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Abstract
Algorithms for min-max optimization and vari-
ational inequalities are often studied under
monotonicity assumptions. Motivated by non-
monotone machine learning applications, we fol-
low the line of works (Diakonikolas et al., 2021;
Lee & Kim, 2021; Pethick et al., 2022; Böhm,
2022) aiming at going beyond monotonicity by
considering the weaker negative comonotonicity
assumption. In this work, we provide tight com-
plexity analyses for the Proximal Point (PP), Ex-
tragradient (EG), and Optimistic Gradient (OG)
methods in this setup, closing several questions
on their working guarantees beyond monotonicity.
In particular, we derive the first non-asymptotic
convergence rates for PP under negative comono-
tonicity and star-negative comonotonicity and
show their tightness via constructing worst-case
examples; we also relax the assumptions for the
last-iterate convergence guarantees for EG and
OG and prove the tightness of the existing best-
iterate guarantees for EG and OG via construct-
ing counter-examples.

1. Introduction
The study of efficient first-order methods for solving
variational inequality problems (VIP) have known a surge
of interest due to the development of recent machine
learning (ML) formulations involving multiple objectives.
VIP appears in various ML tasks such as robust learn-
ing (Ben-Tal et al., 2009), adversarial training (Madry et al.,
2018), Generative Adversarial Networks (Goodfellow et al.,
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2014), or games with decision-dependent data (Narang
et al., 2022). In this work, we focus on unconstrained
VIPs1, which we state formally in the slightly more general
form of an inclusion problem:

find x∗ ∈ Rd such that 0 ∈ F (x∗), (IP)

where F : Rd ⇒ Rd is some (possibly set-valued) mapping.
In the sequel, we use the slightly abusive shorthand notation
F (x) to denote any particular image of x by the mapping
F , independently of F being single-valued of not.

Among the main simple first-order methods under
consideration for such problems, the extragradient
method (EG) (Korpelevich, 1976) and the optimistic gradi-
ent method (OG) (Popov, 1980) occupy an important place.
These two algorithms have been traditionally analyzed un-
der the assumption that the considered operator is monotone
and Lipschitz (Korpelevich, 1976; Popov, 1980) and are
often interpreted as an approximation to the proximal point
(PP) method (Nemirovski, 2004; Mokhtari et al., 2019).
PP can be formally stated as an implicit iterative method
generating a sequence x1, x2, . . . ∈ Rd when initiated at
some x0 ∈ Rd:

xk+1 = xk − γF (xk+1), (PP)

for some well-chosen stepsize γ ∈ R. When F is single-
valued, one can instead use explicit methods such as EG:

x̃k = xk − γ1F (xk),

xk+1 = xk − γ2F (x̃k),
∀k ≥ 0, (EG)

or OG with the additional initialization x̃0 = x0:

x̃k = xk − γ1F (x̃k−1), ∀k > 0,

xk+1 = xk − γ2F (x̃k), ∀k ≥ 0,
(OG)

where γ1, γ2 ∈ R are some well-chosen stepsizes. For
examples of the usage of extragradient-based methods in
practice, we refer to (Daskalakis et al., 2018) who use a
variant of OG with Adam (Kingma & Ba, 2014) estima-
tors to train WGAN (Gulrajani et al., 2017) on CIFAR10

1We refer to (Gidel et al., 2019) for the details on how these
formulations appear in the real-world problems.

1



Convergence of Proximal Point and Extragradient-Based Methods Beyond Monotonicity: the Case of Negative Comonotonicity

(Krizhevsky et al., 2009), (Brown & Sandholm, 2019) where
extragradient-based methods were applied in regret match-
ing, (Farina et al., 2019) for the application to counterfactual
regret minimization, and (Anagnostides et al., 2022) where
these methods were used for training agents to play poker.

Interestingly, until recently, the convergence rate for the
last iterate of neither EG nor OG were known even when
F is (maximally) monotone and Lipschitz. First results in
this direction were obtained by Golowich et al. (2020b;a)
under some additional assumptions (namely the Jacobian
of F being Lipschitz). Later, Gorbunov et al. (2022b;c);
Cai et al. (2022b) closed this question by proving the tight
worst-case last iterate convergence rate of these methods
under monotonicity and Lipschitzness of F .

As some important motivating applications involve deep
neural networks, the operator F under consideration is typ-
ically not monotone. However, for general non-monotone
problems approximating first-order locally optimal solutions
can be intractable (Daskalakis et al., 2021; Diakonikolas
et al., 2021). Thus, it is natural to consider assumptions on
structured non-monotonicity. Recently Diakonikolas et al.
(2021) proposed to analyse EG using a weaker assumption
than the traditional monotonicity. In the sequel, this as-
sumption is referred to as ρ-negative comonotonicity (with
ρ ≥ 0). That is, for all x, y ∈ Rd, the operator F satisfies:

⟨F (x)− F (y), x− y⟩ ≥ −ρ∥F (x)− F (y)∥2. (1)

A number of works have followed the idea of Diakonikolas
et al. (2021) and considered (1) as their working assumption,
see, e.g., (Yoon & Ryu, 2021; Lee & Kim, 2021; Luo &
Tran-Dinh, 2022; Cai et al., 2022a; Gorbunov et al., 2022a).
Albeit being a reasonable first step toward the understand-
ing of the behavior of algorithms for (IP) beyond F being
monotone, it remains unclear by what means the ρ-negative
comonotonicity assumption is general enough to capture
complex non-monotone operators. This question is crucial
for developing a clean optimization theory that can fully
encompass ML applications involving neural networks.

To the best of our knowledge, ρ(-star)-negative comono-
tonicity is the weakest known assumption under which
extragradient-type methods can be analyzed for solving (IP).
The first part of this work is devoted to providing simple
interpretations of this assumption. Then, we close the prob-
lem of studying the convergence rate of the PP method
in this setting, the base ingredient underlying most algo-
rithms for solving (IP) (which are traditionally interpreted
as approximations to PP, see (Nemirovski, 2004)). That
is, we provide upper and lower convergence bounds as well
as a tight conditions on its stepsize for PP under negative
comonotonicity. We eventually consider the last-iterate con-
vergence of EG and OG and provide an almost complete
picture in that case, listing the remaining open questions.

Before moving to the next sections, let us mention that many
of our results were discovered using the performance esti-
mation approach, first coined by (Drori & Teboulle, 2014)
and formalized by (Taylor et al., 2017c;a). The operator ver-
sion of the framework is due to (Ryu et al., 2020). We used
the framework through the packages PESTO (Taylor et al.,
2017b) and PEPit (Goujaud et al., 2022), thereby providing
a simple way to validate our results numerically.

1.1. Preliminaries

In the context of (IP), we refer to F as being ρ-star-negative
comonotone (ρ ≥ 0) – a relaxation2 of (1) – if for all x ∈ Rd

and x∗ being a solution to (IP), we have:

⟨F (x), x− x∗⟩ ≥ −ρ∥F (x)∥2. (2)

Furthermore, similar to monotone operators (see (Bauschke
et al., 2011) or (Ryu & Yin, 2020) for details), we assume
that the mapping F is maximal in the sense that its graph is
not strictly contained in the graph of any other ρ-negative
comonotone operator (resp., ρ-star-negative comonotone),
which ensures the corresponding proximal operator used
in the sequel to be well-defined. Some examples of star-
negative comonotone operators are given in (Pethick et al.,
2022, Appendix C). Moreover, if F is star-monotone or
quasi-strongly monotone (Loizou et al., 2021), then F
is also star-negative comonotone. The examples of star-
monotone/quasi-strongly monotone operators that are not
monotone are given in (Loizou et al., 2021, Appendix
A.6). Next, there are some studies of the eigenvalues
of the Jacobian around the equilibrium of GAN games
(Mescheder et al., 2018; Nagarajan & Kolter, 2017; Berard
et al., 2019). These studies imply that the corresponding
variational inequalities are locally quasi-strongly monotone.
Finally, when F is L-Lipschitz it satisfies ⟨F (x), x−x∗⟩ ≥
−L∥x − x∗∥2. If in addition ∥F (x)∥ ≥ η∥x − x∗∥ for
some η > 0 (meaning that F changes not “too slowly”),
then ⟨F (x), x − x∗⟩ ≥ − L

η2 ∥F (x)∥2, i.e., condition (2)
holds with ρ = L

η2 .

For the analysis of the EG and OG, we further assume F to
be L-Lipschitz, meaning that for all x, y ∈ Rd:

∥F (x)− F (y)∥ ≤ L∥x− y∥. (3)

Note that in that case, F is a single-valued mapping. In this
case, IP transforms into a variational inequality:

find x∗ ∈ Rd such that F (x∗) = 0. (VIP)

1.2. Related Work

Last-iterate convergence rates in the monotone case.
Several recent theoretical advances focus on the last-iterate

2For the example of star-negative comonotone operator that
is not negative comonotone we refer to (Daskalakis et al., 2020,
Section 5.1) and (Diakonikolas et al., 2021, Section 2.2).
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Table 1: Known and new O (1/N) convergence results for PP, EG and OG. Notation: NC = negative comonotonicity, SNC = star-negative
comonotonicity, L-Lip. = L-Lipschitzness. Whenever the derived results are completely novel or extend the existing ones, we highlight
them in green.

Method Setup ρ ∈ Convergence Reference Counter-/Worst-case examples?

PP(1) NC [0,+∞) Last-iterate Theorem 3.1 Theorem 3.2 (worst-case example) & 3.3 (diverge for γ ≤ 2ρ)
SNC [0,+∞) Best-iterate Theorem 3.1 Theorem 3.2 (worst-case example) & 3.3 (diverge for γ ≤ 2ρ)

EG

NC + L-Lip. [0, 1/16L) Last-iterate (Luo & Tran-Dinh, 2022) ✗
NC + L-Lip. [0, 1/8L) Last-iterate Theorem 4.2 Theorem 4.3 (diverge for ρ ≥ 1/2L and any γ1, γ2 > 0)

SNC + L-Lip. [0, 1/8L) Best-iterate (Diakonikolas et al., 2021) ✗
SNC + L-Lip. [0, 1/2L) Best-iterate (Pethick et al., 2022) Theorem 3.4 (diverge for γ1 = 1/L and ρ ≥ (1−Lγ2)/2L)
SNC + L-Lip. [0, 1/2L) Best-iterate Theorem 4.2 (2) Theorem 4.3 (diverge for ρ ≥ 1/2L and any γ1, γ2 > 0)

OG

NC + L-Lip. [0, 8/(27
√

6L)) Last-iterate (Luo & Tran-Dinh, 2022) ✗
NC + L-Lip. [0, 5/62L) Last-iterate Theorem 4.4 Theorem 4.5 (diverge for ρ ≥ 1/2L and any γ1, γ2 > 0)

SNC + L-Lip. [0, 1/2L) Best-iterate (Böhm, 2022) ✗

SNC + L-Lip. [0, 1/2L) Best-iterate Theorem 4.4 (2) Theorem 4.5 (diverge for ρ ≥ 1/2L and any γ1, γ2 > 0)
(1) The best-iterate convergence result can be obtained (Iusem et al., 2003, Lemma 2), and the last-iterate convergence result can also
be derived from the non-expansiveness of PP update (Bauschke et al., 2021, Proposition 3.13 (iii)). At the moment of writing our
paper, we were not aware of these results.
(2) Although these results are not new for the best-iterate convergence of EG and OG, the proof techniques differ from prior works.

convergence of the methods for solving IP/VIP with mono-
tone operator F . In particular, He & Yuan (2015) derive
the last-iterate O(1/N) rate3 for PP and Gu & Yang (2020)
show its tightness. Under the additional assumption of Lips-
chitzness of F and of its Jacobian, Golowich et al. (2020b;a)
obtain last-iterate O(1/N) convergence for EG and OG
and prove matching lower bounds for them. Next, Gor-
bunov et al. (2022b;c); Cai et al. (2022b) prove similar
upper bounds for EG/OG without relying on the Lipschitz-
ness (and even existence) of the Jacobian of F . Finally, for
this class of problems one can design (accelerated) methods
with provable O(1/N2) last-iterate convergence rate (Yoon
& Ryu, 2021; Bot et al., 2022; Tran-Dinh & Luo, 2021;
Tran-Dinh, 2022). Although O(1/N2) is much better than
O(1/N), EG/OG are still more popular due to their higher
flexibility. Moreover, when applied to non-monotone prob-
lems the mentioned accelerated methods may be attracted
to “bad” stationary points, see, e.g., (Gorbunov et al., 2022c,
Example 1.1).

