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Abstract

Lip synchronization, known as the task of aligning lip movements in an existing video with
new input audio, is typically framed as a simpler variant of audio-driven facial animation.
However, as well as suffering from the usual issues in talking head generation (e.g., tempo-
ral consistency), lip synchronization presents significant new challenges such as expression
leakage from the input video and facial occlusions, which can severely impact real-world ap-
plications like automated dubbing, but are largely neglected by existing works. To address
these shortcomings, we present KeySync, a two-stage framework that succeeds in mitigating
the issue of temporal consistency, while also incorporating solutions for leakage and occlu-
sions using a carefully designed masking strategy. We show that KeySync achieves state-of-
the-art results in lip reconstruction and cross-synchronization, improving visual quality and
reducing expression leakage according to LipLeak, our novel leakage metric. Furthermore,
we demonstrate the effectiveness of our new masking approach in handling occlusions and
validate our architectural choices through several ablation studies. Our code and models
will be made publicly available.

1 Introduction

Audio-driven facial animation has recently seen substantial progress with the introduction of new generative
models such as Generative Adversarial Networks (GANs) |Goodfellow et al. (2020); |Vougioukas et al.| (2019));
Zhou et al.| (2019) and diffusion models Ho et al.| (2020); [Stypulkowski et al.| (2024); [Chen et al.| (2024b).
In contrast, the adjacent field of lip synchronization (also known as lip-sync) has experienced comparatively
slower advancements |Guan et al.| (2023)); |Zhang et al.[(2023d); [Prajwal et al.[(2020). This disparity is surpris-
ing given that lip-sync has similar applications, ranging from facilitating multilingual content production to
enhancing virtual avatars Zhen et al.| (2023); [Zhan et al. (2023)). A potential reason for this slower progress
is that while lip synchronization may seem like a simpler task than animating the full face from audio, it
presents unique challenges that remain largely unaddressed.

Current methods are limited in both visual quality and temporal consistency. While recent works like
LatentSync [Li et al| (2024) have begun to explore higher resolutions (512x512), many models remain con-
strained to 256x256 outputs, hindering real-world applicability. Furthermore, they struggle with temporal
stability; frame-based approaches |[Yu et al.| (2024); [Liu et al,| (2024) often produce visible discontinuities,
while attempts to enforce coherence indirectly through perceptual models|Li et al.| (2024)), sequence discrim-
inators Mukhopadhyay et al.[ (2024]), or autoregressive conditioning |Bigioi et al. (2024)) can introduce subtle
artifacts or suffer from error accumulation over long sequences.

Beyond temporal consistency, a key, but often overlooked issue is expression leakage, where models infer
mouth shapes from facial expressions in the source video rather than from the driving audio. Regrettably,
most existing works focus excessively on lip synchronization as a reconstruction task on paired audio-visual
data, and neglect the cross-synchronization scenario, where a non-matching audio clip is used to re-animate
the original video. As a consequence, they typically exhibit major expression leakage from the original
video, severely degrading the synchronization between the generated video and the input audio in the latter
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Figure 1: Unlike existing methods, KeySync generates high-resolution lip-synced videos that are closely
aligned with the driving audio while minimizing leakage from the input video and seamlessly handling facial
occlusions.

scenario. Notably, this behaviour jeopardizes the viability of these models for applications like automated
dubbing, where audio and video are naturally mismatched.

To alleviate expression leakage, some methods |Cheng et al.| (2022)); [Yaman et al| (2024) introduce an ad-
ditional network to generate a neutral version of the input frame, neglecting the underlying issue of the
masking strategy. Some methods mask only the mouth region while preserving facial areas such as the jaw
and cheeks from the original videos, potentially leading to leakage since these regions also convey information
about mouth movements |Ki & Min| (2023); |Zhang et al.| (2023d), while others adopt broader masks that risk
discarding important contextual cues |Zhang et al.| (2024); |Cheng et al.| (2022]). Remarkably, the impact of
these masking strategies on generalization and robustness remains largely unexplored, and no consensus ex-
ists on the optimal approach. Lastly, another potential complication lies in occlusion handling. Most existing
models assume an unobstructed view of the mouth, whereas, in the real world, occlusions caused by hands,
objects, or motion blur are frequent. In practice, this means that the lack of explicit occlusion-handling
mechanisms significantly limits the applicability of current models.

To address these challenges, we propose KeySync, a two-stage lip synchronization framework that leverages
recent advances in facial animation to generate high-fidelity videos with lip movements that are tempo-
rally consistent and aligned with the input audio. To minimize leakage from the input video, we devise
a masking strategy that adequately covers the lower face while retaining the necessary contextual regions.
Furthermore, we augment this mask by excluding facial occlusions using a video segmentation model, re-
sulting in a method that consistently handle occlusions without uncanny visual hallucinations. Our primary
contributions, illustrated in Figure [T} are:

o State-of-the-art lip synchronization: KeySync achieves state-of-the-art lip synchronization per-
formance at a resolution of (512 x 512), surpassing the common (256 x 256) standard. It outperforms
all competing methods in terms of quality and lip movement accuracy according to several objective
metrics and a holistic user study. We observe particularly noticeable improvements in the cross-
synchronization setting (where there is a mismatch between the input video and audio), enabling
promising real-world applications such as automated dubbing.
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e A new strategy for occlusion handling: We propose an inference-time strategy for occlusion
handling by excluding occluding objects from our mask automatically using a pre-trained video seg-
mentation model. Through qualitative and quantitative analysis, we show this method is consistently
effective in handling occlusions.

¢ A novel leakage metric: We propose LipLeak, the first metric to quantify lip synchronization
leakage. It measures how much motion from the source video leaks into the output by computing
the ratio in lip activity between videos generated using speech versus silent audio.

2 Related Works

Audio-Driven Facial Animation Audio-driven facial animation methods aim to generate realistic talk-
ing head videos with accurate lip-sync and preserved identity. Early GAN-based works [Vougioukas et al/|
(2019); |Zhou et al.| (2019); |Chung et al.|(2017)) focused on lip-sync, while later approaches incorporated head
pose modelling but often introduced artifacts and unnatural motion Chen et al.| (2020); |Zhang et al.| (2023c]);
[Zhou et al. (2021]).

Diffusion models Ho et al| (2020); Rombach et al| (2022) have since emerged as a superior alternative,
demonstrating improved temporal consistency and video quality Xu et al| (2024b). Several modern meth-
ods leverage video diffusion models for temporally consistent motion [Stypulkowski et al. (2024); Xu et al.
. Others condition the generation process on facial landmarks Wei et al.| (2024) or 3D meshes |Zhang
; however, these approaches often produce unrealistic facial motion. To improve identity recon-
struction, recent works [Chen et al| (2024b)); Xu et al/ (20244) leverages ReferenceNet [Hu| (2024), though at
the cost of increased computational complexity. However, these state-of-the-art methods, including recent
keyframe-based techniques Bigata et al| (2025, are designed for full-face generation. Our work addresses
the distinct challenge of lip-sync editing, which involves unique problems such as expression leakage from
the source video.

