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Abstract

Given the limited performance and efficiency of on-device
Large Language Models (LLMs), the collaborations between
multiple LLMs enable desirable performance enhancements,
in which data, tokens, and model weights could be shared
across LLMs. This process is constrained by task-oriented
QoS demands, privacy requirements, and inherent system
heterogeneity. In view of the above challenge and to fully
exploit the on-device inference capabilities, we present a
novel federated inference framework in this position paper,
termed federated refinement FedRefine. This framework
presents a new paradigm for heterogeneous LLMs collabora-
tively performing inference with communicating KV caches
in a privacy-preserving manner. Some numerical results are
provided to highlight the superiority of FedRefine. Several
interesting topics are also highlighted for future research. By
exploring the LLM-native communications, we wish to pro-
vide a new paradigm for this broad area.

Motivation
Recent advances have enabled edge devices to host small
and large language models (LLMs) locally (Yang et al. 2025;
Friha et al. 2024). However, these on-device models still suf-
fer from compromised inference accuracy and speed com-
pared to full-scale cloud LLMs. Fully offloading inference
to the cloud by transmitting all input and output tokens is
certainly not scalable, as it entirely neglects the potential of
on-device inference capabilities. Alternatively, motivated by
federated learning (McMahan et al. Apr. 2017), which uti-
lizes local computation and data for collaborative training,
this work aims to put forward a new direction of federated
inference that collaboratively exploits on-device inference
capabilities to achieve fast and accurate results collectively.

Achieving this goal is non-trivial due to challenges in
inference latency, privacy, and heterogeneity as follows.
Specifically, in modern autoregressive LLMs, each output
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token is generated not immediately after decoding the last
token but after decoding all its previous tokens to ensure
contextual consistency. Therefore, inter-device token com-
munication such as text-to-text communication (T2T), in-
duces significant computation latency, equivalent to the pre-
fill delay required to rebuild the key-value (KV) cache. Fur-
thermore, LLM input and output tokens are often human-
interpretable and may reveal private user content. Also, the
heterogeneous nature of model architectures restricts the ex-
change of architecture-dependent semantic information and
knowledge required for LLM communication and collabo-
ration. To address these challenges, we propose a novel fed-
erated inference framework, termed federated refinement,
FedRefine, where devices communicate KV caches in-
stead of tokens, thereby skipping pre-fill delays and generat-
ing a large number of new tokens while keeping private to-
kens locally. FedRefine is built upon two key ideas, LLM
self-refinement (SelfRefine) and cache-to-cache communi-
cation (C2C), as elaborated in the following section.

Rethinking Heterogeneous LLM
Communications and Collaborations

Building upon the principles of SelfRefine and C2C, this
section presents FedRefine to enable efficient collabora-
tive inference across heterogeneous LLMs.

From Self-Refine to Cache-to-Cache (C2C)
To exploit the inference capabilities of on-device models,
self-refinement allows LLM to iteratively improve its own
output (Madaan et al. 2023). However, this on-device refine-
ment process is fundamentally limited by the model’s inter-
nal knowledge. To overcome this limitation and enable col-
laborative refinement for improved inference, models must
exchange information. In such context, the device perform-
ing the primary inference is termed the receiver, while the
device sharing data or knowledge to assist is termed the
transmitter. Intuitively, such collaboration occurs at the out-
put level via T2T communication, where LLMs communi-
cate with natural language tokens. This approach improves
inference performance but incurs significant latency over-
head. Subsequently, a more efficient approach via C2C com-
munication was proposed (Fu et al. 2025), mitigating the
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Figure 1: Illustration of unidirectional and bidirectional
cache communication.

