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ABSTRACT

Reasoning-augmented machine learning systems have shown improved per-
formance in various domains, including image generation. However, existing
reasoning-based methods for image generation either restrict reasoning to a single
modality (image or text) or rely on high-quality reasoning data for fine-tuning. To
tackle these limitations, we propose MILR, a test-time method that jointly rea-
sons over image and text in a unified latent vector space. Reasoning in MILR is
performed by searching through vector representations of discrete image and text
tokens. Practically, this is implemented via the policy gradient method, guided
by an image quality critic. We instantiate MILR within the unified multimodal
understanding and generation (MUG) framework that natively supports language
reasoning before image synthesis and thus facilitates cross-modal reasoning. The
intermediate model outputs, which are to be optimized, serve as the unified la-
tent space, enabling MILR to operate entirely at test time. We evaluate MILR
on GenEval, T2I-CompBench, and WISE; it achieves state-of-the-art results on
all benchmarks. Notably, on knowledge-intensive WISE, MILR attains an overall
score of 0.63, improving over the baseline by 80%. Our further analysis indicates
that joint reasoning in the unified latent space is the key to its strong performance.
Moreover, our qualitative studies reveal MILR’s nontrivial ability in temporal and
cultural reasoning, highlighting the efficacy of our reasoning method.
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Figure 1: Latent reasoning of MILR. The black solid line denotes extracting the output vector rep-
resentations zk of the text tokens z(t) and image tokens z(v) to be optimized, and the black dashed
line denotes decoding from the optimized latent vectors zk+1, where z = [z(t), z(v)].
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1 INTRODUCTION

Text-guided image generation is the task of synthesizing an image conditioned on a given text in-
struction. In recent years, the field has witnessed transformative progress: moving from generative
adversarial models (Goodfellow et al., 2014) to autoregressive and diffusion approaches (Sun et al.,
2024; Esser et al., 2024; Black Forest Labs, 2024; Chen et al., 2025; Wu et al., 2025a). However,
traditional models are limited in generating images in a single-shot fashion and thus are unable to
resolve potential defects (Huang et al., 2025a; Niu et al., 2025). Inspired by the success of reasoning-
augmented LLMs—such as OpenAI o1 (OpenAI et al., 2024) and DeepSeek-R1 (DeepSeek-AI
et al., 2025)—that can reflect on and refine their thoughts, and answer accordingly, recent works
have attempted to endow image generation models with reasoning ability (Guo et al., 2025; Fang
et al., 2025; Zhang et al., 2025b; Wu et al., 2025b; Chern et al., 2025).

Reasoning-augmented image generation models typically perform reasoning in two spaces: lan-
guage and image spaces. Language reasoning primarily involves refining instructions to make them
more comprehensible to the model (Wu et al., 2025b; Li et al., 2025b), and image reasoning it-
erates on the generation guided by a quality metric (Guo et al., 2025; Zhuo et al., 2025). Early
works implement reasoning either in the language or in the image space, lacking a mechanism for
synergistic reasoning across the two spaces. To fill the gap, recent works resort to unified multi-
modal understanding and generation (MUG; Jiang et al. (2025a); Duan et al. (2025); Zhang et al.
(2025b)), which natively supports language reasoning before generating images (referred to as mul-
timodal image generation), facilitating cross-modal image-text reasoning. Despite the success, these
approaches require carefully curated reasoning data and depend on model fine-tuning, rendering
them complex and costly to develop in practice.

To address these limitations, we propose Multimodal Image generation via test-time Latent Reason-
ing, dubbed MILR. Our core idea is to reason in a unified latent vector space that encodes both
text and images, starkly different from previous methods that explicitly reason over raw images and
text. We build MILR upon a Transformer-based MUG model and choose the unified latent space
represented by the intermediate output vectors. Since the shared latent space is modality-agnostic,
it provides a unified view of multimodal reasoning, reducing the modality gap and improving the
overall efficacy of cross-modal reasoning.

Reasoning with MILR involves finding the best vector representations of image and text tokens that
lead to improved image quality. We implement it using the policy gradient method (Williams, 1992),
where, at test time, the reward is computed by scoring the compatibility between the generated image
and the given instruction. Crucially, gradients are only back-propagated to the cross-modal latent
representations (i.e., the intermediate model outputs) obtained from the forward pass (see Figure 1),
without altering any model parameters, and thus making MILR a test-time latent reasoning method.

We evaluate MILR on three widely-used image generation benchmarks: GenEval (Ghosh et al.,
2023), T2I-CompBench (Huang et al., 2023), and WISE (Niu et al., 2025). MILR established
new state-of-the-art results across all benchmarks. Notably, it achieves an overall score of 0.95
on GenEval, matching the best training-based model and outperforming the best test-time-scaling
method by 4.4%. On the more challenging WISE benchmark, MILR obtains an overall score of
0.63, surpassing the strongest baseline model by 16.7%. Our further analysis reveals that the best
performance of MILR is driven by its ability to perform joint image-text reasoning in a unified latent
space. This unique advantage also makes MILR successful in instructions that involve challenging
cultural and temporal reasoning.

To summarize:

• We introduce MILR, a test-time reasoning-augmented method that improves image generation by
performing joint image-text reasoning in a unified latent space.

• We demonstrate the effectiveness of MILR by showing that it achieves superior performance
across three different benchmarks for image generation.

• We conduct a comprehensive analysis, perform various ablation studies, and discuss potential
limitations of MILR.
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2 RELATED WORKS

Reasoning-Augmented Image Generation. Remarkable progress has been achieved in
reasoning-augmented LLMs (Wei et al., 2022; DeepSeek-AI et al., 2025), but effectively integrating
reasoning into conventional text-guided image generation models remains a challenge (Betker et al.,
2023; Sun et al., 2024; Esser et al., 2024; Zhao et al., 2024; Chen et al., 2025). With the develop-
ment of unified multimodal understanding and generation that can generate images and text in an
interleaved manner, many works have explored reasoning for text-guided image generation. The pre-
dominant paradigm uses causal language modeling to unify image and text generation as next token
prediction, enabling the model to make plans via chain-of-thought before generating images (Fang
et al., 2025; Deng et al., 2025; Xiao et al., 2025; Cai et al., 2025; Guo et al., 2025; Jiang et al., 2025a;
Duan et al., 2025). Another line of research focuses on reasoning over images via the test-time scal-
ing strategy (Li et al., 2025b; Zhuo et al., 2025). These works typically rely on an external critic
model to provide feedback on further improvement. Unlike all these methods that explicitly perform
reasoning over raw images and text, we use test-time optimization to refine the latent representations
of image and text tokens, leading to a unified cross-modal latent reasoning method.