Audio-Driven Lip Synchronization Lip synchronization methods focus on adjusting mouth movements
to match an audio input while preserving other facial attributes, such as head pose and upper face expressions.
A foundational work, Wav2Lip [Prajwal et al.| (2020), uses a Generative Adversarial Network (GAN) to
generate lip-synced frames, leveraging a pre-trained expert model to ensure accuracy. To enhance realism
and identity generalization, subsequent methods have introduced StyleGAN2-based architectures
(2023); Ki & Min| (2023)), spatial deformation of feature maps|Zhang et al.|(2023d)), and coarse-to-fine pyramid
models | Muaz et al.| (2023). Other approaches include LipFormer Wang et al.| (2023b]), which uses a codebook
of face parts aligned with the audio, and TalkLip [Zhong et al.| (2023)), which employs contrastive learning to
improve the quality of the generated lip region. More recently, diffusion-based methods have been introduced
for lip synchronization [Mukhopadhyay et al| (2024); Liu et al. (2024)); Bigioi et al.| (2024), marking a shift
in the state-of-the-art.

Despite these advances, several key challenges remain. The first is expression leakage, which is particularly
problematic in cross-driving scenarios where one person’s expression is transferred to another. This leakage
often stems from suboptimal masking strategies that fail to cover all visual cues of speech. While some
methods |Cheng et al.| (2022)); Yaman et al.| (2024)) address this by neutralizing the source face, this approach
adds computational overhead and potential errors from the synthetic input. To date, no consensus exists on
an optimal masking strategy.

A second challenge is temporal consistency. Many methods [Yu et al| (2024)); Liu et al| (2024); [Zhong
operate on a frame-by-frame basis, leading to visible discontinuities. Models that condition
on past frames [Bigioi et al.| (2024) can suffer from cumulative error propagation, while other techniques
like perceptual models |Li et al| (2024) or sequence discriminators [Mukhopadhyay et al.| (2024) are often
insufficient to guarantee coherence.

Finally, occlusion handling remains a largely unsolved problem. Most models assume an unobstructed view
of the mouth, failing in real-world settings with occlusions from hands, objects, or motion blur. Notably,



Under review as submission to TMLR

Keyframe
Identity frame mode

£ e
dE = b
£ | —1 _— e ° _o
Reference i P X P~ fa o
frames a i ")
\ J VAE VAE 5 a g A % N Reference
N Encader e Decoder Te frames
= _ — H
= o= ——| penoising - &
h E 3 I - U-Net Generated video Start keyframe [2m |  End keyframe
B ’ o &l frames

(b) Reference frame selection

!

Input video

frames @&
= Masking (© Concatenation Temporal attn - a
@ sum Audio X-attn x 2
ResBlock 5 @ |
Element wise J
At Husere T © mutiphcation  Zm  Leamed. [} [ B
a Sinusoidal embedding -
Input audio @ Srbedsing @ tersection Original frame Combined mask  Masked frame

@ Frozen Negation

Mask from landmarks

(a) Overview of KeySync architecture (c) Occlusion handling pipeline (inference only)

Figure 2: Overview of the KeySync framework. This two-stage latent diffusion model conditions on audio
(a) and an input video. (b) The keyframe stage uses an identity frame z;q, while the interpolation stage uses
keyframes (z;, z;1+1) and intermediate embeddings (z,,). (¢) Our inference-time occlusion handling pipeline.

[Peng et al.| (2025 propose a mask-free method lip sync method, which succeeds in handling occlusions, but
falls short in terms of lip synchronization.

3 Method

In this section, we describe our two-stage lip-sync approach, followed by our masking strategy in Section [3.2]
and a new method for handling occlusions in Section [3.5]

3.1 Latent Diffusion

Diffusion models Ho et al. (2020); Dhariwal & Nichol| (2021)) progressively transform random noise into
structured data by iteratively removing noise through a learned denoising process. Latent diffusion Rombach|
applies this denoising operation in a compressed latent space rather than in the high-dimensional
pixel space, improving computational efficiency. Furthermore, the EDM framework [Karras et al| (2022)
defines the denoising operation of the denoiser Dy as:

Dy (X§ 0') = Cskip (U)X + Cout (U)FG (Cin(O')X; Cnoise (U))a (1)

where Fy is the trainable neural network and x the input. The terms cpoise(0), Cout(0), Cskip(0), and ciy(0)
are scaling factors dependent on the noise level 0. These scaling factors dynamically adjust the magnitude
and influence of noise at different stages of the denoising process, thereby improving the network’s efficiency
and robustness during diffusion.

3.2 Leakage-Proof Masking

We frame the lip-sync task as a video inpainting problem |Quan et al.| (2024); Saharia et al. (2022)) in the
latent space. The critical objective is to ensure the newly generated lip region does not reuse (or “leak”)
cues from the original mouth shape that contradict the new audio. Specifically, we create a mask M by
computing facial landmarks [Bulat & Tzimiropoulos| (2017) and isolating the lower facial region, extending
slightly above the nose to cover any upper cheek movements that could otherwise convey information about
lip movements, while still preserving overall facial identity. The mask also extends to the lower edge of the
image, preventing any leakage from jaw movements. We find that this mask strikes an appropriate balance
between the two types of masks presented in prior works, namely:

o Full lower-face masks [Shen et al. (2023)); Mukhopadhyay et al. (2024); [Park et al. (2022)), which
can obscure too much context, risking issues with identity and natural facial continuity;
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« Mouth-only masks Zhang et al. (2023d); [Liu et al| (2024); |[Ki & Min| (2023)), which can inadver-
tently leak lower face expressions because residual mouth movements or shading remain visible to
the model.

While we group prior work into these two categories, it’s important to note that each method implements
its own masking strategy, and the exact details are not always shared. This highlights the need for a
standardized approach. We provide pseudocode to reproduce our mask and a deeper discussion on the
topic in Appendix Additionally, a visualization of our approach is available in Figure [f] with baseline
comparisons shown in Figure [9]

3.3 Two-Stage Video Generation

Our approach is illustrated in Figure [2] and detailed in Algorithm [, We adapt the two-stage procedure of
KeyFace Bigata et al| (2025) to the task of audio-driven video inpainting. We feed the video frames {z;}_;
into our VAE encoder Blattmann et al.| (2023) V to obtain latent representations {z;}_;. We then add noise
to obtain their corresponding noisy versions {z"}Z_;. To enforce consistency with the unmasked face (e.g.,
eyes, cheeks), we formulate the input to the U-Net using a binary mask M (where 0 is the face and 1 is the
mouth region):

= Mo+ (1 M) Oz, 2)

where ® denotes element-wise multiplication. This formulation forces the model to reconstruct (inpaint)
only the masked mouth region, ensuring the generated lip movements blend seamlessly with the original
video.

We aim to generate video frames {#;}7_; where lip movements are synchronized with a given audio track
{a;}I_,. Unlike previous approaches that either generate all frames end-to-end Ki & Min| (2023)); [Wang
et al.| (2023al); [Li et al.| (2024) or explicitly disentangle motion and appearance Liu et al|(2024);|Zhong et al.
(2024); [Yu et al.| (2024), we ensure temporal continuity by separating the prediction of long-range motion
(keyframes) from short-range motion (interpolation). This approach allows us to model the video’s temporal
dynamics directly without requiring auxiliary losses Mukhopadhyay et al.| (2024)), perceptual models m
(2024), or motion-specific frames Bigioi et al| (2024).

