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Abstract
Machine Learning systems are increasingly preva-
lent across healthcare, law enforcement, and fi-
nance but often operate on historical data, which
may carry biases against certain demographic
groups. Causal and counterfactual fairness pro-
vides an intuitive way to define fairness that
closely aligns with legal standards. Despite its
theoretical benefits, counterfactual fairness comes
with several practical limitations, largely related
to the reliance on domain knowledge and approx-
imate causal discovery techniques in constructing
a causal model. In this study, we take a fresh
perspective on counterfactually fair prediction,
building upon recent work in in-context-learning
(ICL) and prior-fitted networks (PFNs) to learn
a transformer called FairPFN. This model is pre-
trained using synthetic fairness data to eliminate
the causal effects of protected attributes directly
from observational data, removing the require-
ment of access to the correct causal model in prac-
tice. In our experiments, we thoroughly assess
the effectiveness of FairPFN in eliminating the
causal impact of protected attributes on a series
of synthetic case studies and real-world datasets.
Our findings pave the way for a new and promis-
ing research area: transformers for causal and
counterfactual fairness.

1. Introduction
Algorithmic bias is one of the most pressing AI-related risks,
arising when ML-assisted decisions produce discriminatory
outcomes towards historically underprivileged demographic
groups (Angwin et al., 2016). Despite the topic of fair-
ness receiving significant attention in the ML community,
various critics from outside the fairness community argue
that statistical measures of fairness and current methods
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to optimize them are largely misguided in terms of their
context-dependence and transferability to effective legis-
lation. Recent work in causal fairness has proposed the
popular notion of counterfactual fairness, which provides
the intuition that outcomes are the same in the real world
as in the counterfactual world where protected attributes
- such as gender, ethnicity, or sexual orientation - take on
a different value. According to a recent review contrast-
ing observational and causal fairness metrics (Castelnovo
et al., 2022), the non-identifiability of causal models from
observational data (Peters et al., 2012) presents a significant
challenge in applying causal fairness in practice, as causal
mechanisms are often complex due to the intricate nature
of bias in real-world datasets. If causal model assumptions
are incorrect - for example, when a covariate is assumed not
to be influenced by a protected attribute when in fact it is -
proposing the wrong causal graph can provide a false sense
of security and trust (Ma et al., 2023).

In this study, we introduce a novel approach to counterfac-
tual fairness based on the recently proposed TabPFN. Our
transformer-based approach coined FairPFN, is pre-trained
on a synthetic benchmark of causally generated data and
learns to identify and remove the causal effect of protected
attributes. In our experimental results across a series of syn-
thetic case-studies and real-world datasets, we demonstrate
the effectiveness, flexibility, and extensibility of transform-
ers for causal and counterfactual fairness.

2. Background
Algorithmic Fairness Algorithmic bias occurs when past
discrimination against a demographic group such as ethnic-
ity or sex is reflected in the training data of an ML algorithm.
In such cases, ML algorithms are well known to reproduce
and even amplify this bias in their predictions (Barocas
et al., 2023). Fairness as a topic of research concerns the
measurement of algorithmic bias and the development of
principled methods that produce non-discriminatory pre-
dicted outcomes.

Causal Fairness Analysis Causal ML is a new and emerg-
ing research field that aims to represent data-generating
processes and prediction problems in the language of causal-
ity, offering support for causal modeling, mediation analysis,
and counterfactual explanations. The Causal Fairness Anal-
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Figure 1. FairPFN Pre-training: FairPFN is pre-trained on a synthetic prior of datasets generated from sparse SCMs with exogenous
protected attributes. A biased dataset is generated and passed as context to the transformer, and the loss is calculated with respect to the
fair outcomes calculated by removing the causal influence of the protected attribute.

ysis (CFA) framework (Plecko & Bareinboim, 2022) draws
parallels between causal modeling and legal doctrines of
direct and indirect discrimination. By categorizing variables
into protected attributes A, mediators Xmed, confounders
Xconf , and outcomes Y , the CFA defines the Fairness Cook-
book of causal fairness metrics: the Direct Effect (DE), In-
direct Effect (IE), and Spurious Effect (SE). These metrics
facilitate mediation analysis to assess the remaining causal
effects of various bias-mitigation approaches.

