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Abstract

Deep learning has shown impressive results in a variety of time series forecasting tasks, where
modeling the conditional distribution of the future given the past is the essence. However,
when this conditional distribution is non-stationary, it poses challenges for these models
to learn consistently and to predict accurately. In this work, we propose a new method to
model non-stationary conditional distributions over time by clearly decoupling stationary
conditional distribution modeling from non-stationary dynamics modeling. Our method is
based on a Bayesian dynamic model that can adapt to conditional distribution changes and
a deep conditional distribution model that handles multivariate time series using a factorized
output space. Our experimental results on synthetic and real-world datasets show that our
model can adapt to non-stationary time series better than state-of-the-art deep learning
solutions.

1 Introduction

Time series forecasting is a cornerstone of modern machine learning and has applications in a broad
range of domains, such as operational processes (Salinas et al. |2020), energy (Lai et al., 2018, and
transportation (Salinas et al.| 2019)). In recent years, models based on deep neural networks have shown
particularly impressive results (Rangapuram et al.l |2018; [Salinas et al., [2019; 2020} [Rasul et al.l |2021b)) and
demonstrated the effectiveness of deep feature and latent state representations.

Despite this exciting progress, current time series forecasting methods often make the implicit assumption
that the distribution of the observed time series conditioned on the input and past is time-invariant. In
real-world applications this assumption is often violated, which results in non-stationarity and poses serious
practical challenges to a model’s robustness and predictive power. The statistics literature describes several
related concepts of (non-)stationarity for time series, with weak and strong stationarity being the most widely
used ones (Hamilton) [1994; |Brockwell & Davis|, 2009). Common to these variants of (non-)stationarity is
that they are defined in terms of a stochastic process’ joint or marginal distribution. For example, given a
univariate time series {y; € R};cz and any subset of time points {t1,ts,...,t;}, the time series is strongly
stationary i VT € Z 1 p(Ye,, Yo - - Yti) = PWtstrs Ytotrs - -+ Ytitr)-

While non-stationarity in a stochastic process’ joint or marginal distribution is important and has been
widely studied (Dickey & Fuller, [1979; [Kwiatkowski et al.l |1992; Hamilton) 1994} Kim et al. 2022)), we argue
that temporal forecasting relies more heavily on the properties of a time-series’ conditional distribution
P(Yt|yi—Bit—1,T1—pt), where yi—p.t—1 = (Yt—B, Yt—B+1,-- -, Yt—1), Yz is a real vector of the target variable,
B € Z+y is the lookback window size and can be arbitrarily large, and x; is a real vector containing
auxiliary information. Most forecasting methods, from traditional approaches (e.g., Autoregressive Integrated
Moving Average (ARIMA; (Box et al.| |2015)), Generalized Autoregressive Conditional Heteroskedasticity
(GARCH; (Englel [1982; Bollerslev, |1986])), state-space models (SSMs; (Kalman) [1960))) to more recent models
(e.g., recurrent neural networks (RNNs; (Hochreiter & Schmidhuber] [1997; [Salinas et al., [2020)), temporal
convolutional networks (TCNs; (Bai et al., 2018))), Transformers (Vaswani et al., 2017} [Rasul et al., 2021bj
Wu et all 2021} [Nie et al., 2022 Drouin et al., [2022)), Neural Processes (NPs; (Garnelo et al.l [2018a3bl))),
rely on this conditional distribution for predictions, but many of them implicitly assume its stationarity by
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Figure 1: Overview: Decoupled Model. Our idea is to decouple the stationary (time-invariant) modeling (left)
and the non-stationary (time-variant) modeling (right) of the conditional distribution p(y:|y¢—1:.—B) across time ¢
(middle). The dashed arrows indicate the information flow at time 7' — 1 when predicting yr, while the solid arrows
indicate the information flow at time T when predicting yr41

using time-invariant model parameters. While a model with stationary conditional distribution can still
handle non-stationarity in the joint or marginal distribution, such as seasonality and trend, by conditioning
on extra features in @, such as day of the week, the conditional distribution itself may also change due to (1)
unobserved causes and/or (2) new causes. For example, the daily number of posts from each user on a social
media platform is unlikely to be robustly predictable from historical data, even with input features like day
of the week, because (1) user activity is often affected by events that are not reflected in the observable data
(e.g., illness); and (2) events that have not been seen before may occur (e.g., a new functionality being added
to the platform) and change the functional pattern of the input-output relation between the conditioning
and target variables in an unpredictable way. How to deal with these changes in the model’s conditional
distribution is the main focus of this work.

Autoregressive (AR) models, TCNs, and Transformers model p(y:|y:—p.t—1,@t—p:t) with time-invariant
parameters (e.g., the weights and biases in the neural network) and therefore assume stationarity in
P(Yt|Yt—Bit—1,Ti—p:t). In contrast, SSMs, RNNs, and NPs model p(y:|y1.t—1,21:+) with time-invariant
parameters as well, but they have a growing number of conditioning variables (note the time range 1:t)
and therefore can potentially model different conditional distributions p(y:|yi—p.t—1, i—p:t) at different
time points ¢t. However, these models need to achieve two goals using the same time-invariant structure: (1)
modeling p(y:|Y:—p.t—1, T+—p:t); and (2) modeling its changes over time. Because they do not incorporate
explicit inductive biases for changes in p(yt|yt—p:t—1, T:—p.t), they either cannot learn different (seemingly
inconsistent) relations between the conditioning and target variables (if the model capacity is limited) or
tend to memorize the training data and are not able to generalize to new changes at test time.

In this work, we take a different approach to dealing with non-stationary conditional distributions in time
series. The core of our model, called DynaConF, is a clean decoupling of the time-variant (non-stationary)
and the time-invariant (stationary) part of the distribution. The time-invariant part models a stationary
conditional distribution, given a control variable, while the time-variant part focuses on modeling the changes
in this conditional distribution over time through the control variable (Figure . Using this separation, we
build a flexible model for the conditional distribution of the time series and make efficient inferences about
its changes over time. At test time, our model takes both the uncertainty from the conditional distribution
itself and non-stationary effects into account when making predictions and can adapt to unseen changes in
the conditional distribution over time in an online manner.



Under review as submission to TMLR

2 Related Work

Time series forecasting has a rich history (Hamilton) 1994} Box et alJ, 2015)), with many recent advances due
to deep neural networks (Lim & Zohrenl [2020)). The following paragraphs discuss different approaches to
non-stationary time series modeling and their relation to our work.