—

Method CMMD | TOPIQT VLT FVDJ| LipScore? Lipleak | Elo 1
g DiffDub [Liu et al.|(2024) 0.403 044 3712  429.07 0.34 - 1014
£ IP-LAP [Zhong et al.[(2023) 0.091 049 3777 282.02 0.36 - 1007
£ Diff2Lip Mukhopadhyay ct al[(2024) 0225 048 3584 555.08 0.49 - 886
Z  TalkLipWang ct al.|(2023a 0.230 039  29.07  608.92 0.58 - 920
¢ LatentSync|Li et al. mj 0.319 041 4523  343.90 0.52 - 1052
&  KeySync 0.064 0.58  70.32 191.21 0.46 - 1120

DiffDub [Liu et al.|(2024) 0.408 044  37.05  420.66 0.34 0.56 947
% IP-LAP Zhong et al.|(2023) 0.093 049 3532  294.66 0.17 0.57 1031
% Diff2Lip Mukhopadhyay et al.|(2024)  0.231 048 3397  601.68 0.16 0.42 878
£ TalkLipWang ct al.[(2023a) 0.201 042 2480 70493 0.30 0.90 911
& LatentSync|Li et al.|(2024 0.325 0.41 45.95  361.57 0.14 0.64 1086

KeySync 0.070 0.58  73.04 206.32  0.48 0.22 1145

Table 1: Quantitative comparison with other works on reconstruction and cross-synchronization performance.
The best results are highlighted in bold, while the second-best results are underlined. All metrics are
described in Section @

Architecture. Both stages use the Stable Video Diffusion (SVD) Blattmann et al.| (2023) architecture.
Crucially, unlike static image diffusion models, SVD employs a 3D U-Net that processes temporal sequences.
The input to each stage consists of reference frames, the target audio, and the original video frames. The
reference frames serve to either condition the interpolation or preserve identity. We use HuBERT
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(2021)) to extract audio embeddings, injected into the model’s U-Net via cross-attention layers and timestep
embeddings, enhancing video-audio alignment. Furthermore, we employ a modified classifier-free guidance
strategy that decouples audio and identity conditions, which we found significantly boosts lip-synchronization
accuracy (see Appendix [l)).

Stage I: Keyframes. This stage generates a sparse set of keyframes, {Z;, }{:1, where each keyframe is
spaced S frames apart (t = k-5). These keyframes serve as anchor points, ensuring that each one accurately
reflects the phonetic content of the audio while preserving the subject’s identity. In this stage, the reference
input consists of an identity frame, randomly sampled from the source video and repeated T times. To
improve generalization, we augment these reference frames with noise [Ho et al.| (2022)) and standard image
augmentations.

Stage II: Interpolation. This stage interpolates between successive keyframes to achieve smooth, coher-

ent motion. The reference frames takes two consecutive keyframes in the latent space, Z;, and 2, , and
constructs the following input sequence to generate the intermediate frames:
s:{ztw va-~~vzmvzt1:+1}a (3)
—_——

repeat S times

where z,, is a learnable embedding (optimized during training) that acts as a placeholder for the frames to
be generated. This allows the model to "bridge" the motion between the fixed start and end points smoothly.

3.4 Losses

We adopt the loss formulation from Karras et al.||2022 applied to the video frames:

»Clatent = Em,c,t,a’ |:wt ||F9(Ztm7 ¢, Ut) - Zt”g ’ (4)

where w; is a weighting function, Fy is the model, o, is the noise level, and ¢ the conditioning inputs
(audio and reference frames). We find that this loss alone is sufficient to achieve good lip synchronization
and high-quality video generation. However, working solely in the compressed latent space can make it
difficult for the model to retain fine semantic details |Zhang et al.| (2023b)), which are critical for real-world
lip synchronization tasks where preserving the nuances of the mouth region is essential. To address this, we
introduce an additional Lo loss in the RGB space. This requires decoding the latent output using the VAE
decoder V, resulting in:

Lrgy = Bacto [0 [VFo(a" 0,00)) = i3] (5)
The final combined loss is then:
Etotal =M- A(t) (£latent (27 Z) + )\ZLTgb(i‘v .’L‘)), (6)

where A(t) is a weighting factor dependent on the diffusion timestep ¢, as defined in EDM Karras et al.| (2022).
Importantly, we ensure that only the generated region contributes to the loss computation by masking the
region of interest.

3.5 Handling Occlusions

Occlusions are a critical yet often overlooked challenge in lip synchronization. Even advanced models can
produce unnatural results if occlusions in the original video, such as a hand or microphone covering the
mouth, are not properly accounted for. A common issue arises when an occlusion overlaps with the mouth
region during masking, often causing the model to incorrectly generate the mouth over the occluding object,
resulting in unnatural boundary artifacts.

To address this, we propose an inference-time solution to handle any occlusion without retraining. Explicitly
training a model for occlusion handling is impractical due to the vast range of possible occlusions and
their inherent misalignment with speech, making them hard for the model to learn. Instead, we introduce
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a preprocessing pipeline that first segments the occluding object using a state-of-the-art zero-shot video
segmentation model [Ravi et al.|(2024)), generating a mask Moy; of the occlusion. We then refine the original
mask M by excluding the occlusion:

M’ = M N —~Mg;, (7)

where N denotes intersection and — denotes logical negation. Since our model supports free-form masks,
as in RePaint [Lugmayr et al.| (2022)), it can seamlessly reconstruct the mouth region while preserving the
occluding object, ensuring visually coherence.

We purposefully employ a modular design using an off-the-shelf segmenter (SAM2 Ravi et al. (2024))) rather
than training an end-to-end occlusion-aware model. During inference, the model is prompted by providing a
point coordinates on the occluding object in a single frame, which SAM2 then propagates temporally across
the sequence. This ensures our framework remains agnostic to segmentation improvements, as segmentation
SOTA improves, KeySync improves without retraining. Our prompting strategy targets only foreground
objects distinct from the facial manifold. Furthermore, the diffusion model’s semantic priors prevent it from
inpainting non-mouth textures into the mouth region even if the mask boundary is imperfect.

4 Experiments
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4.1 Datasets

We train on a combination of HDTF |Zhang et al.| (2021)), CelebV-HQ (2022)), and CelebV-Text
(2023)). To address artifacts in CelebV-HQ and CelebV-Text (e.g., low-quality, poor framing), we
developed a data curation pipeline, which is detailed in Appendix [A]

For evaluation, we focus on the cross-sync task, the primary use case for lip-sync models, where the input
audio comes from a different video than the one being generated. We randomly select 100 test videos from
CelebV-Text, CelebV-HQ, and HDTF and swap their audio tracks. Additionally, to ensure consistency with
prior works, we also report reconstruction results for the same 100 videos.

4.2 Evaluation Metrics

We evaluate our method using a set of no-reference metrics. For image quality, we measure the variance
of Laplacian (VL) [Pech-Pacheco et al| (2000) to assess blurriness, along with CMMD |Jayasumana et al.|
(2024), an improved version of FID, and a facial-domain TOPIQ |Chen et al (2024a)); [Chen & Mo (2022).
For video quality, we use FVD [Unterthiner et al.| (2019). For lip synchronization, we rely on LipScore |Bigata|
(2025)), which correlates better with human perception than SyncNet [Chung & Zisserman| (2016)).
LipScore computes the cosine similarity between embeddings extracted by Auto-AVSR Ma et al. , a
state-of-the-art lipreading model. Specifically, these embeddings are derived from the mouth regions of both
the generated frames and the ground-truth video (the source of the target audio). Notably, the underlying
Auto-AVSR backbone resizes all inputs to 96 x 96, ensuring that the metric evaluates lip
motion fidelity independently of the generation resolution. We also introduce LipLeak, detailed below, to
quantify expression leakage. For completeness, SyncNet results are included in Appendix [H]

LipLeak We introduce LipLeak to quantify expression leakage from a source video. We drive a model with
both speech and silent audio; since silent audio provides a zero-signal ground truth, any resulting mouth
motion is considered a leakage artifact. LipLeak is the ratio of the Mouth Aspect Ratio (MAR)
standard deviation (o) between the silent and speech-driven outputs:

U(MARsilence)
U(MARspeech) +e€ ’

where € ensures numerical stability. A low score is desirable, indicating expressive movement during speech
and stability during silence. Conversely, a high score signals a problem, diagnosable by inspecting the
components: a low o(MARgpeechn) suggests the model fails to generate expressive motion for speech, while a
high 0(M ARgjjence) points to instability or leakage, which manifests as unwanted mouth movement during
silent periods. See Appendix [E] for further details.