high latency issues associated with T2T, in which the LLM
at the receiver (i.e., LLM 2) performs refined inference by
leveraging the KV Cache of the transmitter’s model (i.e.,
LLM 1) as shown in Fig. 1(left), in which both LLMs share
the same input tk. In particular, the bridge across the KV
cache from LLM 1 to LLM 2 could be implemented via a
pre-trained C2C fuser (i.e., Fuser12 in Fig. 1(left)). Denote
the LLM 1 at the transmitter, KV Cache, and the correspond-
ing Fuser12 as M1, C, and F12, respectively. With the model
M2 (i.e., LLM 2) and the current token tk, the next token
predicted in the decoding process at LLM 2 is given by

tk+1 = P(tk|C(F12,M1) ◦ C(M2)), (1)
in which ◦ is the sequence-wise concatenation operation.
Such a framework allows for the unidirectional communica-
tion of internal KV cache states with richer semantic knowl-
edge compared to text, enabling far more efficient collabo-
ration and inference refinement while avoiding the high la-
tency and information loss of text-based interactions.

From Unidirectional C2C to Bidirectional Co-C2C
The C2C framework defines a unidirectional collabora-
tive inference scenario. Analogous to the co-distillation ap-
proach, we introduce a bidirectional variant of the C2C
scheme. As shown in Fig. 1(right), the core of this approach
involves training two fusers (i.e., Fuser21 and Fuser12 for
LLM 1 and LLM 2, respectively) to bidirectionally bridge
any two LLMs, thereby facilitating their communication and
collaboration for refined inference performance. In addition
to the decoding process given in Eq. 4, a reverse refined de-
coding process could be obtained via

tk+1 = P(tk|C(F21,M2) ◦ C(M1)), (2)
in which F21 represents the fuser for projecting KV cache
from LLM 2 to LLM 1. Overall, bidirectional cache commu-
nication surpasses one-way updates by enabling mutual re-
finement, fostering a fairer and incentive-compatible collab-
oration paradigm, by allowing devices to assume dual roles,
acting simultaneously as receiver and transmitter.

Fed-Refine: Federated Inference with Refinement
Built upon the bidirectional cache communication-based
collaboration, we now formally present Federated Refine-
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Figure 2: A depiction of the federated refinement framework
in a heterogeneous multi-LLM system.

ment framework, FedRefine, as depicted in Fig. 2. In par-
ticular, our proposed FedRefine integrates Cache com-
munication as the medium of collaboration over the het-
erogeneous multi-LLM systems, without requiring identical
model architectures. By maintaining all KV cache fusers for
all possible bidirectional collaborations, FedRefine en-
ables a model-agnostic and bidirectional KV Cache sharing-
based collaboration paradigm across heterogeneous LLMs,
where LLMs will perform inference with rephrased input to-
kens to ensure privacy protection without any intent leakage.

Take Fig. 2 as an example. Consider a system with N
LLMs, in which all the inference computation will be col-
laboratively accomplished via sharing corresponding KV
Cache for any certain task T . The server maintains all
pre-trained fusers, {F12,F21,Fij ,Fji, . . . ,F1N ,FN1}, in
which Fij and Fji represent the fuser pair for any bidirec-
tional cache communication link, i ↔ j, in which i, j ∈ N .
The pre-training of each fuser are conducted separately for
each pair of LLM collaboration and the training process
could refer (Fu et al. 2025). In addition, a gating network
is required for each LLM to select the data from its own
model or other fusers. We now introduce how FedRefine
works from two LLM collaborations and multiple LLM col-
laborations. At the beginning of inference, the LLMs at both
the transmitter and receiver receive distinct rephrased in-
put tokens to preserve privacy. For simplicity, we let tk de-
note the rephrased tokens for all LLMs when performing the
k-th inference task. In FedRefine, for any selected two
LLMs i and j with input tokens tk, the bidirectional cache
communication-based refined inference is given by

tk+1 = Pj(tk|C(Fij ,Mi) ◦ C(Mj)), for LLM i → j;

tk+1 = Pi(tk|C(Fji,Mj) ◦ C(Mi)), for LLM j → i. (3)

When extended to multiple LLM cache communication
scenarios, the refined inference process could be given by

tk+1 = Pi(tk|C(Fj1i,Mj1)◦
C(Fj2i,Mj2) ◦ · · · ◦ C(Fjsi,Mjs) ◦ C(Mi)) (4)

in which LLM i leverage the KV cache from multiple het-
erogeneous LLM j1, j2, . . . , js. In summary, via implement-
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Figure 3: Performance evaluation of the proposed collaborative inference framework. “KV” and “Token” denote collaborative
protocols via C2C and T2T transmission, respectively. “Original” refers to transmitting raw queries without privacy protection,
while “Rephrased” indicates the use of privacy-preserving semantically rewritten queries.

ing the multi-bidirectional KV cache fuser, FedRefine en-
ables flexible cache communication and scalable collabora-
tive LLM inference over heterogeneous networks.

