the same Adam
optimizer, learning rate decay and number of epochs as was

used for the NBF approach.

We added a few components that appeared to aid the train-
ing process for our problem specifically: adding prioritized
spatial sampling and zero-mean unit-variance (ZMUV) nor-
malization functions for spatial/parameter inputs as well
as the output state variables. For spatial sampling prior-
itization we used the Equation (11) to more often select
training examples with more deviation from the mean so-
lution. Additionally, adding the ZMUV normalization to
input/output parameters appeared to speed convergence and
prevent collapsing the solution to the mean flow.

Figure 6 shows the comparison for the vanilla DeepONet
vs the Neural Basis Function approach considering the total
number of training solutions as inputs. We are able to show
better performance in the approximation across the number
of training examples. Specifically we are able to produce
significantly better results for smaller training data sets,
indicating better generalization for sparse data. We believe
we are able to show this better performance due to the pre-
conditioned nature of basis functions included in the NBF
estimates as well as application of the governing equation
as regularization during training.

It is worth noting, that although the training process lines
up reasonably closely between the two approaches, there
is some overhead incurred by the NBF approach in: calcu-
lating the SVD, then training the unknown network. Addi-
tionally, the DeepONet architecture is significantly smaller
than the NBF architecture as it is described here. We believe
there are architecture optimizations that could reduce the
size and will consider this for future work. Thus, it is not
a completely direct comparison but is as close as we could
get to provide a baseline for the NBF approach.

Figure 6. As an ablation study, we vary the amount of training data
and evaluateL2 relative error for the test set. The dots represent the
median error with the black tails indicating inner 50th percentile.
Blue show NBF relative error compared to the orange of the vanilla
DeepONet
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We found that for many of the cases within the ablation
study, the Energy (E) state variable was the most difficult
to get to converge. This is likely due to the magnitude of
values compared to the other state variables (ρ, u and v).
For DeepONet, applying the ZMUV transformation on the
output state improved the convergence but not significantly
so.

3.3. Acceleration of CFD solutions

In the conventional CFD approach an initial condition is
employed with iterative updates until steady state is reached.
If one was to use an initial condition that is close to the
converged solution, fewer iterations would be required to
reach the high-fidelity steady-state. The NBF solution can
be leveraged to accelerate the CFD solver by providing this
nearly converged initial condition. In the following section,
we will compare the performance of the conventional CFD
approach with NBF informed CFD approach. The two
approaches will be evaluated by comparing their average
residual history. The time-dependent form of the Euler
equation includes the the term:

∂w

∂t
(15)

and adds to Equation (8). Additional details on the setup and
implementation of the CFD++ configuration can be found
in Appendix C

The convergence is determined by the evolution of the time-
dependent residual. Once the residual levels off, the simula-
tion is deemed to be converged and the solution has reached
steady-state. In the CFD++ finite volume approach, the gov-
erning equations are integrated over the cell volumes. For
the case of the Euler equations, the right hand side becomes
the sum of the scalar product of the inviscid fluxes and the
cell face areas. For a given equation, the residual is defined
as the absolute value of the residual divided by the cell vol-
ume averaged over all the cells. Since we are working with
a system of equations, we monitor the average residual of
our system equations, i.e. the sum of the residual of each
equation divided by the number of equations. Additional
detail of all the numerical procedures can be found in the
CFD++ user-manual1.

Section 3.3 and Section 3.3 show the time-dependent resid-
ual as a function of the number of iterations for Mach 15 and
25 respectively. As we can see from these plots, the NBF
solution provides a noticeable speed up in the convergence
of the high fidelity solver.

1https://www.metacomptech.com/index.php/features/icfd

Figure 7. Steady state convergence acceleration of a Mach 15 sce-
nario. Using the NBF prediction as the initialization results in
a speedup of roughly 750 iterations compared to the freestream
initialization.