LipLeak = (8)

4.3 User Study

While the metrics above offer an objective evaluation, they do not always align with human perception. To
address this, we conduct a user study where participants compare randomly selected video pairs based on
lip synchronization, temporal coherence, and visual quality. We then rank the performance of each model
using the Elo rating system [Elo| (1978)), and apply bootstrapping|Chiang et al| (2024) for robustness. Further
details are provided in Appendix [G]

5 Results

This section presents a comprehensive evaluation of our model’s performance against baselines, along with
ablations to assess the impact of key components. Additional results are in Appendix [H]

5.1 Comparison With Other Works

Quantitative Analysis. We evaluate our method alongside five competing approaches in Table [I} The
evaluation is conducted in two settings: reconstruction, where videos are generated using the same audio as
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in the original video, and cross-sync, where the audio is taken from a different video. The latter is particularly
relevant as it better reflects real-world applications such as automated dubbing, where the driving audio is
typically not aligned with the input video.

As shown in Table |1} KeySync achieves superior visual quality and temporal consistency (VL, FVD) in both
tasks. While most methods’ lip-sync quality (LipScore) degrades in the more challenging cross-sync setting,
our performance remains stable. Some baselines achieve a high LipScore in the reconstruction task, but this
is an artifact of expression leakage, confirmed by their high LipLeak scores. For instance, LipLeak reveals
that DiffDub’s high cross-sync LipScore stems from random, unsynchronized mouth movements. Crucially,
KeySync also obtains the highest Elo rating in our user study, confirming that our improvements in leakage
reduction and visual quality translate directly to human preference (further analysis in Appendix @[)

Qualitative Analysis. Figure [3| shows a qualitative cross-sync comparison. KeySync more accurately
follows the lip movements corresponding to the input audio. While LatentSync and Diff2Lip also appear
to align somewhat with the target lip movements, they fail to generate certain vocalizations correctly and
exhibit visual artifacts (highlighted on the figure via red squares and arrows, respectively), limiting their
practical usability. Additionally, most methods produce insufficient mouth movement. This can be attributed
to expression leakage, where conflicting signals from the source video and new audio hinder the generation
of a coherent mouth region.
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Figure 5: We show the mean standard deviation of
MAR for silent and speech audios.

Leakage. As discussed in Section we compute LipLeak by generating a video using a silent audio
input. Since the audio contains no speech, the mouth should exhibit minimal movement. However, in
practice, we observe this is not always the case, as expressions from the input video can leak into the
generated output. Figure [d]shows qualitative examples where all methods, except ours and Diff2Lip, exhibit
several frames where the mouth is open (highlighted by red squares) due to expression leakage. While
Diff2Lip manages to keep the mouth closed, it introduces significant blending artifacts, highlighting the
model’s struggle to suppress the original video’s motion. In Figure [5] we visualize the standard deviation of
the Mouth Aspect Ratio (MAR) for both silent and speech audios. The results show that baselines either
produce unwanted motion during silence (e.g., DiffDub, LatentSync), suppressed motion during speech (e.g.,
IP-LAP), or similar motion in both cases (e.g., TalkLip). In contrast, KeySync exhibits the desired behavior:
high motion variability for speech and minimal motion for silence, confirming its robustness against leakage.

Occlusion Handling. Figure [7] demonstrates our method’s effectiveness. Without occlusion handling,
significant artifacts appear around the hand (left), a finding confirmed by spikes in the mean absolute
error plot (right). Our proposed method eliminates these artifacts by preserving the occluding object while
maintaining correct lip synchronization, resulting in a much lower reconstruction error. We assess this
technique on baseline models in Appendix [F]

5.2 Ablation Studies
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Figure 7: We present occlusion qualitative results on the left and quantitative results on the right.

Audio backbone FVD | LipScore T Lipleak |
Whisper |Radford et al.| (2023)  207.41 0.47 0.25
Wav2vec2 Baevski et al. (]2020D 201.13 0.45 0.26
WavLM |Chen et al.| (2022 218.08 0.48 0.23
HuBERT |Hsu et al. (2021 206.32 0.48 0.22

Table 2: Audio encoder ablation in the cross-sync setting.

Audio Encoder. We also investigate the impact of different audio encoders on the generated videos, as
shown in Table [2 We see that Wav2vec2 Baevski et al.| (2020]) produces marginally higher video quality, as
indicated by its lower FVD score. However, this comes at the expense of lip synchronization, as reflected in
its lower LipScore. With WavLM [Chen et al| (2022), we achieve a LipScore comparable to HuBERT
, but at the cost of worse video quality. In contrast, HuBERT maintains a strong LipScore
and achieves the lowest LipLeak, indicating effective mitigation of expression leakage. Therefore, we select
HuBERT as our default audio encoder.

Keyframe generator CMMD | FVD | LipScore 1 Mask CMMD | FVD | LipScore 7 Lipleak |
Only (one-stage) 0.085 395.45 0.32 Mouth-only 0.077 200.71 0.23 0.52
Image-based 0.142 618.27 0.39 Full lower-face 0.743 219.96 0.35 0.38
Sequence-based 0.070 206.32 0.48 Nose-level 0.071 199.39 0.34 0.48
Ours 0.070 206.32 0.48 0.22

Table 3: Keyframe generator ablation in cross-sync

setting. Table 4: Mask ablation in cross-sync setting.

Keyframe generator. We evaluate our keyframe/interpolation approach against two alternative designs.
The first is a one-stage model that generates frames sequentially without an interpolation model; longer videos
are formed by concatenating the generated clips with a one-frame overlap. The second retains the two-stage
design but generates keyframes individually with an image-based model, skipping the temporal modelling of
our approach. We find that the one-stage model, while achieving reasonable visual quality (CMMD), suffers
a sharp decline in FVD and LipScore, underscoring the value of our interpolation strategy for generating
smooth, well-synchronized motion. Likewise, generating keyframes individually without temporal context
degrades long-range coherence, leading to a significant drop across all metrics.