Counterfactual Fairness A related causal concept of fair-
ness is counterfactual fairness (Kusner et al., 2017), which
requires that outcomes remain the same in both the real
world and a counterfactual world where a protected attribute
assumes a different value. Given a causal graph, coun-
terfactual fairness can be obtained either by fitting to ob-
servable non-descendants (Level-One), the inferred values
of an exogenous unobserved variable (Level-Two) or the
noise terms of an Additive Noise Model for observable vari-
ables (Level-Three). Counterfactual fairness has gained
significant popularity in the fairness community, inspiring
recent work on path-specific extensions (Peters et al., 2014)
and the application of Variational Autoencoders (VAEs) to
achieve counterfactually fair latent representations1 (Ma
et al., 2023).

A key challenge in the CFA, counterfactual fairness, and
causal ML, in general, is the assumption regarding the prior
knowledge of causal graphs and models, which relies heav-
ily on domain knowledge and approximate causal discovery
techniques. In the context of fairness, (Castelnovo et al.,
2022) argue that it is challenging to obtain causal graphs rep-
resenting complex systemic inequalities. Additionally, (Ma
et al., 2023) demonstrate that proposing an incorrect causal
graph or model can deteriorate counterfactual fairness and
potentially lead to adverse impacts (e.g. fairwashing) if the
causal relationships between protected attributes and other
variables are incorrectly assumed.

Prior-Fitted Networks Prior-Fitted Networks (PFNs) are
1CLAIRE is not included as a baseline as their training code or

model is not publicly available.

a recent approach to incorporating prior knowledge into
neural networks via pre-training on datasets sampled from a
prior distribution (Müller et al., 2021). This allows PFNs to
perform well on downstream tasks with limited data.

TabPFN (Hollmann et al., 2022), a recent application of
PFNs to small, tabular classification problems, trains a trans-
former on a hypothesis of synthetic datasets generated from
sparse SCMs, achieving state-of-the-art results by integrat-
ing over the simplest causal explanations for the data in a
single forward pass of the network.

3. Methodology
In this section, we introduce FairPFN, a novel bias miti-
gation technique that synergizes concepts from prior-fitted
networks (PFNs) with principles of causal and counterfac-
tual fairness. FairPFN aims to eliminate the causal and
counterfactual effects of protected attributes using only ob-
servational data.

Synthetic Prior Data Generation The main methodolog-
ical contribution of FairPFN is its fairness prior, designed
to represent the causal mechanisms of bias in real-world
data. FairPFN’s fairness prior includes a key addition to the
TabPFN hypothesis space, namely the inclusion and spec-
ification of protected attributes in the randomly generated
SCMs as exogenous variables2.

The first step of FairPFN is the generation of biased syn-
thetic datasets that realistically represent the causal mech-
anisms of bias in real-world datasets. We provide a vi-
sual overview of this process in (Figure 1). Taking inspi-
ration from TabPFN, we represent SCMs as Multi-Layer-
Perceptrons (MLPs) with linear layers serving to represent
the structural equation f = P · WTx + ϵ where W are
the weights of the activations, ϵ is Gaussian Noise, and P
is a dropout mask sampled from a log-scale to encourage

2The simplifying assumption of exogenous protected attribu-
tions is commonly made in the causal fairness literature as pro-
tected attributes are typically unchangeable by definition and hold
ancestral closure (Plecko & Bareinboim, 2022)
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Figure 2. Causal Case Studies: Visualization and data generating processes of synthetic causal case studies, a handcrafted set of
benchmarks designed to evaluate FairPFN’s ability to remove various sources of bias in causally generated data.
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Figure 3. Real-World Datasets: Causal graphs of real-world
datasets Law School Admissions and Adult Census Income.

sparsity of the represented SCM.

The exogenous protected attribute is sampled from the input
to the MLP as a binary variable A ∈ {a0, a1} where ai is
sampled from the same range as non-protected exogenous
variables Ufair to prevent numeric overflow. We uniformly
sample m features X from the second hidden layer on to
ensure that they contain rich representations of the causes.
Finally, we select the target Y from the output layer. Be-
cause Y is a continuous variable, we binarize over a random
threshold. We note that without binarizing, future versions
of FairPFN are extensible to regression tasks and handling
multiple protected attributes.

Via a forward pass of the MLP, we generate a dataset
Dbias = (A,Xbias, Ybias) of n samples and repeat this
process throughout training on randomly sampled SCMs,
number of features, and number of samples to generate a
rich synthetic representation of real-world, biased data.