Best-iterate convergence under ρ-star-negative comono-
tonicity. The convergence of EG is also studied under
ρ-star-negative comonotonicity (and L-Lipschitzness): Di-
akonikolas et al. (2021) prove best-iterate O(1/N) conver-
gence of EG with γ2 < γ1 for any ρ < 1/8L and Pethick
et al. (2022) derive a similar result for any ρ < 1/2L. More-
over, Pethick et al. (2022) show that EG is not necessary
convergent when γ1 = 1/L and ρ ≥ (1−Lγ2)/2L. Böhm
(2022) prove best-iterate O(1/N) convergence of OG for
ρ < 1/2L, i.e., for the same range of ρ as in the best-known
result for EG.

3Here and below we mean the rates of convergence in terms
of the squared residual ∥xN − xN−1∥2 in the case of set-valued
operators and ∥F (xN )∥2 in the case of single-valued ones.

Last-iterate convergence under ρ-negative comonotonic-
ity. In a very recent work, Luo & Tran-Dinh (2022) prove
the first last-iterate O(1/N) convergence results for EG and
OG applied to solve VIP with ρ-negative comonotone L-
Lipschitz operator. Both results rely on the usage of γ1 = γ2.
Next, for EG the result from (Luo & Tran-Dinh, 2022) re-
quires ρ < 1/16L and for OG the corresponding result is
proven for ρ < 4/(27

√
6L). In contrast, for the accelerated

(anchored) version of EG Lee & Kim (2021) prove O(1/N2)
last-iterate convergence rate for any ρ < 1/2L, which is a
larger range of ρ than in the known results for EG/OG from
(Luo & Tran-Dinh, 2022).

1.3. Contributions

⋄ Spectral viewpoint on negative comonotonicity. Our
work provides a spectral interpretation of negative comono-
tonicity, shedding some light on the relation between this
assumption and classical monotonicity, Lipschitzness, and
cocoercivity.

⋄ Closer look at the convergence of Proximal Point
method. We derive O(1/N) last-iterate and best-iterate
convergence rates for PP under negative comonotonicity
and star-negative comonotonicity assumptions, respectively.
These results follow from existing ones (Iusem et al., 2003;
Bauschke et al., 2021). However, we go further and show
the tightness of the derived results via constructing matching
worst-case examples and also propose counter-examples for
the case when the stepsize is smaller than 2ρ.

⋄ New results for Extragradient-Based Methods. We
derive O(1/N) last-iterate convergence of EG and OG
under milder assumptions on the negative comonotonicity
parameter ρ than in the prior work by Luo & Tran-Dinh
(2022), see the details in Table 1. We also provide
alternative analyses of the best-iterate convergence of EG
and OG under star-negative comonotonicity and recover
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the best-known results in this case (Pethick et al., 2022;
Böhm, 2022). Finally, we show that the range of allowed
ρ cannot be improved for EG and OG via constructing
counter-examples for these methods.

⋄ Constructive proofs. We derive the proofs for the
last-iterate convergence of PP, EG, and OG as well
as worst-case examples for PP using using the perfor-
mance estimation technique (Drori & Teboulle, 2014;
Taylor et al., 2017c;a). In particular, it required us to
extend some theoretical and program tools to handle
negative comonotone and star-negative comonotone
problems; see the details in App. B and Github-repository
https://github.com/eduardgorbunov/
Proximal_Point_and_Extragradient_based_
methods_negative_comonotonicity, containing
the codes for generating worst-case examples for PP,
numerical verification of the derived results and symbolical
verification of certain technical derivations. We believe that
these tools are important on its own and can be applied in
future works studying the convergence of different methods
under negative comonotonicity.

2. A Closer Look at Negative Comonotonicity
Negative comonotonicity (also known as cohypomonotonic-
ity) was originally introduced as a relaxation of monotonic-
ity that is sufficient for the convergence of PP (Pennanen,
2002). This assumption is relatively weak: one can show
that F is ρ-negative comonotone in a neighborhood of so-
lution x∗ for large enough ρ, if the (possibly set-valued)
operator F−1 : Rd ⇒ Rd has a Lipschitz localization
around (0, x∗) ∈ GF−1 , where GF−1 denotes the graph
of F−1 (Pennanen, 2002, Proposition 7). The next lemma
characterizes negative comonotone operators; it is techni-
cally very close to (Bauschke et al., 2011, Proposition 4.2)
(on cocoercive operators).

Lemma 2.1. F : Rd ⇒ Rd is maximally ρ-negative
comonotone (ρ ≥ 0) if and only if operator Id + 2ρF is
expansive.

The proof of this lemma follows directly from the definition
of negative comonotonicity. Among others, it implies the
following result about the spectral properties of the Jacobian
of negative comonotone operator (when it exists).

Theorem 2.2. Let F : Rd → Rd be a continuously differ-
entiable. Then, the following statements are equivalent:

• F is ρ-negative comonotone,

• Re(1/λ) ≥ −ρ for all λ ∈ Sp(∇F (x)), ∀x ∈ Rd.

We notice that the above theorem holds for any continuously
differentiable operator F . In the case of the linear operator

- 1ρ - 1
2ρ

0

- i
2ρ

0i

i
2ρ

0No ρ-negative comonotonicity

Figure 1: Visualization of Theorem 2.2. Red open disc
corresponds to the constraint Re(1/λ) < −ρ that defines
the set such that all eigenvalues the Jacobian of ρ-negative
comonotone operator should lie outside this set.

F , this result is known (Bauschke et al., 2021, Proposition
5.1). The condition Re(1/λ) ≥ −ρ means that λ lies outside
the disc in C centered at −1/2ρ and having radius 1/2ρ, see
Figure 1. In particular, for the case of twice differentiable
functions ρ-negative comonotonicity forbids the Hessian
to have eigenvalues in (−1/ρ, 0), i.e., eigenvalues of the
Hessian have to be either negative with sufficiently large
absolute value or non-negative. An alternate interpretation
of Figure 1 can be formally made in terms of scaled relative
graphs, see (Ryu et al., 2022); see also older references using
such illustrations (Eckstein, 1989; Eckstein & Bertsekas,
1992), or (Giselsson & Boyd, 2016, arXiv version 1 to 3).

Finally, we touch the following informal question: to what
extent negative comonotone operators are non-monotone?
To formalize a bit we consider a way more simpler ques-
tion: can negative comonotone operator have isolated ze-
ros/solutions of VIP? Unfortunately, the answer is no.

Theorem 2.3 (Corollary 3.15 from (Bauschke et al., 2021)4).
If F : Rd ⇒ Rd is maximally ρ-negative comonotone, then
the solution set X∗ = F−1(0) is convex.

Proof. The proof follows from the observations provided by
Pennanen (2002). First, notice that F and its Yosida regular-
ization (F−1 + ρ · Id)−1 have the same set of the solutions:
((F−1 + ρ · Id)−1)−1(0) = (F−1 + ρ · Id)(0) = F−1(0).
Next, by definition (1) we have that maximal ρ-negative
comonotonicity of F implies maximal monotonicity of
F−1 + ρ · Id that is equivalent to maximal monotonicity of
(F−1 + ρ · Id)−1. Since the set of zeros of maximal mono-

4We were not aware of the results from (Bauschke et al., 2021)
during the work on our paper.
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tone operator is convex (Bauschke et al., 2011, Proposition
23.39), we have the result.

Therefore, despite its apparent generality, negative comono-
tonicity is not satisfied (globally) for the many practical
tasks that have isolated optima. Nevertheless, studying the
convergence of traditional methods under negative comono-
tonicity can be seen as a natural step towards understanding
their behaviors in more complicated non-monotonic cases.

3. Proximal Point Method
In this section, we consider Proximal Point method (Mar-
tinet, 1970; Rockafellar, 1976), which is usually written as
xk+1 = (F +γ Id)−1 xk (where we assume here that γ > 0
is large enough so that the iteration is well and uniquely de-
fined) or equivalently:

xk+1 = xk − γF (xk+1). (PP)

In particular, for given values of N ∈ N, R > 0, ρ > 0, and
γ > 0 we focus on the following question: what guarantees
can we prove on ∥xN − xN−1∥2 (in particular: as a func-
tion of N ), where {xk}Nk=0 is generated by PP with stepsize
γ after N ≥ 1 iterations of solving IP with F : Rd ⇒ Rd

being ρ-negative comonotone and ∥x0 − x∗∥2 ≤ R2? This
kind of question can naturally be reformulated as an ex-
plicit optimization problem looking for worst-case prob-
lem instances, often referred to as performance estimation
problems (PEPs), as introduced and formalized in (Drori &
Teboulle, 2014; Taylor et al., 2017c;a):

max
F,x0

∥xN − xN−1∥2 (4)

s.t. F satisfies (1),
∥x0 − x∗∥2 ≤ R2, 0 ∈ F (x∗),

xk+1 = xk − γF (xk+1), k = 0, 1, . . . , N − 1.

As we show in Appendix B, (4) can be formulated as a
semidefinite program (SDP). For constructing and solving
this SDP problem corresponding to (4) numerically, one
can use the PEPit package (Goujaud et al., 2022) (after
adding the class of ρ-negative comonotone operators to it),
which thereby allows constructing worst-case guarantees
and examples, numerically. Figure 2a shows the numerical
results obtained by solving (4) for different values of N .
We observe that worst-case value of (4) behaves as O(1/N)
similarly to the monotone case.

Motivated by these numerical results, we derive the follow-
ing convergence rates for PP.

Theorem 3.1. Let F : Rd ⇒ Rd be maximally ρ-star-
negative comonotone. Then, for any γ > 2ρ the iterates
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Figure 2: In (a), we report the solution of (4) for different
values of γ and N . The plot illustrates that for the consid-
ered range of N and values of γ PP converges as O(1/N) in
terms of ∥F (xN )∥2. In (b), we show the worst-case trajecto-
ries of PP for N = 40. The form of trajectories hints that the
worst-case operator is a rotation operator. For each particular
choice of N and γ > 2ρ we observed numerically that quan-
tities ρ∥F (xk)∥2/∥xk−x∗∥ and −⟨F (xk),xk−x∗⟩/(∥F (xk)∥·∥xk−x∗∥)
remain the same during the run of the method (the
standard deviation of arrays {ρ∥F (xk)∥2/∥xk−x∗∥}Nk=1 and
{−⟨F (xk),xk−x∗⟩/(∥F (xk)∥·∥xk−x∗∥)}Nk=1 is of the order 10−6 −
10−7). Finally, in (c), we illustrate that these characteristics coin-
cide with ρ/

√
Nγ(γ−2ρ) as long as the total number of steps N is

sufficiently large (N ≥ max{ρ2/γ(γ−2ρ), 1}).
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produced by PP are well-defined and satisfy ∀N ≥ 1:

1

N

N∑
k=1

∥xk − xk−1∥2 ≤ γ∥x0 − x∗∥2

(γ − 2ρ)N
. (5)

If F : Rd ⇒ Rd is maximally ρ-negative comonotone, then
for any γ > 2ρ and any k ≥ 1 the iterates produced by PP
satisfy

∥xk+1 − xk∥ ≤ ∥xk − xk−1∥
and for any N ≥ 1:

∥xN − xN−1∥2 ≤ γ∥x0 − x∗∥2

(γ − 2ρ)N
. (6)

Proof. We start with ρ-star-negative comonotone case.
From the update rule of PP we have

∥xk+1 − x∗∥2 = ∥xk − x∗ − (xk − xk+1)∥2

= ∥xk − x∗∥2 − 2⟨xk − x∗, xk − xk+1⟩
+ ∥xk − xk+1∥2

= ∥xk − x∗∥2 − 2⟨xk+1 − x∗, xk − xk+1⟩
− ∥xk − xk+1∥2.