Case Study
To further facilitate the above analysis of our proposed Fe-
dRefine, we provide a case study on evaluating the collab-
oration performance over a heterogeneous multi-LLM sys-
tem, which comprises a receiver model, Qwen3-0.6B (Yang
et al. 2025), and four transmitter models: Qwen2.5-0.5B,
Qwen2.5-0.5B-code, Qwen2.5-1.5B (Hui et al. 2024), and
Llama-3.2-1B (Dubey et al. 2024). The system schedules
different pairs of LLMs to perform collaborative inference
through cache communications, with the server hosting a to-
tal of four distinct fusers for KV Cache projection across
these pairs. Motivated by (Fu et al. 2025), we align the re-
ceiver and sender models layer-by-layer from the bottom
up. For each layer of the receiver, a three-layer MLP net-
work projects the corresponding layer’s KV Cache from the
sender model into the receiver model. The receiver then
mixes the projected KV Cache with its own as the up-
dated KV Cache. Each C2C fuser is trained on the first
50,000 samples of the general fine-tuning dataset OpenHer-
mes2.5 (Teknium 2023), and evaluation of detection perfor-
mance is conducted using the OpenBookQA dataset (Mi-
haylov et al. 2018). In this paper, we employ the receiver
model, Qwen3-0.6B, to rephrase the original questions. We
use the average inference time as the latency evaluation met-
ric (in seconds), and measure the communication load by the
amount of data transmitted per token in both text transmis-
sion and cache communications scenarios.

Based on the aforementioned fuser network architec-
ture, we conducted performance evaluations for standalone
model inference and heterogeneous LLM federated infer-
ence with the results shown in Fig. 3. Specifically, the het-
erogeneous LLM federated inference experiments were de-
signed based on prior knowledge that different models ex-
hibit varying performance across different tasks. Based on
this prior knowledge, the receiver model selects different
model combinations according to the different tasks. First,

as depicted in Fig. 3(a), all federated inference models sur-
pass the receiving model’s standalone baseline, with accu-
racy showing a clear upward trend as more sharing models
participate. This confirms the effectiveness of our LLM col-
laborative inference framework. For instance, with all four
sharing models participating, the non-private KV collabora-
tive model yields a 21.2% accuracy improvement over the
independent inference baseline. Furthermore, the privacy-
preserving KV model exhibits only a 3% decrease in accu-
racy under the same setting, demonstrating that our privacy
protection strategy does not significantly compromise col-
laborative performance. Finally, the accuracy of federated
inference via C2C significantly outperforms the T2T ap-
proach. Specifically, with the full participation of four sharer
models, C2C surpasses T2T by approximately 15%. How-
ever, in this full-participation setting, transmitting the KV
cache for a single token requires 88 KB, whereas T2T re-
quires only 16 bytes, indicating that the C2C approach im-
poses significantly higher demands on communication re-
sources. Fig. 3(b) indicates that the intrinsic capabilities of
the sharer model directly impact the performance of the
collaborative model. Meanwhile, Fig. 3(c) reveals that al-
though the privacy-preserving C2C method incurs additional
latency due to query rewriting, its total latency remains sig-
nificantly lower than that of the T2T approach. Overall, re-
sults show the proposed heterogeneous LLM federated in-
ference paradigm achieves efficient knowledge transfer and
significant performance gains with low costs.