Reasoning in The Latent Space. Differently from explicit reasoning via a chain of thoughts (Wei
et al., 2022), latent reasoning refers to an implicit reasoning mechanism applied to the latent states
(e.g., intermediate outputs) of the model. As in Transformer-based models, latent reasoning is typ-
ically implemented as spatial and temporal recurrences. Spatial recurrences implicitly deepen the
model by iterating over the latent states between the Transformer layers (Hao et al., 2024; Cheng
& Van Durme, 2024; Zhang et al., 2025a; Shen et al., 2025), while temporal recurrences refine the
latent states through iterations across input tokens (Dao & Gu, 2024; Geiping et al., 2025). Under the
recurrences is the idea of scaling up test-time computation for inference; however, this requires the
recurrent modules to be pre-trained. In a similar vein to those, we iterate over the unified image-text
latent states only at test time, without introducing and updating any model parameters.

Reinforcement Learning for Reasoning. Reinforcement learning (RL) has been the key to elicit-
ing the reasoning ability of large language models (DeepSeek-AI et al., 2025; OpenAI et al., 2024).
Inspired by the success of GRPO, which is an improved RL algorithm over PPO (Schulman et al.,
2017) and is used in DeepSeek-R1 (Shao et al., 2024), researchers have extended it to the multi-
modal understanding domain, including visual question answering (Huang et al., 2025b; Liu et al.,
2025b). In image generation, RL has also been shown to be effective (Jiang et al., 2025a; Tong et al.,
2025; Jiang et al., 2025b; Pan et al., 2025b; Duan et al., 2025; Pan et al., 2025a; Liu et al., 2025a;
Xue et al., 2025; Xiao et al., 2025), but has been used as a training-time optimization method. Unlike
them, we employ a simple algorithm, REINFORCE (Williams, 1992), for test-time optimization.

3 METHOD

3.1 REASONING-AUGMENTED MULTIMODAL IMAGE GENERATION

We are interested in a framework for reasoning-augmented image generation that natively supports
language reasoning before image synthesis. A typical implementation is through unified multimodal
understanding and generation (MUG; Chen et al. (2025); Deng et al. (2025)). Suppose the language
token sequence t := t1:M := t1, t2, . . . , tM , the image token sequence v := v1:N := v1, v2, . . . , vN ,
and the given instruction c, MUG defines multi-modal image generation as an autoregressive gener-
ation process:

p(t,v|c) =
N∏

n=1

p(vn|v1:n, t, c)
M∏

m=1

p(tm|t1:m, c) , (1)

The generation of v depends on the reasoning via language tokens t, which are generated from c.
By analogy to textual reasoning, we refer to the generation of v as visual reasoning. To produce
the final image, v is further passed through a pixel decoder: Vf ∼ p(·|t,v, c). Since we focus on
discrete image tokens produced by a pre-trained discrete VAE (Chen et al., 2025), the pixel decoder
p(·|t,v, c) becomes deterministic given v.

Let R(Vf , c) denote a reward model that scores the compatibility between the given instruction c
and the final image Vf , the goal of test-time reasoning-augmented image generation is to find an
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Figure 2: Overview of MILR. MILR performs test-time latent reasoning in a unified latent space; it
uses policy gradients to iteratively refine text & image latents z(t), z(v), guided by a reward model.
The reward model scores each generated image conditioning on the instruction.

optimal pair (t∗,v∗) that maximizes the expected reward under p(·|t,v, c), without modifying any
model parameters:

t∗,v∗ = argmax
t,v

EVf∼p(·|t,v,c)[R(Vf , c)] . (2)

In the case of MUG, the model itself can act as the reward function because of its multimodal
understanding ability; alternatively, any off-the-shelf model that has such a capability can serve the
same role (see discussion in Section 4.4). Due to the infinite search space, the problem defined
by Equation 2 is generally intractable.

3.2 IMAGE GENERATION VIA TEST-TIME LATENT REASONING

3.2.1 MULTI-MODAL LATENT REASONING

Rather than searching over discrete image and text tokens, we propose searching in the unified
latent vector space, that is, searching over their continuous vector representations. As in MUG,
these vectors correspond to the intermediate model outputs at respective token positions. They lie in
a vector space that encodes both image and text tokens, offering a unified view of visual and textual
reasoning1 and facilitating cross-modal reasoning (see Figure 2).

Formally, denoting the latent representations of image and text tokens by z(v) = z
(v)
1:N and z(t) =

z
(t)
1:M , respectively, where z(v), z(t) ∈ Rd are the outputs from the same Transformer layer and thus

lie in a shared d-dimensional vector space, we can rewrite Equation 2 as:

z∗ = argmax
z

EVf∼p(·|z.c)[R(Vf , c)] , (3)

where z = [z(t); z(v)] indicates the multimodal latent representation of the token sequence [t,v].
We refer to this optimization problem as multimodal latent reasoning.

Given the optimal z⋆ from a specific model layer, to produce the final Vf , we need to continue the
forward pass until it is decoded into discrete tokens [t,v]. Thus, the pixel image generation becomes:

p(Vf |z∗, c) = p(Vf |t,v, c)p(t,v|z∗) , (4)

where p(t,v|z∗) represents the remaining forward pass of MUG starting with z∗.

1We refer to “reasoning” as iterative updates in the latent space rather than text-based chain-of-thought.
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3.2.2 GRADIENT-BASED OPTIMIZATION FOR LATENT REASONING

In general, the problem defined by Equation 3 does not admit a closed-form solution, so we resort
to REINFORCE (Williams, 1992), a policy gradient optimization method. We note that it has been
applied to fully textual reasoning in language tasks (Li et al., 2025a), but we, for the first time, extend
it to unified multimodal latent reasoning for image generation.

With REINFORCE, we can formulate the cross-modal optimization process as:

zk+1 ← zk + η · J (zk), (5)

J (zk) = EVf∼p(·|zk,c)[R(Vf , c)∇z log(p(t,v|zk))] , (6)

where η is the learning rate. For efficiency, we choose as z the outputs of the last Transformer layer,
i.e., the inputs to the final modal-specific decoding heads. Moreover, we approximate gradientsJ (z)
using a single sampled pair (t,v). The gradients are back-propagated only to the model outputs z,
without altering any model parameters, and thus making MILR a test-time reasoning method.