Since xk − xk+1 = γF (xk+1), where F (xk+1) is some
value of operator F at point xk+1, we can apply ρ-star-
negative comonotonicity and get

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 −
(
1− 2ρ

γ

)
∥xk − xk+1∥2.

Telescoping the above inequality for k = 0, . . . , N − 1
and changing the index in the summation, we obtain (5).
Next, to get the last-iterate convergence we use ρ-negative
comonotonicity (1) inequality written for xk and xk+1:

1

γ
⟨xk−1 − xk−(xk − xk+1), xk − xk+1⟩

≥ − ρ

γ2
∥xk−1 − xk − (xk − xk+1)∥2,

where we use that (xk−1−xk)/γ and (xk−xk+1)/γ belongs to
the values of F at points xk and xk+1 respectively. Mul-
tiplying both sides by γ2 and rearranging the terms, we
get

γ∥xk − xk+1∥2 ≤ γ⟨xk−1 − xk, xk − xk+1⟩
+ ρ∥xk−1 + xk+1 − 2xk∥2.

Finally, using 2⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a − b∥2, which
holds for any a, b ∈ Rd, and rearranging the terms, we
derive
γ

2
∥xk − xk+1∥2 ≤ γ

2
∥xk−1 − xk∥2

−
(γ
2
− ρ
)
∥xk−1 + xk+1 − 2xk∥2.

Taking into account γ > 2ρ, we obtain ∥xk+1 − xk∥ ≤
∥xk − xk−1∥. Together with (5) it implies (6).

First, the result from (5) implies only best-iterate O(1/N)
rate – this result follows from (Iusem et al., 2003,
Lemma 2)5. Such kind of guarantees are weaker the last-
iterate ones but they do hold under the more general star-
negative comonotonicity assumption. We notice that the
result from (6) can be also obtained from non-expansiveness
of PP update (Bauschke et al., 2021, Proposition 3.13 (iii))6.
Note that the guarantee (6) matches the best-known guar-
antee for the monotone case (up to the factor γ/(γ−2ρ))
from (He & Yuan, 2015; Gu & Yang, 2020), and it is there-
fore natural to ask whether it is possible to improve fac-
tor γ/(γ−2ρ) in the convergence guarantee of PP for the
ρ-negative comonotone case.

To answer this question, one can use performance estima-
tion again. In particular, using the trace heuristic for trying
to find low-dimensional worst-case examples to (4), we ob-
tain 2-dimensional worst-case examples for different values
of γ and N , see Figure 2b and Figure 2c. These figures
illustrate that the worst-case examples found numerically
correspond to the scaled rotation operators (similar to Gu
& Yang (2020) but with different angles). Moreover, the
rotation angle and scaling parameter have non-trivial depen-
dencies on number of iterations. These observations lead
to the following result, which shows that the multiplicative
cannot be removed asymptotically as N grows.
Theorem 3.2. For any ρ > 0, γ > 2ρ, and N ≥
max{ρ2

/γ(γ−2ρ), 1} there exists ρ-negatively comonotone
single-valued operator F : Rd → Rd such that after N
iterations PP with stepsize γ produces xN+1 satisfying

∥F (xN+1)∥2 ≥ ∥x0 − x∗∥2

γ(γ − 2ρ)N
(
1 + 1

N

)N+1
. (7)

Indeed, one can pick the two-dimensional F : R2 → R:
F (x) = αAx with

A =

(
cos θ − sin θ
sin θ cos θ

)
, α =

| cos θ|
ρ

for θ ∈ (π/2, π) such that cos θ = − ρ√
Nγ(γ−2ρ)

.

Proof. Consider the linear operator F (x) = αAx described
above. First, we verify its ρ-negative comonotonicity: for
any x, y ∈ Rd

⟨F (x)− F (y), x− y⟩ = α⟨A(x− y), x− y⟩
= α∥A(x− y)∥ · ∥x− y∥ · cos θ

= −cos2 θ

ρ
∥A(x− y)∥2

= −ρ∥F (x)− F (y)∥2,
5We were not aware of the results from (Iusem et al., 2003)

during the work on our paper.
6We were not aware of the results from (Bauschke et al., 2021)

during the work on our paper.
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where we use ∥A(x−y)∥ = ∥x−y∥, since A is the rotation
matrix. Next, one can check that (I + γαA)−1 equals

1

1+γα2(γ−2ρ)

(
1+γα cos θ γα sin θ
−γα sin θ 1+γα cos θ

)
.

Since xk+1 = (I + γαA)−1xk, one can verify via direct
computations that

∥xk+1∥2 =
1

1 + γα2(γ − 2ρ)
∥xk∥2.

Unrolling this identity for k = N,N − 1, . . . , 0 and using
x∗ = 0, ∥F (xk+1)∥ = α∥Axk+1∥ = α∥xk+1∥, we get

∥F (xk+1)∥2 = α2

(
1

1 + γα2(γ − 2ρ)

)N+1

∥x0 − x∗∥2.

Maximizing the right-hand side in α we get that the optimal
value is α = 1/

√
Nγ(γ−2ρ). Since αρ = | cos θ|, we should

assume that N ≥ ρ2
/γ(γ−2ρ). Plugging α = 1/

√
Nγ(γ−2ρ)

in the above formula for ∥F (xk+1)∥2 we get the result.

Since exp(1) ≤ (1 + 1/N)N+1 ≤ 4, the above result im-
plies the tightness (up to a multiplicative constant) of Theo-
rem 3.1. One should note again that both Theorem 3.1 and
3.2 rely on the assumption that γ > 2ρ for the proximal
operation to be well-defined. That is, these results are valid
only for large enough stepsizes. This is a relatively rare phe-
nomenon in optimization and variational inequalities. As
the next theorem states, PP is not guaranteed to converge if
the stepsize is too small, even if the proximal operation is
well-defined.

Theorem 3.3. For any ρ > 0 there exists ρ-negatively
comonotone single-valued operator F : Rd → Rd such
that PP does not converge to the solution of VIP for any
0 < γ ≤ 2ρ. In particular, one can take F (x) = −x/ρ.

Proof. First, F (x) = −x/ρ is ρ-negative comonotone: for
any x, y ∈ Rd we have ⟨F (x)−F (y), x−y⟩ = −(1/ρ)∥x−
y∥2 = −ρ∥F (x)−F (y)∥2. Next, the iterates of PP satisfy
xk+1 = xk+γxk+1

/ρ. If γ = ρ, the next iterate is undefined.
If γ = 2ρ, then xk+1 = xk. Finally, when γ ∈ (0, ρ) ∪
(ρ, 2ρ) we have xk+1 = xk

(1−γ/ρ) implying ∥xk+1∥ > ∥xk∥,
i.e., PP diverges.

As a summary, Theorem 3.1 and Theorem 3.3 provide a
complete picture of the convergence of PP under negative
comonotonicity, including the upper bounds, and worst-
case examples and counter-examples justifying the need of
using large enough stepsizes for PP applied to ρ-negative
comonotone IP/VIP.

4. Extragradient-Based Methods
Extragradient. The update rule of Extragradient method
(Korpelevich, 1976) is defined as follows:

x̃k = xk − γ1F (xk),

xk+1 = xk − γ2F (x̃k),
∀k ≥ 0. (EG)

In its pure form, EG has the same extrapolation (γ1) and
update (γ2) stepsizes, i.e., γ1 = γ2. However, the exist-
ing analysis of EG under ρ-(star-)negative comonotonicity
relies on the usage of γ2 < γ1 (Diakonikolas et al., 2021;
Pethick et al., 2022). The following lemma sheds some light
on this phenomenon.

Lemma 4.1. Let F be L-Lipschitz and ρ-star-negative
comonotone. Then, for any k ≥ 0 the iterates produced
by EG after k ≥ 0 iterations satisfy

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2

−γ2 (γ1 − 2ρ− γ2) ∥F (x̃k)∥2 (8)
−γ1γ2(1− L2γ2

1)∥F (xk)∥2. (9)

Proof sketch. The proof follows a quite standard pattern:
we start with expanding the square ∥xk+1 − x∗∥2 and
then rearrange the terms to get ∥xk − x∗∥2 − 2γ2⟨x̃k −
x∗, F (x̃k)⟩ − 2γ1γ2⟨F (xk), F (x̃k)⟩+ γ2

2∥F (x̃k)∥2 in the
right-hand side. After that, it remains to estimate inner
products. From ρ-star-negative comonotonicity we have
−2γ2⟨x̃k − x∗, F (x̃k)⟩ ≤ 2ργ2∥F (x̃k)∥2. For the second
inner product −2γ1γ2⟨F (xk), F (x̃k)⟩ we use 2⟨a, b⟩ =
∥a∥2 + ∥b∥2 − ∥a − b∥2, which holds for any a, b ∈ Rd,
and then apply L-Lipschitzness to upper bound the term
γ1γ2∥F (xk) − F (x̃k)∥2. Finally, we rearrange the terms,
see the full proof in Appendix C.1.

From the above result one can easily notice that the choice of
γ2 ≤ γ1−2ρ and γ1 < 1/L implies best-iterate convergence
in terms of the squared norm of the operator. However, in
this proof, γ2 should be positive, i.e., this proof is valid
only for γ1 > 2ρ. In other words, one can derive best-
iterate O(1/N) rate for EG whenever ρ < 1/2L, which is
also known from Pethick et al. (2022) (though Pethick et al.
(2022) do not provide analogs of Lemma 4.1).

Next, to get the last-iterate convergence of EG we assume
ρ-negative comonotonicity, since even for PP – a simpler
algorithm – we need to do this. Moreover, even in the mono-
tone case the existing proofs of the last-iterate convergence
of EG rely on the usage of same stepsizes γ1 = γ2 = γ
(Gorbunov et al., 2022b; Cai et al., 2022b). This partially
can be explained by the following fact: ∥F (xk+1)∥ can be
larger than ∥F (xk)∥ if γ1 ̸= γ2 (Gorbunov et al., 2022b).
Therefore, we also assume that γ1 = γ2 = γ to derive
last-iterate convergence rate.
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However, as Lemma 4.1 indicates, the choice γ1 = γ2 = γ
may complicate the proof because the term from (8) be-
comes non-negative. Moreover, it is natural to expect that
the proof will work for smaller range of ρ. Nevertheless,
using computer-assisted approach, we derive that for any
ρ ≤ 1/8L and 4ρ ≤ γ ≤ 1/2L EG the iterates of EG satisfy
∥F (xk+1)∥ ≤ ∥F (xk)∥ which is the main building block
of the obtained proof.

We summarized the derived upper-bounds for EG in the
following result.

Theorem 4.2. Let F be L-Lipschitz and ρ-star-negative
comonotone with ρ < 1/2L. Then, for any 2ρ < γ1 < 1/L
and 0 < γ2 ≤ γ1 − 2ρ the iterates produced by EG after
N ≥ 0 iteration satisfy

1

N + 1

N∑
k=0

∥F (xk)∥2 ≤ ∥x0 − x∗∥2

γ1γ2(1− L2γ2
1)(N + 1)

. (10)

If, in addition, F is ρ-negative comonotone with ρ ≤ 1/8L
and γ1 = γ2 = γ such that 4ρ ≤ γ ≤ 1/2L, then for any
k ≥ 0 the iterates produced by EG satisfy ∥F (xk+1)∥ ≤
∥F (xk)∥ and for any N ≥ 1

∥F (xN )∥2 ≤ 28∥x0 − x∗∥2

Nγ2 + 320γρ
. (11)

The results similar to (10) are known in the literature: Di-
akonikolas et al. (2021) derives best-iterate O(1/N) conver-
gence for ρ < 1/8L and Pethick et al. (2022) generalizes it
to the case of any ρ < 1/2L. In this sense, (10) recovers the
one from Pethick et al. (2022), though the proof is different.