Possible Variants and Future Trends
Considering the challenges brought by the overhead of the
exchanged cache data, the decision to use cache or token
communication could be dynamically determined based on
both the current network status and the specific QoS require-
ments. That said, cache communication and token commu-
nication could be adopted in an opportunistic manner. The
shared tokens and KV Cache data undergo processing on the
edge server (e.g., via a prompt summarizer/optimizer (Yuk-
sekgonul et al. 2024) or KV Cache fuser), enabling target
clients to leverage the processed information for further col-



laborative task execution, thereby enhancing overall infer-
ence performance.

Building upon the FedRefine paradigm, we now out-
line key challenges and future research directions for achiev-
ing sustainable foundation model collaborations for next-
generation intelligent networks.

• Iterative local refinement. Existing self-refinement
methods typically involve a single LLM that iteratively
generates and revises its own output to enhance response
quality without external knowledge sharing or supervi-
sion (Madaan et al. 2023). How to effectively design iter-
ative inference and refinement with cache or token com-
munications could be further explored.

• Continuous global federation iterations. The potential
for a single model’s refinement to enhance its collabora-
tors motivates a new research direction. We can mirror
the concept of local iterative refinement in a collabora-
tive setting, exploring multi-iteration cache communica-
tion as a mechanism to achieve continuous, system-wide
LLM refinement.

• Cache communication for multi-modal LLMs. The
evolution from text-only LLMs to multi-modal models
unlocks a much wider range of applications but also in-
troduces more diverse challenges (Hu et al. 2024), mak-
ing it essential to design effective cache communication
strategies tailored for these multi-modal scenarios.

• Prompt engineering for federated inference. In LLM
collaborations, prompt engineering is crucial for defin-
ing each model’s specific role and orchestrating their in-
teraction to achieve a unified goal (White et al. 2023).
In the context of federated inference, it would be neces-
sary to develop prompt engineering approaches for cache
communication-based model refinement in a privacy-
preserving manner.

Conclusion
This work offers diverse perspectives on LLM communica-
tion collaborations. Inspired by the C2C approach, we pro-
posed Federated Refinement, a novel framework that lever-
ages bidirectional cache communication to achieve scalable
collaborative inference between heterogeneous LLMs. By
exploring the LLM-native communications with validated
efficacy, we wish to provide a new paradigm for this broad
area.
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Appendix-A: Extended version of FedRefine
With different network connections and heterogeneity sta-
tus, our proposed framework evolves into following major
types.

1. Homogeneous federated inference and refinement via to-
ken communication;

2. Homogeneous federated inference and refinement via
cache communication;

3. Heterogeneous federated inference and refinement via to-
ken communication;

4. Heterogeneous federated inference and refinement via
cache communication.

Appendix-B: Literature Review
To address the limitation of single models, LLM collab-
oration has emerged as a promising alternative that dis-
tributes the computational and cognitive burden across mul-
tiple models rather than relying on a single architecture (Li
et al. 2023). In collaborative frameworks, heterogeneous
LLMs, which could be deployed across multiple devices,
edge or cloud server, to handle complex queries by lever-
aging their computational capacity-dependent complemen-
tary strengths. Concretely, consider a multi-LLM system
deployed over a heterogeneous and resource-constrained
edge network, in which on-device LLMs are maintained ac-
cording to each device’s maximum computational capac-
ity (Friha et al. 2024). Multiple LLMs with different archi-
tectures and scales would be selected by the edge server to
communicate for collaborative tasks, such as hybrid infer-
ence, knowledge transfer, model refinement, or joint model
optimization and fine-tuning (Zhang et al. 2024). Such
collaborative schemes exhibit varying communication and
computational overhead profiles, distinguished by the nature
of transmitted information. Communication payloads may
consist of discrete tokens for prompt-based interactions, gra-
dient tensors for backpropagation-based learning, complete
or partial model weight matrices for direct parameter shar-
ing, or intermediate embeddings for feature-level knowledge
exchange.

Therefore, the above constraints motivate our explo-
ration of an adaptive, task-oriented, and model-agnostic
framework for LLM-native communication and collabora-
tion. More specifically, while tokens, gradients, and model
weights are common mediums for designing LLM commu-
nication and collaboration frameworks, the KV Cache, the
core and LLM-native representation of knowledge, has been
largely overlooked (Fu et al. 2025). On the other hand, either
in hybrid inference or knowledge distillation, a larger model
is always assumed to be capable of rectifying or improving
less powerful model’s output (Naveed et al. 2025). It would
be also interesting to explore the reverse way of communi-
cation flow.