Naively, we would optimize2 all M +N latents in z1:M+N , but searching using only the guidance
of a reward model is potentially biased, and it does not leverage the generative capacity of MUG for
better exploration; instead, we optimize only the first λtM (where λt ∈ (0, 1]) latents for text. After
decoding them into discrete tokens, we complete textual reasoning via the standard autoregressive
generation conditioned on them. As we will later see, this simple strategy strikes a good balance
between efficiency and performance (see Section 4.3.1). For visual reasoning, we adopt a similar
strategy and optimize the first λvN (where λv ∈ (0, 1]) latents.3 This is further supported by the
observations of Hu et al. (2025): the first few tokens govern the global structure of the image, while
the remaining tokens primarily influence high-frequency details.4

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Benchmarks and Baselines. We conduct experiments on three benchmarks widely used in image
generation: GenEval (Ghosh et al., 2023), T2I-CompBench (Huang et al., 2023), and WISE (Niu
et al., 2025). We compare MILR against the following three sets of baselines:

• Non-reasoning models refer to the classical image generation models that synthesize images
from a given instruction in a single shot, without refining the instruction. We consider diffusion
models such as FLUX.1-dev (Black Forest Labs, 2024), DALL·E 3 (Betker et al., 2023), and
SD3-Medium (Esser et al., 2024), autoregressive models such as LlamaGen (Sun et al., 2024) and
Emu3 (Wang et al., 2024), and hybrid autogressive-diffusion models such as BAGEL (Deng et al.,
2025) and GPT-4o (OpenAI, 2025).

• Training-based reasoning models refer to the image generation models that acquire the reason-
ing ability through training, including GoT-R1 (Duan et al., 2025), T2I-R1 (Jiang et al., 2025a),
Flow-GRPO (Liu et al., 2025a), and GRPO- and DPO-tuned Janus-Pro (Tong et al., 2025).

• Test-time reasoning models refer to the models that admit reasoning through tailored inference
strategies, including Reflect-DiT (Li et al., 2025b) and ReflectionFlow (Zhuo et al., 2025), which
uses language feedback, and Best-of-N and PARM (Guo et al., 2025), which rely on search.

Hyperparameters and configurations. We choose Janus-Pro (Chen et al., 2025), an autoregressive
model, as the MUG model. For the portions of text and image tokens that are optimized, we perform
grid search on a validation split sampled from GenEval and empirically set λt = 0.2 for text and
λv = 0.02 for images (see Figure 5). We use the Adam optimizer (Kingma, 2014), where the
learning rate is empirically set to 0.03. For each benchmark, we use its own evaluation toolkit as the
reward model, following previous work (Liu et al., 2025a; Jiang et al., 2025a; Tong et al., 2025). We

2We experimented with different optimization strategies, see details in Appendix A.1.
3In each iteration, the text token number M may vary while the image token number N remains unchanged.
4Rather than optimizing a prefix of image token sequence, we can optimize a random subset of image

tokens, but this strategy proves worse than prefix optimization (see Table 5 in Appendix A.1).
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Table 1: Results on GenEval. The best score is in bold and the second best is underlined.

Method Single Obj. ↑ Two Obj. ↑ Counting ↑ Colors ↑ Position ↑ Attr. Binding ↑ Overall ↑
Non-reasoning Models

LlamaGen (Sun et al., 2024) 0.71 0.34 0.21 0.58 0.07 0.04 0.32
Emu3 (Wang et al., 2024) 0.98 0.71 0.34 0.81 0.17 0.21 0.54
FLUX.1-dev (Black Forest Labs, 2024) 0.98 0.79 0.73 0.77 0.22 0.45 0.66
DALL-E 3 (Betker et al., 2023) 0.96 0.87 0.47 0.83 0.43 0.45 0.67
SD3-Medium (Esser et al., 2024) 0.99 0.94 0.72 0.89 0.33 0.60 0.74
BAGEL (Deng et al., 2025) 0.99 0.94 0.81 0.88 0.64 0.63 0.82
GPT-4o (OpenAI, 2025) 0.99 0.92 0.85 0.91 0.75 0.66 0.85

Training-based Reasoning Models

GoT-R1 (Duan et al., 2025) 0.99 0.94 0.50 0.90 0.46 0.68 0.75
T2I-R1 (Jiang et al., 2025a) 0.99 0.91 0.53 0.91 0.76 0.65 0.79
Flow-GRPO (Liu et al., 2025a) 1.00 0.99 0.95 0.92 0.99 0.86 0.95
ReasonGen-R1 (Zhang et al., 2025b) 0.99 0.94 0.62 0.90 0.84 0.84 0.86
Janus-Pro-7B(+GRPO) (Tong et al., 2025) 0.99 0.87 0.61 0.87 0.82 0.68 0.81
Janus-Pro-7B(+DPO) (Guo et al., 2025) 0.99 0.89 0.65 0.92 0.82 0.72 0.83

Test-time Reasoning Models

Reflect-DiT (Li et al., 2025b) 0.98 0.96 0.80 0.88 0.66 0.60 0.81
ReflectionFlow (Zhuo et al., 2025) 1.00 0.98 0.90 0.96 0.93 0.72 0.91
Janus-Pro-7B(+Text Enhanced Reasoning) 0.98 0.91 0.55 0.89 0.74 0.67 0.79
Janus-Pro-7B(+Best-of-N) 0.99 0.96 0.89 0.93 0.92 0.80 0.91
Janus-Pro-7B(+PARM) (Guo et al., 2025) 1.00 0.95 0.80 0.93 0.91 0.85 0.91

Janus-Pro-1B (Chen et al., 2025) 0.98 0.82 0.51 0.89 0.65 0.56 0.73
Janus-Pro-1B+MILR 1.00 0.91 0.78 0.92 0.86 0.86 0.89
Janus-Pro 7B (Chen et al., 2025) 0.98 0.85 0.56 0.89 0.77 0.64 0.78
Janus-Pro-7B+MILR 1.00 0.96 0.90 0.98 0.98 0.91 0.95

Table 2: Results on T2I-CompBench and WISE. The best is in bold, and the second is in underlined.