Next, the last-iterate convergence result from (11) holds
for any ρ ≤ 1/8L, which is much smaller than the range
ρ < 1/2L allowed for the best-iterate result. Nevertheless,
the previous best-known last-iterate rate requires ρ to be
smaller than 1/16L (Luo & Tran-Dinh, 2022), which is 2
times smaller than what is allowed for (11).

This discussion naturally leads us to the following question:
for given L > 0 what is the maximal possible ρ for which
there exists a choice of stepsizes in EG such that it converges
for any ρ-negative comonotone L-Lipschitz operator F?
This question is partially addressed by Pethick et al. (2022),
who prove that if γ1 = 1/L, then for ρ ≥ (1−Lγ2)/2L EG
does not necessary converge. Guided by the results obtained
for PP, we make a further step and derive the following
statement.

Theorem 4.3. For any L > 0, ρ ≥ 1/2L, and any choice
of stepsizes γ1, γ2 > 0 there exists ρ-negative comonotone
L-Lipschitz operator F such that EG does not necessary
converges on solving VIP with this operator F . In particular,
for γ1 > 1/L it is sufficient to take F (x) = Lx, and for

0 < γ1 ≤ 1/L one can take F (x) = LAx, where x ∈ R2,

A =

(
cos θ − sin θ
sin θ cos θ

)
, θ =

2π

3
.

This result corroborates Theorem 3.3 and known relation-
ship between EG and PP. That is, from the one side, it
is known that EG can be seen as an approximation of PP
(Mishchenko et al., 2020, Theorem 1). Since for PP con-
verges only for the stepsizes larger than 2ρ, it is natural
to expect that EG also needs to have at least one stepsize
larger than 2ρ (otherwise, it can be seen as an approxima-
tion of PP with stepsize not larger than 2ρ that is known to
be non-convergent). From the other side, unlike PP, EG
does not converge for arbitrary large stepsizes, which is a
standard phenomenon for explicit methods in optimization.
In particular, one has to take γ1 ≤ 1/L (otherwise there
exists a “very good” – L-cocoercive – operator such that
EG diverges). These two observations explain the intuition
behind Theorem 4.3.

Optimistic gradient. Optimistic gradient (Popov, 1980)
is a single-call version of EG having the following form:

x̃k = xk − γ1F (x̃k−1), ∀k > 0,

xk+1 = xk − γ2F (x̃k), ∀k ≥ 0,
(OG)

where x̃0 = x0. Guided by the results and intuition devel-
oped for EG, here we also deviate from the original form
of OG, which has γ1 = γ2, and allow γ1 and γ2 being
different. The main goal of the rest of this section is in the
obtaining the results on the convergence of OG similar to
what are derived for EG earlier in this section.

Before we move on, we would like to highlight the chal-
lenges in the analysis of OG. Although EG and OG can
both be seen as approximations of PP (Mokhtari et al.,
2020), they have some noticeable theoretical differences
going beyond algorithmic ones. For example, even for
monotone L-Lipschitz operator F the iterates produced by
OG do not satisfy ∥F (xk+1)∥ ≤ ∥F (xk)∥ or ∥F (x̃k)∥ ≤
∥F (xk)∥ in general (Gorbunov et al., 2022c), while for EG
∥F (xk+1)∥ ≤ ∥F (xk)∥ holds (Gorbunov et al., 2022b).
This fact makes the analysis of OG more complicated than
in the case of EG. Moreover, the known convergence results
in the monotone case for OG require smaller stepsizes than
for EG (Gorbunov et al., 2022c; Cai et al., 2022b). In view
of the obtained results for PP and EG, this fact highlights
non-triviality of obtaining convergence results for OG under
ρ-negative comonotonicity for the same range of allowed
values ρ as for EG.

Nevertheless, we obtain the best-iterate O(1/N) convergence
of OG for any ρ < 1/2L, i.e., for the same range of ρ as for
EG. We also derive last-iterate O(1/N) convergence of OG
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but for ρ ≤ 5/62L, which is a smaller range than we have for
EG. The results are summarized below.

Theorem 4.4. Let F be L-Lipschitz and ρ-star-negative
comonotone with ρ < 1/2L. Then, for any 2ρ < γ1 < 1/L
and 0 < γ2 ≤ min{1/L−γ1, γ1−2ρ} the iterates produced
by OG after N ≥ 0 iteration satisfy

1

N + 1

N∑
k=0

∥F (xk)∥2 ≤ ∥x0 − x∗∥2

γ1γ2(1− L2(γ1 + γ2)2)(N + 1)
.

(12)
If, in addition, F is ρ-negative comonotone with ρ ≤ 5/62L
and γ1 = γ2 = γ such that 4ρ ≤ γ ≤ 10/31L, then for any
N ≥ 1 the iterates produced by OG satisfy

∥F (xN )∥2 ≤ 717∥x0 − x∗∥2

Nγ(γ − 3ρ) + 800γ2
. (13)

The derived best-iterate rate (12) for OG is not new: Böhm
(2022) proves a similar result for the same range of ρ, though
the proof that we provide differs from the proof by Böhm
(2022). Similarly to the case of EG, it is valid for any
ρ < 1/2L. Next, the last-iterate O(1/N) rate is recently
obtained for OG by Luo & Tran-Dinh (2022). It holds for
any ρ < 8/(27

√
6L), while the rate that we obtain is valid for

any ρ ≤ 5/62L, which is ≈ 1.33 times larger range.

Finally, as for EG, we derive the following result about the
largest possible range for ρ in the case of OG.

Theorem 4.5. For any L > 0, ρ ≥ 1/2L, and any choice
of stepsizes γ1, γ2 > 0 there exists ρ-negative comonotone
L-Lipschitz operator F such that OG does not necessary
converges on solving VIP with this operator F . In particular,
for γ1 > 1/L it is sufficient to take F (x) = Lx, and for
0 < γ1 ≤ 1/L one can take F (x) = LAx, where x ∈ R2,

A =

(
cos θ − sin θ
sin θ cos θ

)
, θ =

2π

3
.

Note that the counter-examples are exactly the same as for
EG. Moreover, since OG can be seen as an approximation
of PP, this result is expected and the same has the same
intuition behind as Theorem 4.3.

5. Discussion
In this work, we studied worst-case convergence of methods
for solving IP/VIP with (star-)negative-comonotone opera-
tors, which we believe is an important first step for going
beyond the very popular monotonocity assumption, that is
often not satisfied in modern applications.

Namely, we study the proximal point (PP), the extragradi-
ent (EG), and the optimistic gradient (OG) methods. Al-
though the basic understanding of the convergence of PP

and best-iterate convergence of EG and OG is relatively
complete, several open-questions about last-iterate conver-
gence of EG and OG remain. In particular, it is unclear
what is the largest possible range for ρ for which one can
guarantee last-iterate O(1/N) convergence of EG/OG under
ρ-negative comonotonicity and L-Lipschitzness.

Moreover, another important direction for future research
is identifying weaker assumptions allowing to prove non-
asymptotic convergence rates for PP/EG/OG and at the
same time allowing to have isolated optima or non-convex
solution sets, as discussed in Section 2. Finally, it would be
very important to extend the results to the stochastic case;
see (Pethick et al., 2023) for the recent advances in this
direction.
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A. Missing Proofs and Details From Section 2
Lemma A.1 (Lemma 2.1). F : Rd ⇒ Rd is ρ-negative comonotone (ρ ≥ 0) if and only if operator Id + 2ρF is expansive.

Proof. Expansiveness of operator Id + 2ρF means that for any x, y ∈ Rd

∥x+ 2ρF (x)− y − 2ρF (y)∥2 ≥ ∥x− y∥2,

where F (x) and F (y) represent the arbitrary elements from the values of F measured at x and y, respectively. Expanding
the square in the left-hand side of the above inequality, we get

∥x− y∥2 + 4ρ⟨F (x)− F (y), x− y⟩+ 4ρ2∥F (x)− F (y)∥2 ≥ ∥x− y∥2.

The above inequality is equivalent to ρ-negative comonotonicity (1).

Theorem A.2 (Theorem 2.2). Let F : Rd → Rd be a continuously differentiable. Then, the following statements are
equivalent:

• F is ρ-negative comonotone,

• Re(1/λ) ≥ −ρ for all λ ∈ Sp(∇F (x)), ∀x ∈ Rd.

Proof. For a complex number λ condition Re(1/λ) ≥ −ρ is equivalent to |λ + 1/2ρ| ≥ 1/2ρ. Indeed, for λ = λ1 + iλ2,
λ1, λ2 ∈ C we have

Re

(
1

λ

)
=

λ1

λ2
1 + λ2

2

≥ −ρ ⇐⇒ λ2
1 + λ2

2 +
λ1

ρ
≥ 0 ⇐⇒

∣∣∣∣λ+
1

2ρ

∣∣∣∣ ≥ 1

2ρ
, (14)

i.e., Re(1/λ) ≥ −ρ means that λ lies in the disc in C centered at (−1/2ρ) and radius 1/2ρ. From the other side, ρ-negative
comonotonicity of F is equivalent to expansiveness of Id + 2ρF (Lemma 2.1), which is equivalent to |λ| ≥ 1 for any
λ ∈ Sp(I + 2ρ∇F (x)) and for any x ∈ Rd. Since

Sp(I + 2ρ∇F (x)) = {1 + 2ρλ | λ ∈ Sp(∇F (x))} ,

we get that |1 + 2ρλ| ≥ 1 for any λ ∈ Sp(∇F (x)) and any x ∈ Rd. Taking into account (14), we obtain the desired
result.
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B. Missing Details on PEP From Section 3
On PEP formulation (4). To find the tight convergence rate of PP and build worst-case examples of ρ-negative comono-
tone operators for PP, we consider problem (4), which we restate below for convenience:

max
F,d,x0

∥xN − xN−1∥2 (15)

s.t. F : Rd ⇒ Rd is ρ-negative comonotone,
∥x0 − x∗∥2 ≤ R2, 0 ∈ F (x∗),

xk+1 = xk − γF (xk+1), k = 0, 1, . . . , N − 1.

The above problem requires maximization over infinitely-dimensional space of ρ-negative comonotone operators. To
solve such a problem numerically, one can properly reformulate it to a finite-dimensional one. Whereas PEPs were
introduced by Drori & Teboulle (2014), thie reformulation technique was provided in Taylor et al. (2017c;a) in the context
of optimization problems, and was extended to problems involving (monotone) operators in Ryu et al. (2020). In particular,
instead of (15), one can consider an equivalent finite-dimensional problem

max
d

x∗,x0,x1,...,xN∈Rd

g∗,g0,g1,...,gN∈Rd

∥xN − xN−1∥2 (16)

s.t. F : Rd ⇒ Rd is ρ-negative comonotone, (17)
gk ∈ F (xk), k = ∗, 0, 1, . . . , N, g∗ = 0, (18)
∥x0 − x∗∥2 ≤ R2,

xk+1 = xk − γgk+1, k = 0, 1, . . . , N − 1.

Although the above problem is finite-dimensional, it has non-trivial constraints (17)-(18), which can be handled via the
following result.

Theorem B.1. Let {(xk, gk)}Nk=0 ⊆ Rd × Rd be some finite set of pairs of points in Rd. There exists a maximal ρ-negative
comonotone operator F : Rd ⇒ Rd such that gk ∈ F (xk), k = 0, . . . , N if and only if

⟨gi − gj , xi − xj⟩ ≥ −ρ∥gi − gj∥2 ∀i, j = 0, . . . , N. (19)

Proof. Following Ryu et al. (2020), we say that the set {(xk, gk)}Nk=0 ⊆ Rd×Rd is M-interpolable if there exists a maximal
monotone (0-negative comonotone) operator F : Rd ⇒ Rd such that gk ∈ F (xk), k = 0, . . . , N . One can introduce a
similar notion for ρ-negative comonotone case, i.e., we say that the set {(xk, gk)}Nk=0 ⊆ Rd × Rd is NMρ-interpolable
if there exists a maximal ρ-negative comonotone operator F : Rd ⇒ Rd such that gk ∈ F (xk), k = 0, . . . , N . Next, for
convenience we denote the classes of maximal monotone and maximal ρ-negative comonotone operators as M and NMρ

respectively. Then, in view of the maximal monotone extension theorem (Bauschke et al., 2011, Theorem 20.21), the set
{(xk, gk)}Nk=0 ⊆ Rd × Rd is M-interpolable if and only if ⟨gi − gj , xi − xj⟩ ≥ 0 for any i, j = 0, . . . , N .