4. Discussion
This work has shown the potential for using an operator
learning based approach, like the Neural Basis Function, as
an acceleration mechanism for high-fidelity CFD solvers.
We found that regressing a set of networks to POD basis
data, then using an additional unknown network in linear
combination can provide sufficient estimates of state vari-
ables within a configurable parameter space. High Mach
flow cases often induce complicated phenomena, like dis-
continuous shockwaves, which are difficult to represent
numerically, even with standard techniques. Using the 2D
steady state Euler equations as an example, we were able to
produce accurate estimates to the flow field for high Mach
(10-30) scenarios. These solutions were then used as ini-
tial conditions to a high-fidelity CFD solver (CFD++) to
improve the convergence, resulting in speed ups up to 1000
iterations.

As future work on the application side, we intend to extend
these results to the full Navier-Stokes equations, while tran-
sitioning to a three-dimensional domain. Along the way
improvements will be made to the methodology to better
understand network architecture performance as well as im-
proving training techniques for the basis and unknown net-
works. We also hope to develop a methodology using NBF
(or other operator approaches) to handle problems where
the spatial domain might vary across snapshots. This would
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Figure 8. Steady state convergence acceleration of a Mach 25 sce-
nario. Using the NBF prediction as the initialization results in a
speedup of roughly 1000 iterations, compared to the freestream
initialization.

allow for the ability to do shape optimization or analysis of
multiple geometric configurations.

On the learning side, we hope to factor in an active learning
feedback loop (Settles, 2009) that will be able to identify
regions of the ψ parameter space with poor predictive per-
formance, in order to execute more high-fidelity scenarios
in these regions to improve overall accuracy. Finally, some
combination of DeepOnet and NBF seems like a reasonable
path forward especially for speeding convergence of these
techniques. For example, one could create a set of trunk
networks that are regressed from the orthogonal SVD basis,
then freeze their weights and biases. Then adding a vanilla
DeepONet in combination with these bases could greatly
speed the convergence and make it easier to implement an
active learning type of approach for data generation.
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A. Euler Equation Expansion
We can expand the Euler equations in terms of our state variables w:

F1 = [f11, f12, f13, f14]T

f11 = ρu

= w0w1

f12 = ρu2 + p

= w0w
2
1 + (γ − 1)[w3 −

1

2
w0(w2

1 + w2
2)]

f13 = ρuv

= w0w1w2

f14 = (E + p)u

= (w3 + (γ − 1)[w3 −
1

2
w0(w2

1 + w2
2)])w1

F2 = [f21, f22, f23, f24]T

f21 = ρv

= w0w2

f22 = ρuv

= w0w1w2

f23 = ρv2 + p

= w0w
2
2 + (γ − 1)[w3 −

1

2
w0(w2

1 + w2
2)]

f24 = (E + p)v

= (w3 + (γ − 1)[w3 −
1

2
w0(w2

1 + w2
2)])w2
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B. Other Variable Field Visuals
The following set of plots provide a visual for the other
variables of interest using the NBF approximation to the
Mach 25 scenario.

Figure 9. Density (ρ)

Figure 10. x-velocity component (u)

Figure 11. y-velocity component (v)

Figure 12. Energy (E)

Figure 13. Pressure (P )

Figure 14. Temperature (T )
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C. CFD++ Details
In our investigation, CFD++ was run with a second order spatial discretization scheme. The inviscid fluxes were calculated
based on the minmod TVD limiter. The fluxes on the cell faces were reconstructed based on centroidal polynomials. Spatial
scheme blending was leveraged for the sake of numerical stability. During the initial 250 iterations, first order fluxes were
used exclusively. Then a linear blending of the first and second order discretization scheme was used until iteration 750,
beyond which the second order fluxes were used exclusively.

The time-residual from iteration to iteration depends on the integration scheme. In this study, an implicit Gauss-Seidel
relaxation time integration scheme was utilized with no additional convergence acceleration methods. The time step sizes
were based on the local (spatially varying) CFL (Courant Friedrichs-Lewy) number. The CFL number is a dimensionless
number that is equal to the time step size scaled by the time it takes for the fasts moving characteristics to travel across a cell
CFL = dt

dx
|u|+a

, recalling |u| is the scaler speed field. a is the speed of sound (a =
√
T ∗R ∗ γ) In each simulations, the

CFL number was linearly increased from 0.01 to 10 over the first 1000 iterations beyond which the CFL number was kept
constant.