Non-Stationary Marginal Distribution. There are three common ways of dealing with non-stationarity
in the marginal distribution: (1) Data transformation. In ARIMA models, taking the difference of the
time series over time can remove trend and seasonality. More advanced approaches based on exponential
smoothing or seasonal-trend decomposition (Cleveland et all [1990) have also been combined
with deep neural networks and achieve promising performance (Smyl, |2020; [Bandara et al.| |2020). More
recently, Kim et al| (2022) propose to use reversible normalization/denormalization on the input/output of
the time series model to account for (marginal) distribution shifts over time. (2) Inductive bias. As an
alternative to data transformations, the underlying ideas of exponential smoothing and decomposition can
also be incorporated into deep learning models as inductive biases, which enables end-to-end handling of
seasonality /trend (Lai et al., 2018} |Oreshkin et al., 2020; [Wu et al., 2021} |Woo et al., 2022). Similarly, in
models based on Gaussian processes, the inductive biases can be added as specific (e.g., periodic or linear)
kernel choices (Corani et al., [2021)), and in models based on temporal matrix factorization as part of the loss
function (Chen et al., [2022). (3) Conditioning information. Adding features such as relative time (e.g.,
day of the week) and absolute time to the model input as conditioning information is commonly used in deep
probabilistic forecasting models (Rangapuram et al., [2018; [Salinas et al., 2019} 2020} Rasul et al., [2021bfa)).
In our work, we focus on proper handling of changes in the conditional distribution. To deal with marginal
distribution shifts, we simply add conditioning information as in approach (3), although we could potentially
utilize approach (1) and (2) as well.

Non-Stationary Conditional Distribution. State-space models (Fraccaro et all, [2017; [Rangapuram)|
let al., |2018; |de Bézenac et al., 2020; Tang & Matteson, 2021; Klushyn et al. |2021) and recurrent neural
networks (Salinas et all [2019; [2020; Rasul et al., 2021bfa)) are among the most popular choices to model
temporal dependencies in time series. When these models are applied to, and therefore conditioned on, the
entire history of the time series, they can theoretically “memorize” different conditional distributions at
different points in time. However, for these models to generalize and adapt to new changes in the future, it is
critical to have appropriate inductive biases built into the model. A common approach is to allow state-space
models to switch between a discrete set of dynamics, which can be learned from training data
[2020; |Ansari et all 2021). However, the model cannot adapt to continuous changes or generalize to new
changes that have not been observed in the training data. In contrast, our model has explicit inductive
biases to account for both continuous and discontinuous changes, and to adapt to new changes.
[Mukherjee| (2020) proposed a nonlinear state-space model with a time-varying transition matrix for the latent
state. In contrast, our model is a decoupled deep model separating the time-invariant conditional distribution
modeling using a deep encoder and the non-stationary dynamics modeling.

Observation Model. The expressivity and flexibility of the observation model is a topic that is especially
relevant in case of multivariate time series. Different observation models have been employed in time series
models, including low-rank covariance structures (Salinas et al., [2019), auto-encoders (Fraccaro et al. 2017}
Nguyen & Quanz, 2021), normalizing flows (de Bézenac et al., [2020; Rasul et al., 2021b)), determinantal point
processes (Le Guen & Thome, 2020), denoising diffusion models (Rasul et al., 2021a; |Tashiro et al., 2021}
|Alcaraz & Strodthoff] [2022)), and probabilistic circuits 2021). In this work, we prioritize scalability
by assuming a simple conditional independence structure in the output space and consider more expressive
observation models as orthogonal to our work.

Online Approaches. Continual learning (Kirkpatrick et al., 2017; Nguyen et al., 2018; Kurle et al., 2019;
[Parisi et all |2019; De Lange et all [2021; Gupta et all [2022) also addresses (conditional) distribution changes
in an online manner, but usually in a multi-task supervised learning setting and not in time series. In this
work, our focus is on conditional distribution changes in time series, and the conditional distribution can
change either continuously or discontinuously in time.
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3 Method

We study the problem of modeling and forecasting time series with changes in the conditional distribution
p(Y¢|yi—B:t—1, Tt p.¢) over time ¢, where y; € RPv is a target time series, and &; € R+ is an input containing
contextual information. We make the following assumption:

Assumption 1 y; only depends on a bounded history of y and x for all t. That is, there exists B € Z~q
such that for all't, p(yi|y<e, ®<t) = P(Yt|Yt—B:t—1, Tt—B:t)-

Although we assume that y; only depends on the history up to B time steps, its conditional distribution can
change over time based on information beyond B steps. Assumption[I]is not particularly restrictive in practice,
since we usually have a finite amount of training data while B can be arbitrarily large (although usually not
needed). Given historical data {(z;,y;)}i_;, our task is to fit a model to the data and use it to forecast
{y: tTjTHH, {yt}tTjTﬁﬁﬁl, ..., continually with a horizon and step size H, given {wt}tTjTlil, {%}quﬁ}ﬁp e
At time T, x;,t < T, may contain any information known at time ¢, while x;,¢ > T, can only contain
information known in advance, such as day of the week. We do not distinguish between these two cases in

notation for simplicity.

3.1 Decoupled Model

We assume that the distribution p(y:|yi—p.t—1,T¢—p.¢) is from a distribution family parametrizable by
0, € RP¢. Concretely, we assume a normal distribution N (s, 3¢), so 0y := (u¢, X¢). Our decoupled model
is not restricted to this assumption, but as we will see in Section [3.5] it allows for more efficient inference.
Furthermore, we assume

0: = fup.. (Yt—B:t—1,Tt—B:t), (1)

so f : RBXDy x RB+xDa _y RDs models the conditional distribution, with its own static parameters
denoted collectively as 1, and is modulated by a dynamic control variable ¢, € RP#, which can change over
time according to a dynamic process defined in Section A property guaranteed in our model is that if ¢
stays the same across time, then the conditional distribution p(y:|y:—p.t—1, T+—p:+) stays the same as well.

Our key idea is to separate the time-variant part of the model from the time-invariant part, instead of allowing
all components to vary across time. This simplifies probabilistic inference and improves the generalization
capabilities of the learned model by allowing the time-invariant part to learn from time-invariant input-output
relations with time-variant modulations.

3.2 Conditional Distribution at One Time Point

First we describe how we model the conditional distribution p(y:|y:—p.t—1,%:—p.t) at each time point ¢
without accounting for non-stationary effects (Figure [1} left). We use a neural network ¢ to encode the
historical and contextual information into a vector h; € RP* as hy = g(y;_p.t_1,®;_p.t). For example, g
could be a multi-layer perceptron (MLP) or a recurrent neural network (RNN). The parameters of g are
time-invariant and included in v (Eq. .

We note that a key distinction between our model’s use of an RNN and a typical deep time series model
using an RNN is that the latter keeps unrolling the RNN over time to model the dynamics of the time series.
In contrast, we unroll the RNN for B + 1 steps to summarize (y:—p.t—1, €:—p:t) in the exact same way at
each time point t, i.e., we apply it in a time-invariant manner.