The existing LLM collaboration solutions are mainly built
upon the adaptive task scheduling and routing strategies,
whereby the system can adjust its collaboration policy based
on real-time and task-oriented factors such as query com-
plexity, available resources, network conditions, and latency

requirements (Li et al. 2024). By scheduling multiple LLMs
through intelligent task decomposition, selective offloading,
and result synthesis, collaborative frameworks can achieve
performance levels approaching or exceeding those of larger
monolithic models while maintaining the efficiency and pri-
vacy benefits critical for on-device deployment. However,
when comes to real-world deployment, several key chal-
lenges are introduced, which complicate deployment and
limit its effectiveness in real-world applications.

In the following, we discussed the constraints from the
perspective of latency, heterogeneity nature, and the compu-
tational overhead, in existing LLM collaboration and refine-
ment scenarios.

• The collaborative process across LLM inference and re-
finement inherently incurs communication and coordi-
nation overhead. This characteristic inevitably increases
response latency, which serves as a critical metric for
quality of service in task-oriented communications. Even
when collaboration occurs locally across on-device mod-
els, the sequential or iterative nature of multi-model in-
ference, query decomposition, and result aggregation or
summarization can accumulate delays that negate the la-
tency advantages of edge deployment, particularly for
time-sensitive tasks where near-real-time or latency re-
sponse are expected.

• Tailored by the heterogeneous capacity of devices in edge
networks, the naturally heterogeneity of model archi-
tectures presents fundamental compatibility barriers that
preclude efficient knowledge sharing mechanisms. Un-
like homogeneous ensemble methods where models can
directly exchange weights or gradients (i.e., federated
learning), collaborating LLMs with different tokeniza-
tion schemes, embedding dimensions, attention mech-
anisms, and architectural paradigms cannot seamlessly
share learned knowledge without computationally cost-
expensive fusion and aggregation, thereby limiting the
flexibility and scalability of collaboration across hetero-
geneous LLMs.

• Last by not least, maintaining and updating collabora-
tive LLM systems (i.e., model aggregation, fine-tuning)
imposes substantial computational and communication
costs that scale poorly as the number of participat-
ing models increased. Continuous fine-tuning or adapta-
tion through collaboration requires either expensive dis-
tributed training protocols that aggregate updates across
models, or distillation pipelines that transfer knowledge
between heterogeneous architectures, both of which con-
sume significant resources and may require frequent
model redeployment. The overhead will undermine the
scalability and sustainability of the collaboration frame-
works.

The aforementioned challenges significantly impact the
performance, efficiency, and scalability of LLM collabo-
ration frameworks, especially in resource-constrained edge
networks. Existing work fails to provide a scalable solution
that can simultaneously satisfy the task-dependent QoS re-
quirements of LLM communication and collaboration. Con-
sidering the challenges in LLM collaborations and the fact



that research in this area is still in its infancy, we seek to
provide a new perspective for efficient and scalable LLM
collaboration.

A few key remarks on the proposed paradigm and how it
differs from existing works are summarized as follows.
• Task-oriented Communication. Federated Inference

with Refinement could adaptively change the commu-
nication schemes (i.e., cache communication and token
communication) in a LLM-native manner, achieving de-
sirable performance under different QoS requirements.

• Heterogeneity Compatibility. Federated Inference with
Refinement does not have homogeneity assumption on
model architectures, which provides a scalable solution
for heterogeneous model collaboration over edge net-
works.

• Bi-directional Collaboration. The proposed paradigm
enable bi-directional communication and collaboration,
enabling a new perspective that smaller model could also
has the potential to refine the inference performance of
larger model via cache communications. Detailed valida-
tion results could be found in the following case study.

• Lightweight Refinement Cost. The proposed paradigm
refines the LLM inference performance without requiring
transmitting or updating model weights.