Method T2I-CompBench WISE
Color ↑ Shape ↑ Texture ↑ Spatial ↑ Non-Spatial ↑ Complex. ↑ Overall ↑ Avg ↑

Non-reasoning Models

PixArt-α Chen et al. (2023) 0.6690 0.4927 0.6477 0.2064 0.3197 0.3433 0.4465 0.47
FLUX.1-dev Black Forest Labs (2024) 0.7407 0.5718 0.6922 0.2863 0.3127 0.3703 0.4957 0.50
DALL-E 3 Betker et al. (2023) 0.7785 0.6209 0.7036 0.2865 0.3003 0.3773 0.5112 -
SD3-Medium Esser et al. (2024) 0.8132 0.5885 0.7334 0.3200 0.3140 0.3771 0.5244 0.42
Show-o Xie et al. (2024) 0.5600 0.4100 0.4600 0.2000 0.3000 0.2900 0.3700 0.30
BAGEL Deng et al. (2025) 0.8027 0.5685 0.7021 0.3488 0.3101 0.3824 0.5191 0.52

Training-based Reasoning Models

T2I-R1 Jiang et al. (2025a) 0.8130 0.5852 0.7243 0.3378 0.3090 0.3993 0.5281 0.54
GoT-R1 Duan et al. (2025) 0.8139 0.5549 0.7339 0.3306 0.3169 0.3944 0.5241 -
Janus-Pro-7B(+GRPO) Tong et al. (2025) 0.7721 0.5366 0.7317 0.2869 0.3087 0.3697 0.5010 -

Test-time Reasoning Models

Show-o + PARM Guo et al. (2025) 0.7500 0.5600 0.6600 0.2900 0.3100 0.3700 0.4900 -
Janus-Pro-7B(+Text Enhanced Reasoning) 0.7087 0.4419 0.5821 0.2597 0.3072 0.3761 0.4459 0.46
Janus-Pro-7B(+Best-of-N) 0.7089 0.4925 0.7089 0.3542 0.3262 0.3721 0.4938 0.52

Janus-Pro-1B Chen et al. (2025) 0.3411 0.2261 0.2696 0.0968 0.2808 0.2721 0.2478 0.26
Janus-Pro-1B+MILR 0.6066 0.2796 0.4177 0.2796 0.2622 0.2613 0.3512 0.40
Janus-Pro-7B Chen et al. (2025) 0.6359 0.3528 0.4936 0.2061 0.3085 0.3559 0.3921 0.35
Janus-Pro-7B+MILR 0.8508 0.5117 0.6949 0.4613 0.3078 0.3684 0.5325 0.63

conduct all experiments on a single NVIDIA A100 80GB GPU. A discussion on model efficiency
can be found in Appendix A.3.3.

4.2 MAIN RESULTS

MILR achieves state-of-the-art results on GenEval, one of the most widely-used benchmarks for
image generation (see Table 1). It improves over the base Janus-Pro-7B by 0.17, with the largest
increases obtained from Counting (+0.34), Position (+0.21), and Attribute Binding (+0.27). No-
tably, MILR surpasses frontier non-reasoning models such as SD3-Medium, BAGEL, and GPT-4o
(+12%). Compared with training-based reasoning models (e.g., GoT-R1 and T2I-R1), MILR per-
forms better and requires no parameter tuning. For fairness, we also compare MILR with test-time
reasoning models. Surprisingly, it outperforms ReflectionFlow and PARM (+4.5%) that rely on scal-
ing up test-time computation, demonstrating the superiority of our test-time optimization method.

We further evaluate MILR on two additional benchmarks: T2I-CompBench and WISE (see Table 2).
Again, it achieves the best performance on both, highlighting the robustness of our model. Specifi-
cally, on T2I-CompBench, MILR improves over the base Janus-Pro-7B by a large margin (+0.14)
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The Great Wall of China when it's 3 PM in Los Angeles. [6 AM in China]
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Ours Janus-Pro 

A flower that symbolizes purity in China. [Referring to lotus]
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Figure 3: Qualitative studies on theree benchmarks. Reasoning cues are highlighted in red.

Table 3: Ablations of MILR on GenEval, T2I-CompBench, and WISE

Method GenEval T2I-CompBench WISE
Single Obj. Two Obj. Counting Color Pos. Attr. Binding Overall Overall Avg

Janus-Pro-7B+MILR (ours) 1.00 0.96 0.90 0.98 0.98 0.91 0.95 0.5325 0.63
w/o MILR 0.98 0.85 0.56 0.89 0.77 0.64 0.78 0.3921 0.35
w/o Image 1.00 1.00 0.91 0.95 0.95 0.88 0.94 0.5210 0.61
w/o Text 1.00 0.95 0.88 0.91 0.97 0.89 0.93 0.5043 0.56

and slightly outperforms T2I-R1, a strong training-based reasoning model. On WISE, which em-
phasizes world knowledge understanding, MILR outperforms the base Janus-Pro-7B (+80%) and
the second-best model T2I-R1 (+16.7%), implying the importance of reasoning in comprehending
knowledge-intensive instructions (see our qualitative studies of reasoning trajectories in Figure 8).

MILR is capable of geometric, temporal, and cultural reasoning. Next, we conduct a quali-
tative study on knowledge-intensive WISE. Surprisingly, MILR demonstrates nontrivial ability in
geometric, temporal and cultural reasoning (see Figure 3). Take the prompt ”The Great Wall of
China when it’s 3 PM in Los Angeles”, MILR correctly infers the time difference from its geo-
metric knowledge of China and Los Angeles, and concludes that ”The Great Wall at Dawn” is of
interest. As another example, MILR correctly infers that lotus symbolizes purity in Chinese culture.

Joint image-text reasoning in the unified latent space leads to the best performance. To better
understand the contribution of each modality to the strong performance of MILR, we individually
ablate the latent optimization of images and text, denoted by “w/o image” and “w/o text”, respec-
tively (see Table 3). First, we find that both of them exceed the base model (w/o MILR) by a large
margin (e.g., > 0.21 on WISE), and optimizing both modalities leads to the best performance. Inter-
estingly, text-only optimization (w/o image) fares slightly better than image-only optimization (w/o
text), and approaches the performance of our best model (+MILR) on all benchmarks, suggesting
substantial room for improvement in the language understanding component of MUG-based image
generation models.