We construct the distribution of y; such that each dimension i of y;, denoted as y;;, is conditionally
independent of the others given h; this helps the learning and inference algorithms to scale better with the
dimensionality of y;. First we transform h; into D,, vectors 2z;; € RE ag

Zi; = tanh(Wz,iht + bz,i), Vi=1,... ,Dy (2)

where W ; € REXDn and b.; e R¥, so z¢; corresponds to y; ;. Then, from z;;, we obtain the distribution
parameters 0, ; of y; ;. Specifically, we assume a normal distribution with a diagonal covariance for y;, so
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Yei ~ N (i, 07,;) and 6y := (e, 07,), with
Ui = wgﬂ-zt,i +bui, O1i= exp(ngizt,i +boi), (3)

where w,,; € R¥ and Wy € RE. We use w, € RE Py and b, € RPv to denote the concatenation of wii
and b, ; along i, and similarly w,, by, zt, pt, o

3.3 Conditional Distributions Across Time Points

We have explained how we model the conditional distribution p(y:|yi—p.t—1,T:+—pB.¢) at each time point ¢. To
model changes in the conditional distribution over time, we first specify which parameters to include in the
control variable ¢; € RP¢  which changes over time and modulates the conditional distribution (Figure
right).

We choose ¢, := w,,. Recall that w, transforms z; into the mean p; of y;, where z; is a summary of the
information in the conditioning variables (y;—p.—1, @t~ p:t). By allowing w, to be different at each time
point ¢, the conditional mean of y;, E[y:|y:—p.t—1,Z:—p.t], can change as well. We could allow w, to change
over time as well, effectively modeling a time-variant conditional variance, but focusing on w,, reduces the
dimensionality of ¢; and enables more efficient inference utilizing Rao-Blackwellization (Section .

We propose to decompose ¢, into a dynamic stochastic process x; € RP# and a static vector by € RDo:

¢t =Xt + by. (4)
The intuition is that by captures the global information of ¢, and acts as a baseline, while x; captures the
time-variant changes of ¢; relative to by.

We assume that x; follows the generative process
e ~ B(A); x: ~N(0,%,), if 7 = 0;

5
€ ~N(0,X.); x¢=xt—1+ €, if mp =1, (5)

B and N denote the Bernoulli and normal distributions, respectively. m; € {0,1} is a binary random variable
that either generates the current x; as a new sample drawn from a global distribution A(0,X,), or as a
continuation from the previous x;_1 following a simple stochastic process in the form of a random walk.
The intention is to allow x; to change both continuously (when 7 = 1) through the random walk and
discontinuously (when m; = 0) through the global distribution, which captures the variety of possible changes
of x; in its parameter X,.

We assume x; to start at ¢ = B, since it controls the conditional distribution, whose first observation occurs
at t = B+ 1. For the initial xp, we assume generation from AN(0,X,) as well. Our intention is that
N(0,X,) should be the distribution to generate new x; whenever there is a drastic change in the conditional
distribution of y;, so at ¢ = B it is natural to use that distribution.

Recall that x; € RP¢, with Dy = E - D,. We propose to separate x; along the dimensions of y; into D,
groups. For each i = 1,...,D,, we define x;; € RF as in Eq. The final x; is the concatenation of
Xt,; for all . The intuition is to allow the group of components of x; modulating each dimension of y; to
change independently of the others, corresponding to the conditional independence assumption we made in
Section [3:2] We can thus sample a subset of dimensions of y; in each iteration during training to scale to
high-dimensional time series. Our full model is shown in Figure [2]

3.4 Learning

All parameters of the conditional distribution model and the prior, i.e., {1, bgs, A, 3, X}, are learned by
fitting the model to the historical training data {(y:, z¢)}/_,. We train our model by maximizing the marginal
log-likelihood, where the latent variables x; are marginalized out. Given a trajectory of x g.7, the conditional
log-likelihood is

T

log p(Yp41.7|Y1:8: T1r, XBr) = Y 1og D(Ye|yi—Bi—1, Tepit, Xt)- (6)
t=B+1
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Figure 2: Architecture. DynaConF is built on the principle of a clean decoupling of stationary conditional
distribution modeling (red) and non-stationary dynamics modeling (blue). We predict the parameters (6) of the
conditional distribution (green) by aggregating time-invariant local context (z) and modulating this context with
time-variant global dynamics (¢) driven by a random walk () with Bernoulli-restarts ().

Marginalizing out x; gives the log-likelihood objective

log p(yB+1:7|Y1:B, T1.7) = log/p(yB+1:T|y1:Baml:TaXB:T)p(XB:T)dXB:T- (7)

Since the integral is intractable, we instead introduce a variational distribution q(xp.7) and maximize the
following variational lower-bound £ of the log-likelihood in Eq. [7}

L :=Eq[logp(yp41.7|Y1:8, 1.7, X B:T)] + Eq {log %} <logp(yp+1.7|Y1:B, T1.T). (8)

Based on the conditional independence structure of the prior process, we construct the variational distribution
q(xp.r) similar to an autoregressive process, however, we assume a simple normal distribution at each time
step for efficient sampling and back-propagation. First, we define q(xp) as a normal distribution. Then,
conditioning on the previous x;_1, we recursively define

alxelxi-1) = N(a: © xi—1 + (1 — ay) © my, diag(s?)), Vt=B+1,...,T, 9)

where a;, m;, s; € RF are variational parameters. Intuitively, a; is a gate that chooses between continuing
from the previous x;_1, with noise A/'(0, diag(s?)), and using a new distribution N (m,, diag(s?)).

We note that both terms in Eq. [8| factorize over time t = B+ 1,...,T,

- T
p(xt|xt—1)

L=F. . log (Yt |Yt—Bit—1,i—Bit, Xt) | + Eqxes. log
a(xs:T) t:zB;rl a(xs:7) t:ZB alxelxi—1)

(10)

T T
= Z Eq(xo) log p(Ye|yi—B:t—1,Tt— B4, Xt)] + Z Eq(xe-1.)

[log p(xtlxt—l)]
t=B+1 t=B

O1(Xt|thl)

where, to simplify notation, we define p(x¢|x:—1) at t = B to be p(x ), and similarly for q. The expectations
in this equation can be evaluated by Monte-Carlo sampling from q(x) with the reparameterization trick
(Kingma & Welling, [2013)) for back-propagation.
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In practice, sequential sampling in the autoregressive posterior could be inefficient because the sampling
cannot be parallelized. We further develop a generalized posterior by replacing the autoregressive chain with
multiple moving-average blocks combined with autoregressive dependencies between consecutive blocks, where
sampling within each block can be carried out in parallel. Specifically, for the i-th time block, ¢ € (b;, b;+1],
where by = B,bg11 =T,b; < bj+1, out of K blocks, we sample

8 ~ N (1~ ar) © my, diag(s)) (11)

in parallel across t and compute

xi=| I a]oxe+ > | 1] a]@du (12)

vE(bs,t] w€E(b;,t] \veE(u,t]
This generalizes the autoregressive posterior and is the form used in our experiments.