FairPFN Pre-training The strategy by which we pre-train
the transformer to perform counterfactual fairness is by
generating two datasets, Dbias and Dfair. The fair dataset
is generated by performing dropout on the outgoing edges
of the protected attribute in the sampled MLP. This has the
effect of setting the weight to 0 in the represented equation
f = 0 · wx + ϵ, meaning that the effect of the protected
attribute is reduced to Gaussian noise ϵ as visualized in
Figure 11.3. Having generated two datasets, we pass in

3We note that this bias removal strategy motivates our sampling
of A from an arbitrary distribution A ∈ {a0, a1} and not A ∈

Dbias as context to the transformer, and calculate the loss
with respect to the transformer’s predictions and the fair
outcomes Yfair (Figure 4). It’s worth noting that we simply
discard Xfair in this strategy, but discuss how it could be
applied to train FairPFN to be a fairness pre-processsing
technique in Section 5.

Fairness Prior-Fitting We train the transformer for approxi-
mately 3 days on an RTX-2080 GPU. Throughout training,
we vary several hyperparameters, including the size and
connectivity of the MLPs, the number of features sampled,
and the number of dataset samples generated. To calculate
the loss between the predicted and ground truth values of
Yfair classification setting, we apply Binary-Cross-Entropy
(BCE) loss and a decaying learning rate schedule.

Causal Case Studies First, we introduce our synthetic
benchmark, a hand-crafted set of causal case studies with
increasing difficulty, designed to evaluate FairPFN’s ability
to remove various sources of bias in causally generated data.

Our simplest case study is the Biased scenario, where the
protected attribute A has an indirect causal effect on the
outcome. This case study aims to simulate what happens
when FairPFN encounters a scenario where the outcome
is only causally influenced by a protected attribute. Next,
we implement Direct and Indirect Effect scenar-
ios to evaluate FairPFN’s ability in isolating the direct and
indirect effects of bias. Finally, we implement three sce-
narios, Level-One, Level-Two, and Level-Three
with inspiration drawn from the three levels of counterfac-
tual fairness. We provide an overview of our causal case
studies with their corresponding data-generating processes
in Figure 2.

To provide a diverse synthetic benchmark, we independently
generate 100 datasets per case study varying the causal
weights of simulated protected attributes wA, the number
of samples m ∈ (100, 1000) (log-scale), and the standard
deviation of Gaussian noise terms σ ∈ (0, 1) (log-scale). We
also create counterfactual versions of each dataset which we

{0, 1} because f = 0 · wx + ϵ would have the same result as
f = p · 0x+ ϵ
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use to evaluate FairPFN for counterfactual fairness, which
we measure as the Mean-Absolute Error (MAE) between
predictions on the real and counterfactual datasets.

Real-World Datasets We also apply FairPFN to two real-
world datasets whose causal graphs are widely agreed upon
in the causal fairness community. The first problem we fo-
cus on is the Law School Admissions problem, which comes
from the 1998 LSAC National Longitudinal Bar Passage
Study (Wightman, 1998). The LSAC study recorded law
school admissions data from approximately 30,000 appli-
cants to top US law schools and reports a significant dispar-
ity of bar passage and first-year average (FYA) outcomes
with respect to applicant race.

We use the causal graph visualized in Figure 3 and observa-
tional data as input to the dowhy.gcm module (Sharma &
Kiciman, 2020), which fits a causal model using Random
Forest Regressors to estimate non-linear causal relationships.
We use these causal models to measure the TE and create
counterfactual data. We also apply the compute noise
functionality to infer the values of noise terms ϵGPA and
ϵLSAT to use later as training data for our Level-Three
baseline (Appendix Section A).

The next problem we focus on is the Adult Census Income
problem (Asuncion & Newman, 2007), a dataset drawn
from the 1994 US Census that records the demographic in-
formation and income outcomes (INC ≥ 50K) for nearly
50,000 individuals. Again, we fit a causal model in order
to measure the TE of protected attribute RACE, create a
counterfactual dataset (Figure 7), and infer values of noise
terms ϵ (Appendix Figure 12).

4. Results
In this section, we evaluate the performance of FairPFN on
our benchmark of synthetic and real-world scenarios, with
the key message that FairPFN removes the causal and coun-
terfactual effect of protected attributes without any knowl-
edge of the causal model.

Synthetic Data First, we evaluate FairPFN on our syn-
thetic causal case studies, by visualizing the change in causal
effect (DE, IE, or TE) before and after bias-mitigation with
FairPFN (Figure 5), with a color gradient of blue to green
to represent the increasing amount of noise in each dataset.
We observe across all case studies that FairPFN learns to
remove the causal effect of the protected attribute with a
small variance and highlight two interesting effects.