For obtaining the desired result, we simply reduce the problem of finding a maximal ρ-negative comonotone interpolating
operator for the set {(xk, gk)}Nk=0 as that of finding a maximal monotone operator interpolating {(xk+ρgk, gk)}Nk=0, which
is a consequence of the following equivalence: an operator F : Rd ⇒ R is maximal ρ-negatively monotone if and only if
F−1 + ρId is maximal monotone. More precisely, the reasoning is as follows:

⟨gi − gj , xi − xj⟩ ≥ −ρ∥gi − gj∥2 ∀i, j = 0, . . . , N

⇐⇒ ⟨gi − gj , xi + ρgi − (xj + ρgj)⟩ ≥ 0 ∀i, j = 0, . . . , N

⇐⇒ ∃ T ∈ M : xi + ρgi ∈ T (gi) ∀i = 0, . . . , N
Q=T−ρId⇐⇒ ∃ Q : Q+ ρId ∈ M and xi ∈ Q(gi) ∀i = 0, . . . , N

F=Q−1

⇐⇒ ∃ F ∈ NMρ and gi ∈ F (xi) ∀i = 0, . . . , N,

where the last equivalence follows from the following fact: F is ρ-negative comonotone if and only if F−1 + ρId is
monotone, thereby concluding the proof.
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In view of the above theorem, one can replace (17)-(18) constraints by (N + 1)(N + 2) inequalities of the type (19) and get
the following finite-dimensional problem, which is equivalent to (16):

max
d

x∗,x0,x1,...,xN∈Rd

g∗,g0,g1,...,gN∈Rd

∥xN − xN−1∥2 (20)

s.t. ⟨gi − gj , xi − xj⟩ ≥ −ρ∥gi − gj∥2, i, j = ∗, 0, 1, . . . , N, g∗ = 0, (21)
∥x0 − x∗∥2 ≤ R2, (22)
xk+1 = xk − γgk+1, k = 0, 1, . . . , N − 1.

We notice that x1, . . . , xN are linear combinations of x0, g0, g1, . . . , gN and we also have constraint g∗ = 0. Therefore, one
can reduce the number of maximization vector-variables to N + 3: x∗, x0, g0, g1, . . . , gN . Moreover, the above problem
is linear w.r.t. the inner products of all possible pairs of vectors x∗, x0, g0, g1, . . . , gN . This means that (20) is linear w.r.t.
the elements of matrix G = V ⊤V , where V = (x∗, x0, g0, g1, . . . , gN ), and one can reformulate the problem (20) as the
following semidefinite programming (SDP)

max
G∈SN+3

+

Tr(M0G) (23)

s.t. Tr(MiG) ≤ 0, i = 1, 2 . . . , (N + 2)(N + 3),

Tr(M−1G) ≤ R2.

Here SN+3
+ denotes the set of symmetric positive semidefinite matrices of size (N + 3) × (N + 3) and matrices M0,

{Mi}(N+2)(N+3)
i=1 , and M−1 encode the objective (20) and constraints (21)-(22), respectively. We do not provide the exact

formulas for these matrices and refer to the examples of how they can be constructed provided in (Ryu et al., 2020; Gorbunov
et al., 2022b). We note that in toolboxes like PESTO (Taylor et al., 2017b) and PEPit (Goujaud et al., 2022), the process of
constructing matrices M0, {Mi}(N+2)(N+3)

i=1 , M−1 is fully automated.

On low-dimensional worst-case examples. It is worth mentioning that for any G ∈ SN+3
+ one can reconstruct vectors

x∗, x0, g0, g1, . . . , gN ∈ RN+3 such that G is their Gram matrix, i.e., find V = (x∗, x0, g0, g1, . . . , gN ) ∈ R(N+3)×(N+3)

such that G = V ⊤V . More precisely, if rank(G) = r ≤ N + 3, then one can find x∗, x0, g0, g1, . . . , gN ∈ Rr such that G
is the Gram matrix of this set of vectors.

Therefore, to obtain low-dimensional worst-case trajectories like ones illustrated in Figure 2b, we need to find low-rank
solution of (23). To do so, we apply trace heuristic (Taylor et al., 2017b), where we first find numerically an approximate
optimal value v∗ of problem (23) and then solve the following problem:

min
G∈SN+3

+

Tr(G) (24)

s.t. Tr(MiG) ≤ 0, i = 1, 2 . . . , (N + 2)(N + 3),

Tr(M−1G) ≤ R2,

Tr(M0G) = v∗. (25)

Constraint (25) enforces that by solving the above problem we find numerically an approximate solution for (23) of a
comparable quality and minimization of Tr(G) can be seen as an “approximate minimization” of rank(G).
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C. Missing Proofs and Details From Section 4
This appendix provides the complete proofs of the results of EG and OG.

C.1. Extragradient method

C.1.1. GUARANTEES FOR THE AVERAGED SQUARED NORM OF THE OPERATOR

Theorem 4.2 consists of the two results: one requires only star negative comonotonicity and gives the rate in terms of the
averaged squared norms of the operator along the trajectory and the other one requires negative comonotonicity but gives
last-iterate convergence guarantee. We start with the first result which is a simplification of Theorem 3.1 from Pethick et al.
(2022). Our proof is a bit more explicit in terms of why we need γ1 to be large, because it relies on the following lemma.

Lemma C.1. Let F be L-Lipschitz and ρ-star-negative comonotone. Then, for any k ≥ 0 the iterates produced by EG after
k ≥ 0 iterations satisfy

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − γ2 (γ1 − 2ρ− γ2) ∥F (x̃k)∥2 − γ1γ2(1− L2γ2
1)∥F (xk)∥2. (26)

Proof. By the definition of xk+1 and x̃k we have

∥xk+1 − x∗∥2 = ∥xk − x∗∥2 − 2γ2⟨xk − x∗, F (x̃k)⟩+ γ2
2∥F (x̃k)∥2

= ∥xk − x∗∥2 − 2γ2⟨x̃k − x∗, F (x̃k)⟩ − 2γ1γ2⟨F (xk), F (x̃k)⟩+ γ2
2∥F (x̃k)∥2.

Next, we estimate the second term in the right-hand side using star-negative comonotonicity:

∥xk+1 − x∗∥2
(2)
≤ ∥xk − x∗∥2 + γ2 (2ρ+ γ2) ∥F (x̃k)∥2 − 2γ1γ2⟨F (xk), F (x̃k)⟩.

Finally, we handle the last term in the right-hand side of the above inequality using 2⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a − b∥2,
which holds for any a, b ∈ Rd, and then applying L-Lipschitzness of F :

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − γ2 (γ1 − 2ρ− γ2) ∥F (x̃k)∥2 − γ1γ2∥F (xk)∥2

+γ1γ2∥F (xk)− F (x̃k)∥2
(3)
≤ ∥xk − x∗∥2 − γ2 (γ1 − 2ρ− γ2) ∥F (x̃k)∥2 − γ1γ2∥F (xk)∥2

+γ1γ2L
2∥xk − x̃k∥2.

Taking into account xk − x̃k = γ1F (xk) and rearranging the terms, we get the result.

This lemma implies the first part of Theorem 4.2 and even a bit more.

Theorem C.2 (First part of Theorem 4.2). Let F be L-Lipschitz and ρ-star-negative comonotone with ρ < 1/2L. If
2ρ < γ1 < 1/L and 0 < γ2 ≤ γ1 − 2ρ, then the iterates produced by EG after N ≥ 0 iteration satisfy

1

N + 1

N∑
k=0

∥F (xk)∥2 ≤ ∥x0 − x∗∥2

γ1γ2(1− L2γ2
1)(N + 1)

. (27)

If 2ρ < γ1 ≤ 1/L and 0 < γ2 < γ1 − 2ρ, then the iterates produced by EG after N ≥ 0 iteration satisfy

1

N + 1

N∑
k=0

∥F (x̃k)∥2 ≤ ∥x0 − x∗∥2

γ2(γ1 − 2ρ− γ2)(N + 1)
. (28)

Proof. First, we consider the case when 2ρ < γ1 < 1/L and 0 < γ2 ≤ γ1 − 2ρ. In this case, γ2(γ1 − 2ρ − γ2) ≥ 0 and
γ1γ2(1− L2γ2

1) > 0. Therefore, Lemma 4.1 implies

γ1γ2(1− L2γ2
1)∥F (xk)∥2 ≤ ∥xk − x∗∥2 − ∥xk+1 − x∗∥2.

Summing up the above inequality for k = 0, . . . , N , dividing the result by γ1γ2(1− L2γ2
1)(N + 1), and using −∥xN+1 −

x∗∥2 ≤ 0, we get (27).

17



Convergence of Proximal Point and Extragradient-Based Methods Beyond Monotonicity: the Case of Negative Comonotonicity

Next, we consider the case when 2ρ < γ1 ≤ 1/L and 0 < γ2 < γ1 − 2ρ. In this case, γ2(γ1 − 2ρ − γ2) > 0 and
γ1γ2(1− L2γ2

1) ≥ 0. Therefore, Lemma 4.1 implies

γ2(γ1 − 2ρ− γ2)∥F (x̃k)∥2 ≤ ∥xk − x∗∥2 − ∥xk+1 − x∗∥2.

Summing up the above inequality for k = 0, . . . , N , dividing the result by γ2(γ1 − 2ρ− γ2)(N +1), and using −∥xN+1 −
x∗∥2 ≤ 0, we get (28).

C.1.2. LAST-ITERATE GUARANTEES

We start with the following lemma:
Lemma C.3. Let F be L-Lipschitz and ρ-negative comonotone. Then for any k ≥ 0 the iterates produced by EG with
γ1 = γ2 = γ > 0 satisfy

∥F (xk+1)∥2 ≤ ∥F (xk)∥2 −
(
1

2
− 2L2γ2

)
∥F (x̃k)− F (xk)∥2

−
(
1

2
− ρ

γ

)
∥F (x̃k)− F (xk+1)∥2 −

(
1

2
− 2ρ

γ

)
∥F (xk)− F (xk+1)∥2. (29)

If additionally γ ≤ 1/2L and γ ≥ 4ρ, then we have ∥F (xk+1)∥ ≤ ∥F (xk)∥.

Proof. From L-Lipschitzness and ρ-negative comonotonicity of F we have

∥F (x̃k)− F (xk+1)∥2 ≤ L2∥x̃k − xk+1∥2,
⟨F (x̃k)− F (xk+1), x̃k − xk+1⟩ ≥ −ρ∥F (x̃k)− F (xk+1)∥2,
⟨F (xk)− F (xk+1), xk − xk+1⟩ ≥ −ρ∥F (xk)− F (xk+1)∥2.

Taking into account x̃k − xk+1 = γ(F (x̃k)− F (xk)) and xk − xk+1 = γF (x̃k), we get

∥F (x̃k)− F (xk+1)∥2 ≤ L2γ2∥F (x̃k)− F (xk)∥2,
γ⟨F (x̃k)− F (xk+1), F (x̃k)− F (xk)⟩ ≥ −ρ∥F (x̃k)− F (xk+1)∥2,

γ⟨F (xk)− F (xk+1), F (x̃k)⟩ ≥ −ρ∥F (xk)− F (xk+1)∥2.