Utilizing our modeling assumptions from Section and Section we develop an SGD-based optimization
protocol suitable for large datasets. Specifically, we alternate between optimizing the conditional distribution
model and the prior and posterior of the dynamic model with different sampling strategies to accommodate
high dimensionality and long time spans. See Appendix [A] for more details about our optimization process.

3.5 Forecasting

At test time, we are given past observations yi.p as well as input features x1.74 g, including H future steps,
to infer the conditional distribution p(yr+1.7+m|Y1.7, 1.7+ 1). We note again that 741,74+ 5 only contains
information known ahead, such as day of the week. Based on our modeling assumptions, the conditional
distribution can be computed as

p(yT+1:T+H|y1:T7 wl:TJrH)
(13)
:/p(yT+1:T+H‘yT+1fB:T; LT+1-B:T+H, XT+1:T+H)P(XT+1;T+H|y1;T,~’B1:T)dXT+1:T+H~

The first factor in the integrand can be computed recursively via step-by-step predictions based on our
conditional distribution model given x74+1.7+H,

T+H

P(YT+1:7+H YT 41— BT 141 BT+ Hy XTH+1:T+H) = H P(Yt|Yt—Bit—1, Te—Bits Xt)- (14)
t=T+1

The second factor in the integrand can be further factorized into

p(Xr+1:7+H|Y1.T, T1.T) = /P(XT+1:T+H\XT)P(XT|’!J1:T,CC1:T)dXT~ (15)

We use Rao-Blackwellized particle filters (Doucet et al.l [2000)) to infer p(xr|y1.7, €1.7), so our model can
keep adapting to new changes in an online manner, where the Rao-Blackwellization is possible because of our
distribution assumptions made in the previous sections. We jointly infer 7r; and x:, with particles representing
¢ and closed-form inference of x;. Once we have obtained the posterior samples of p(xr|y1.7, €1.7), we use the
prior model to sample trajectories of x71.74+m conditioned on the samples of xr. With the sample trajectories
of p(XT+1.7+H|Y1.7, T1.7), We sample the trajectories of p(yr 1.7y u|yry1-B.T, 11— BT H, XT+1.T+H)
using the aforementioned step-by-step predictions with our conditional distribution model.

4 Experiments

We compare our approach with 2 univariate and 9 multivariate time series models on synthetic (Section [4.1)
and real-world (Section and datasets; see Table|l| for an overview, including references to the relevant
literature and implementations. We note that DeepVAR is also called Vec-LSTM in previous works (Salinas
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Table 1: Baselines Models.

Method S R M P N Implementation
DeepAR (Salinas et al.||2020) v v GluonTSﬂAlexandrov et al.|[2020)
DeepSSM (Rangapuram et al.| 2018) v v GluonTS
TransformerMAF (Rasul et al.|[2021b) v v v PyTorchT

DeepVAR (Salinas et al.||2019) v v v v GluonTS

GP-Copula (Salinas et al.||2019) v v v GluonTS

LSTM-MAF (Rasul et al.|[2021b) v v v PyTorchTS

TimeGrad (Rasul et al.|[2021a) v v v PyTorchTS

TACTIS (Drouin et al.| [2022) v v / Authorsf?]

NS Tranformer (Liu et al.||2022) v v TSliI:ElVWl et al.| 2022)
DeepTime (Woo et al.|[2023) v v v Authors

Koopa (Liu et al.| 2023) v v TSlib

[S = Synthetic; R = Real-World; M = Multivariate; P = Probabilistic; N = Non-Stationary]

et al., 2019 Rasul et al., |2021b)). For our own model we consider two variants: an ablated model without the
dynamic updates to the conditional distribution described in Section (StatiConF); and our full model
including those contributions (DynaConF). In both cases we experiment with different encoder architectures.
For synthetic data, we use either a two-layer MLP with 32 hidden units (*-MLP) or a point-wise linear +
tanh mapping (*~PP) as the encoder. For real-world data, we use an LSTM as the encoder.

4.1 Experiments on Synthetic Data

Datasets For our experiments on synthetic data we simulate four conditionally non-stationary stochastic
processes for T' = 2500 time steps, where we use the first 1000 steps as training data, the next 500 steps as
validation data, and the remaining 1000 steps as test data: (AR(1)-Flip) We simulate an AR(1) process,
Yt = wiys—1 + €, € ~ N(0,1), but resample its coefficient w; from a uniform categorical distribution over
{=0.5,40.5} every 100 steps to introduce non-stationarity. (AR(1)-Dynamic) We simulate the same process
as above but now resample w; from a continuous uniform distribution (-1, 1) every 100 steps. (AR(1)-Sin)
We simulate the same process as above but now resample w; according to w; = sin(27t/T'). Different from
the two processes above, this process has a continuously changing non-stationary conditional distribution
with its own time-dependent dynamics. (VAR(1)-Dynamic) This process can be viewed as a multivariate
generalization of AR(1)-Dynamic and is used in our comparisons with multivariate baselines. We use a
four-dimensional VAR, process with an identity noise matrix. Similar to the univariate case, we resample
the entries of the coefficient matrix from a continuous uniform distribution ¢4(—0.8,0.8) every 250 steps.
In addition, we ensure the stability of the resulting process by computing the eigenvalues of the coefficient
matrix and discard it if its largest absolute eigenvalue is greater than 1.

Experimental Setup For univariate data (AR(1)-Flip/Sin/Dynamic), we compare our approach with the
two univariate baselines DeepAR and DeepSSM. For multivariate data (VAR(1)-Dynamic), most baselines
are redundant because their focus is on better observation models, while the underlying temporal backbone
is similar. Since our synthetic observation distributions are simple, we compare with two model families
that differ in their temporal backbone: DeepVAR (RNN backbone) and TransformerMAF (Transformer
backbone). We use a context window size of 200 to give the models access to the information needed to infer
the current parameter of the true conditional distribution. We tried increasing the window size to 500 on
VAR(1)-Dynamic but did not see performance improvements. We also removed the unnecessary default input
features of these models to prevent overfitting. Further details about our setup can be found in Appendix

For evaluation we use a rolling-window approach with a window size of 10 steps. The final evaluation metrics
are the aggregated results from all 100 test windows. We report the mean squared error (MSE) and continuous