First, we observe on 5 out of 6 case studies that datasets
with higher noise levels can generally be solved while main-
taining a lower level of error. This could be due to 1) the
lower Unfair TCE in these datasets or 2) the increased
identifiability of SCMs with noise and non-linearity (Peters

Figure 4. Causal Effect Removal (Synthetic): Average causal
effect (IE, DE, or TEE) and error (1-AUC) of FairPFN compared
to our baselines. FairPFN is on the Pareto Front across all synthetic
case studies, dominates EGR on 5 out of 6, and always improves
upon CFP in terms of error.

Figure 5. Effect of Noise Terms (Synthetic): Causal Effect (TCE)
and erorr (1-AUC) of FairPFN compared to the Unfair baseline
on each individual dataset from our causal case studies. We pro-
vide a color gradient for both baselines (blue to green and red to
yellow) to depict increasing amount of noise in the data. FairPFN
consistently reduces the TCE on all benchmark groups, achieving
lower error on datasets with larger amounts of noise.

et al., 2014). Additionally, we find that on the Biased case
study, FairPFN often achieves an error (1-AUC) less than
0.5. This suggests that FairPFN does not revert to a random
classifier when data is only causally influenced by protected
attributes as there is still fair information (namely ϵX and ϵy)
in the data. Instead, FairPFN removes only the causal effect
wAA

2 in the corresponding structural equation, allowing
the noise terms ϵX and ϵy to influence its predictions.

We also observe in Figure 4 that FairPFN dominates EGR in
5 out of 6 case studies, is on the Pareto Front in all 6, and
always improves in terms of predictive performance com-
pared to CFP. This is likely attributed to the effect observed
in Figure 4 on the Biased case study, where FairPFN
learns to remove only the causal effect of the protected at-
tribute, still allowing all remaining information to influence
its predictions.
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Figure 6. Causal Effect Removal (Real-World): Causal effect
(TCE) and error (1-AUC) of FairPFN on our real-world datasets
compared to other baselines. FairPFN is Pareto Optimal in both
cases and provides a strong balance of causal fairness and accuracy.

Real-World Data We also evaluate FairPFN on the Law
School Admissions and Adult Census Income datasets, us-
ing causal models fit to the structures posed in Figure to mea-
sure the TeE and MAE 3. We note again that in evaluation
FairPFN receives no information about the causal graphs or
models. In Figure 6, we measure the causal effect across dif-
ferent baselines, observing that FairPFN shows significant
improvement in terms of TCE compared to the Unfair and
Unaware baselines. It also demonstrates competative TCE
and improved error on the Law School dataset compared
to the CFP baselines On the Adult dataset, FairPFN is out-
performed by the CFP baseline, which achieves dominating
TCE and error. This outcome is likely explained by the fact
that the Unfair TCE on the Adult dataset is already quite
small (0.03), and thus the four fair noise terms in Figure
3 have a relatively higher representative capacity than in
the Law School problem. However, FairPFN still reduces
the TCE to less than 0.01, a very acceptable outcome in the
broader scope of the problem.

In Figure 7, we also measure the MAE between the pre-
dictive distributions on the real and counterfactual datasets,
Ŷreal and Ŷa→a′ . We observe that FairPFN achieves com-
petitive MAE with CFP in both scenarios, learning to make
counterfactually fair predictions without having access to
the causal model or graph. We note that interestingly, EGR
performs similarly poorly to Random in both scenarios,
aligning with the intuition that randomization is not a coun-
terfactually fair strategy as individuals do not receive con-
sistent outcomes in either the real or counterfactual worlds.

5. Future Work & Discussion
In this study, we introduce FairPFN, a novel bias-mitigation
technique that learns a pre-trained transformer to remove
the causal effect of protected attributes in fairness-aware bi-
nary classification problems from observational data alone.
FairPFN addresses a key limitation in the causal fairness
literature by eliminating the need for prior knowledge of
the true causal graph in fairness datasets, making it easier
for practitioners to apply counterfactual fairness to complex

Figure 7. Counterfactual Fairness (Real-World): Mean Abso-
lute Error (MAE) between predictive distributions on the original
and counterfactual versions of our real-world datasets. FairPFN
achieves competitive MAE with CFP and Constant baselines
without having prior knowledge of the causal graph.

problems where the underlying causal model is unknown.
This expands the scope and applicability of causal fairness
techniques, enabling their use in a broader range of scenar-
ios. Looking ahead, we believe that FairPFN opens the door
to several promising avenues of research.