Next, we sum up the above inequalities with weights 2, 1/γ, and 2/γ respectively:

2∥F (x̃k)− F (xk+1)∥2 − ρ

γ
∥F (x̃k)− F (xk+1)∥2 − 2ρ

γ
∥F (xk)− F (xk+1)∥2

≤ 2L2γ2∥F (x̃k)− F (xk)∥2 + ⟨F (x̃k)− F (xk+1), F (x̃k)− F (xk)⟩
+ 2⟨F (xk), F (x̃k)⟩ − 2⟨F (xk+1), F (x̃k)⟩.

To get rid of the inner products, we use 2⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a− b∥2, which holds for any a, b ∈ Rd. Using this, we
continue our derivation as follows:

2∥F (x̃k)− F (xk+1)∥2 − ρ

γ
∥F (x̃k)− F (xk+1)∥2 − 2ρ

γ
∥F (xk)− F (xk+1)∥2

≤ 2L2γ2∥F (x̃k)− F (xk)∥2 + 1

2
∥F (x̃k)− F (xk+1)∥2 + 1

2
∥F (x̃k)− F (xk)∥2

− 1

2
∥F (xk)− F (xk+1)∥2 + ∥F (xk)∥2 + ∥F (x̃k)∥2 − ∥F (x̃k)− F (xk)∥2

− ∥F (xk+1)∥2 − ∥F (x̃k)∥2 + ∥F (x̃k)− F (xk+1)∥2.

Rearranging the terms we get

∥F (xk+1)∥2 ≤ ∥F (xk)∥2 −
(
1

2
− 2L2γ2

)
∥F (x̃k)− F (xk)∥2

−
(
1

2
− ρ

γ

)
∥F (x̃k)− F (xk+1)∥2 −

(
1

2
− 2ρ

γ

)
∥F (xk)− F (xk+1)∥2,

which concludes the proof.
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Using this lemma we construct the potential-based proof of the last-iterate convergence of EG.

Theorem C.4 (Second part of Theorem 4.2). Let F be L-Lipschitz and ρ-negative comonotone. Then, for any k ≥ 0 the
iterates produced by EG with γ1 = γ2 = γ such that 4ρ ≤ γ ≤ 1/2L satisfy

Φk+1 ≤ Φk, where Φk = ∥xk − x∗∥2 +
(
kγ2

(
1− 5ρ

2γ
− L2γ2

)
+ 40γρ

)
∥F (xk)∥2. (30)

That is, under the introduced assumptions on γ and ρ for any N ≥ 1 the iterates produced by EG satisfy

∥F (xN )∥2 ≤ (1 + 40γρL2)∥x0 − x∗∥2

Nγ2
(
1− 5ρ

2γ − L2γ2
)
+ 40γρ

. (31)

Proof. From (26) with γ1 = γ2 = γ we have

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 + 2γρ∥F (x̃k)∥2 − γ2
(
1− L2γ2

)
∥F (xk)∥2.

Next, taking into account that 4ρ ≤ γ ≤ 1/2L, we also have from Lemma C.3 the following inequality:

∥F (xk+1)∥2 ≤ ∥F (xk)∥2 −
(
1

2
− ρ

γ

)
∥F (x̃k)− F (xk+1)∥2. (32)

Using these two inequalities, we derive the following upper bound on Φk+1:

Φk+1 = ∥xk+1 − x∗∥2 +
(
(k + 1)γ2

(
1− 5ρ

2γ
− L2γ2

)
+ 40γρ

)
∥F (xk+1)∥2

≤ ∥xk − x∗∥2 + 2γρ∥F (x̃k)∥2 − γ2
(
1− L2γ2

)
∥F (xk)∥2

+

(
(k + 1)γ2

(
1− 5ρ

2γ
− L2γ2

)
+ 40γρ

)(
∥F (xk)∥2 −

(
1

2
− ρ

γ

)
∥F (x̃k)− F (xk+1)∥2

)
= Φk + 2γρ∥F (x̃k)∥2 − 5

2
γρ∥F (xk)∥2

−
(
(k + 1)γ2

(
1− 5ρ

2γ
− L2γ2

)
+ 40γρ

)(
1

2
− ρ

γ

)
∥F (x̃k)− F (xk+1)∥2

≤ Φk + 2γρ∥F (x̃k)∥2 − 5

2
γρ∥F (xk)∥2 − 20ρ(γ − 2ρ)∥F (x̃k)− F (xk+1)∥2.

Finally, we apply ∥a+ b∥2 ≤ (1 + β)∥a∥2 + (1 + β−1)∥b∥2, which holds ∀a, b ∈ Rd, β > 0, with β = 1/4 to upper bound
the second term in the right-hand side of the above inequality and continue our derivation as follows:

Φk+1 ≤ Φk + 2γρ∥F (xk+1) + F (x̃k)− F (xk+1)∥2 − 5

2
γρ∥F (xk)∥2

−20ρ(γ − 2ρ)∥F (x̃k)− F (xk+1)∥2

≤ Φk + 2γρ

(
1 +

1

4

)
∥F (xk+1)∥2 + 2γρ (1 + 4) ∥F (x̃k)− F (xk+1)∥2 − 5

2
γρ∥F (xk)∥2

−20ρ(γ − 2ρ)∥F (x̃k)− F (xk+1)∥2

= Φk +
5

2
γρ∥F (xk+1)∥2 − 5

2
γρ∥F (xk)∥2 − 10ρ (γ − 4ρ) ∥F (x̃k)− F (xk+1)∥2.
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Taking into account ∥F (xk+1)∥2
(32)
≤ ∥F (xk)∥2 and γ ≥ 4ρ, we get (30). Next, we unroll (30) and derive (31):

∥F (xN )∥2 ≤ 1

Nγ2
(
1− 5ρ

2γ − L2γ2
)
+ 40γρ

ΦN

≤ 1

Nγ2
(
1− 5ρ

2γ − L2γ2
)
+ 40γρ

ΦN−1 ≤ . . . ≤ 1

Nγ2
(
1− 5ρ

2γ − L2γ2
)
+ 40γρ

Φ0

=
∥x0 − x∗∥2 + 40γρ∥F (x0)∥2

Nγ2
(
1− 5ρ

2γ − L2γ2
)
+ 40γρ

(3)
≤ (1 + 40γρL2)∥x0 − x∗∥2

Nγ2
(
1− 5ρ

2γ − L2γ2
)
+ 40γρ

,

which concludes the proof of (31). Moreover, (11) follows from (31) since 4ρ ≤ γ ≤ 1/2L implies 1− (5ρ/2γ)−L2γ2 ≥ 1/8
and 1 + 40γρL2 ≤ 7/2.

C.1.3. COUNTER-EXAMPLES

Theorem C.5 (Theorem 4.3). For any L > 0, ρ ≥ 1/2L, and any choice of stepsizes γ1, γ2 > 0 there exists ρ-negative
comonotone L-Lipschitz operator F such that EG does not necessary converges on solving VIP with this operator F . In
particular, for γ1 > 1/L it is sufficient to take F (x) = Lx, and for 0 < γ1 ≤ 1/L one can take F (x) = LAx, where x ∈ R2,

A =

(
cos θ − sin θ
sin θ cos θ

)
, θ =

2π

3
.

Proof. Assume that L > 0 and ρ ≥ 1/2L. We start with the case when γ1 > 1/L. Consider operator F (x) = Lx. This
operator is L-Lipschitz. Moreover, F is monotone and, as the result, it is ρ-negative comonotone for any ρ ≥ 0. The iterates
produced by EG with x0 ̸= 0 satisfy

x̃k = (1− Lγ1)x
k, xk+1 = xk − Lγ2x̃

k = (1− Lγ2 + L2γ2γ1)x
k

implying that
∥xk+1 − x∗∥ = ∥xk+1∥ = |1− Lγ2 + L2γ2γ1| · ∥xk∥ > ∥xk∥ = ∥xk − x∗∥,

since 1− Lγ2 + L2γ2γ1 > 1− Lγ2 + Lγ2 = 1. That is, if x0 ̸= 0, then EG diverges in this case.

Next, assume that γ1 < 1/L and consider F (x) = LAx, where x ∈ R2,

A =

(
cos θ − sin θ
sin θ cos θ

)
, θ =

2π

3
.

Operator F is L-Lipschitz and (1/2L)-negative comonotone: for any x, y ∈ Rd

∥F (x)− F (y)∥ = L∥A(x− y)∥ = L∥x− y∥,
⟨F (x)− F (y), x− y⟩ = ∥F (x)− F (y)∥ · ∥x− y∥ · cos θ

= ∥F (x)− F (y)∥ · ∥A(x− y)∥ · cos 2π
3

= − 1

2L
∥F (x)− F (y)∥2

where we use the fact that A is a rotation matrix. That is, F (x) satisfies the conditions of the theorem. Taking into account
that

A =

(
cos θ − sin θ
sin θ cos θ

)
=

(
− 1

2 −
√
3
2√

3
2

1
2

)
, A2 =

(
cos(2θ) − sin(2θ)
sin(2θ) cos(2θ)

)
=

(
− 1

2

√
3
2

−
√
3
2

1
2

)
,
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we rewrite the update rule of EG as follows:

xk+1 = xk − γ2F
(
xk − γ2F (xk)

)
= xk − γ2LA

(
xk − γ2LAxk

)
=

(
I − γ2LA+ γ1γ2L

2A2
)
xk.

To prove the divergence of EG, it remains to show that ∃λ ∈ Sp(I − γ2LA+ γ1γ2L
2A2) such that |λ| > 1. Indeed, we

have

I − γ2LA+ γ1γ2L
2A2 =

(
1 0
0 1

)
− γ2L

(
− 1

2 −
√
3
2√

3
2

1
2

)
+ γ1γ2L

2

(
− 1

2

√
3
2

−
√
3
2

1
2

)

=

(
1 + γ2L

2 (1− γ1L)
√
3γ2L
2 (1 + γ1L)

−
√
3γ2L
2 (1 + γ1L) 1 + γ2L

2 (1− γ1L).

)

The above matrix has eigenvalues λ1,2 = 1 + γ2L
2 (1− γ1L)± i ·

√
3γ2L
2 (1 + γ1L). Since γ2 > 0 and γ1 ≤ 1/L we have

that |λ1,2|2 =
(
1 + γ2L

2 (1− γ1L)
)2

+ 3
4γ

2
2L

2(1 + γ1L)
2 > 1. This concludes the proof.

C.2. Optimistic gradient

C.2.1. GUARANTEES FOR THE AVERAGED SQUARED NORM OF THE OPERATOR

In this section, we proceed in an analogous way to the previous section on the Extragradient method. For notation
convenience, we assume that F (x̃−1) = 0. Then, the update rule for OG can be written as

x̃k = xk − γ1F (x̃k−1),

xk+1 = xk − γ2F (x̃k),
∀k ≥ 0. (OG)

Lemma C.6. Let F be ρ-star-negative comonotone. Then, for any k ≥ 0 the iterates produced by OG after k ≥ 0 iterations
satisfy

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − γ2 (γ1 − 2ρ− γ2) ∥F (x̃k)∥2 − γ1γ2∥F (x̃k−1)∥2

+γ1γ2∥F (x̃k)− F (x̃k−1)∥2. (33)

Proof. By the definition of xk+1 and x̃k we have

∥xk+1 − x∗∥2 = ∥xk − x∗∥2 − 2γ2⟨xk − x∗, F (x̃k)⟩+ γ2
2∥F (x̃k)∥2

= ∥xk − x∗∥2 − 2γ2⟨x̃k − x∗, F (x̃k)⟩ − 2γ1γ2⟨F (x̃k−1), F (x̃k)⟩+ γ2
2∥F (x̃k)∥2.

Next, we estimate the second term in the right-hand side using star-negative comonotonicity:

∥xk+1 − x∗∥2
(2)
≤ ∥xk − x∗∥2 + γ2 (2ρ+ γ2) ∥F (x̃k)∥2 − 2γ1γ2⟨F (x̃k−1), F (x̃k)⟩.