Mask. Finally, we investigate the impact of different masking techniques (illustrated in Figure @ in Ta-
ble @l A mouth-only mask improves video quality by minimizing obstruction but causes severe leakage
(low LipScore, high LipLeak), as the model tracks the mask’s motion rather than syncing with the audio.
Conversely, masking the entire lower face effectively reduces leakage but severely harms image and video
quality, as the model must reconstruct unrelated background elements. Our proposed box-style mask offers
a balanced trade-off, achieving the best overall performance. We found that extending the mask to cover the
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cheeks is crucial for maximizing LipScore, as this region conveys important cues about mouth movements
that can otherwise cause leakage. We further discuss the implications of the baselines’ masking strategies
on leakage in Appendix [D]

6 Conclusion

In this paper, we propose KeySync, a state-of-the-art lip synchronization approach based on a two-stage video
diffusion model. We show that, unlike other methods, KeySync generates high-resolution videos which are
temporally coherent and closely aligned with the driving audios. Furthermore, by applying a new masking
strategy, we show that our model successfully minimizes expression leakage from the input video, while also
being robust to facial occlusions that may occur in the wild. We hope that these improvements will enable
the use of lip synchronization models in applications such as automated dubbing, which can help eliminate
language barriers at scale.
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A Datasets

A.1 Overlap with SVD dataset

While the SVD backbone was pre-trained on LVD-10M [Blattmann et al.| (2023) (general video), our fine-
tuning datasets are strictly domain-specific; given the specific curation of our talking-head data, we estimate
negligible overlap with the pre-training corpus.

A.2 Curation and Preprocessing

When working with in-the-wild datasets such as CelebV-HQ [Zhu et al. (2022)) and CelebV-Text
, we observed that a significant portion of the data is of suboptimal quality. Common issues include
visible hands, camera movement, editing artifacts, and occlusions. Additionally, some samples exhibit lower
resolution than advertised. Examples of these issues are illustrated in Figure [§} During training, we found
that such videos negatively impacted model performance because their visual content correlates poorly with
the corresponding audio. To address these challenges, we developed a data curation pipeline comprising the
following steps:

o Extract videos at 25 FPS and single-channel audio at 16 kHz.

 Discard low-quality videos based on HyperIQA (2020) scores below 0.4. Each video’s score
is computed as the average of nine evaluations: selecting the first, middle, and last frames, each
evaluated on three random crops.

o Detect and segment scenes using PySCeneDetectﬂ

o Remove clips without active speakers using Light-ASD [Liao et al| (2023) indicated by the score
below 0.75.

—

Figure 8: Examples of problematic videos in CelebV-HQ and CelebV-Text.

A.3 Data Statistics

Table [5| describes the training/evaluation data used in this paper, specifying the number of speakers, videos,
average video duration, and total duration for each dataset. Additionally, to illustrate the impact of our data
curation pipeline, we present Table [6] which details the statistics of the datasets before curation. Overall,
we discard roughly 75 % of the original videos. Please note that CelebV-HQ and CelebV-Text videos were
split into shorter chunks during pre-processing, hence the higher video count in Table [5

B Inference pipeline

The complete inference procedure is detailed in Algorithm [ We process the input video in latent space,
first generating robust masks that integrate facial landmarks with SAM2-based occlusion segmentation.
The generation then proceeds in two stages to balance temporal stability with motion fidelity: the Keyframe

Thttps://github.com/Breakthrough/PySceneDetect
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Dataset # Speakers # Videos Duration

Avg. (sec.) Total (hrs.)
HDTF 264 318 139.08 12
CelebV-HQ 3,668 12,000 4.00 13
CelebV-Text 9,109 75,307 6.38 130

Table 5: Data statistics after curation and pre-processing.

# Videos Duration
Avg. (sec.) Total (hrs.)
318 139.08 12
CelebV-HQ 35,666 6.86 68
CelebV-Text 70,000 14.35 279

Table 6: Data statistics before curation.

Stage generates sparse, audio-aligned anchor frames (every S = 12 frames) to establish long-term consistency,
followed by the Interpolation Stage, which synthesizes the intermediate frames conditioned on the generated
anchors and the corresponding audio interval. Finally, the overlapping segments are merged and decoded to
produce the high-resolution synchronized output.

Algorithm 1 KeySync Inference Pipeline

Require: Source Video V.., Driving Audio A4y, Occlusion Prompt P,.. (optional)

Ensure: Synchronized Video V,,;

10:
11:
12:
13:
14:

15:
16:
17:
18:
19:
20:

21:

Models: Keyframe Model M g g, Interpolation Model Mynr, SAM2 S, VAE £/D

Zs7'c <~ g(‘/mc)

Equdio < AudioEncoder(Ag;,)
Mqce < Landmarks(V,.)

if P,.. is provided then
Mocc <~ 8(VSTC7 Pocc)

M + Mface © (1 - Mocc)

else
M <+ Mface

Zkr |

for ¢t <+ 0 to length(Z,,.) step S do
Zmasked < Zsrc[t] © (1 - M[tD

Caud < Eaudio [t]

2t — MKF(Zmasked7 Caud)

Append Z; to Zk g

Zout < ]

for i < 0 to length(Zxr) — 1 do
Zstart, Zend < ZKF[Z]v ZKkF [7’ + 1]
CAseq — Eaudio [tstart : tend]
Zseg — MINT(Zsta'rta Zend Cseq)

A~

Zout — Merge(zsegv Zout)

return D(Z,,1)

> 1. Preprocessing & Mask Generation
> Encode video to latent space

> Extract Wav2Vec2/WavLM features

> Generate lower-face masks

> Occlusion Handling (SAM?2)

> Segment occlusion (e.g., hand)

> Exclude occlusion from mask

> 2. Stage I: Keyframe Generation (Sparse Anchors)

> Mask the mouth region at step ¢
> Get audio embedding for frame ¢
> Generate coherent anchor frame

> 3. Stage II: Interpolation (High-Frequency Motion)

> Set start/end anchors
> Get interval audio sequence
> Fill intermediate frames

> Decode to pixel space

19



Under review as submission to TMLR

C Implementation Details
Code The code and model weights will be released upon acceptance.

Hyperparameters & Training Configuration We summarize all the hyperparameters of our pipeline
in Table The weights of the U-Net and VAE are initialized from SVD |Blattmann et al.| (2023). The
interpolation model undergoes more training steps because its task differs more significantly from the original
task of SVD. The final hyperparameters were selected through extensive experimentation to find the optimal
trade-off between lip-synchronization accuracy (LipScore), visual quality (FVD), and expression leakage
(LipLeak).

To optimize memory efliciency, we apply L,4 to a randomly selected frame from the sequence, which we
found to be sufficient for maintaining perceptual quality.

Hyperparameter Final Value Range Tested
Keyframe seq. length (T) 14 Fixed
Keyframe spacing (S) 12 Fixed
Interpolation seq. length (S) 12 Fixed
Keyframe training steps 60,000 N/A
LipLeak € 107° Fixed
Interpolation training steps 120,000 N/A
Training batch size 32 {16, 32}
Optimizer AdamW Fixed
Learning rate 107° {107%, 107}
Warmup steps 1,000 {1,000, 2,000}
Inference steps 10 Fixed
GPU used A100 N/A
Video frame rate 25 Fixed
Audio sample rate 16,000 Fixed
Resolution 512 x 512 Fixed
Pixel loss weighting (A2) 1 {0, 0.5, 1.0}
Audio cond. drop rate 20% {10%, 20%, 30%}
Identity cond. drop rate 10% {5%, 10%, 20%}

Table 7: Final model hyperparameters and the ranges tested during development. "Fixed" denotes values
set by the model architecture or data standards, while "N/A" denotes values not typically tuned.

Practical Deployment A limitation of our model is its inference speed, which is not yet real-time.
Nevertheless, our two-stage approach is faster than other diffusion-based methods (e.g., DiffDub, Diff2Lip,
LatentSync) and competitive with some GANs, as shown in Table This advantage stems from our
framework’s support for batched inference, a feature absent in autoregressive models.