Thttps://github.com/awslabs/gluon-ts
*https://github.com/zalandoresearch/pytorch-ts
Shttps://github.com/ServiceNow/tactis
4https://github.com/thuml/Time-Series-Library
Shttps://github.com/salesforce/DeepTime
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Table 2: Quantitative Evaluation (Synthetic Data). We compare StatiConF/DynaConF to (a) 4
univariate and (b) 6 multivariate baselines using CRPS and MSE. Values behind models indicate the number
of hidden units. Full results including the standard deviations can be found in the Appendix E

AR(1)-F AR(1)-S AR(1)-D Method CRPS MSE
Method CRPS MSE CRPS MSE CRPS MSE GroundTruth 0496 2.8
GroundTruth 0.731 1.2 0.710 1.6 0.624 2.1 DeepVAR-10 0.797 84
DeepAR-10 0.741 13 0764 18 0768 3.2 DeePViR"lO 0792 84
DeepAR-40 0.740 13 0776 1.8 0820 3.6 DeepVAR-160 0.787 83
DeepAR- 160 0.740 1.3 0774 18 0801 3.5 TransformerMAF-8  0.800 8.5
DeepSSM 0.755 1.3 0.761 1.8 0.803 3.3 TransformerMAF-32  0.806 8.5
__ StatiConF-MLP  0.753 1.3 0.784 1.9 0764 3.3 TransformerMAF-128 0.866 94
£ StatiConF- PP 0752 1.3 0763 1.8 0783 3.3 __ StatiConF MLP 0.806 8.5
2 DynaConF MLP 0.750 1.3  0.727 1.6  0.691 2.6 # StatiConF PP 0.805 85
"~ DynaConF-PP 0.737 1.2 0.721 1.6 0.687 2.6 8 DynaConF-MLP 0.762 7.9
[AR(1)-*: F = Flip; S = Sin; D = Dynamic] DynaConF-PP 0.609 4.5

(a) Univariate (b) Multivariate: VAR(1)-Dynamic

ranked probability score (CRPS) (Matheson & Winkler] [1976)), a commonly used score to measure how close
the predicted distribution is to the true distribution (see Appendix [E|for details). We note that CRPS is only
applicable to the probabilistic forecasting methods. Full results including standard deviations can be found
in the Appendix [F] In all cases lower values indicate better performance.

Results The results on synthetic data are shown in Table[2] For univariate data, our full model (DynaConF)
outperforms its ablated counterpart (StatiConF) consistently across datasets and encoders, validating
the importance of our dynamic adaptation to non-stationary effects. DynaConF-PP is also superior to
all univariate baselines, with its closest competitor DeepAR~10 behind by an average of 5.6% (CRPS).
Furthermore, we note that our model with the pointwise encoder tends to outperform the MLP encoder,
both for the ablated and full model. For multivariate data we observe similar trends. Here, our full model
(DynaConF-PP) performs 24.3% (CRPS) better than the ablated model (StatiConF-PP) and 22.6% (CRPS)
better than the best-performing baseline (DeepVAR~-160). Since for synthetic data we also have access to
the ground-truth models, we include the corresponding scores as references and upper bounds in terms of
performance.

Figure [3| shows qualitative results of our model on AR(1)-Flip/Sin/Dynamic. Note that because the encoder
in our model is non-linear, the encoding z; that is combined with ¢; is not the same as y;_1, so the inferred
¢+ may not match the sign/scale of w;, although the predictions based on ¢; and z; can still stay close to
Yt = WYt—1 + €, e.g., if the signs of z; and y;_; are flipped, and the signs of ¢; and w; are also flipped.
Nonetheless, we can clearly see how ¢, differs qualitatively according to wy: gradual changes (Figure
vs. sudden jumps (Figure |3al and Figure as well as jumps to previous values (Figure vs. new values
(Figure . Furthermore, since our model only sees data for t < 1000 during training, it is remarkable that it
can adapt to unseen changes for ¢ > 1000 (Figure [3bl and Figure .

4.2 Experiments on Real-World Data — Set 1

Datasets and Setup We evaluate the proposed method on 6 widely-used datasetsﬁ with published results
(Lai et al., |2018; |Salinas et al., [2019)): (FEzchange) daily exchange rates of 8 different countries from 1990
to 2016; (Solar)m solar power production in 10-minute intervals of 137 PV plants in 2006; (Electm’city)ﬂ
hourly electricity consumption of 370 customers from 2012 to 2014; (Tmﬁcic)ﬂ hourly occupancy data at 963
sensor locations in the San Francisco Bay area; (Taxi) rides taken in 30-minute intervals at 1214 locations in

Shttps://github.com/mbohlkeschneider/gluon-ts/tree/mv_release/datasets
"http://www.nrel.gov/grid/solar-power—data.html
8https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
9http://pems.dot.ca.gov
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Figure 3: Qualitative Results. We show one dimension of ¢; of DynaConF—-PP inferred with particle
filters at test time on (a) AR(1)-Flip, (b) AR(1)-Sin, and (c¢) AR(1)-Dynamic. The red dashed lines show
the parameter w; in the generative processes varying over time. The blue curves and bands are the medians
and 90% confidence intervals of the posterior. Note that because the encoder in our model is non-linear,
the encoding z; that is combined with ¢; is not the same as y;_1, so the inferred ¢; may not match the
sign/scale of w;, but we expect it to change gradually or suddenly according to w;.

Table 3: Quantitative Evaluation (Real-World Data — Set 1). CRPS results of StatiConF/DynaConF
and 6 probabilistic forecasting baselines on a widely used set of 6 publicly available datasets. Full results
including standard deviations can be found in Appendix [F] NA: Due to the time gap between the training
and test sets for Taxi, some of the baselines cannot be applied. OOM: The model ran out of memory on our
16GB GPU using the minimum batch size and lookback window size.

Method Exchange Solar  Electricity Traffic Taxi Wikipedia
DeepVAR 0.013 0.434  1.059 0.168  0.586  0.379
GP-Copula 0.008 0.371  0.056 0.133 0.360  0.236
LSTM-MAF 0.012 0.378  0.051 0.124  0.314 0.282
TransformerMAF  0.012 0.368  0.052 0.134 0.377  0.274
TimeGrad 0.009 0.367  0.049 0.110 0.311  0.261
TACTiS 0.011 0476  0.047 OOM NA OOM
StatiConF (ours)  0.009 0.363  0.057 0.112  0.301 0.339
DynaConF (ours) 0.009 0.355 0.052 0.111  0.301 0.259