4.3 ANALYSIS

4.3.1 HYPERPARAMETERS

We analyze three important hyperparameters of MILR: (1) the maximum optimization step T , (2)
the portion of text tokens to be optimized λt in text-only optimization, and (3) the proportion of
image tokens to be optimized λv in image-only optimization. We perform analysis 1 on all three
benchmarks and analyses 2 and 3 on a held GenEval validation split. For each setting, we run MILR
three times with different random seeds and report the average scores.

Scaling up the number of optimization steps improves performance on all benchmarks.
MILR admits test-time compute scaling by increasing the number of optimization steps. We il-
lustrate and compare three setups: MILR, text-only optimization, and image-only optimization (see
Figure 4). On all benchmarks, increasing the number of optimization steps leads to consistent im-
provements, with the best performance achieved at step 16, after which model performance plateaus.
Moreover, among the three setups, optimizing both images and text (i.e., MILR) yields the best per-
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Figure 5: GenEval scores with varying optimization ratios of text and image tokens.

formance for almost all steps, except for a few early steps on GenEval, suggesting that MILR is
well-suited for test-time compute scaling.

Optimizing a moderate amount (e.g., 20%) of text tokens leads to the best performance.
When varying λt from 0.1 to 1.0, text-only optimization fluctuates between 0.91 and 0.96, and
reaches the highest score at λt = 0.2 (see Figure 5 (a)). We observe the same trend for different
numbers of optimization steps. All of these suggest that MILR is relatively robust to text optimiza-
tion. Moreover, we empirically find that the optimal λt = 0.2 corresponds to the prompts that elicit
more coherent reasoning (see examples in Figure 10).

Optimizing a tiny amount (e.g., 2%) of image tokens gives rise to the best result. Hu et al.
(2025) have empirically shown that, in autoregressive image generation, early-stage tokens govern
the overall image structure, and perturbing the first 20% of image tokens results in significant struc-
tural deviations. Therefore, we conservatively adopt a very small λv , varying it from 0.01 to 0.1
(see Figure 5 (b)). Surprisingly, optimizing only the first 2% of all image tokens already yields peak
performance, while further increasing λv tends to degrade it (see examples in Figure 12).

4.4 REWARD MODELS

The reward model is a crucial component of MILR, providing learning signals for latent reasoning.
Following previous work (Liu et al., 2025a; Tong et al., 2025), we have used the benchmark’s evalu-
ator as the reward model (denoted by OracleReward), but in real-world scenarios, oracle rewards
are usually unknown, and it is difficult to design domain-specific rewards. To show that MILR is
effective without the reliance on , we test it with a set of off-the-shelf reward models on GenEval:

• SelfReward uses MUG itself (e.g., Janus-Pro in this work) to evaluate images.
• GPT-4o represents a frontier critic for assessing image quality (Hurst et al., 2024).
• UnifiedReward is specifically tuned for a unified evaluation of MUG (Wang et al., 2025).
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Figure 7: Error Case Study
• MixedReward is a composite critic for more comprehensive evaluation. It aggregates rewards

from specialized models, including GroundingDINO (Liu et al., 2024) (evaluating object detec-
tion), GIT (Wang et al., 2022) (judging colors), and (assessing aesthetics).

Unsurprisingly, gives rise to the best performance across all dimensions (see Figure 6). For non-
oracle critics, all variants surpass the baseline in terms of the overall score. Notably, MILR remains
relatively robust to different reward models, except for , which performs poorly on Counting
(around 0.5). Among non-oracle critics, performs the best, suggesting that, in the absence of ora-
cle rewards, we can derive a strong universal reward model by combining specialized critic models.
Moreover, MILR+ slightly outperforms the strong Best-of-N+ baseline (+2.4%) under compa-
rable computation (i.e., N = T = 20), once again demonstrating the superiority of our method.

4.4.1 ERROR CASES

Though MILR has shown the best performance across all three benchmarks, we observe three major
failure modes and illustrate them respectively in Figure 7. Specifically, the failure modes include (1)
Textual Reasoning Collapse. The regenerated chain of thoughts degenerates into repetitive phrases
and becomes nonsensical for guiding image generation (e.g., repeated “beige glove”). (2) Visual
Reasoning Collapse. While textual reasoning is fine, visual reasoning degrades prefix image tokens
that govern the overall structure and subsequently adversely affects the generation of remaining
tokens that control fine-grained details (e.g., blurred handles). (3) Reward Hacking. Models exploit
shortcuts to achieve high rewards, but the generated image does not align with the given instruction
perfectly (e.g., unmatched position relationship). This implies that the benchmark’s evaluator is
limited in that it is not yet fully capable of spatial reasoning.

5 DISCUSSION

We acknowledge two primary limitations of MILR. First, we have focused on an implementation
of MILR that builds upon autoregressive MUG, where both text and image tokens are generated
autoregressively. Another strong paradigm of MUG is through diffusion image generation, where
image tokens within the same image can attend to each other (Deng et al., 2025). It is interesting
to see if the effectiveness of MILR transfers. Second, MILR relies on a reward model for learning
signals, but, in practice, a perfect reward model usually does not exist, and it is difficult to design a
domain-agnostic reward model. In addition, our experimental results have revealed that the strongest
non-oracle reward model still lags behind the oracle reward. Thus, future work is well-suited for
designing reward models that can generalize like the unified reward model of Wang et al. (2025).
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6 CONCLUSION

We have proposed MILR, a test-time latent reasoning method for multimodal image generation.
MILR employs policy gradient optimization, guided by an image quality metric, to search over the
latent vector representations of discrete image and text tokens, leading to a unified multimodal rea-
soning framework. We implement MILR with a unified multimodal understanding and generation
model that natively supports language reasoning before image synthesis. Across three benchmarks,
MILR achieves state-of-the-art results. We further perform an in-depth analysis; we find that jointly
reasoning in the latent image-text space is the key to its strong performance. Our qualitative studies
also highlight MILR’s nontrivial capability in temporal and cultural reasoning.

7 ETHICS STATEMENT

We strictly adhere to the ICLR Code of Ethics. Below we elaborate on the ethical considerations
relevant to our work and the measures we have put in place.

Safety of content. To reduce potential risks, we confine our text prompts to those of the standard
benchmarks, avoiding sensitive and offensive input. We manually reviewed the generated images
and text used in the work and did not find harmful content.