Diffusion-based Methods
Model VideoReTalking DiffDub Diff2Lip LatentSync KeySync

FPS 0.17 0.69 1.56 2.50 3.84
GAN-based Methods

Model IP-LAP Wav2Lip TalkLip

FPS 4.31 16.66 92.00

Table 8: Inference speed comparison in Frames Per Second (FPS). Higher is better.

Future work could focus on acceleration by adapting techniques from recent literature. For example, Con-
sistency Models [Song et al. (2023)) can enable single-step generation by learning to map any point on a
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diffusion trajectory back to the origin. Other promising approaches, such as adversarial distillation [Sauer
et al. (2024), can also reduce a trained diffusion model to a single-step generator while maintaining high
output quality.

We provide a breakdown of the computational cost for each stage of the pipeline in Table )] The U-Net
sampling dominates the inference time (63.0%), with the majority spent in the Interpolation Sampling stage
(56.4%). This is expected, as this stage is responsible for generating the high-frequency motion details
for the majority of the video frames. The segmentation module (SAM2) accounts for 18.6% of the total
time; since this step is optional, it can be omitted for non-occluded videos to boost throughput, or replaced
with a lighter-weight segmentation model in future iterations. Preprocessing (VAE encoding and landmark
extraction) accounts for roughly 16% of the latency; in our training pipeline, we precompute these features
to accelerate experimentation.

Stage Percentage (%)
VAE Encoding 5.8
Landmarks Extraction 10.4
Audio Preprocessing 0.1

— HuBERT Embeddings 0.0

— WavLM Embeddings 0.0
Segmentation (SAM2) 18.6
UNet Sampling 63.0

— Keyframe Sampling 6.6

— Interpolation Sampling 56.4

Table 9: Timing Summary Breakdown

D Masking

D.1 Mask Definition

To create the mask defined in Section [3.2] we first compute 68 facial landmarks in 2D [Bulat & Tzimiropoulos
(2017) and then follow the procedure in Algorithm

Algorithm 2 Create mask from landmarks

Require: L € RT>*Kx2 > landmarks for T" frames
1 (H,W) > image height and width
2: n (nose index, default 28)

Ensure: M € {0,1}7xHxW > binary masks
3: M+ Opxpxw > initialise masks
4: fort+ 0toT —1do
5: P« L > landmarks of frame ¢
6: he <= Py > y-coord. of the nose
7 [ < argming Py > left-most landmark index
8: 74— argmaxy, Py » > right-most landmark index
9: p1 (B,x: hc)

10: p2 < (P g, H)
11: p3 + (Prg, H)

12: Pa < (P’l‘,937 hc)

13: FIiLLPoLYGON(M, [p1,p2, p3,p4l, 1)
14: return M
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D.2 Alternative Masking

In Figure [0} we illustrate the different masking strategies for the methods analysed in Section[5] We observe
that while the masks of IP-LAP and Diff2Lip are closest to our own, their performance is affected by a tight
facial crop applied before masking. This crop, which typically extends to the jawline, can leak the state of
the mouth and excludes other speech-related areas such as the throat, which is reflected in their leakage
scores in Table [I1

TalkLip masks the lower part of the image but fails to cover the cheek region, which contains important cues
about the mouth’s state, resulting in a high LipLeak score. The mask shape used by DiffDub is similar to
ours, but because it does not extend to the bottom of the frame, the model can infer the mouth shape from
the mask’s position relative to the chin. Similarly, LatentSync uses a fixed mask and preprocesses the video
so the mouth is always contained within it; however, this allows the model to infer mouth movements based
on the position of the head rather than the audio content.

IP_LAP TalkLip DiffDub LatentSync Diff2Lip

Figure 9: Ilustration of the masking strategy of baseline methods

E Leakage metric

E.1 MAR Calculation

We introduce LipLeak as part of our evaluation pipeline for measuring expression leakage. The first step
in computing LipLeak is to calculate the Mouth Aspect Ratio (MAR) from facial landmarks, as illustrated
in Figure This ratio quantifies the vertical openness of the mouth relative to its width, increasing as
the mouth opens wider. Because LipLeak is based on a ratio, it is a scale-invariant measure, allowing for
consistent evaluation across different video resolutions and face sizes.

E.2 Alternative Metric

While LipLeak is a reliable metric, it requires running the model twice (once with speech audio and once with
silent audio). To create a simpler metric, we propose LipLeak,,;., which only requires a single run with silent
audio. LipLeak;;,, measures the proportion of time the mouth is open when the audio is silent. We found
that models opening their mouths during silent periods appear unnatural to users, making this a critical
failure mode for real-world scenarios. To determine whether the mouth is open, we apply a threshold to the
MAR; based on visual inspection, we selected a threshold of 0.25, as any MAR, below this value consistently
represents a closed mouth.

To validate LipLeak;;,,, we first assessed its sensitivity to this threshold. As shown in Figure [I1] LipLeak;;,.
decreases smoothly and predictably as the threshold increases. This stable behaviour is essential for a
reliable metric, as it prevents erratic jumps that could compromise quantitative evaluations. Finally, to
ensure LipLeak;;,, effectively captures the same underlying issue as LipLeak, we computed the correlation
between the two metrics in Figure We observe a significant (p < 0.05) strong correlation between
LipLeak;;;. and LipLeak, confirming that LipLeak;;,, is an efficient and reliable proxy for quantifying model
leakage.
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Open Mouth Closed Mouth
MAR = (D + E + F) /(2 x G) = 0.594 MAR = (D + E + F) /(2 x G) = 0.007

0.7

=== Threshold = 0.25

0.6

0.1
\o\.\.\.

0.1 0.2 0.3 0.4 0.5
MAR Threshold

Figure 11: LipLeak as a function of the MAR threshold.

We note that a model could trivially achieve a low LipLeak score by producing minimal mouth motion for
all inputs; however, such behavior would be heavily penalized by our primary sync metric, LipScore, which
measures the positive correlation between audio and visual speech cues.
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Figure 12: Correlation between Mouth Stability Metrics.

E.3 Correlation with Human Perception

To validate the perceptual relevance of our novel metric, we analyse the relationship between LipLeak scores
and human judgment. Figure illustrates a strong negative correlation (r = —0.79) between LipLeak values
and human ratings for "Overall Coherence". This result confirms that higher leakage (mouth movement
during silence) is consistently perceived as a negative artefact by users. We note that Diff2Lip appears as an
outlier in this trend. Qualitative inspection reveals that this method suffers from significant blending artifacts
around the mouth region, which heavily penalize its human rating regardless of its leakage behaviour. This
suggests that while minimizing leakage is a prerequisite for perceived coherence, it is not the sole factor; high
visual fidelity and seamless blending are equally necessary for achieving state-of-the-art user satisfaction.

F Occlusion Handling

F.1 Dependency on external segmentation model

Handling occlusions via an external, state-of-the-art segmentation model is a deliberate design choice that
provides significant flexibility. This modular approach allows us to benefit from rapid advancements in video
segmentation without architectural changes or retraining. Any improvement in segmentation technology can
be directly integrated, immediately boosting the system’s robustness. The trade-off is a dependency on this
upstream component, as segmentation failures can propagate into the final result.

While complete segmentation failures are rare with SAM2, they constitute a known limitation of our pipeline.
We categorize these failures into two types:
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LipLeak vs. Elo Rating (Cross-Sync)
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Figure 13: Correlation between LipLeak and human perception. The plot reveals a strong negative correlation
(r=-0.79).