New York City in January 2015/2016; ( Wikipedia) daily page views of 2000 Wikipedia articles. We use the
same train/test splits and input features, such as time of the day, as previous works with published code
and results (Salinas et al [2019; [Rasul et al, [2021bja)), from which we also retrieved the performance of the
baselines. For our method, we first train StatiConF and then reuse its learned encoder in DynaConF, so the
optimization of DynaConF is focused on the dynamic model. Our models use a two-layer LSTM with 128
hidden units as the encoder, except for the 8-dimensional Exchange data, where the hidden size is 8. We
stress again that, different from DeepVAR or LSTM-MAF, we use LSTM as an encoder of (y;—p:t—1, Ti—B,t)
only, so we actually “restart” it at every time step. More details of our hyperparameters can be found in
Appendix [C]

Results The results are shown in Table [3]and [d] As we can see, the relative performance of each method
differs across datasets and evaluation metrics. This shows that different models may benefit from dataset-
specific structure in different ways. However, DynaConF achieves the best or closest-to-the-best performance
more often than the baselines. Where it does not outperform, its performance is consistently competitive. We
also note that our full model (DynaConF'), which adapts to changes in the conditional distribution, performs
either similarly or better than our ablated model (StatiConF'), which itself differs from the baselines due to
its explicit modeling of time-invariant conditional distributions. Full results including standard deviations
can be found in Appendix [F}
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Table 4: Quantitative Evaluation (Real-World Data — Set 1). MSE results of StatiConF/DynaConF
and 9 baselines on a widely used set of 6 publicly available datasets. Full results including standard deviations
can be found in Appendix [F] NA: Due to the time gap between the training and test sets for Taxi, some
of the baselines cannot be applied. OOM: The model ran out of memory on our 16GB GPU using the
minimum batch size and lookback window size.

Exchange Solar Electricity Traffic Taxi  Wikipedia

Meth.

ethod fo-4] e+2]  [e+5] ed]  [etl]  [e+7]
DeepVAR 1.6 9.3 2.1 6.3 7.3 7.2
GP-Copula 1.7 9.8 2.4 6.9 3.1 4.0
LSTM-MAF 3.8 9.8 1.8 4.9 2.4 3.8
TransformerMAF 3.4 9.3 2.0 5.0 4.5 3.1
TimeGrad 2.5 8.8 2.0 4.2 2.6 3.8
TACTiIS 2.6 14 1.4 OOM NA OOM
NS Transformer 2.5 10 2.2 7.0 NA 5.2
DeepTime 1.4 9.6 2.4 4.8 NA 4.6
Koopa 1.4 10 24 5.8 NA 3.9
StatiConF (ours) 2.3 8.2 1.8 4.8 2.2 4.0
DynaConF (ours) 2.0 8.0 1.7 4.8 2.2 3.7

Table 5: Quantitative Evaluation (Real-World Data — Set 2). CRPS results of StatiConF/DynaConF
and 6 probabilistic forecasting baselines on publicly available sales and temperature data.

Method ‘Walmart Temperature
DeepVAR 0.635+0.014 0.584+0.025
GP—Copula 0.557 +0.011 0.209+0.006
LSTM-MAF 0.685+0.010  0.224::0.006
TransformerMAF 0.638=0.060 0.244 +0.017
TimeGrad 0.604 +0.026 0.195+0.002
TACTiS 0.618+0.047 0.183:0.002

StatiConF (OllI‘S) 0.573+0.015 0.199+0.004
DynaConF (ours) 0.512:0.001 0.186+0.003

4.3 Experiments on Real-World Data — Set 2

Datasets and Setup We further evaluate our method against state-of-the-art baselines on two more
publicly available datasets: (Walmart)lﬂ weekly sales of 45 Walmart stores from February 2010 to October
2012; (Tempemture)ﬂ monthly average temperatures of 1000 cities from January 1980 to September 2020.
We use the last 10% of the training time periods as validation sets to tune the hyperparameters for all models.
For additional details about the experiment setup we refer to Appendix

Results The results are shown in Table [5]and [f] On these datasets, DynaConF shows a clear advantage
over the baselines in terms of both CRPS and MSE. We believe this is mainly due to more significant changes
in the conditional distributions of the time series in Set 2, a hypothesis which is also supported by the
superior performance of DynaConF compared to the ablated StatiConF model. It is also worth noting that
the best-performing baseline models across Set 1 and Set 2 are different, while the proposed model performs
more consistently. Combined with the results in the previous section, we conclude that DynaConF performs
competitively if the conditional distribution remains relatively stable but outperforms the baselines if the
conditional distribution does undergo dynamic changes, in line with its design and ability to account for such
changes.

Ohttps://www.kaggle.com/datasets/yasserh/walmart-dataset
Hhttps://wuw.kaggle.com/datasets/hansukyang/temperature-history-of-1000-cities-1980-to-2020
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Table 6: Quantitative Evaluation (Real-World Data — Set 2). MSE results of StatiConF/DynaConF
and 9 baselines on publicly available sales and temperature data.

Method Walmart Temperature
[e-1] [e-1]
DeepVAR 2.921 +4.8460-3 5.716+4.517¢-2
GP—Copula 2.761+1.505¢-2 1.43241.088¢-2
LSTM-MAF 4.275+2.7090-2 1.630+9.890¢-3
TransformerMAF 3.651+5.102¢-2 1.950+2 82802
TimeGrad 3.190+2.1310-2 1.07712.3410-3
TACTiS 5.666+4.668¢-1 0.952+1.738¢-3
NS Transformer 2.603+3.735¢-3 1.719+4.329¢-3
DeepTime 3.798 £6.788¢-2 1.664+1.517¢-2
Koopa 2.761+3.206e-3 1.170+3.523¢-3

StatiConF (ours)  3.146+1.90002  1.2414s.4s80¢3
DynaConF (ours) 2.497+6s10e-3 1.017+26s103

5 Limitations

Our model currently has the following limitations: (1) Since the variational posterior model complexity scales
in O(T), it could be challenging to train the model on extremely long time series. (2) We used a simple
observation distribution family in this work to allow efficient inference, but there are cases where this may
impact performance. For future work, it would be interesting to develop new variational posteriors and
training algorithms that can scale better and more flexible inference algorithms that can deal with more
complex observation distributions.

6 Conclusion

In this work, we addressed the problem of modeling and forecasting time series with non-stationary conditional
distributions. We proposed a new model, DynaConF, that explicitly decouples the time-invariant conditional
distribution modeling and the time-variant non-stationarity modeling. We designed specific architectures,
developed new types of variational posteriors, and employed Rao-Blackwellized particle filters to allow the
model to train efficiently on large multivariate time series and adapt to unseen changes at test time. Results
on synthetic and real-world data show that our model can learn and adapt to different types of changes
(continuous or discontinuous) in the conditional distribution and performs competitively or better than
state-of-the-art time series forecasting models.
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A Optimization Procedure

In contrast to existing time series models, we utilize a flexible variational posterior with a large number
of parameters in the order of O(T) and a structured prior model to account for conditional distribution
changes over time. However, jointly optimizing over these variational parameters and the parameters in the
conditional distribution model itself using stochastic gradient descent can be prohibitively demanding on the
computational resources, especially GPU memory. Instead, we propose an alternative optimization procedure
to learn these parameters.