Privacy and intellectual property. Our work does not involve processing personally identifiable in-
formation, as we experiment exclusively on publicly available benchmarks and off-the-shelf models,
as per their respective licenses.
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A APPENDIX

A.1 OPTIMIZATION ALGORITHMS

By default, MILR jointly optimizes text latent z(t) and image latent z(v) in each gradient descent
step, which is denoted as MILR-Joint. As an alternative, we can optimize z(t) and z(v) in an alter-
nating fashion (denoted by MILR-Alt), akin to the strategy used in coordinate descent. We further
propose another variant of MILR that first optimizes z(t) to its approximate optimum, followed
by optimizing z(v) to its approximate optimum (denoted by MILR-T2V). We illustrate the three
algorithms in Algorithm 1. Their performance on GenEval is presented in Table 4. We do not see
significant differences among them, so we use MILR-Joint by default because of its simplicity.

Algorithm 1 MILR

Require: Instruction c, Learning rate η, MUG model p, reward threshold τ , text and image fraction
λt, λv ∈ (0, 1], optimization steps K, Reasoning strategy S ∈ {JOINT, ALT, T2V}
z, t,v← p(t,v|c) ▷ Initial latent vectors
Vf ∼ p(·|v)
r ← R(Vf , c) ▷ Reward Calculation
z0 ← (z

(t)
1:λt|t|; z

(v)
1:λv|v|) ▷ Set λt and λv fraction

k ← 1 ▷ Starting step index
while k ≤ K and r ≤ τ do

Vf , z
k ← LatentReasoningS

(
zk−1, η, k,K, c, p

)
▷ Select a strategy: Algorithm 2

r ← R(Vf , c)
k ← k + 1

end while
return Vf

Algorithm 2 LatentReasoning (default: JOINT)
(a) JOINT

1: zk ← zk−1 + η · J (zk−1)
2: Vf ∼ p(Vf | zk, c)
3: return Vf , z

k

(b) ALT

1: if k mod 2 = 1 then
2: z

(t)
k ← z

(t)
k−1+η ·J (z(t)k−1)

3: Tf ∼ p(Tf |z(t)k , c)

4: Vf ∼ p(Vf |z(v)k−1, Tf , c)
5: else
6: z

(v)
k ← z

(v)
k−1+η ·J (z

(v)
k−1)

7: Vf ∼ p(Vf |z(v)k , Tf , c)
8: end if
9: return Vf , z

k

(c) T2V

1: if k ≤ ⌊K/2⌋ then
2: z

(t)
k ← z

(t)
k−1+η ·J (z(t)k−1)

3: Tf ∼ p(Tf |z(t)k , c)

4: Vf ∼ p(Vf |z(v)k−1, Tf , c)
5: else
6: z

(v)
k ← z

(v)
k−1+η ·J (z

(v)
k−1)

7: Vf ∼ p(Vf |z(v)k , Tf , c)
8: end if
9: return Vf , z

k

Table 4: Geneval results with different reasoning strategies.

Algorithms Single Obj. Two Obj. Counting Colors Position Attr. Binding Overall
MILR-JOINT 1.00 0.96 0.90 0.98 0.98 0.91 0.95
MILR-ALT 1.00 0.98 0.87 0.95 0.97 0.88 0.94
MILR-T2V 1.00 0.96 0.95 0.95 0.96 0.89 0.95

Table 5: Geneval results under random subset optimization of image tokens.

Algorithms Single Obj. Two Obj. Counting Colors Position Attr. Binding Overall
MILR (Image+Prefix) 1.00 0.95 0.88 0.91 0.97 0.89 0.93
MILR (Image+Random) 1.00 0.92 0.84 0.89 0.94 0.86 0.90
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A.2 QUALITIVE STUDY

A.2.1 REASONING TRAJECTORIES

MILR admits multi-round latent-space refining at test time. In Figure 8, we visualize the full trajec-
tories of rounds 2, 3, and 4 that finally arrive at the correct generation.

A photo of four donuts.

A colorfulut, arranged in a square formation, 

with a golden glaze and a sprinkle of sugar on top.

Four donuts are displayed in a row, with a white 

background. The donuts are of different colors: 

one is pink, one is blue, one is yellow, and one is 

brown. They have a smooth texture and are round 

in shape.

Iteration 0

Iteration 1

Most mentioned character during Christmas. [Referring to 

the Santa Claus]

Iteration 2
The roundut in placed on a white plate, with a 

golden glaze and a sprinkle of powdered sugar.

The image depicts a Christmas tree with a large, 

red ornament at the top, representing the most 

mentioned character during Christmas. The 

ornament is surrounded by smaller, white 

ornaments, symbolizing the character's popularity. 

Visual visualization shows Santa large scene 

adorned ornaments Santa ornament glowing 

bow hanging its center representing surrounded 

Santa character- Christmas.

Based visualization shows Santa bustling scene 

adorned ornaments red ornament brightly, shaped 

its center labeled surrounded Santa character- 

Christmas, most mentioned character during 

Christmas.

The object most commonly admired during the Mid-Autumn 

Festival. [Referring to the moon]

A Mid shows a full moon, surrounded by a golden 

glow, with a few lanterns hanging in the sky.

The image depicts a full moon, surrounded by a 

golden glow, with a few scattered clouds in the sky. 

The moon is the most commonly admired object 

during the Mid-Autumn Festival.

Iteration 0

Iteration 1

The most iconic haircut that characterized the women's fashion 

trend of the 1920s. [Referring to the bob]

The 1920s women's fashion trend was 

characterized by a distinctive haircut known as 

the "bob." The bob was a short, sleek hairstyle 

that was popularized by celebrities such as Louise 

Brooks and Clara Bow. 

Visual image1920' most's hairstyle was featured' 

women's' fashion' trend.

a photo of a yellow carrot. a photo of three kites.

Iteration 0

Iteration 1

Iteration 2

Iteration 3

A yellow carrot with a smooth, elongated shape 

and a slightly rough texture.

The image depicts a single yellow carrot with a 

smooth, elongated shape and a slightly rough 

texture. The carrot is the only object in the image, 

and there are no other objects or elements present.

Image of a yellow carrot with a smooth, 

elongated shape, a single, bright yellow color, and 

no other objects or elements in the background.

Yellow carrot with a smooth, elongated shape, a 

bright yellow color, and a slightly rough texture.

A photo of three kites, each with a distinct color 

and shape, flying in the sky.

Three vibrant kites soar in the sky, their colors 

contrasting against the blue backdrop. The kites 

are shaped like diamonds, with a smooth texture. 

They are positioned with one kite higher than the 

others, creating a sense of depth and movement.

A photo of three kites, each with a distinct color. 