1. Boundary Errors (Partial Failure): For fast-moving objects or heavy motion blur, the segmenta-
tion mask may miss fine edge details. In these cases, we observe that the SVD backbone is generally
robust enough to leverage video priors and fill small gaps plausibly, though minor high-frequency
artifacts may persist at the boundaries (see Figure [14] top row).

2. Total Segmentation Failure (False Negative): If the segmentation model fails to detect the
occluding object entirely, the occlusion mask M;; remains empty. Consequently, the final inpainting
mask M includes the object as part of the generation region. As the diffusion backbone is condi-
tioned to generate a talking mouth, it will erroneously Hallucinate lip textures over the obstacle.
We visualize this failure mode in Figure (bottom row) by simulating a missed detection on a
microphone occlusion.

F.2 Application to different methods

Figure [TF] illustrates the application of our occlusion handling technique to several existing methods:

o DiffDub [Liu et al. (2024) and Diff2Lip Mukhopadhyay et al.| (2024): Our approach works
out of the box, seamlessly handling occlusions without requiring modifications.

« LatentSync |[Li et al. (2024)): Since this method employs a fixed mask, the model has never
been exposed to variations in masking. As a result, it struggles to adapt to the new mask patterns
introduced by our occlusion-handling technique, highlighting a key drawback of using a rigid masking
approach.
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W/o occlusion

W/ occlusion

Figure 14: Occlusion Failure Case Analysis.

IP-LAP |Zhong et al.| (2023): This model generates the mouth region separately through an
audio-to-landmark module. Consequently, the occlusion mask has no direct effect, and the mouth
is generated on top of the occlusion.

TalkLip Wang et al.| (2023a)): At first glance, TalkLip appears to function without occlusion
handling. However, it achieves this by concatenating frames from the original video to generate new
frames. This shortcut enables occlusion handling but comes at the cost of significant expression
leakage, as evidenced by its very high LipLeak score in Table [T}

DiffDub IP_LAP Diff2Lip TalkLip LatentSync

handling

handling

Figure 15: Effectiveness of Occlusion Handling Across Different Methods.

G User Study Results

To ensure that the objective metrics presented in Table [I] align with human perception, we conduct a user
study to evaluate model performance in terms of lip synchronization, overall coherence, and image quality.
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Participants are presented with pairs of videos and asked to select the one they preferred based on these
criteria. The video pairs are randomly sampled from the pool of models listed in Table [I| to ensure a fair
and unbiased comparison. A total of 1,000 pairwise comparisons were collected, providing a robust dataset
for evaluating human preferences. Figure [I6] shows a screenshot of the user study interface, illustrating the
evaluation setup.

‘Welcome to the Dubbing Evaluation Arena!
In this study, the models modify only the lip region of the characters to better match the new dubbed audio, while the rest of the video remains unchanged.

Please compare the two videos and vote for the one you prefer based on the following criteria:
> Lip Synchronization with Audio: How well the character's lip movements align with the new speech.
> Overall Coherence: How seamlessly the modified lip movements integrate with the rest of the video.

> Image Quality: Clarity and visual appeal of the video.
Select either the left or right video as your preference. Thank you for your feedback!
(Note: If you are on a mobile phone, try turning the screen landscape for a better experience)

& Model A L= ¢ Model B

- Left video looks better Right video looks better -

Figure 16: User study interface. Participants were shown side-by-side videos and asked to select the preferred
one based on lip synchronization, coherence, and quality.

Elo Ratings To assess the relative performance of different models in our evaluation framework, we employ
the Elo rating system (1978), a widely used method for ranking competitors based on pairwise compar-
isons. The Elo rating system assigns scores to models based on their performance in direct comparisons,
updating their ratings dynamically as more results are collected.

We evaluate Elo ratings in two distinct settings:

¢ Reconstruction setting (Figure : In this scenario, we compare videos are generated using
the same audio as in the original video.

¢ Cross-Synchronization Setting (Figure : In this scenario, we compare videos generated
using a different audio from the original video.

In both cases, our model consistently outperforms competing methods, achieving higher Elo ratings. This
demonstrates its superior ability to generate high-quality, accurately synchronised lip movements, both in
the reconstruction and cross-synchronization tasks.

Elo Rating Distributions To better understand the distribution and variance of model rankings, we
analyse the overall Elo ratings across all evaluated models. Figure [I9] presents a histogram of Elo scores,
illustrating how models are ranked relative to each other. A well-separated distribution suggests clear per-
formance differences between models, whereas overlapping scores indicate models with similar performance
levels. Our model achieves the highest Elo ratings, forming a well-defined peak that highlights its supe-
rior performance. In contrast, baseline models display varying degrees of separation, with some exhibiting
significant overlap, suggesting closer competition and comparable performance in certain cases.

Win Rates Beyond Elo ratings, we compute win rates to assess how often each model outperforms others
in pairwise comparisons. The win rate matrix in Figure [20] provides a detailed overview of direct matchups,
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Figure 17: Elo ratings in the reconstruction setting. Higher ratings indicate better performance in generating

videos with original audio as input.
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Figure 18: Elo ratings in the cross-sync setting. Higher ratings indicate better performance in generating

videos with different audio from input.

where each cell represents the percentage of times one model wins against another. This analysis helps
identify dominant models and potential inconsistencies in ranking. Our model consistently outperforms
competing approaches, achieving a minimum win rate of 69% and a maximum of 94%. These results

indicate a strong and reliable performance advantage over alternative methods.
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Figure 19: Distribution of Elo ratings across all evaluated models. This histogram illustrates the spread of
Elo scores, highlighting performance gaps or clustering amongst different models.

H Additional Results

H.1 Additional Baselines

In Section [p] we compare our method with five strong baselines. We also ran additional experiments against
Wav2Lip [Prajwal et al.| (2020)), due to its position as a foundational lip synchronization model, and Vide-
oReTalking (Cheng et al.| (2022), as it also attempts to mitigate expression leakage. We present the results
in Table [I0] We observe that while VideoReTalking reduces leakage more effectively than Wav2Lip, its
performance on cross-driving synchronization is still poor.

Method CMMD | TOPIQt VL1 FVD/] LipScore 1 LipLeak |
Reconstruction

VideoReTalking (Cheng et al.[(2022)  0.263 0.45 29.28  536.12 0.45 -
Wav2Lip Prajwal et al.|(2020) 0.201 0.44 27.59  506.41 0.48 -
KeySync 0.064 0.58  70.32 191.21 0.46 -
Cross-synchronization

VideoReTalking |Cheng et al.|(2022) ~ 0.329 0.38 13.03  507.85 0.26 0.42
Wav2Lip Prajwal et al.|(2020) 0.205 0.45 27.70  562.63 0.22 0.71
KeySync 0.070 0.58  73.04 206.32 0.48 0.22

Table 10: Additional quantitative comparison.

H.2 Additional Synchronisation Metrics

While not included in our main comparison (Table due to their known flaws, we present additional
results using the Lip-Sync Error Confidence (LSE-C) and Lip-Sync Error Distance (LSE-D) metrics from
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Figure 20: Win rate matrix for pairwise model comparisons. Each cell represents the proportion of matchups
where one model outperforms another, offering insight into head-to-head performance.