Finally, we handle the last term in the right-hand side of the above inequality using 2⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a − b∥2,
which holds for any a, b ∈ Rd:

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − γ2 (γ1 − 2ρ− γ2) ∥F (x̃k)∥2 − γ1γ2∥F (x̃k−1)∥2

+γ1γ2∥F (x̃k−1)− F (x̃k)∥2.

This lemma is a building block of the first part of Theorem 4.4.
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Theorem C.7 (First part of Theorem 4.4). Let F be L-Lipschitz and ρ-star-negative comonotone with ρ < 1/2L. If
2ρ < γ1 < 1/L and 0 < γ2 < min{1/L − γ1, γ1 − 2ρ}, then the iterates produced by OG after N ≥ 0 iteration satisfy

1

N + 1

N∑
k=0

∥F (x̃k)∥2 ≤ ∥x0 − x∗∥2

γ1γ2(1− L2(γ1 + γ2)2)(N + 1)
. (34)

Proof. We first upper bound the last term that appeared in Lemma C.6 using L-Lipschitzness:

∥F (x̃k)− F (x̃k−1)∥2 ≤ L2∥x̃k − x̃k−1∥2

= L2∥(x̃k − xk) + (xk − xk−1) + (xk−1 − x̃k−1)∥2

= L2∥(γ1 + γ2)F (x̃k−1)− γ1F (x̃k−2)∥2

= L2(γ1 + γ2)
2∥F (x̃k−1)∥2 + L2γ2

1∥F (x̃k−2)∥2

− 2L2(γ1 + γ2)γ1⟨F (x̃k−1), F (x̃k−2)⟩.

Decomposing the last term using 2⟨a, b⟩ = ∥a∥2 + ∥a∥2 − ∥a− b∥2 yields

∥F (x̃k)− F (x̃k−1)∥2 ≤ L2(γ1 + γ2)γ2∥F (x̃k−1)∥2 − L2γ1γ2∥F (x̃k−2)∥2

+ L2γ1(γ1 + γ2)∥F (x̃k−1)− F (x̃k−2)∥2. (35)

The above recurrence holds for k ≥ 2. For k = 1, we have x̃0 = x0 and x̃1 = x1 − γ1F (x̃0) = x0 − (γ1 + γ2)F (x0).
Therefore,

∥F (x̃1)− F (x̃0)∥2 ≤ L2(γ1 + γ2)
2∥F (x0)∥2. (36)

Combining (36) and (35), we obtain

N∑
k=1

∥F (x̃k)− F (x̃k−1)∥2 ≤
N∑

k=2

(
L2(γ1 + γ2)γ2∥F (x̃k−1)∥2 − L2γ1γ2∥F (x̃k−2)∥2

)
+

N∑
k=2

L2γ1(γ1 + γ2)∥F (x̃k−1)− F (x̃k−2)∥2 + L2(γ1 + γ2)
2∥F (x0)∥2.

We can simplify the terms on the right-hand side. Therefore,

N∑
k=1

∥F (x̃k)− F (x̃k−1)∥2 ≤ L2(γ1 + γ2)γ2∥F (x̃N−1)∥2 +
N∑

k=2

L2γ2
2∥F (x̃k−1)∥2

+

N∑
k=2

L2γ1(γ1 + γ2)∥F (x̃k−1)− F (x̃k−2)∥2

+ L2(γ2
1 + γ1γ2 + γ2

2)∥F (x0)∥2

≤
N∑

k=2

L2(γ1 + γ2)γ2∥F (x̃k−1)∥2

+

N∑
k=1

L2γ1(γ1 + γ2)∥F (x̃k)− F (x̃k−1)∥2

+ L2(γ2
1 + γ1γ2 + γ2

2)∥F (x0)∥2.

Using the above equation, we can bound
∑N

k=1 ∥F (x̃k)− F (x̃k−1)∥2, i.e.,

(1− L2γ1(γ1 + γ2))

N∑
k=1

∥F (x̃k)− F (x̃k−1)∥2 ≤
N∑

k=1

L2(γ1 + γ2)γ2∥F (x̃k−1)∥2

+ L2γ2
1∥F (x0)∥2. (37)
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Let us now apply (33) recursively (F (x̃−1) = 0 for simpler notation), which leads to

∥xN − x∗∥2 ≤ ∥x0 − x∗∥2 −
N−1∑
k=0

(
γ2 (γ1 − 2ρ− γ2) ∥F (x̃k)∥2 + γ1γ2∥F (x̃k−1)∥2

)
+

N−1∑
k=0

γ1γ2∥F (x̃k)− F (x̃k−1)∥2)

≤ ∥x0 − x∗∥2 −
N−2∑
k=0

γ2 (2γ1 − 2ρ− γ2) ∥F (x̃k)∥2 +
N−1∑
k=1

γ1γ2∥F (x̃k)− F (x̃k−1)∥2

+ γ1γ2∥F (x0)∥2.

Plugging (37) to the above with 1− L2γ1(γ1 + γ2) > 0, which follows from γ1 < 1/L and γ2 < 1/L − γ1, leads to

∥xN − x∗∥2 ≤ ∥x0 − x∗∥2 −
N−2∑
k=0

γ2 (2γ1 − 2ρ− γ2) ∥F (x̃k)∥2 + γ1γ2∥F (x0)∥2

+
γ1γ

2
2(γ1 + γ2)L

2

1− L2γ1(γ1 + γ2)

N−2∑
k=0

∥F (x̃k)∥2 + γ3
1γ2L

2

1− L2γ1(γ1 + γ2)
∥F (x0)∥2.

Since γ1 − 2ρ− γ2 > 0, we have

∥xN − x∗∥2 ≤ ∥x0 − x∗∥2 − γ1γ2

N−2∑
k=0

∥F (x̃k)∥2 + γ1γ2∥F (x0)∥2

+
γ1γ

2
2(γ1 + γ2)L

2

1− L2γ1(γ1 + γ2)

N−2∑
k=0

∥F (x̃k)∥2 + γ3
1γ2L

2

1− L2γ1(γ1 + γ2)
∥F (x0)∥2.

Rearranging terms and applying ∥xN − x∗∥2 ≥ 0 plus ∥F (x0)∥2 ≤ L2∥x0 − x∗∥2, we obtain

γ1γ2(1− L2(γ1 + γ2)
2)

N−2∑
k=0

∥F (x̃k)∥2 ≤ (1− L2γ1(γ1 + γ2))∥x0 − x∗∥2

+ γ1γ2L
2(1− L2γ1γ2)∥x0 − x∗∥2

≤ (1− L2γ2
1)∥x0 − x∗∥2 ≤ ∥x0 − x∗∥2.

The above inequality implies (34), since one can replace N with N + 2.

C.2.2. LAST-ITERATE GUARANTEES

Our proof is based on the following lemma.

Lemma C.8. Let F be L-Lipschitz and ρ-negative comonotone such that ρ ≤ 5/62L. Then for any k ≥ 1 the iterates
produced by EG with γ1 = γ2 = γ > 0 such that 4ρ ≤ γ ≤ 10/31L satisfy

∥F (xk+1)∥2 + ∥F (xk+1)− F (x̃k)∥2 ≤ ∥F (xk)∥2 + ∥F (xk)− F (x̃k−1)∥2

− 1

100
∥F (x̃k)− F (x̃k−1)∥2. (38)

Proof. From ρ-negative comonotonicity and L-Lipschitzness of F we have

−ρ∥F (xk+1)− F (x̃k)∥2 ≤ ⟨F (xk+1)− F (x̃k), xk+1 − x̃k⟩,
−ρ∥F (xk)− F (xk+1)∥2 ≤ ⟨F (xk)− F (xk+1), xk − xk+1⟩,

∥F (xk+1)− F (x̃k)∥2 ≤ L2∥xk+1 − x̃k∥2.
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Using xk+1 − x̃k = γ(F (x̃k−1)− F (x̃k)) and xk+1 − xk = −γF (x̃k), we rewrite the above inequalities as

−ρ

γ
∥F (xk+1)− F (x̃k)∥2 ≤ ⟨F (xk+1)− F (x̃k), F (x̃k−1)− F (x̃k)⟩, (39)

−ρ

γ
∥F (xk)− F (xk+1)∥2 ≤ ⟨F (xk)− F (xk+1), F (x̃k)⟩, (40)

∥F (xk+1)− F (x̃k)∥2 ≤ L2γ2∥F (x̃k−1)− F (x̃k)∥2. (41)

Next, we apply 2⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a− b∥2, which holds for any a, b ∈ Rd, and from the first two inequalities get

−2ρ

3γ
∥F (xk+1)− F (x̃k)∥2

(39)
≤ 1

3
∥F (xk+1)− F (x̃k)∥2 + 1

3
∥F (x̃k−1)− F (x̃k)∥2

−1

3
∥F (xk+1)− F (x̃k−1)∥2, (42)

−2ρ

γ
∥F (xk)− F (xk+1)∥2

(40)
≤ 2⟨F (xk), F (x̃k)⟩ − 2⟨F (xk+1), F (x̃k)⟩

= ∥F (xk)∥2 + ∥F (x̃k)∥2 − ∥F (xk)− F (x̃k)∥2

−∥F (xk+1)∥2 − ∥F (x̃k)∥2 + ∥F (xk+1)− F (x̃k)∥2

= ∥F (xk)∥2 + ∥F (xk+1)− F (x̃k)∥2 − ∥F (xk+1)∥2

−∥F (xk)− F (x̃k)∥2. (43)

Summing up (41), (42), and (43) with weights 3, 1, and 1 respectively, we derive(
3− 2ρ

3γ

)
∥F (xk+1)− F (x̃k)∥2 − 2ρ

γ
∥F (xk)− F (xk+1)∥2 ≤ 3L2γ2∥F (x̃k−1)− F (x̃k)∥2

+
1

3
∥F (xk+1)− F (x̃k)∥2

+
1

3
∥F (x̃k−1)− F (x̃k)∥2

−1

3
∥F (xk+1)− F (x̃k−1)∥2

+∥F (xk)∥2 + ∥F (xk+1)− F (x̃k)∥2

−∥F (xk+1)∥2 − ∥F (xk)− F (x̃k)∥2

=

(
1

3
+ 3L2γ2

)
∥F (x̃k−1)− F (x̃k)∥2

+
4

3
∥F (xk+1)− F (x̃k)∥2

−1

3
∥F (xk+1)− F (x̃k−1)∥2

+∥F (xk)∥2 − ∥F (xk+1)∥2

−∥F (xk)− F (x̃k)∥2.

To simplify further derivations, we introduce new notation: Ψk = ∥F (xk)∥2 + ∥F (xk)−F (x̃k−1)∥2, ∀k ≥ 1. Rearranging
the terms in the above inequality and using the new notation, we arrive at

Ψk+1 −Ψk ≤ Tk, where

Tk
def
=

2ρ

γ
∥F (xk)− F (xk+1)∥2 +

(
1

3
+ 3L2γ2

)
∥F (x̃k−1)− F (x̃k)∥2

−2

3

(
1− ρ

γ

)
∥F (xk+1)− F (x̃k)∥2 − ∥F (xk)− F (x̃k−1)∥2

−1

3
∥F (xk+1)− F (x̃k−1)∥2 − ∥F (xk)− F (x̃k)∥2.
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To prove (38), it remains to show that Tk ≤ − 1
100∥F (x̃k)−F (x̃k−1)∥2 for all k ≥ 1. Taking into account 4ρ ≤ γ ≤ 10/31L,

we upper bound Tk as follows:

Tk ≤ 1

2
∥F (xk)− F (xk+1)∥2 + 121

93
∥F (x̃k−1)− F (x̃k)∥2 − 1

2
∥F (xk+1)− F (x̃k)∥2

−∥F (xk)− F (x̃k−1)∥2 − 1

3
∥F (xk+1)− F (x̃k−1)∥2 − ∥F (xk)− F (x̃k)∥2

=


F (xk+1)
F (xk)
F (x̃k)

F (x̃k−1)


⊤


− 1

3 − 1
2

1
2

1
3

− 1
2 − 3

2 1 1
1
2 1 − 4927

5766 − 1861
2883

1
3 1 − 1861

2883 − 661
961

⊗ Id



F (xk+1)
F (xk)
F (x̃k)

F (x̃k−1)

 , (44)

where Id is d-dimensional identity matrix and A⊗B denotes the Kronecker product of two matrices A and B. One can
show numerically (see our codes) that

− 1
3 − 1

2
1
2

1
3

− 1
2 − 3

2 1 1
1
2 1 − 4927

5766 − 1861
2883

1
3 1 − 1861

2883 − 661
961

 ≼ − 1

100


0 0 0 0
0 0 0 0
0 0 1 −1
0 0 −1 1

 .