Specifically, instead of optimizing by stochastic gradient descent (SGD) over all parameters in both the
conditional distribution model and the prior and variational posterior model, we propose to learn the model
by alternating the optimization of the parameters in the conditional distribution model and the prior and
variational posterior models. For the former, we condition on the samples from the current posterior model
while optimizing the conditional distribution model on randomly sampled sub-sequences from the time series
using SGD. For the latter, we fix the conditional distribution model, sample from the variational posterior
model over the entire time series either sequentially or in parallel, depending on the variational posterior
model we use, and compute the loss using the samples through the conditional distribution, prior, and
posterior models. Then we perform an update on the prior and posterior model parameters using the gradient
from the loss.

When the time series is high-dimensional and GPU memory becomes a constraint during training, we randomly
sample a subset of observation dimensions for each batch, since the loss decomposes over the observation
dimensions in our model.

For our models, we use Adam (Kingma & Baj, |2014]) as the optimizer with the default initial learning rate of
0.001 unless it is chosen using the validation set. The dimension of the latent vector z;; (see Section is
set to . = 4 across all the experiments.

B Synthetic Data: Details and Hyperparameters

On synthetic datasets, we use the validation set to early stop and choose the best model for both the baselines
and our models. We perform 50 updates per epoch. We use 32 hidden units for our 2-layer MLP encoder.
For the baselines, we report their results with different hidden sizes, including the default ones.

We keep most baseline hyperparameters to their default values but make the following changes to account for
properties of our synthetic data: (1) To reduce overfitting, we remove any unnecessary input features from

16



Under review as submission to TMLR

the models and use only past observations with time lag 1 as input. (2) To allow the models to adapt to
changes in the conditional distribution we increase the context window size to 200. This allows the models
to see enough observations generated with the latest ground-truth distribution parameters, so the models
have the necessary information to adapt to the current distribution. For VAR(1)-Dynamic, we also tried
extending it to 500, but it did not improve the performance. (3) DeepSSM allows modeling of trend and
seasonality, but since our synthetic data do not have those, we explicitly remove those components from the
model specification to avoid overfitting; (4) DeepVAR allows modeling of different covariance structures in
the noise, such as diagonal, low-rank, and full-rank. Since our synthetic data follow a diagonal covariance
structure in the noise, we explicitly specify it for DeepVAR.

C Real-World Data — Set 1: Details and Hyperparameters

On real-world datasets with published results, we use the last 10% of the training time period as the validation
set and choose the initial learning rate, number of training epochs, and model sizes using the performance on
the validation set for StatiConF. After training StatiConF, we reuse its encoders in DynaConF, so it only
needs to learn the dynamic model. For DynaConF, we use the same validation set to choose the number of
training epochs and use 0.01 as the initial learning rate.

Because of the diversity of the real-world datasets, we further apply techniques to stablize training. Specifically,
for all datasets, we use the mean and standard deviation to shift and scale each dimension of the time series.
For Exchange, we use the mean and standard deviation of the recent past data in a moving context window.
For the other datasets, we simply use the global mean and standard deviation of each dimension computed
using the whole training set. In all cases, for forecasting, the output from the model is inversely scaled and
shifted back for evaluation. These design choices were made based on the performance on the validation sets.

On real-world datasets, extreme values or outliers may cause instability during training. We optionally apply
Winsorization using the quantiles (0.025 and 0.975) computed from the recent past data in a moving context
window on Traffic and Wikipedia. The decisions of whether to apply this transformation were based on the
results on the validation sets.

D Real-World Data — Set 2: Details and Hyperparameters

On the Walmart and Temperature datasets, the experiment setup is the same for all the models. For Walmart,
the prediction window size is 4 weeks, and the test set consists of the last 20 weeks. For Temperature, the
prediction window size is 3 months, and the test set consists of the last 24 months. We found it helpful
to normalize the time series using the means and standard deviations computed from the training set for
each dataset for stabilizing training, especially for LSTM-MAF and TransformerMAF. We use the last 10%
of the training time period as the validation set to tune the hyperparameters, including the model size
(32,128,512,2048) and initial learning rate (0.01,0.001), and for early stopping for each model we test. For
the baseline models, we also use it to choose whether to apply marginal transformation (Salinas et al., |2019)
and mean scaling (Salinas et al.l [2020]). We also tried increasing the context window sizes for all the baseline
models but found that in many cases it resulted in worse validation performance compared to using the
default size. In the other cases, it resulted in small improvements on the validation set but similar or worse
performance on the test set. For consistency, we settled on using the same default context window size for all
the models.

E Details on Evaluation

We run all experiments for three different random seeds independently and calculate and report the mean
and standard deviation of each evaluation metric for each model. On synthetic datasets, we use 1000 sample
paths to empirically estimate the predicted distributions for all models. On real-world datasets, we use 100
sample paths.

We use two evaluation metrics: mean squared error (MSE) and continuous ranked probability score
(CRPS)(Matheson & Winkler, [1976). Assume that we observe y at time ¢ but a probabilistic forecast-
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Table 7: Quantitative Evaluation (Synthetic Data). CRPS results on univariate processes AR(1)-
Flip/Sin/Dynamic. Values behind architectures indicate the number of hidden units.

Method CRPS

AR(1)-F  AR(1)-S  AR(1)-D
GroundTruth 0.731+0.001 0.710+0.001 0.624 x0.001
DeepARfIO 0.741+0.005 0.764+0.004 0.768x0.011
DeepARfZlO 0.7400.003 0.776+0.002 0.820x0.053
DeepAR7160 0.740+0.001 0.774+0.004 0.801+0.047
DeepSSM 0.755+0.001 0.761+0.001 0.803+0.001

StatiConF—-MLP  0.753x0.001  0.784+0.002  0.764+0.003
StatiConF—PP 0.75210.002  0.763+0.001  0.783+0.002
DynaCoanMLP 0.7500.001 0.727x0.019 0.691+0.006
= DynaCoanPP 0.737+0001  0.721+0.005 0.687x0.010

[AR(1)-*: F = Flip; S = Sin; D = Dynamic]

ours)

ing model predicts the distribution of y to be F. MSE is widely used for time series forecasting, and for a
probabilistic forecasting model, where the mean of the distribution is used for point prediction, it is defined as

MSE(F,y) = (E.r[2] — y)? (16)

for a single time point ¢ and averaged over all the time points in the test set.