The kites are of different colors: one is red, 

another is blue, and the third is green. The 

background is a clear blue sky, and there are no 

other objects or elements visible in the image.

The colorful image depicts three kites flying in 

the sky. The kites are flying with one kite being 

yellow, another blue, and the third red. The yellow 

kite is at the top, the blue kite is in the middle, 

and the red kite is at the bottom. 

𝑳𝒂𝒕𝒆𝒏𝒕 𝜵

𝑳𝒂𝒕𝒆𝒏𝒕 𝜵

𝑳𝒂𝒕𝒆𝒏𝒕 𝜵

𝑳𝒂𝒕𝒆𝒏𝒕 𝜵

𝑳𝒂𝒕𝒆𝒏𝒕 𝜵

𝑳𝒂𝒕𝒆𝒏𝒕 𝜵

Figure 8: Example reasoning trajectories. Orange indicates prefix optimization, red highlights incor-
rect reasoning, and green represents correct reasoning.

A.2.2 MODEL ABLATIONS

We provide a qualitative study accompanying the model ablations done in Section 4.2. Consistent
with the quantitative results, single-modality optimization surpasses the base model but underper-
forms joint optimization. Clearly, text-only optimization excels at tasks that rely on nontrivial nu-
merical and compositional reasoning (e.g., “a photo of four clocks/bowls/knives” or “three kites”),
while image-only optimization tends to refine image structures by adjusting the spatial arrangement
of objects (e.g., “a photo of a tie above a sink”). To illustrate this scenario, consider the prompt “a
photo of four clocks” in Figure 9, text-only optimization produces four spatially uncorrelated clocks,
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whereas image-only optimization tends to piece together four visually similar clocks on the same
wall. Interestingly, across all examples, image-only optimization exhibits a tendency to zoom in on
the objects of interest.

Ours w/o Image w/o Text

a photo of four clocks. a photo of a red dog.

a photo of a tie above a sink. a photo of a pink skateboard and a black train.

w/o MILR Ours

w/o Image

w/o Textw/o MILR w/o Image

a photo of four bowls. a photo of three kites.

a photo of four knifes. a photo of a black kite and a green bear.

Figure 9: Example generations of MILR (ours), the base model (w/o MILR), text-only (w/o Image)
optimization, and image-only (w/o Text) optimization.

A.3 ADDITIONAL ANALYSIS

A.3.1 ANALYSIS OF TEXT AND IMAGE OPTIMIZATION RATIOS

In Section 4.3.1, we studied how the text-token ratio λt and the image-token ratio λv affect MILR.
We also provide example language and image reasoning trajectories when varying λt in Figure 10
and Figure 11, respectively. In Figure 12, we show how image generation evolves when varying λv .
We empirically find that λt = 0.2 and λv = 0.02 generally lead to better generation.

A.3.2 ANALYSIS OF REWARD MODELS

In Section 4.4, we evaluated MILR with different reward models: SelfReward, GPT-4o,
UnifiedReward, MixedReward, and OracleReward (see Table 6, Table 7 and Table 8). We
further provide example images generated under each setup in Figure 13. Overall, establishes an
upper bar of generation quality, and , among non-oracle reward models, performs best because it
incorporates multiple specialized critics to provide a comprehensive assessment. Though still lags
behind , in the absence of , we can compose a strong universal reward model from specialized
off-the-shelf image critics.

Table 6: GenEval results with different rewards. The best performance is in bold.

Reward Single Obj. Two Obj. Counting Colors Position Attr. Binding Overall
Baseline 0.98 0.85 0.56 0.89 0.77 0.64 0.78

SelfReward 1.00 0.90 0.50 0.88 0.77 0.65 0.79
GPT-4o 0.98 0.94 0.80 0.88 0.77 0.68 0.84
UnifiedReward 1.00 0.92 0.76 0.89 0.81 0.66 0.84
MixedReward 1.00 0.90 0.83 0.89 0.88 0.75 0.87
OracleReward 1.00 0.96 0.90 0.98 0.98 0.91 0.95
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Prompt: a photo of an apple and a donut.

𝝀𝒕 = 𝟎. 𝟏 

𝝀𝒕 = 𝟎. 𝟐 

𝝀𝒕 = 𝟎. 𝟑 

𝝀𝒕 = 𝟎. 𝟒 

𝝀𝒕 = 𝟎. 𝟓 

𝝀𝒕 = 𝟎. 𝟔 

𝝀𝒕 = 𝟎. 𝟕 

𝝀𝒕 = 𝟎. 𝟖 

𝝀𝒕 = 𝟎. 𝟗 

𝝀𝒕 = 𝟏. 𝟎 

Visual vibrant depicts a orange apple and a chocolate donut. <eos>

Visual vibrant depicts a orange with don donut displays a red apple and a golden brown donut. <eos>

Visual vibrant depicts a orange with don donut displays\n image has round with a hole in the center, and 

a bright red apple with a smooth skin. <eos>

Visual vibrant depicts a orange with don donut displays\n image has round with has with while smooth 

green apple. <eos>

Visual vibrant depicts a orange with don donut displays\n image has round with has with while smooth 

green, and It appleuts <eos>

Visual vibrant depicts a orange with don donut displays\n image has round with has with while smooth 

green, and It appleuts has golden and with with donut. <eos>

Visual vibrant depicts a orange with don donut displays\n image has round with has with while smooth 

green, and It appleuts has golden and with with with covered powdered crumb raised . <eos>

Visual vibrant depicts a orange with don donut displays\n image has round with has with while smooth 

green, and It appleuts has golden and with with with covered powdered crumb raised surface with The 

sit next to each other. <eos>

Visual vibrant depicts a orange with don donut displays\n image has round with has with while smooth 

green, and It appleuts has golden and with with with covered powdered crumb raised surface with The 

sit next side to one other . <eos>

Visual vibrant depicts a orange with don donut displays\n image has round with has with while smooth 

green, and It appleuts has golden and with with with covered powdered crumb raised surface with The 

sit next side to one other. what plate surface with The apple and donut are placed on. <eos>

Initial Text Reasoning: The apple is red and round, with a smooth texture. The donut is brown, round, and 

has a slightly rough texture. They are placed next to each other on a white plate.

Latent Optimization: 

Figure 10: Case study of the text token optimization ratio λt. The underlined text is decoded from
the optimized latents. <eos> denotes the end-of-sentence token.

a photo of 

an apple 

and a donut.