Real-World Evaluation A crucial next step in FairPFN
would be to train a module to predict the effect of interven-
tions on the protected attribute, producing counterfactual
datasets to evaluate on. Doing so with FairPFN could hold
advantages in robustness as compared to using causal dis-
covery techniques such as (Lorch et al., 2022), since our
pre-trained transformer integrates over the possible causal
explanations for the data.

Transparency and Interpretability In cases where a causal
graph or a subset of causal relationships are known, incor-
porating this domain knowledge as additional input to the
transformer could enhance both FairPFN’s human-centricity
and performance. Additionally, a future direction could
involve predicting the causal graphs that explain the data,
adding an extra layer of interpretability.

Fairness Preprocessing By modifying FairPFN’s output
to predict not only fair outcomes but also fair versions of
observational variables, we can improve interpretability and
transparency while allowing practitioners to use their pre-
ferred ML model during deployment. FairPFN could also
be repurposed as a generative model to create fair training
data, increasing the performance of the selected model.

Business Necessity Incorporating these business-necessity
from (Plecko & Bareinboim, 2022) variables into our fair-
ness prior could enable specifying variables through which
to allow the causal effect of the protected attribute. This
extension is similar to path-specific counterfactual (Peters
et al., 2014), which would also open up many more appli-
cation areas, such as medical diagnosis, where the social
effects of protected attributes like sex should be removed,
yet their biological effects must be preserved to provide
individualized treatment.
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A. Baseline Models
To compare FairPFN to a diverse set of traditional, causal-fairness, and fairness-aware ML algorithms, we also implement
several baselines which we summarize below:

• Unfair: A TabPFNClassifier is fit the entire dataset (X,A, y)

• Unaware: A TabPFNClassifier is fit to non-protected attributes (X, y)

• Constant: A ”classifier” that always predicts the majority class

• Random: A ”classifier” that randomly predicts the target

• Level-One: A TabPFNClassifier is fit to non-descendant observables of the protected attribute (Xfair, y) if
any exist

• Level-Two: A TabPFNClassifier is fit to non-descendant unobservables of the protected attribute (Ufair, y) if
any exist

• Level-Three: A TabPFNClassifier is fit to noise terms of observables (ϵ, y) if any exist

• EGR: Exponentiated Gradient Reduction (EGR) for fairness metric DP as proposed by (Agarwal et al., 2018)

We note that these baselines are specifically designed to provide ground truths of the best and worst that can be done in
terms of fairness metrics and that certain baselines are only applicable to certain datasets. For example Unfair, Unaware,
Random, Constant, and EGR are applicable on all synthetic and real-world datasets. Level-One is only applicable
to Direct Effect, Indirect Effect synthetic causal case studies. Level-Two is additionally applicable to the
Level-Two synthetic case study, and Level-Three is additionally applicable to the Level-Three synthetic case
study as well as the real-world datasets where the causal model is known and noise terms ϵ can be estimated.
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Figure 8. Aligning Counterfactual Distributions (Law School): Alignment of real and counterfactual predictive distributions Ŷ and
Ŷa→a′ on the Law School Admissions problem. FairPFN best aligns the predictive distributions (top) and achieves the lowest mean (0.1)
and maximum (0.2) absolute error.

Figure 9. Aligning Counterfactual Distributions (Adult): Alignment of real and counterfactual predictive distributions Ŷ and Ŷa→a′

on the Adult Census Income problem. FairPFN best aligns the predictive distributions (top) and achieves the lowest mean (0.01) and
maximum (0.75) absolute error.
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Figure 10. Counterfactual Fairness (Synthetic): Mean Absolute Error (MAE) between predictive distributions on the original and
counterfactual versions of our causal case studies. FairPFN achieves competitive MAE with CFP and Constant baselines without
having prior knowledge of the causal graph.

Figure 11. Effect of Dropout: Visualization of the effect of dropout on the outgoing edges of a protected attribute in a sampled MLP.
In the biased dataset (left), the protected attribute has a slight negative correlation with the target, while in the fair dataset this effect is
reduced to Gaussian Noise.
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Figure 12. Derivation of Noise Variables: Pearson correlation of features including noise terms calculated using inverse probabilistic
programming in dowhy’s compute noise functionality. Noise terms are uncorrelated with protected attributes and highly correlated
with their corresponding observable.
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