Therefore, in view of (44), we have

TK ≤ − 1

100


F (xk+1)
F (xk)
F (x̃k)

F (x̃k−1)


⊤


0 0 0 0
0 0 0 0
0 0 1 −1
0 0 −1 1

⊗ Id



F (xk+1)
F (xk)
F (x̃k)

F (x̃k−1)


= − 1

100
∥F (x̃k)− F (x̃k−1)∥2,

which concludes the proof.

We emphasize that similar potential ∥F (xk)∥2 + ∥F (xk)− F (x̃k−1)∥2 is used in Cai et al. (2022b) to prove the last-iterate
convergence of OG for monotone L-Lipschitz F . However, our proof non-trivially differs from the one from Cai et al.
(2022b): we use ρ-negative comonotonicity for pairs (xk+1, x̃k), (xk+1, xk) and L-Lipschitzness for (xk+1, x̃k), while Cai
et al. (2022b) use monotonicity (xk+1, xk) and L-Lipschitzness for (xk+1, x̃k). Next, the only known last-iterate O(1/N)
convergence rate for OG under ρ-negative comonotonicity and L-Lipschitzness (Luo & Tran-Dinh, 2022) is based on
a different potential ∥F (xk+1)∥2 + 2γ−3ρ

2γ ∥F (xk+1) − F (x̃k)∥2, which coincides with the one used by Gorbunov et al.
(2022c) in the monotone case. Moreover, the proof from Luo & Tran-Dinh (2022) is based on 2 inequalities: ρ-negative
comonotonicity for pairs (xk+1, xk) and L-Lipschitzness for (xk+1, x̃k). In contrast, our proof is based on 3 inequalities,
i.e., it uses more information about the problem. This might be the reason, why our proof allows ρ to be larger than in the
proof by Luo & Tran-Dinh (2022).

Using Lemma C.8, we can proceed with the potential-based proof of the last-iterate convergence of OG.

Theorem C.9 (Second part of Theorem 4.4). Let F be L-Lipschitz and ρ-negative comonotone. Then, for any k ≥ 0 the
iterates produced by OG with γ1 = γ2 = γ such that 4ρ ≤ γ ≤ 10/31L satisfy

Φk+1 ≤ Φk, where Φk = ∥xk − x∗∥2 +
(
k
γ(γ − 3ρ)

2 + 6L2γ2
+ 400γ2

)
Ψk, (45)

where Ψk = ∥F (xk)∥2 + ∥F (xk)− F (x̃k−1)∥2. That is, under the introduced assumptions on γ and ρ for any N ≥ 1 the
iterates produced by OG satisfy

∥F (xN )∥2 ≤ 717∥x0 − x∗∥2

Nγ(γ − 3ρ) + 800γ2
. (46)

Proof. From (33) with γ1 = γ2 = γ we have

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 + 2ργ∥F (x̃k)∥2 − γ2∥F (x̃k−1)∥2 + γ2∥F (x̃k)− F (x̃k−1)∥2.
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Next, taking into account that 4ρ ≤ γ ≤ 10/31L, we also have from Lemma C.8 the following inequality:

∥F (xk+1)∥2 + ∥F (xk+1)− F (x̃k)∥2 ≤ ∥F (xk)∥2 + ∥F (xk)− F (x̃k−1)∥2 − 1

100
∥F (x̃k)− F (x̃k−1)∥2.

Using these two inequalities, we derive the following upper bound on Φk+1:

Φk+1 = ∥xk+1 − x∗∥2 +
(
(k + 1)

γ(γ − 3ρ)

2 + 6L2γ2
+ 400γ2

)
Ψk+1

≤ ∥xk − x∗∥2 + 2ργ∥F (x̃k)∥2 − γ2∥F (x̃k−1)∥2 + γ2∥F (x̃k)− F (x̃k−1)∥2

+

(
(k + 1)

γ(γ − 3ρ)

2 + 6L2γ2
+ 400γ2

)(
∥F (xk)∥2 + ∥F (xk)− F (x̃k−1)∥2 − 1

100
∥F (x̃k)− F (x̃k−1)∥2

)
≤ Φk + 2ργ∥F (x̃k)∥2 − γ2∥F (x̃k−1)∥2 + γ2∥F (x̃k)− F (x̃k−1)∥2

+
γ(γ − 3ρ)

2 + 6L2γ2

(
∥F (xk)∥2 + ∥F (xk)− F (x̃k−1)∥2

)
− 4γ2∥F (x̃k)− F (x̃k−1)∥2

= Φk + 2ργ∥F (x̃k)∥2 − γ2∥F (x̃k−1)∥2

+
γ(γ − 3ρ)

2 + 6L2γ2

(
∥F (xk)∥2 + ∥F (xk)− F (x̃k−1)∥2

)
− 3γ2∥F (x̃k)− F (x̃k−1)∥2.

In the next step, we use following upper bounds based on L-Lipschitzness, (OG), and ∥a + b∥2 ≤ (1 + β)∥a∥2 + (1 +
β−1)∥b∥2, which holds ∀a, b ∈ Rd, β > 0:

∥F (x̃k)∥2 ≤ 3∥F (x̃k)− F (x̃k−1)∥2 + 3/2∥F (x̃k−1)∥2,
∥F (xk)− F (x̃k−1)∥2 ≤ 2∥F (xk)− F (x̃k)∥2 + 2∥F (x̃k)− F (x̃k−1)∥2

≤ 2L2γ2∥F (x̃k−1)∥2 + 2∥F (x̃k)− F (x̃k−1)∥2,
∥F (xk)∥2 ≤ 2∥F (xk)− F (x̃k−1)∥2 + 2∥F (x̃k−1)∥2

≤ 2(1 + 2L2γ2)∥F (x̃k−1)∥2 + 4∥F (x̃k)− F (x̃k−1)∥2.

Applying the above yields

Φk+1 ≤ Φk +

(
γ(γ − 3ρ)

2 + 6L2γ2
(2 + 6L2γ2) + 3ργ − γ2

)
∥F (x̃k−1)∥2

+

(
6ργ +

3γ(γ − 3ρ)

1 + 3L2γ2
− 3γ2

)
∥F (x̃k)− F (x̃k−1)∥2

≤ Φk,

where we use 1 + 3L2γ2 ≥ 1. This applies that ΦN ≤ Φ1, therefore

∥F (xN )∥2 ≤
∥x1 − x∗∥2 +

(
γ(γ−3ρ)
2+6L2γ2 + 400γ2

) (
∥F (x1)∥2 + ∥F (x1)− F (x0)∥2

)
N γ(γ−3ρ)

2+6L2γ2 + 400γ2

In the next step, we bound everything with respect to ∥x0 − x∗∥2 using ρ-negative comonotonicity, L-Lipschitzness, (OG),
and ∥a+ b∥2 ≤ (1 + β)∥a∥2 + (1 + β−1)∥b∥2:

∥x1 − x∗∥2
(33)
≤ ∥x0 − x∗∥2 + γ(2ρ+ γ)∥F (x0)∥2

≤ (1 + L2γ(2ρ+ γ))∥x0 − x∗∥2 ≤ 2∥x0 − x∗∥2,
∥F (x1)∥2 + ∥F (x1)− F (x0)∥2 ≤ 3∥F (x1)∥2 + 2∥F (x0)∥2

≤ L2(3∥x1 − x∗∥2 + 2∥x0 − x∗∥2) ≤ 8L2∥x0 − x∗∥2,
2 ≤ 2 + 6L2γ2 ≤ 3.
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Putting all together yields

∥F (xN )∥2 ≤ (2 + 401L2 · 8γ2)∥x0 − x∗∥2

N γ(γ−3ρ)
2 + 400γ2

≤ 717∥x0 − x∗∥2

Nγ(γ − 3ρ) + 800γ2
,

which concludes the proof.

C.2.3. COUNTER-EXAMPLES

Theorem C.10 (Theorem 4.5). For any L > 0, ρ ≥ 1/2L, and any choice of stepsizes γ1, γ2 > 0 there exists ρ-negative
comonotone L-Lipschitz operator F such that OG does not necessary converges on solving VIP with this operator F . In
particular, for γ1 > 1/L it is sufficient to take F (x) = Lx, where x ∈ R, and for 0 < γ1 ≤ 1/L one can take F (x) = LAx,
where x ∈ R2,

A =

(
cos θ − sin θ
sin θ cos θ

)
, θ =

2π

3
.

Proof. Assume that L > 0 and ρ ≥ 1/2L. We start with the case when γ1 > 1/L. Consider operator F (x) = Lx. This
operator is L-Lipschitz. Moreover, F is monotone and, as the result, it is ρ-negative comonotone for any ρ ≥ 0. The iterates
produced by OG with x0 ̸= 0 satisfy

x̃k = xk − Lγ1x̃
k−1, xk+1 = xk − Lγ2x̃

k = (1− Lγ2)x
k + L2γ2γ1x̃

k−1

implying that [
xk+1

x̃k

]
=

(
1− γ2L γ1γ2L

2

1 −γ1L

)[
xk

x̃k−1

]
The eigenvalues of the above 2× 2 matrix can be computed analytically. One of them has the form

−Lγ1 + Lγ2 +
√
L2γ2

1 + L2γ2
2 + 2L2γ1γ2 + 2Lγ1 − 2Lγ2 + 1− 1

2

< −1 +
√
1 + 2Lγ2 + 2− 2Lγ2 + 1− 1

2
= −1.

The derivation above is verified symbolically in our codes. That means we can select such starting setup x0, x̃0, such that
OG diverges.

Next, assume that γ1 ≤ 1/L and consider F (x) = LAx, where x ∈ R2,

A =

(
cos θ − sin θ
sin θ cos θ

)
, θ =

2π

3
.

Operator F is L-Lipschitz and (1/2L)-negative comonotone: for any x, y ∈ Rd

∥F (x)− F (y)∥ = L∥A(x− y)∥ = L∥x− y∥,
⟨F (x)− F (y), x− y⟩ = ∥F (x)− F (y)∥ · ∥x− y∥ · cos θ

= ∥F (x)− F (y)∥ · ∥A(x− y)∥ · cos 2π
3

= − 1

2L
∥F (x)− F (y)∥2

where we use the fact that A is a rotation matrix. That is, F (x) satisfies the conditions of the theorem. Taking into account
that

A =

(
cos θ − sin θ
sin θ cos θ

)
=

(
− 1

2 −
√
3
2√

3
2

1
2

)
, A2 =

(
cos(2θ) − sin(2θ)
sin(2θ) cos(2θ)

)
=

(
− 1

2

√
3
2

−
√
3
2

1
2

)
,

we rewrite the update rule of OG similarly to the case γ1 > 1/L :[
xk+1

x̃k

]
=

(
I − γ2LA γ1γ2L

2A2

I −γ1LA

)[
xk

x̃k−1

]
= B

[
xk

x̃k−1

]
.
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To prove the divergence of OG, we show that B is expansive, i.e., its spectral norm ∥B∥ > 1, therefore, there exists a
starting point for which OG does not converge. The spectral norm of B has the following form

∥B∥2 = c+
√
c2 − L2γ2

1 ,

where c =
L4γ2

1γ
2
2+L2γ2

1+L2γ2
2+Lγ2

2 + 1 (this derivation is verified symbolically in our codes). Therefore, ∥B∥ is well
defined since c > 1 and L2γ2

1 ≤ 1, and, moreover, ∥B∥ > 1, which concludes the proof.
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