CRPS has been used for evaluating how close the predicted probability distribution is to the ground-truth
distribution and is defined as

CRPS(F.y) = [ (P(2) -1y < o) (1)

R

for a single time point ¢ and averaged over all the time points in the test set, where I denotes the indicator
function. Generally, F'(z) can be approximated by the empirical distribution of the samples from the predicted
distribution. Both MSE and CRPS can be applied to multivariate time series by computing the metric on
each dimension and then averaging over all the dimensions.

F Additional Experiment Results

Table [7] [8 0] and [L0] show the full CRPS and MSE results of the baselines and our models on the univariate
and multivariate processes respectively. Table [11] and [12| show the full CRPS and MSE results of our models
with means and standard deviations on previous real-world datasets. The results of the first 5 baselines on
the real-world data — set 1 are from (Rasul et al.| 2021bfal).

G Qualitative Comparison of DynaConF and StatiConF

Here we show some qualitative comparison of DynaConF and StatiConF predictions to highlight the differences
in their forecasting behaviors when facing changes in the distribution. Specifically, we compare their predictions
on one dimension from electricity dataset, where there appears to be a structural change in the time series at
test time. As we can see in Figure [d] as the prediction window keeps moving forward, DynaConF quickly
adapts to the new distribution, while StatiConF' struggles to react. We note that the encoder is shared
between these two models, so the differences come from the non-stationary model part.
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Figure 4: Qualitative Results on Electricity Dataset. We show the predictions of StatiConF (a—f) vs
DynaConF (g-1) on one dimension of electricity dataset, where there appears to be a change in the distribution
at test time.
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Table 8: Quantitative Evaluation (Synthetic Data). MSE results on univariate processes AR(1)-
Flip/Sin/Dynamic. Values behind architectures indicate the number of hidden units.

Method MSE

AR(1)-F  AR(1)-S AR(1)-D
GroundTruth 1.240.20a  1.643.0e3 2.1+53¢3
DeepAR710 1.3+11.7¢2 1.841.8¢2 3.247.2¢2
DeepARf4O 1.348.9¢-3 1.8+1.3¢2 3.6+3.80-1
DeepAR-160 1.312.8e3  1.8+9.6e-3  3.543.30-1
DeepSSM 1.3+2.2¢3 1.8+2.803 3.3+3.00-3

StatiConF—MLP 1.3+4.0e3 1.9+7.7¢3 3.3+3.5e-2
@ StatiConF—PP 1.3+4.7¢3 1.8+5.40-3 3.3+6.2¢3
2 DynaConF-MLP  1.3410cs 1.6+02c2 2.645.202
= DynaConF-PP 1.24550c3 1.6+2.7¢2  2.6+5.102

[AR(1)-*: F = Flip; S = Sin; D = Dynamic]

Table 9: Quantitative Evaluation (Synthetic Data). CRPS results on multivariate process VAR(1)-
Dynamic. Values behind architectures indicate the number of hidden units.

Method CRPS

GroundTruth 0.496+0.001
DeepVARflo 0.797 +0.009
DeepVARf4O 0.7920.000
DeepVAR716O 0.787x0.001

TransformerMAF-8 0.800+0.001
TransformerMAF-32 0.806-0.008
TransformerMAF-128  0.866+0.077

StatiCOHF*MLP 0.806+0.004
® StatiConF—PP 0.805£0.002
2 DynaConF-MLP 0.7620.036
~ DynaConF-PP 0.609=0.012

Table 10: Quantitative Evaluation (Synthetic Data). MSE results on multivariate process VAR(1)-
Dynamic. Values behind architectures indicate the number of hidden units.

Method MSE

GroundTruth 2.8+7.6e-3
DeepVARfl() 8.415.60-2
DeepVARf4O 8412703
DeepVARflin 8.3+2.2¢-2

TransformerMAF-8 8.5+2.9¢-2
TransformerMAF-32 8.5+3.70-2
TransformerMAF-128  9.4+1.2c0

StatiConF—MLP 8.5+8.5¢2
E StatiConF-PP 8.5+2.3¢2
8 DynaConF-MLP 7.945.7¢1
= DynaConF-PP 4.5+5.0e1
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Table 11: Quantitative Evaluation (Real-World Data — Set 1). CRPS results with means and standard
deviations on 6 publicly available datasets. Lower values are better.

Method Exchange  Solar Electricity  Traffic Taxi Wikipedia
DeepVAR 0.013£0.000  0.43440.012  1.059+0.001  0.168x0.037  0.586+0.004  0.379+0.004
GP—Copula 0.0080.000 0.371+0.022 0.056-+0.002 0.133+0.001 0.360+0.201 0.23610.000
LSTM-MAF 0.01210.003  0.378+0.032  0.051x0.000  0.12410.002  0.31440.00s  0.28210.002
TransformerMAF 0.012+0.003 0.368+0.001 0.052+0.000 0.134+0.001 0.377+0.002 0.274+0.007
TimeGrad 0.009+0.001 0.367+0.001 0.049-+0.002 0.11010.002  0.311+0.030 0.261+0.020
TACTIS 0.011+0.000 0.476-+0.005 0.047+0000 OOM NA OOM
StatiConF 0.009+0.001 0.363+0.019 0.057+0.001 0.112+0.007 0.301+0.008 0.339+0.011
DynaConF 0.009+0.000 0.355+0.00s  0.052+0.002 0.111+0.007 0.301+0.007  0.259+0.001

Table 12: Quantitative Evaluation (Real-World Data — Set 1). MSE results with means and standard
deviations on 9 publicly available datasets. Lower values are better.

Method Exchange Solar Electricity Traffic Taxi Wikipedia
[e-4] [e+2] [e+5] [e-4] [e+1] [e+7]
DeepVAR 1.6 9.3 2.1 6.3 7.3 7.2
GP-Copula 1.7 9.8 2.4 6.9 3.1 4.0
LSTM-MAF 3.8 9.8 1.8 4.9 2.4 3.8
TransformerMAF 3.4 9.3 2.0 5.0 4.5 3.1
TimeGrad 2.5 8.8 2.0 4.2 2.6 3.8
TACTiS 2.6+1.10-5 14103641 1.413.4043 OOM NA OOM
NS Transformer 2.5+4.6e-5 10+1.4e42 2.2+46.80+3 7.0+90306 NA 5.241.1047
DeepTime 1.447.7¢7 9.6x7.90+0  2.4x1.1044 4.8+2106 NA 4.6+9.70+5
Koopa 1.417.5c6 10452641 2.441.6044 5.8+2205 NA 3.915.7¢+5
StatiConF 2.3+4.7¢5 8.248.801 1.842.4e4 4.8+6.20-6 2.249.90-1 4.0+4.0e5
DynaConF 2.0£1175e5  8.0x37er 1.743.0e4 4.847306  2.2102e1  3.Txa1es
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