𝝀𝒕 = 𝟎. 𝟏 

a photo of 

three dining 

tables.

a photo of a 

red kite and 

a blue bowl.

𝝀𝒕 = 𝟎. 𝟐 𝝀𝒕 = 𝟎. 𝟑 𝝀𝒕 = 𝟎. 𝟒 𝝀𝒕 = 𝟎. 𝟓 𝝀𝒕 = 𝟎. 𝟔 𝝀𝒕 = 𝟎. 𝟕 𝝀𝒕 = 𝟎. 𝟖 𝝀𝒕 = 𝟎. 𝟗 𝝀𝒕 = 𝟏. 𝟎 

Figure 11: Generated images with varying token optimization ratio λt.

Table 7: T2I-CompBench results with different reward models. The best performance is in bold.

Reward Color Shape Texture Spatial Non-Spatial Complex Overall
Baseline 0.6359 0.3528 0.4936 0.2061 0.3085 0.3559 0.3921

Self Reward 0.7196 0.4620 0.5887 0.2379 0.3055 0.3868 0.4501
GPT-4o 0.7624 0.4701 0.6561 0.2778 0.3102 0.3881 0.4775
UnifiedReward 0.8208 0.4609 0.5835 0.3210 0.3044 0.3700 0.4651
MixedReward 0.8009 0.4765 0.6608 0.4077 0.3055 0.3745 0.5043

OracleReward 0.8508 0.5117 0.6949 0.4613 0.3078 0.3684 0.5325
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a photo of an 

apple and a 

donut.

𝝀𝒗 = 𝟎. 𝟎𝟏 

a photo of 

four handbags

a photo of a 

bench above 

a spoon.

𝝀𝒗 = 𝟎. 𝟎𝟐 𝝀𝒗 = 𝟎. 𝟎𝟑 𝝀𝒗 = 𝟎. 𝟎𝟒 𝝀𝒗 = 𝟎. 𝟎𝟓 𝝀𝒗 = 𝟎. 𝟎𝟔 𝝀𝒗 = 𝟎. 𝟎𝟕 𝝀𝒗 = 𝟎. 𝟎𝟖 𝝀𝒗 = 𝟎. 𝟎𝟗 𝝀𝒗 = 𝟎. 𝟏 

Figure 12: Generated images with varying image token optimization ratio λv .

Table 8: WISE results with different reward models. The best performance is in bold.

Reward Cultural Time Space Biology Physics Chemistry Overall
Base 0.30 0.37 0.49 0.36 0.42 0.26 0.35

Self Reward 0.40 0.43 0.53 0.38 0.44 0.23 0.41
GPT-4o 0.53 0.53 0.62 0.52 0.53 0.34 0.52
UnifiedReward 0.45 0.54 0.60 0.46 0.52 0.30 0.48
MixedReward 0.48 0.51 0.61 0.44 0.51 0.33 0.49

Metric Reward 0.64 0.65 0.72 0.66 0.71 0.37 0.63

OracleReward MixedReward GPT-4o UnifiedReward SelfReward

a photo of a 

computer 

keyboard above 

a snowboard.

a photo of four 

frisbees.

a photo of a 

yellow pizza 

and a green 

oven.

a photo of four 

handbags.

a photo of a 

dining table 

above a 

suitcase.

Figure 13: Case study of various reward models.

A.3.3 EFFICIENY ANALYSIS

We summarize the computing resources used by different image generation models in Table 9. Com-
pared with training-based reasoning approaches such as T2I-R1 (Jiang et al., 2025a), Janus-Pro with
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DPO/GRPO (Tong et al., 2025), and Flow-GRPO (Liu et al., 2025a), our test-time reasoning method
achieves the best performance, without relying on curated reasoning data for training. As an exam-
ple, Flow-GRPO requires about 2K A800 GPU hours for training but only matches MILR, not to
mention its labor cost in curating reasoning data. Moreover, when compared with the strong test-time
reasoning method Best-of-N (N=20 vs. T=20 in MILR), MILR surpasses it by 0.04 while requiring
less inference time because it employs an early-stop strategy, i.e., it stops once the generated image
satisfies evaluation criteria.

Table 9: Efficiency comparisons.

Method #GPU ↓ GPU Training Time ↓ Inference Time ↓ Training Data GenEval Score ↑
T2I-R1 (Jiang et al., 2025a) 8 H800 16 h – ✓ 0.79
Janus-Pro+GRPO (Tong et al., 2025) 8 A100 ∼9 h – ✓ 0.81
Janus-Pro+DPO (Tong et al., 2025) 8 A100 ∼9 h – ✓ 0.83
Flow-GRPO (Liu et al., 2025a) 24 A800 ∼100 h – ✓ 0.95
Reflect-DiT (Li et al., 2025b) – A6000 24 h 16 h ✓ 0.81
Janus-Pro-7B(+Best-of-N, N=20) 1 A100 0 8 h ✗ 0.91
MILR (ours) 1 A100 0 5 h ✗ 0.95

A.4 LATENT REGULARIZATION TO MITIGATE REWARD HACKING

As discussed in Section 4.4.1, MILR can suffer from reward hacking, which refers to a scenario
where a MUG model achieves high rewards but exhibits low image generation quality. To mitigate
this issue, we adopt a simple ℓ2 regularizer to constrain the difference between the latents before
and after optimization. Let zinit denote the initial latents produced by a frozen MUG model before
optimization, and let J (zk) denote the original objective used at the latents optimization step k
(see Equation (6)), we define the regularized objective as:

Jreg(z
k) = J (zk)− β

∥∥zk − zinit
∥∥2
2
, (7)

where β > 0 controls the strength of regularization. Intuitively, this term encourages the optimized
latents zk to stay close to the initial latents, thus maintaining image generation capability similar to
that of the frozen MUG model.

In our experiments, we use a small coefficient β = 0.05, which empirically stabilizes the opti-
mization and alleviates semantic collapse, without degrading generation quality. In Figure 14, we
illustrate that adding latent regularization helps mitigate reward hacking.

a photo of a bench above a spoon a photo of a dining table above a suitcase.

+L2 +L2

Figure 14: ℓ2 regularization on latents mitigates reward hacking.

A.5 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs (e.g., OpenAI ChatGPT) only to polish our writing and to create LATEX algorithms
and math equations. LLMs did not contribute to our research idea, model design, experimentation,
etc. All contents of the paper have been verified by the authors.
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