SyncNet |(Chung & Zissermanl! (2016]). Despite their limitations, these metrics remain widely used. The results
for all baselines are shown in Table [l

Metric DiffDub IP-LAP Diff2Lip TalkLip LatentSync VideoReTalking Wav2Lip = KeySync

LSE-D | 14.59 9.78 7.44 9.52 7.66 9.47 8.04 7.31
LSE-C 1 0.67 4.17 7.10 4.85 7.35 5.79 6.55 7.88

Table 11: Additional quantitative metrics using SyncNet.

| Additional Ablations

Guidance Guidance plays a crucial role in the performance of diffusion models |Dhariwal & Nichol| (2021));
(2020). In our case, we use a modified version of Classifier-Free Guidance (CFG) (2022), which
applies separate scaling factors to the audio and identity conditions. Specifically, our guidance function is
defined as follows:

z =z +Wid - (%id — #p) + Waud * (2id & aud — Zid)s (9)
where:
o Wauq and wiq are the guidance scales for audio and identity, respectively.
o 2z represents the model output when all conditions are set to 0.
e ziq is the output when only the identity condition is applied.

® 2id & aud 1S the output when both audio and identity conditions are applied.
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By separating the audio and identity guidance conditions, we enable more control over the generated videos,
ultimately leading to improved performance. Experimentally, we found that setting w.,q = 5 and wiyq =
2 yields the best results. This configuration achieves a 29.73 % improvement in LipScore, significantly
enhancing lip synchronization accuracy. While this comes at a 14.75% increase in CMMD and a minor
2.80 % increase in FVD, the overall perceptual quality remains strong, making this trade-off highly beneficial
for generating realistic and synchronized videos. We summarize these results in Table[T2] demonstrating the
effectiveness of our approach compared to standard CFG.

Guidance CMMD | FVD | LipScore 1

CFG 0.061  200.71 0.37
Ours (Wawd = 5, wid = 2) 0.070 206.32 0.48

Table 12: Guidance ablation in the cross-sync setting.

Losses We present an ablation on the impact of applying a pixel loss in addition to the diffusion loss
in Table [I3] Our findings indicate that adding a Ly loss in pixel space leads to a slight improvement in
image and video quality while maintaining the same level of lip synchronization. However, contrary to the
findings in Bigata et al| (2025)), we did not find that adding an additional LPIPS pixel loss benefits the
model. Instead, it causes the mouth region to deviate too much from the rest of the image, as illustrated
in Figure 21] This discrepancy arises because facial animation is a different task from lip synchronization,
with the latter being more closely related to an inpainting task rather than full facial reconstruction.

Loss CMMD | FVD | LipScore 1
No pixel loss 0.075 215.71 0.48
Loy 0.070 206.32 0.48

Table 13: Pixel loss ablation in the cross-sync setting.

Figure 21: Examples of inconsistent mouth regions obtained by training with an additional LPIPS pixel loss.

J Limitations

To assess the limitations of our approach, we construct a small dataset consisting of seven identities, where
each individual recites the same two sentences at five different angles: 0°, 20°, 45°, 70°, and 90°, as illustrated
in Figure[23] This setup allows us to systematically evaluate how the model performs under varying viewpoint
conditions.

We present the results of TOPIQ [Chen et al] (2024a)) with respect to the angle in Figure 22l We use TOPIQ
because it is a no-reference image quality metric that does not require a large ground-truth dataset for
direct comparison, making it more practical than FID or FVD, which rely on reference distributions that
may be skewed or incomplete across extreme angles. Additionally, unlike variance of Laplacian (VL), which
only captures blurriness, TOPIQ provides a more comprehensive measure of perceptual quality degradation,
including semantic distortions that become more pronounced at oblique head poses. The results indicate
that all approaches exhibit performance degradation as the angle increases. This is a key limitation of our
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model, which is also observed across baseline methods. This decline in performance can be attributed to the
inherent biases in our training datasets, which predominantly contain frontal faces. As a result, the model
struggles to infer occluded or unseen facial regions when presented with extreme head poses. One potential
solution is to provide identity frames from multiple viewpoints during training, allowing the model to learn
a more comprehensive facial representation. However, this would require extensive new data collection and
further investigation, and is therefore left for future work.
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Figure 22: Impact of head pose on model performance.

AASAR

Figure 23: Examples of generated videos at different angles.

K  Future work

The field of video generation is rapidly evolving, with a recent shift toward Diffusion Transformer
(DiT) architectures (e.g., HunyuanVideo [Kong et al. (2024), Wan [Wan et al/ (2025)) over the
U-Net backbone used in SVD. We emphasize that KeySync is designed as a model-agnostic framework; our
core contributions, specifically the leakage-proof latent masking and the two-stage inference logic, operate
independently of the underlying denoising network. Consequently, our pipeline can be readily adapted to
these emerging DiT backbones, where we anticipate the improved temporal attention mechanisms would
further enhance the fidelity and motion coherence of our results.
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L Additional Qualitative Results

We present additional qualitative results in Figure 24] As reported in the main paper, our model demon-
strates better alignment with the target lips while also achieving higher image quality compared to other
methods. Additionally, we evaluate our model’s ability to handle non-human faces in Figure We find
that KeySync produces plausible lip-synced animations, while competing models fail to accurately recon-
struct mouth details, particularly in the first two identities, as they deviate significantly from typical human
facial structures. This highlights our model’s superior adaptability in handling out-of-distribution (OOD)
scenarios.

To better assess the effectiveness of our approach, we provide a series of videos as part of the supplementary
material. These videos are categorized as follows:

¢ Side-by-side comparisons: Showcasing our method against other approaches in both reconstruc-
tion and cross-sync settings.

o Silent videos: Highlighting expression leakage within the same video, demonstrating how different
models handle silent audio.

e Occlusion cases: Also included in the same video, presenting situations where parts of the face
are obstructed, illustrating the robustness of our approach.

e Multilingual examples: Evaluating the model’s performance across different languages to assess
generalization.
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Figure 25: Qualitative comparison on non-human ids.

¢ Out-of-distribution examples: Testing our model on non-human identities, demonstrating its
adaptability to non-human faces.

« Examples at different angles: Analyzing the model’s performance under varying head poses,
highlighting its ability to handle different viewpoints as well as its limitations.

e Additional cross-sync videos: Providing a more extensive evaluation of our model’s cross-sync
capabilities across various conditions.

These supplementary videos offer a comprehensive visual demonstration of our method’s performance across
a wide range of conditions.

M Ethical Considerations and Social Impact

User study Our study includes a user evaluation where participants compare video outputs for lip syn-
chronization, image quality, and coherence. All participants provided informed consent, and their responses
were collected anonymously. No personally identifiable information or sensitive data were gathered, ensuring
compliance with ethical research guidelines.

Model Lip-sync generation offers numerous benefits, ranging from enhanced video dubbing to accessibility
tools. However, we acknowledge the potential for misuse, particularly concerning deepfakes, misinformation,
and identity fraud. Crucially, while our leakage-free synchronization significantly improves visual fidelity,
it may inadvertently complicate detection methods that rely on identifying temporal inconsistencies. To
mitigate these risks, we emphasise that this work is intended strictly for research purposes. Furthermore,
as increased realism challenges existing safeguards, we advocate for the parallel development of detection
frameworks that focus on the high-frequency artefacts and structural anomalies characteristic of diffusion-
based generation, rather than relying solely on macroscopic visual errors.

Datasets We rely on publicly available datasets that were originally collected and published by external
researchers. We adhere to the terms and ethical guidelines set by the dataset creators.
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